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ABSTRACT

Recent observational advances suggest that it may soon be possible to measure the frequencies of p-mode
oscillations on distant Sun-like stars. We investigate the potential utility of such oscillation frequencies in
determining the fundamental stellar structure parameters of these stars, in the case in which frequencies may
be measured for both members of a visual binary system. To utilize all of the observations presumed to be
available in an optimal way, we develop a formalism based on singular value decomposition (SVD) to relate
errors in observed quantities to those in model parameters. As a particularly interesting example, we consider
the a Cen system as it would be seen from distances between 1.3 pc (its true distance) and 100 pc. We find
that for the nearest case, adding oscillation frequency separations with plausible errors to the available
astrometric, photometric, and spectroscopic data allows one to reduce the formal errors in estimates of the
helium abundance, heavy-element abundance, and mixing length by roughly a factor of 2. Estimates of the
stellar masses and the system’s age and distance are not markedly improved, mostly because of the very high
quality astrometric data that can be obtained on such a nearby object. If the system were located at a signifi-
cantly larger distance, the addition of oscillation information would allow drastic reductions in the formal
error applicable to all of the stellar parameters except the helium abundance. These results suggest that accu-
rately measured oscillation frequencies for visual binaries might allow tests of stellar structure theory at a level
of precision that has hitherto been obtainable only for a few eclipsing binaries. Reducing the observational
errors in photometry or astrometry by a factor of 3 does not provide the same level of improvement, espe-
cially for relatively distant systems. We show that the extra information contained in the oscillation fre-
quencies for a reasonable set of modes would easily allow one to distinguish between models using opacity
laws obtained from the Los Alamos Opacity Library and from the more recent Livermore OPAL tables. Dif-
ferent formulations of the equation of state (without and with Coulomb effects) lead to models that are mar-
ginally distinguishable, while models with and without helium settling from the convection zone are not
distinguishable, given observations with errors as large as we assume.

Subject headings: stars: abundances — stars: fundamental parameters — stars: interiors — stars: oscillations

1. INTRODUCTION

In the last decade, observations of p-mode pulsations in the
Sun have been successfully interpreted to yield a wealth of
information about the nearest star. It is natural to suppose that
information about similar pulsations on other Sun-like stars
would significantly improve our knowledge about those
objects as well, even though the lack of spatial resolution
severely limits the number of stellar oscillation modes that
might be observed. Such improvements would of course be
highly desirable. For example, knowledge of the most basic
parameters of stellar structure (mass, age, and composition) for
a suitable sample of stars has a direct bearing on our under-
standing of the age and chemical evolution of the Galaxy. Even
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more directly, accurate oscillation data might provide a con-
frontation with the theory of stellar structure; by comparing
observed frequencies (and other stellar observables) with those
predicted by theory, one may hope to assess the importance of
phenomena that are not included in traditional treatments of
stellar evolution.

Technical advances suggest that stellar p-modes might soon
be observable on a number of nearby solar-like stars, albeit
with considerable difficulty (e.g., Gelly, Grec, & Fossat 1986;
Brown et al. 1991; Innes et al. 1991; Pottasch, Butcher, & van
Hoesel 1992; Gilliland et al. 1993). It therefore is of interest to
know exactly what information can and cannot be extracted
from the oscillation data that might plausibly be obtained, or
from such data in combination with observations of other
kinds. Some efforts in this direction have been made for the
case of isolated stars (Ulrich 1986; Christensen-Dalsgaard
1984, 1988; Gough 1987, 1990a). Rather than deal with the
frequencies of individual modes, these authors formulated their
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analysis in terms of two frequency differences, or separations.
The first of these is termed Av, (or the large separation) and is
defined as the mean frequency difference between modes that
have the same angular degree /, but that differ by one in their
radial order n. According to asymptotic theory (Vandakurov
1967; Tassoul 1980), this separation is equal to the reciprocal
of the sound travel time across the star. This quantity is
also closely related to the star’s mean density p. For stars
with similar central condensation, one may write with good
accuracy

ﬁ 1/2
Avg=vn+ 1,0 — v(n, ) = 135<7®> pHz (1)

where p is the solar mean density. The second frequency
separation considered is the small separation év,, which is
defined to be the frequency difference

Svo=vn+1,1=0)—vn,[=2). @)

According to lowest order asymptotic theory, this frequency
difference should be exactly zero. When higher order asymp-
totic terms are taken into account, the apparent frequency
degeneracy is lifted, because of differences in the way modes
with [ = 0 and | = 2 propagate in the very deepest parts of the
star. The small separation dv, therefore measures conditions in
and near the stellar core, and in particular is sensitive to age-
related changes in the core’s chemical composition.

Ulrich (1986) and Christensen-Dalsgaard (1984, 1988) con-
cluded that measurements of both Av, and dv, could be com-
bined to give estimates of both the mass and age of an isolated
star, and that if other information about the star (for example,
its surface gravity) were available, then something might be
learned about the convective mixing length or the composi-
tion. Gough (1987, 1990a) challenged these conclusions, point-
ing out that the mass and age estimates depend sensitively on
the stellar composition, especially the relatively poorly deter-
mined heavy-element abundance Z. He therefore argued that
stellar mass and age could not be determined to useful pre-
cision from the two frequency separations alone; other infor-
mation would be required to make accurate parameter
determinations.

The fundamental difficulty underlying parameter estimation
for isolated stars is that the number of precisely observable
quantities (even including frequency separations) is not large
compared to the number of model parameters one must con-
sider. One thus expects that whole families of stellar models
may fit the observations equally well, so that at least some of
the stellar parameters must be very poorly determined. To
avoid this unhappy situation, one must evidently consider con-
texts in which there are many more observables, but only a few
more unknown parameters.

One such case is that of a visual binary system. For a
detached visual binary with two main-sequence components,
one may reasonably assume that both stars have the same age
and the same initial composition, and that mass transfer
between the stars has never been important. Relative to a
single star, the only new parameters to consider are the mass of
the second component, the orbital semimajor axis, and (if it is
not to be considered as a system-wide constant) the mixing
length for the second star. There are, however, many more
observables for a binary than for a single star. Besides fre-
quency separations for the companion, one can measure its
magnitude and color, and several quantities relating to the
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binary’s orbit. With more observables than parameters, one
may reasonably fit a model to the observables, with the expec-
tation that most (or perhaps all) of the model parameters may
be well constrained. One must be careful, however, since the
various pieces of information provided by the observations are
unlikely to be completely independent of one another. This
lack of independence has both good and bad aspects. To the
extent that interdependence of the observables limits one’s
ability to estimate model parameters, it is obviously bad. On
the other hand, if more than one observable relates to the same
model parameter, then the degree of agreement between them
carries information about the reliability of the data, or about
genuine failings in the model that relates parameters to obser-
vables. In the most interesting case, one might hope that
clearly inconsistent observables relating to the same parameter
might indicate some new physics that should be included in the
model.

An obvious candidate for studies of this nature is the
o Centauri system, whose distance and masses are known with
comparatively high precision. Furthermore, tentative identifi-
cations of p-mode oscillations have been made in the com-
ponent o Cen A (Gelly et al. 1986; Pottasch et al. 1992),
although other studies have failed to detect a significant signal
(Brown & Gilliland 1990). Demarque, Guenther, & van Altena
(1986) and Edmonds et al. (1992) attempted to model the
observed properties of the system and made a preliminary
investigation of the sensitivity of the frequencies to the param-
eters and physics characterizing the model.

In what follows, we discuss both aspects of stellar model
fitting in visual binary systems, using as data the p-mode fre-
quency separations or individual frequencies as well as reason-
able photometric and astrometric observations. In § 2, we
discuss the fitting procedure used and its mathematical back-
ground. Section 3 contains an example of the fitting procedure
applied to a simple physical system. In § 4 we discuss the errors
that we assumed for the various observables, and we describe
the stellar evolution and oscillation codes used to relate model
parameters to observables; this includes a careful investigation
of the sensitivity of various aspects of the models and fre-
quencies to changes in the parameters or physics. Section 5
contains the results of our numerical experiments. These were
all concerned with a binary system fashioned after the o Cen-
tauri system, except at an arbitrary distance from the Earth.
Section 6 is a summary of our conclusions.

2. MATHEMATICAL BACKGROUND

As a general approach to estimating stellar model param-
eters, we wish to employ a y*> minimization technique. To do
so, one must first determine which observed quantities
(henceforth termed observables) are to be used, along with the
magnitudes of their associated errors. In general, it is best to
use all of the pertinent observations, with the condition that
the errors associated with the various observables must be
independent of one another and must be reasonbly well
known. The requirement of independent errors discourages use
of derived quantities as observables (e.g., photometrically
determined effective temperature and metallicity), since the
combination of directly observed quantities (in this case photo-
metric colors) generally leads to correlated errors in the
derived values. In such cases, one should use as observables the
fundamental observed quantities, which may usually be taken
to have independent errors. Sometimes (for example, for paral-
laxes and other astrometric quantities) the line between funda-
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mental observations and derived quantities is not easy or
convenient to draw. These observables should be treated with
care, since the introduction of correlated errors can vitiate the
results of the following analysis. For the binary star systems we
are considering, the observables consist of the various distinct
indices obtained from astrometry, photometry, spectroscopy,
and oscillation measurements. Let us suppose that there are M
of these observables, designated B;, and that each has associ-
ated with it an uncertainty ;.

Having chosen a set of observables, one must next construct
a model of the binary system, containing a number N of free
parameters P;. The model must be such as to allow computa-
tion of all of the observables B;, given definite values for the
parameters P;. In the present case, this model involves a
sequence of rather complicated computations which will be
described in detail in § 4. For the moment, it suffices to know
that the model is based on stellar evolution and oscillation
calculations, as well as on some information about radiative
transfer, Kepler’s laws, and simple geometry. It is thus able
to start from a set of parameters (stellar mass, composition,
distance, etc) and produce values for the observables
(magnitudes, colors, oscillation frequencies, etc.).

Although the observables are strongly nonlinear functions of
the parameters, we assume that the model may be linearized in
the neighborhood of a reference set of parameters P;,, which
are chosen to be a good first guess at the true parameter set.
Then we have

N 0B;
B. = B, — 6P; 3
i 10+j§1apj61’ ()

where B, is the set of observables resulting from the param-
eters Py, 6P; = P; — Py, and the derivatives 0B;/0P; are
evaluated at P; = P;,. If we denote the actual values of the
observables by f;, then the parameter-fitting problem we wish
to solve consists of choosing the parameter corrections 6P; so
as to minimize

M 2
P R @
i=1 0;
Within the regime where the linearization in equation (3) of the
model is accurate, this is a linear least-squares problem, which
is most conveniently solved by the method of singular value
decomposition.

Before discussing the solution method, however, two points
should be made. First, the principal purpose of this paper is to
understand the uncertainties in the estimated parameter values
resulting solely from errors in the observables, taken in the
context of the given model. Another whole class of errors arise
from inadequacies of the model itself. For example, incorrect
treatment of the microphysics in the stellar evolution part of
the model may lead to systematically incorrect relations
between the model parameters and the observables. These
errors are clearly also important; indeed, uncovering them is
one of the main motivations for undertaking the modeling
enterprise. In the context of the fit in equation (4), errors of this
nature would appear as residuals that are inconsistent in mag-
nitude with estimates of the errors in the data, or that are
obviously systematic. We consider examples of this in § 5.6
below. However, throughout most of the paper we shall
suppose that the model is adequate to reproduce the observed
data, and that there is a reasonably straightforward (albeit not
completely known) mapping between model parameters and

EFFECTIVENESS OF OSCILLATION FREQUENCIES 1015

the real-world quantities that they are supposed to represent.
In this sense, we are discussing only the accuracy of a
parameter-fitting procedure, without being concerned at pre-
sent with that procedure’s physical relevance.

The second point, implied by the foregoing discussion, is
that it is extremely important to maintain the distinction
between parameters and observables. This can be difficult to
do when a parameter and an observable are related to one
another in a trivial way, and therefore have similar names. For
example, a stellar model requires a metal abundance Z, while
spectroscopic observations can yield a stellar metallicity Z,,;
in the absence of observational error, one expects that Z ., =
Z. Nevertheless, these two objects are not the same, either
conceptually or (very probably) numerically. They occupy dif-
ferent spaces and play quite different roles in the analysis.

To approach the minimization problem at hand, we will
follow the discussion by Press et al. (1986). The derivative
matrix 0B;/0P; describes a linear transformation relating small
changes in the parameters to resulting changes in the observ-
ables. Note that to obtain a well-posed problem, we must have
at least as many observables as parameters (i.e, M > N). If
there are more observables than parameters, then the range of
the linear transformation does not span the entire space of
observables, so that in general it is not possible to fit all of the
observables exactly. It is convenient to rewrite the transfor-
mation so that the change in each observable is expressed in
terms of its expected error ¢;. Doing so, equation (3) becomes

N 1 9B,
j; o, 3P, OP; = 6B;, )
where 0B; = (B; — B;y)/0;. The linear transformation may now
be expressed in more compact matrix form as

DSP = 6B, (6)

where D is the so-called design matrix, the components of
which are o; ! 0B;/0P;. The x* minimization problem consists
of choosing dP so that

x> =DSP—3B|? ()
1S a minimum.
The solution of this minimization problem by singular value

decomposition hinges on the fact that D (or any other M x N
matrix) may be decomposed as

D=UWVT, ®)

where U= {UY, U?, ..., UM} is an M x N matrix whose
columns U® are orthonormal, Wis an N x N diagonal matrix,
and V={VO, V3 ., V™ is an N x N matrix whose
columns V¥ are orthonormal. One may think of the columns
of V as a set of orthonormal vectors that span the space of
model parameters. The U® are then another set of orthonor-
mal vectors spanning the range of the transformation in ob-
servable space. Thus, no vector dB that is orthogonal to all the
U® can be generated by the transformation, no matter what
one chooses for 6 P.

For a scaled change dB in the observables such that equa-
tion (6) is satisfied, one obtains, using equation (8) to expand
the design matrix in equation (6), and then multiplying from
the left by VW~ 1U7, that

SP=VW 'UTSB. )

For a general 6B we can still obtain 6P from equation (9).
Inserting this expression into equation (7) and carrying out the
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matrix multiplications, we find
¥=101—-UUNB|*. (10)

But because of the orthogonality of U and its identification
with the range of the transformation, (1 — UUT)8B is precisely
that component of B that lies outside the range. The length of
this residual vector therefore cannot be reduced by any other
choice of 6P, so that the vector 6P in equation (9) is in fact the
desired minimum x2 solution. This may be expressed as
3P = Q 5B, where the matrix

Q=Vwur (11)

determines the weight given to each datum in the determi-
nation of an individual parameter P;. Having so determined
the solution 6 P, we may compute the residual vector

OB, . = 6B — D SP; (12)

resi
as discussed above, large components of 6B, 4 (i.€., given our
normalization with the errors, components substantially larger
than unity) indicate that the data are inconsistent with the
assumed model.

Besides it elegance, the singular value decomposition (SVD)
method for obtaining a best fit to the observables has several
practical advantages. The most important of these concerns
the errors that should be associated with the parameter esti-
mates. Because of the presumed independence of the errors in
the observables and the division by o, the error ellipsoid in the
space of B is in fact a sphere. Following the transformation to
parameter space, the error ellipsoid surrounding 6P is gener-
ally not spherical at all, and moreover its principal axes need
not be aligned with the coordinate axes. A major convenience
of the SVD method is that the columns of V¥ are precisely the
principal axes of the error ellipsoid, while the corresponding
(diagonal) values of W~ are the lengths of these axes. To see
this, assume for simplicity that the expectation values of 6B
and 6P are zero. Then the error ellipsoid is defined by a con-
stant value of

N
1B = | WVToP|*> =} WilV?® 6P},  (13)
i=1

where equations (6) and (8) were used. Here the bold face dot
denotes scalar product between vectors in parameter space;
hence |V - 6P| is the magnitude of the component of 5P
along V. Equation (13) clearly defines the error properties in
terms of principal axes in parameter space. One may thus
determine by inspection which combinations of parameters are
well or poorly determined.

Another useful representation of the errors is the error
covariance matrix C, which is given by

N y.V.
cﬂE<AmAm>=§jﬁ;£,

i=1 ii
where the AP; are the errors in parameter estimates resulting
from errors in the observed quantities, and angle brackets
denote expectation value. The diagonal elements of C corre-
spond to the squared error expected in each of the parameters,
without concern for the (possibly correlated) errors in other
parameters. These diagonal elements thus convey the total
range of variation that one may expect for each parameter, but
if the off-diagonal elements of C are large, they may not accu-
rately represent the power of the observables to constrain the
solution. A more helpful measure in such cases may be the
volume of the error ellipsoid (i.e., the volume of parameter

(14)

Vol. 427

space in which the correct solution is likely to lie), which is
proportional to the product of the diagonal elements of W~ 1.
It should be noted, however, that because the axes of the error
ellipsoid need not align with the parameter axes, this measure
is not always useful in estimating the probable range of varia-
tion in a given parameter. This situation is illustrated in Figure
1, which shows a case in which improved measurement preci-
sion in one observable (solid vs. dashed error ellipses) leads to a
substantial decrease in the volume of the error ellipse in
parameter space, without noticeably decreasing the rms error
of either parameter taken alone. In the following, we generally
use as a measure of precision the rms error associated with
each parameter taken alone, rather than the volume of the
error ellipsoid, since the individual parameters are of greater
physical interest.

Another convenient aspect of the SVD method is that one
may easily determine which observables are important in
determining each of the orthogonal components (given by the
columns of V) of the solution. To each column ¥ of ¥ corre-
sponds the column UPof U; the importance of observable j in
determining that component of the solution is proportional to
the magnitude of the jth element U ; in U®. If observable j does
not have a large component in any of the vectors U?, then it is
not important in determining any aspect of the solution and
may be considered superfluous. The importance of an observ-
able may be considered inversely proportional to the change in
that observable (measured in units of its expected error) that is
required to move the solution in parameter space from the
center to the surface of the error ellipsoid (see Fig. 1b). This can
be made more precise by noting that according to equation
(13) the location in the error ellipsoid corresponding to a given
realization 6B of the observables (assuming again zero expecta-
tion values) is given by

IWVToP|> = | UT6B|*. (15)

If 6B has only one nonzero component, 6B;, this expression is
equal to S? 6B?, where

N 1/2
S;= (Z Uﬁ) (16)
i=1

is a measure of significance of the jth observable. Because of the
orthonormal property of the columns of U, §; may range
between zero (for totally irrelevant observables) to unity (for
the most important ones).

3. A SIMPLE EXAMPLE

To illustrate some of the properties of the technique dis-
cussed in the preceding section, we consider a simple example
of an overdetermined observed system: the apparent intensity
of a blackbody, characterized by temperature and emissivity,
and observed at three wavelengths. The intensity at wavelength
A can be written as

— EL-S LN

I(A) = EA™> exp ( AT) , 17
where E is the emissivity and T the temperature; we take as
the two parameters P; to be determined P, = log E and P, =
log T. We assume that the intensity is measured at three
wavelengths A, i=1, 2, 3, to give the observables B; =
log I(A;), i =1, 2, 3. As in the general case we linearize the
model around a reference set of parameters (log E,, log To),
with corresponding observables log I,(4,). The errors are sup-
posed to be uniform; without loss of generality we take them to
be unity.
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FiG. 1.—Illustration of aspects of the transformation between observables (left) and parameters (right). (a) Shrinking the error ellipsoid in one dimension in
observable space (solid vs. dashed ellipse) may result in a corresponding reduction of the volume of the ellipsoid in parameter space, without substantially changing
the range of variation of any parameter. (b) The effect of significant (b — y, in this case) and insignificant(Av,) observables on the inferred parameters. A change of 1 ¢
in b — y (dashed arrow) causes the solution vector to move almost to the 1 ¢ probability contour in parameter space. A 1 ¢ change in Av,, (solid arrow), however,

moves the solution vector only a fraction as far. In this case, b — y is much more significant than Av,,.

For this model, the transformation is given by equation (6),
with a derivative (or design) matrix D determined by

i=1,23, (18)
0By
oP, 1—exp(—y)’
where y; = ¢,/(4; Ty). Hence the properties of the problem are
characterized by the values of y;.

We consider the case {y;} = (6, 8, 10), essentially corre-
sponding to the region of validity of Wien’s approximation to
the blackbody curve; accordingly, 0B;/0P, ~ y,. Here the
analysis yields

—0.806 —0.427

o- (o e <[ i)
0.581 —0.707 119 —0.
840 —1.00
= : 19
¢ {—1.00 0.126} (19)

The singular values are 0.343 and 14.25. Hence the small singu-
lar value is associated with the first column of ¥ which prin-
cipally contributes to log E, whereas the second column of ¥,
which is dominated by log T, corresponds to the large singular
value. This is also reflected in the diagonal elements of the
covariance matrix C, which shows that the error in log E (with
the assumed unit error in the observables) is 2.9, whereas the
error in log T is only 0.35. It is hardly surprising that log T is
substantially better determined than log E, in view of the fact
that a given change in log T produces a substantially larger
change in the observables than does the same change in log E.
It is interesting to consider how the data are combined to
determine the individual parameters P;. This is determined by
the matrix Q given in equation (11). For the case considered

above
2.340 0.337 —1.677

Q={—0.251 0.000 0.251}‘ (20)

This shows in particular that log T is determined almost

entirely by the difference between log I(4,) and log I(4;):
indeed, this corresponds simply to the color index which is
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what one would naively have used to measure the temperature.
The determination of log E, on the other hand, relies on a more
complicated combination of observables.

For comparison, we consider also the case where the wave-
lengths of the observations are widely separated, by taking
{y:} = (0.5, 6, 10). In particular, there is now a point on the red
side of the maximum in the blackbody curve. The resulting
expansion matrices are

0921 0.117
0992 0.125
U={ 0264 0515, V={_0_125 0-992}’
—0287 0.849
1202 —0.151
C‘{_0.151 0.0262}’ .

with singular values 0.905 and 11.83. Although it is still the
case that log T is better determined than log E, the error in the
latter has been reduced considerably, to 1.1, whereas the error
in log T is now 0.16. The weights in determining the param-
eters are given by

0- 1.011 0295 —0.306
~1-0.118 0007  0.111

hence again log T is predominantly determined by the color
index corresponding to the extreme wavelengths, although
with a small contribution from the intensity at the intermediate
wavelength.

If the observed intensities do not follow the Planck law, then
in general the derived values of emissivity and temperature will
be incorrect, and moreover the intensities corresponding to the
derived parameter values will not exactly match the observed
ones. As an example, suppose that the intensity at the interme-
diate wavelength were to increase by 1 unit, perhaps due to
some narrow-band emission process. Thus, 6B = {0, 1, 0}.
From equation (22), the resulting estimates of log E and log T
would increase by 0.295 and 0.007, respectively. These changes
would not suffice to reproduce the observed intensities,
however. Residuals in the observed intensities would remain,
given by equation (12). In the current case, these would be
0B,.;q = {—0.303, 0.665, —0.361}, which are evidently of
approximately the same size as the imposed intensity pertur-
bation. Had the hypothetical emission process instead per-
turbed the intensity at one of the extreme wavelengths, the
inferred changes in log E and log T would have been larger,
and the residual intensities would have been smaller by a factor
of about 2. This illustrates an obvious point, namely that the
detectability of a new physical effect depends upon how closely
its consequences resemble those of the processes already
assumed to be operating.

; (22)

4. NUMERICAL MODELS

4.1. Observables and T heir Errors

To allow definition of a model binary star system, we com-
piled a list of observables (including oscillation parameters)
that should be accessible for a well-observed system. This list is
by no means exhaustive, but does nonetheless capture most of
the available information about the evolutionary state of such
a system. A list of the observables, including their standard
errors, defining our reference case is given in Table 1. However,
we also consider cases where additional variables were
included in the fit, particularly individual frequencies, or where
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TABLE 1

OBSERVABLES AND STANDARD ERRORS

Observable 4
Tyg e 0.005 mag
[ U 0.005 mag
logZ ..o 0.17
T 07004
(AVQ) g wemeeneeeiie i 0.06 uHz
(OVO) g cvvmveinii i 0.82 uHz
My et 0.005 mag
A 0705
() PSRRI 0.005 mag
log(M/Mp) .coooiiiiiiiii. 0.004
07 0.0001
[ P 0.06 uHz
[ (2 T 0.82 uHz

Notes.—Data for field star (top section), and for
visual binary (both sections combined). The values of &
define our reference case. In some of our experiments
the separations Av, and dv, were replaced by fre-
quencies of invidual modes, assumed to be determined
with a standard error of 2 uHz.

the standard errors on some of the observables are reduced, or
increased. Insofar as possible, the scales and units used for the
observables (linear or logarithmic scales, linear or angular
measure, etc.) were chosen so that the errors are independent of
the value of the thing being measured, the distance to the
binary, or the physical parameters of the system. This was not
always possible, as for instance in the case of the orbital period
P,.i» the error of which depends on a great many factors,
including how long the system has been observed. In this and
similar cases, we used values appropriate to the real o Cen
system. Since the observations of a« Cen are so good, this prac-
tice tends to minimize the importance of new information, such
as oscillation data.

Some of the observables require further comment. Stellar
magnitudes m, and colors (b — y) are both assumed to have
typical errors of 0.005 mag, or 0.5%. This is perhaps a reason-
able estimate of the accuracy with which magnitudes and
colors may be reduced to a standard photometric system, even
though measurement repeatability with a single instrument
may be better than this. There is only one color observable
(b — y) for each star, because we felt that the information
carried by other colors concerning, for example, surface gravity
or metallicity would be superseded by other kinds of observa-
tion. The error assumed for log Z . (Z,,s being the observed
heavy-element abundance) is based on recent detailed spectro-
scopic studies (e.g., Edvardsson et al. 1993) and is comparable
also with the best current measurements for a Cen itself
(Furenlid & Meylan 1990). The error in parallax 7’ of 07004 is
typical of the best current ground-based measurements
(Kamper & Wesselink 1978; Flannery & Ayres 1978); the
HIPPARCOS mission is expected to provide parallaxes for a
large sample of stars that are more accurate than this by a
factor of about 2 (Gomez 1993). The apparent semimajor axis
a', mass ratio M ,/M, and orbital period P,; are all assumed
to be determined to very high precision through astrometric
observations. The values used in the table are typical of the
errors quoted for the very best observed visual binaries, such as
o Cen itself. For stars that are significantly farther away (so
that the apparent separation is smaller), or that have longer
periods, or that have not been so thoroughly observed, the
errors would increase dramatically.
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Since solar-like oscillations have not yet been definitely iden-
tified on other stars, it is difficult to estimate their errors accu-
rately. We have assumed that individual frequencies can be
determined with rms errors of 2 uHz; this is representative of
current solar observations lasting for about a week. To esti-
mate the magnitude of a for the large and small frequency
separations in the reference case, we have assumed that one-
half of the modes with 0 <! <3 and 17 <n + /2 < 29 have
large enough amplitudes during a given observing run so that
their frequencies can be measured. The error estimates of 0.06
uHz for Av, and 0.82 uHz for év, then follow from a least-
squares fit of the mode frequencies to the asymptotic frequency
relation. Av, is much better determined than dv,, because the
frequency spacing between modes with the smallest and largest
n-values is proportional to n, as well as to Av,. To evaluate the
information content in the oscillation frequencies we have con-
sidered two different cases: in one, we assume that the oscil-
lation frequencies can be adequately expressed in terms of only
the two parameters Av, and dv,; in the second case, we include
individual mode frequencies in the analysis. The latter type of
experiment clearly serves to illustrate the potential loss of
information resulting from representing the frequencies in
terms of a small set of parameters derived from a fit based on
the expected asymptotic behavior. In our reference case we
assume that oscillation measurements are available for both
stars in a binary system; however, we also consider the effect of
having frequency data for only the brighter star of the pair. For
cases in which we wished to assume that no oscillation fre-
quencies were available, we set the corresponding errors to 10°
uHz. These data are then given negligible weight in determin-
ing the least-squares solution.

In some cases (those concerning isolated field stars with no
oscillation information), there are fewer well-determined ob-
servables than model parameters. In these underconstrained
cases, we have restricted the parameter error estimates to rea-
sonable ranges by adding pseudo-observables, consisting of the
values of log M, log Y, log Z, and log t. These pseudo-
observables (prejudices, really) are assigned o values that rep-
resent the entire plausible range of the corresponding
parameter for a randomly chosen star of roughly solar type. By
using these prejudices as data, one arrives at parameter esti-
mates that do not conflict with common astrophysical under-
standing, and in which the genuine observables may play some
role in improving the solution. It should be clearly understood,
however, that at least some aspects of the error estimates in
these cases reflect nothing more than the built-in bias. The

pseudo-observables and their assumed 1 ¢ errors are shown in
Table 2.

4.2. Computation of Stellar Evolution Models and Frequencies

In the general binary star case the model that generates the
observables and their derivatives has nine free parameters.
They are listed in Table 3, along with their assumed values;
these were chosen to obtain a pair of models similar to « Cen A
and B, although no attempt was made to match the observed
properties closely. To facilitate comparisons between errors in
the different parameters, we express all of these as errors in the
logarithm of the parameter (i.e., proportional to relative
errors). The most substantial part of the model consists of a
stellar evolution code, which takes as input the mass of each
component (M ,, M), the initial composition of the system
(Y, Z), the age © of the system, and the convective mixing-
length parameters a,, az (Which in general are assumed to be

EFFECTIVENESS OF OSCILLATION FREQUENCIES 1019

TABLE 2
PREJUDICES FOR FIELD STARS

Pseudo-Observable o
108 M 4ot 0.20
108Y oo 0.12
0o N 0.40
I0gT voviiiiiiii 1.20

Note—Values applied to stabilize results
of error estimation for the field-star case
without oscillation information.

different for the two stars). Note that 7 is specified in years,
rather than in fractions of an evolutionary timescale, since it is
important that both stars have the same age, not the same
evolutionary state.

The reference stellar models were computed with the param-
eters listed in Table 3, by means of a “standard” evolution
calculation. This largely followed the procedures described by
Christensen-Dalsgaard (1982). The Eggleton, Faulkner, &
Flannery (1972) equation of state was used, together with
opacities determined from the Los Alamos Opacity Library
(Heubner et al. 1977) by Courtaud et al. (1990), using the
Anders & Grevesse (1989) heavy-element abundances with the
then assumed photospheric iron abundance. The nuclear reac-
tion parameters were obtained largely from Parker (1986); the
abundance of *He was assumed to be in nuclear equilibrium, as
was the CNO cycle.

We determined oscillation frequencies for the models by
solving the equations of adiabatic oscillation (see Christensen-
Dalsgaard & Berthomieu 1991 for further detail). To obtain
measures of the average separations Av, and Jv, we used a
least-squares fit to the computed frequencies, based on the
asymptotic properties of low-degree modes, as described by
Christensen-Dalsgaard (1988). In the reference case the fit
included modes of degree I = 0-3 and with 17 < n + 1/2 < 29.

Properties of the computed reference models are listed in the
first column of Table 4. (The remaining columns refer to
models where the physics has been modified ; these models are
discussed in § 5.6 below.) To provide an indication of the inter-
nal structure of the stars, we have included the central hydro-
gen abundance, temperatures, and density, as well as the
depths of the outer convection zone, even though these quan-
tities evidently do not enter directly into the evaluation of our
observables. Also included are the large and small frequency
separations.

TABLE 3

PARAMETERS OF THE MODEL

Model Parameter Value(s)

0.0374
—0.5510
—1.7000

0.4007

9.544

0.114, 1., 2.

—0.0458
0.4007
1.301

Notes.—Data for field star (top section), and for
visual binary (both sections combined). Masses are in
units of the solar mass, age in yr, distance in pc,
semimajor axis in AU.
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eter sensitivity would be difficult to disentangle from the uncer-
tainties in the treatment of the physics of the outermost layers,
where nonadiabaticity and dynamical effects of convection
have to be taken into account. Furthermore, the derivatives
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TABLE 4
PROPERTIES OF MODELS
Case 1 Caske 11 Cask 111 Case IV Case V
PHysICs Reference CEFF OPAL OPAL*® OPAL,* diff.
Model A
1.509 1.616 1.458 . 1443 1.458
6039. 6073. 6202. 5988. 5956.
1.124 1.151 1.048 1.119 1.136
0.2971 0.2648 0.3135 0.3174 0.3021
16.96 17.36 16.69 16.65 16.78
156.3 165.0 154.9 153.9 158.5
0.2208 02124 0.2663 0.2385 0.2489
118.7 1149 132.1 120.5 117.9
8.748 8.430 9.066 8.778 8.514
Model B
0.5037 0.5415 0.4950 0.4828 0.4878
5335. 5393. 5458. 5313. 5299.
0.8323 0.8446 0.7882 0.8217 0.8303
0.5272 0.5161 0.5308 0.5337 0.5192
13.18 13.40 13.10 13.03 13.10
104.2 107.0 103.9 103.2 105.7
0.3010 0.2969 0.3151 0.3073 0.3120
168.4 165.2 182.7 180.1 169.7
ovo(uHz) ool 12.31 12.13 12.63 12.45 12.18
Notes—The models are distinguished by the physics (see text). Variables that have not previously
been defined have the following meaning: X, T., and p, are the central hydrogen abundance, tem-
perature, and density, and d, is the depth of the outer convection zone. Model A refers to the 1.09 M
model and model B refers to the 0.9 M model.
® Mixing length has been obtained from calibrating a model of the present Sun with the OPAL
opacities.
To compute derivatives involving the model and oscillation TABLE 5
calculations, we varied each of the parameters M ,, My, Y, Z, DERIVATIVES OF STELLAR MODEL RESULTS
o4, &g, and 1 separately, by suitable small amounts. Each deriv-
ative was computed from differences centered on the reference Parameter M Iy nz Int Ina
values given in Table 3. The actual increments used were 0.005 Model A
M, for M , and M, 0.005 for Y, 0.001 for Z, 0.1 for o, and ap
and 2.5 x 10® yr for the ages. We tested that the increments g'(s)i ;‘;';g :gfg 8'(3)12 8‘?18
were large enough that numerical problems were avoided, yet 194 064 —019 016  —020
small enough that the assumed linearity was satisfied with ade- —754 —459 088 —163 —0026
quate precision. The resulting derivatives, for all the quantities 170 090 —0.19 0.21 0.005
given in Table 4, are presented in Table 5. To illustrate the g‘l‘f f-ig —8-2‘6‘ g'g;6 8-212
extent to which the frequency derivatives result from the 339 —096 029  —023 0.29
apprpximate proportionality of frequengy yvith the mean . _272  —115 027 —0.59 0.11
density (cf. eq. [1]), we also show derivatives of 3/2InR 3/2InR + InAv, ...... 0.52 0.006 0.005 0.008 —0.012
+ InAvy and 3/2InR + Indv,. This shows that for Av, the 3/2InR +1ndv, ....... 019 -018 -0019 -035 019
variation is almost entirely related to the variation in MR~ %/%; Model B
for dv,, on the other hand, there remains a substantial effect,
although the dependence of v, on composition is evidently to (5)-32 (2)-(3)3 “gg g'gg 883%
a large extent a radius effect. 122 026  —0.10 0046 —013
Individual derivatives gf thp frequencies, after correc.ting_ for _126 —1.11 015 —033 —0014
the effect of p, are shown in Figure 2. Except for the derivatives 1.07 058  —0.11 0.073 0.012
with respect to the age 7, the dominant trend is that the deriv- 1.37 117 —035 0.30 0.016
atives depend little on degree and display a smooth variation :?'gg :gg; g'ﬁ _88;,1, 8(1)35
with frequency. This behavior indicates that the dominant —106 —027 0063 —022 0.065
source of the frequency change is very near the stellar surface 32InR +InAv, ...... 0.52 0001 —0.001 0002 —0.010
(e.g., Christensen-Dalsgaard & Berthomieu 1991). Such param- 3/2InR + Indv, ....... 0.76 012 —0094 -015 —0.13

Notes.—Logarithmic derivatives of various properties of the computed
models, with respect to the model parameters. Model A refers to the 1.09 M
model and model B refers to the 0.9 M, model. Variables have been defined in
the notes to Table 4.
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FiG. 2—The variation with parameter value of Inv,, for p modes in the « Cen A reference case, shown as a function of mode frequency. These frequency shifts
have been corrected for changes in mean density that accompany the parameter changes and constitute the dominant source of frequency changes. Different line
styles indicate modes with different values of angular degree I: | = 0 (solid line); | = 1 (dotted line); | = 2 (dashed line); and | = 3 (dash-dotted line). Note that only the
age causes significant /-dependence in the frequency changes; other parameters cause shifts that are predominantly functions of frequency.

with respect to mass, composition, and mixing length are evi-
dently rather similar, apart from sign and scaling, making it
difficult to separate the influence of these parameters. Overly-
ing the general trend are oscillatory components which may be
related to changes in the helium ionization zone or at the base
of the convection zone (e.g., Gough 1990b). In contrast, the
frequency derivatives with respect to t show a comparatively
strong dependence on I; this is reflected in the dlndv,/dInt
showed in Table 5, and clearly underlies the potential useful-
ness of dv, as a measure of stellar age. It should be noted,
however, that the t-derivatives are extremely small, hence
imposing stringent demands on the allowable errors in the
frequencies.

4.3. Photometric and Astrometric Variables

For each component the evolution code provides the stellar
luminosity L,, surface gravity g,, and effective temperature T,,
as well as the model quantities required in the subsequent
calculation of the oscillation frequencies. From L,, T,, and g,
we are able to use the relations in Edvardsson et al. (1993) to
estimate the b — y color. These combined with the distance D
to the system, yield the visual magnitudes m, 4, m, p, and the
colors (b — y), and (b — y)s. The mass ratio M, /My, the
orbital period P, the apparent semimajor axis a’, and the
apparent parallax 7’ are all computed directly from the stellar
masses, the orbital semimajor axis a, and the distance D. The
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TABLE 6

DERIVATIVE MATRIX

N Y vy g

A

[TO02ARY: - 74270 T

r

MODEL PARAMETERS

OBSERVABLES log M, log My log Y log Z log © log o, log ap log D
My e, —15.1 0. —5.94 241 —-0.92 —0.04 0. 5.00 0.
Myp weeneiiiiiiiieiaann, 0. —135 —5.14 2.05 —0.42 0. —0.16 5.00 0.
(B =Yg cvveerneeenaannns —1.16 0. —0.59 0.29 -003 —021 0. 0. 0.
(2 0. —1.38 —0.70 0.29 —0.04 0. —0.15 0. 0.
log(M /Mpg) ................ 1.00 —1.00 0. 0. 0. 0. 0. 0. 0.
178 PP P -0.27 -0.23 0. 0. 0. 0. 0. 0. 1.50
N 0. 0. 0. 0. 0. 0. 0. —354 354

logZ ...oooooiiiiiiiiiin, 0. 0. 0. 1.00 0. 0. 0. 0. 0.

............................ 0. 0. 0. 0. 0. 0. 0. -1.77 0.
(12X7 ) —653. 0. —263. 98.3 —639 79.7 0. 0. 0.
(Avgg e evviniiiiiiannene, 0. —505. —152. 71.1 —259 0. 72.1 0. 0.
(OVo)g cevveneneniineninennenes —54.8 0. —232 7.03 —119 231 0. 0. 0.
(G2 0. —30.2 —17.75 233 —6.11 0. 1.85 0. 0.

Notes—Derivative matrix 0B;/0P), relating observables to model parameters, for binary system at 1.3 pc. The parallax n’ and the
apparent separation a’ are in arcseconds, and the frequency separations (Av,) ,, (Av,), (6v,) ., and (6v,), are in pHz.

relations used for this purpose are

M M
lo (—> 1o (—) 23)
g MB obs g MB
108 (Pyri) = 3 log a — 3 log (M4 + My), 24
g
a=7, (25)
1
= 2
= 9)

Note that we do not include orbital elements other than a’ and
P, in the list of observables, since such quantities (e.g:, the
orbital eccentricity) have to do only with orbital dynamics, and
not with the structural parameters of the individual stars. The
heavy-clement abundance determined by spectroscopy is
assumed to be (in the absence of observational error) the same
as the corresponding model parameter:

Zy.=Z. 27

The photometric calibrations, together with the model
derivatives given in Table 5, and the analytical relations (23)-
(27) finally allow us to compute the complete set of derivatives
0B;/0P;. The result is shown in Table 6, assuming a distance of
1.3 pc, for the case where frequency separations are used.

5. RESULTS

In this section we will summarize the results of performing
the sensitivity analysis just described, using a wide enough
range of assumed parameters to illustrate most of the effects
that are likely to arise in practice.

5.1. SV D Applied to the Reference Case

To help estimate the usefulness of oscillation data in study-
ing the real a Cen system, and to provide a starting point for
later comparisons, we first consider a reference case that is
constructed to resemble the true system fairly closely, with
reasonable assumptions about the oscillation data that may
soon become available. We shall first illustrate the SVD for-
malism as applied to this particular set of parameters and

observables; later we shall return to consider the physical
implications of the results.

In the reference case, we assume that the observations relate
to a visual binary system in which photometric and seismologi-
cal observations are available for both stars. We also assume
that p-mode frequencies are available in the angular-degree
range 0 </ < 3, and that each star of the pair is described by
its own mixing-length parameter. Errors for the observables
and nominal values of the parameters are those given in Tables
1 and 2. Note that we consider variations in the distance to the
system, as well as different levels of oscillation-frequency infor-
mation (none, or frequency separations Av, and év, only, or
complete frequency information for the modes) to correspond
to different aspects of the same “ reference ” case.

Figure 3 shows the singular values, orthogonal parameter
vectors, and corresponding combinations of observables for
the reference case at distances of 1.3 and 100 pc, including the
frequency separation data only. Note first that the singular
values in Figure 3a are quite disparate in size, with almost
three orders of magnitude separating the largest and the smal-
lest. Thus some combinations of parameters are much better
determined than others. The parameter combinations ¥ cor-
responding to the different singular values are shown in Figure
3b, and the observable combinations U in Figure 3c. It is
interesting that in this case (as in most others we have
examined), most of the orthogonal parameter vectors F©
consist of rather complicated and obscure combinations of the
parameters. Moreover, the set of observables U? correspond-
ing to the vectors ¥ are also, for the most part, fairly compli-
cated. If one wishes to understand the fitting process in
intuitive terms, these complications are unfortunate. It would
be convenient if one could argue (as is commonly done when
fitting stellar models to data) along the following lines: “The
parallax determines the distance to the system. Given the dis-
tance, the other astrometric indices determine the masses and
the orbital semimajor axis. The distance and the magnitudes
determine the luminosities ....” An examination of Figure 3
shows that the SVD operates very differently. The parallax, for
instance, is most important in determining '®, ¥ and M®,
which are combinations involving almost every parameter
except the distance. The distance appears most prominently in
V®, which depends mostly on the photometric magnitudes

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...427.1013B

o,
[l

P

Y D I42TC T

1992

—

a) Reference Case, Frequency Separation Data

—

d) Reference Case, Frequency Separation Data

FT r r 1T T 7. T [ T 1T T [T T T T 1 17T 714 FT rr 1T 1T 1r 111 1T [ T 1T T 1 T T 1]
ofF 4 F =
- D=13pc 3 - D =100pc .
— E * 3 E * » 3
S E * i E 3
= - - = 3
> -1 = - =
— - * - - * -
© - . - 3
ER 1 E ]
E) - * 3 - * * =
Y= * 1 E =
e F 1 F * 3
e ] - 7 - -
F * 3 - * -
- * 3 :_ _:
SE I TH IN S TN N NN TN M N A N A A A o b b oo ¥ e
2 4 6 8 2 4 6 8
INDEX OF SINGULAR VALUE INDEX OF SINGULAR VALUE
(b) Solution Vectors (e) Solution Vectors
- T T 3o P T T 1 T T J Ty 1T 1 1
o) L 4 L 4
E 8 C B, v, B = e . 2 o — |
S 7= = o e PR v va ! m_m_m__%,_m«___
5 6 B r~a KA rvw = T B [raval wm
5[ viv. 1 [ rava N
6; B sd XA ] " RESEY KX —
n 4 ———
@ 4r =] [ B
O 3 —
R N %% . 1 [ B e ]
O - -
2 [BA e xx 1% TS
| ] [ 1 1 | | | l 1 I ] 1 | 1 |
logM, logMg logY logZ logt loga, logoy logD  loga logM, logMg logY logZ logt logo, logag logD loga
(c) Observable Weights (f) Observable Weights
| I T | I | [ T T T T T 1 T I I I I [ I T I
5 o [-L=L T RR.L ] F T T .
O g s A gy B X1 ®= X1
w " 4 L ¢%) i
E 7 — var ™ P— — o B o—n a— |V
w | (9] i | |
‘3>:° 6 (e KX 1 TR .
o s X3 .| S RX] Ju— P =
L I . £ 4
8 4 X1 A exra 75 m
| Pa )
o F 4 L 4
w 3 e % —rtx
oL %] 1 L i
E 2 B = ey S M i | BT e w ]
Z C L 1T T 1 1 TR 1 1 T T 1 [ 1 | | (kKT 1 1
Ya Y (bys(bylg | logRy @ logZ m Ap Ag B4 B W Yo Gylbyh | logRe @ logZ ® sy ag B %8
logMyMg . logMyMg

F1G. 3—Characteristics of the SVD solution for the reference case at D = 1.3 pc (panels a—) and D = 100 pc. (panels d-f). (a) Singular values (note the
logarithmic scale). (b) Solution vectors, i.., the vectors in parameter space corresponding to the singular values in (a). Components of the vectors along each
parameter axis are shown as positive- or negative-going bars with lengths in the range [ — 1, 1]. Thus, the solution vector corresponding to the largest singular value
has substantial positive contributions from log M , and from log Y, with lesser components from the other parameters. (c) Contributions of the various observables
to the inferred amplitudes of the corresponding solution vectors, in the same format as (b). Thus, the amplitude of the first solution vector is determined mostly by
Av,,, with lesser contributions from y, and from Av,,. Panels d—f show similar results for D = 100 pc. Note the generally smaller singular values, and the
rearrangement and modification of the solution and observable vectors resulting from the loss of astrometric information.
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and the apparent semimajor axis, and only slightly on the
parallax.

The problem with the straightforward approach is that most
observables are influenced by many parameters, and hence
carry at least some information about those parameters. Also,
the observables vary widely in their precision and their sensi-
tivity to changes in the various parameters. Thus, the connec-
tion between observables and parameters that is the most
conceptually straightforward is often not the one that yields
the most precise results. It is sometimes nonetheless possible to
make fairly direct connections between the observables and the
parameters, particularly when one observable is much better
determined than the rest. If, for instance, one ascribes a very
small error to P, while leaving the other errors unchanged,
then the parameter vector corresponding to the largest singu-
lar value turns out to be a combination of the masses and the
semimajor axis resulting from Kepler’s laws, and determined
entirely by P_.;. In cases like the current one, where almost all
of the observables play roles of similar importance in con-
straining the parameters, such simple results are uncommon.

The singular values and vectors corresponding to a distance
of 100 pc are shown in Figures 3d—f. Relative to the 1.3 pc case,
the singular values are decreased somewhat, reflecting the
increase in the errors in the determination of the parameters.
Also, the parallax 7’ and the semimajor axis a’ are given much
smaller weight than before in the U®: with increasing distance
these quantities are less effective as constraints on the solution.
On the other hand, the weights on the small frequency separa-
tions dvy 4 and Ov, p are substantially larger, although the
influence of these observables is still confined to the smallest
singular values, and hence the least well-determined com-
ponents of the solution. The remaining changes in the singular
vectors are complex and less easy to interpret.

The significance S; of the observables (cf. eq. [16]) is illus-
trated in Figure 4, for the reference case at distances of 1.3 and
100 pc. At 1.3 pc, it is evident that while most of the observa-
bles are very important in estimating the parameters, the
colors (b — y); and the small separations (6v,); are less impor-
tant. At 100 pc this picture has changed, with the colors and
small separations almost as important as the most significant
observables, and the astrometric indices (except P,;,) playing
lesser roles. This shift of emphasis occurs because the relative
precision of the astrometry decreases as distance increases. The
astrometric observations are thus less able to constrain the
parameters at large distances, and other observables are used
to supply (as best they can) the missing information.

The rms parameter errors for distances of 1.3 and 100 pc are
shown in Figure 5. As explained above, these are defined to be
the square root of the diagonal elements of the error covari-
ance matrix (see eq. [14]), i.e., the errors in each parameter
resulting from random errors in the observables, disregarding
the (usually correlated) errors in other parameters. All of the
errors increase as the distance increases, some dramatically.
This is inevitable; information is lost by increasing the dis-
tance, and less information cannot improve the estimate of any
parameter. The errors that increase the most are those corre-
sponding to parameters that depend most strongly on the
astrometric indices.

The loss of information resulting from ignoring the corre-
lations between errors in parameter estimates is quite substan-
tial. The product of twice the parameter errors plotted in
Figure 5 equals the volume in parameter space of a box with
edges parallel to the coordinate axes (i.e., the individual
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F1G. 4—The significance (cf. eq. [16]) of observables in the reference case at
distances of 1.3 pc (a) and 100 pc (b). Note the smaller role played by the
astrometric indices at D = 100 pc, and the corresponding increase in the
importance of the photometric colors and the small frequency separations dv,,.

parameters) that just contains the error ellipsoid. The product
of twice the reciprocals of the singular values, in contrast,
equals the volume of a box that also contains the error ellip-
soid, but has its edges parallel to the ellipsoid’s principal axes.
For D = 1.3 pc, the ratio of these volumes is 1.3 x 107; for
D = 100 pc it is about 10'!. To understand the origin of these
huge ratios, imagine the wasted volume that would result if one
were obliged to pack uncooked spaghetti strands, one to a box,
in cubical containers just large enough for the strands to fit
along the long diagonal. The very large ratio of largest to smal-
lest singular values makes it unlikely that the error ellipsoid
will pack neatly into a box aligned with the corrdinate axes.
Thus, if one could properly account for the correlations
between errors, the reduction in parameter space that need be
considered would be roughly the same as if each of the param-
eter errors were reduced by an order of magnitude. This fact is
a powerful incentive to frame theoretical questions, wherever
possible, in terms of the combinations of parameters that are
well constrained by observations. We recall that the principal
axes of the error ellipsoid are given by the solution vectors V.
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A reasonable model for an isolated field star requires six aE A 3
parameters (the five stellar structure parameters M, Y, Z, 1, o, E %% =
and the distance D to the star). In the absence of oscillation logt logot logD

data, however, the available observables number only four (m,,
b—y, Z,, and n'). In this case the solution is under-
constrained; to get a solution it is necessary, as explained in
§ 4, to introduce explicit prejudices constraining the allowable
ranges of at least two parameters. Figure 6 illustrates the
parameter errors actually obtained using the prejudices listed
in Table 2, for distances of 1.3, 10 and 100 pc. In this and
subsequent plots, open bars signify the rms errors resulting
from parameter estimates made without any oscillation data,
single-hatched bars show the results if one parameterizes the
frequencies using the large and small separations Ay, and dv,,
and cross-hatched bars show the errors if every second oscil-
lation mode in the range 17 < n + I/2 < 29 is present, correctly
identified, and has an individually known frequency. Since

FiG. 6.—Formal parameter estimation errors for a field star at distances of
1.3, 10, and 100 pc (panels a, b, c, respectively.) In this and the following bar
plots, open bars indicate the errors that result if no oscillations data are
available. Single-hatched bars show the errors if the two frequency separations
are included among the observables, and cross-hatched bars show the errors if
individual mode frequencies are available. Note that the quantities plotted are
the log, , of the errors; since the parameters are themselves logarithms of the
relevant physical quantities, these plots approach the ideal of graphical
astronomy: to display the log of the log of some quantity along each plot axis.

each of these steps involves additional information, the errors
are always largest for the open bars, and smallest for the cross-
hatched bars.

Figure 6a shows that, even at 1.3 pc, the age and helium
abundance are constrained entirely by the imposed prejudices.
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Adding frequency separation data leaves the errors in metal-
licity and distance essentially unchanged, but makes substan-
tial improvements (about a factor of 10) in the precision of
estimates of age and mixing length, a somewhat smaller
improvement in the mass estimate, and a relatively modest
change (not quite a factor of 2) in the precision of the helium-
abundance estimate. Providing complete frequency informa-
tion, in this case, has relatively little effect: one obtains only
small decreases in the errors in 7 and a.

Panels b and c of Figure 6 illustrate the rms parameter errors
at distances of 10 and 100 pc. Since increasing distance
degrades one’s information about the star only by decreasing
the relative precision of the parallax measurement, the only
major change in the errors is that the distance estimate gets
worse with increasing distance. A smaller effect is that the
difference between having only mode separations and having
mode frequencies increases with increasing distance; evidently
the extra information in the mode frequencies becomes more
important as the quality of the astrometry declines.

While the improvements in errors due to the addition of
oscillation information appear impressive, one should recall
that the actual error levels attained for field stars are likely to
be useful only in certain circumstances. For the full-frequency
information case in Figure 6a, the remaining errors in mass
and in mixing length are about 3%; in age, 12%; in helium
abundance, 12% (i.e., Y = 0.28 £+ 0.035). Except for the error
in Y (which is uninterestingly large for almost any application),
errors at the level just described would suffice for an improved
understanding of local stellar properties, if they could be
obtained for a substantial number of stars. Errors of this size
are likely to prohibit tests of the basic physics underlying
stellar structure theory, however. To perform tests of this sort,
more information will likely be necessary.

5.3. The Reference Case (Revisited)

As indicated in § 1, what is desired for testing of underlying
physical ideas may be available in the case of visual binary
systems. We thus return to the “reference” case described in
§ 5.1. The rms parameter errors for this case, with three differ-
ent levels of oscillation data, are illustrated in Figure 7 for
distances of 1.3 pc, 10 pc, and 100 pc. (Note that the results
including frequency separations at 1.3 and 100 p.c, shown as
single-hatched bars, were already presented in Fig. 5.) Figure
7a shows the rms errors for the standard case at D = 1.3 pc. In
this case, the addition of oscillation data has little effect except
on the estimates of the mixing lengths and (to a lesser extent)
the age. The use of complete mode frequency information (as
opposed to separations alone) makes little difference. In this
instance, the photometric and astrometric observations are
evidently so accurate that they suffice to yield a good definition
of the stellar system; the addition of oscillation frequencies is
relatively unimportant. If one’s aim is to estimate stellar
parameters this is perhaps disappointing, but from the view-
point of testing stellar evolution theory, it is precisely what one
wishes to see. Since the new observations are giving informa-
tion that is largely redundant with existing data, one can mean-
ingfully search for inconsistencies between the observations
that point to inadequacies in the model.

Figure 7b shows the case in which D = 10 pc. This case is
quite different from the previous one, in that estimates for all of
the parameters except Z are substantially improved by the
addition of frequency-separation information. Of the remain-
ing parameters, all but the age and mixing lengths see dramatic
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Fi1G. 7.—Same as Fig. 6, but for the a Cen reference system

further improvement when full mode frequency information is
included. This behavior illustrates the importance of the very
precise astrometric data that are available in the D = 1.3 pc
case. As the distance to the system increases, the relative preci-
sion of the astrometric measurements gets rapidly worse,
increasing the impact of new information.

Figure 7¢, for the case D = 100 pc, shows the natural exten-
sion of the trend begun in Figure 4b. Here the distance is
sufficiently large that astrometric data are essentially worth-
less, and the photometric data alone are insufficient to con-
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! strain the stellar models. (Note that without oscillation data,

the formal rms errors are for all parameters larger than the
prejudices given in Table 2. This occurs because the prejudices
are not included as constraints in the analysis of the binary star
cases.) In this situation, the addition of pulsation information
makes a tremendous difference, especially if one has mode fre-
quencies and not just separations. The heavy-element abun-
dance Z is a notable exception to this rule; although the
oscillation frequencies depend on Z, this dependence evidently
cannot be separated from the dependence on other parameters,
and hence does not serve as a useful constraint. It is also worth
noting that the estimates for Y, for the mixing lengths, and for
the masses, though much improved by oscillation data, are still
sufficiently uncertain as to be relatively uninteresting. The
principal utility of oscillation data in this instance is to provide
a length scale for the system, which when combined with the
photometry leads to an accurate distance estimate. This may
prove to be an important feature if stars with Sun-like pulsa-
tions can be identified in open clusters, where the distance
uncertainty is an impediment to isochrone fitting.

5.4. Variations on the Reference Case

While the conclusions in the reference case are interesting in
themselves, it is unlikely that they will apply unaltered to any
real binaries with the exception of a Cen itself. It is therefore
important to understand to what extent the conclusions
depend on attributes of the reference case that may not be
common to other systems. In this section we shall consider
several such modifications to the reference case.

While modes with angular degree 0 < I < 3 should be ob-
servable in Doppler-shift observations, photometric observa-
tions will be sensitive only to the smaller range 0 <1< 2 (e.g,
Dziembowski 1977). Figure 8 shows the effect of including in
the analysis only modes within this smaller range of I, for the
case in which D = 1.3 pc. Comparison with Figure 7a shows
that the differences in error bars are negligible in this case. As
might be expected from the previous discussion, the changes
are slightly larger for greater distances, but even at D = 100 pc
they are not very important.

Another likely circumstance is that one may observe a
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the larger distances the errors are virtually identical to those in Fig. 7.
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FiG. 9—Same as Fig. 7, but for the case in which only the brighter com-
ponent (A) is assumed to have observable oscillations.

system in which only one of the stars is seen to pulsate. Figure
9a shows the rms errors in the case that oscillation frequencies
are available only for the brighter of the two components, and
for D = 1.3 pc. The most important difference between this and
the standard case is that with a single set of pulsation fre-
quencies, the mixing length of the fainter component becomes
less well determined. As the distance to the system increases
(Fig. 9b), even this difference disappears. As noted above, at
large distances the most important information contained in
the oscillation frequencies seems to be an estimate of the dis-
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tance itself, and for this purpose one set of frequencies is not
much worse than two.

Next (Fig. 10) we imagine that we are willing to model the
system using only a single value of the mixing length, which is
presumed to apply to both stellar components. The main dif-
ference between this and the standard case is that the composi-
tion parameters (particularly Y) become better defined.
Evidently the structural changes resulting from changes in the
mixing length can be well approximated (at least insofar as the
oscillations can tell) by changes due to composition; con-
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straining the mixing length then permits more of the oscillation
frequency information to be used to determine Y and Z.

5.5. Improvements in Other Observations

Since it will clearly be difficult to obtain good pulsation
information about Sun-like stars, one may reasonably ask
whether a similar or better improvement in our ability to esti-
mate parameters would result from improvements to the pho-
tometry or astrometry. A natural expectation is that pulsation
frequencies contain different kinds of information than are
found in the other sorts of observations, so that it is unlikely
that oscillation data can be replaced with more precise data of
other sorts. Also, it is clear that reducing errors in existing
observations will not lead to overconstrained systems, thus
allowing tests of physical assumptions. It is at least conceiv-
able, however, that oscillation and other kinds of observations
are largely redundant. To examine this possibility, we have
performed tests in which the precision of the photometry or
astrometry has been significantly improved.

Figure 11 shows the situation when the photometric errors
(both magnitudes and colors) are reduced from their standard
values by a factor of 3. There are no fundamental reasons why
errors of this size (1.6 mmag in both magnitude and color)
cannot be achieved from the ground, but doing so would cer-
tainly represent a noticeable improvement on current practice.
Comparison with Figure 7 shows that at 1.3 pc and in the
absence of oscillation data, the only significant changes (about
a factor of 2) accompanying these reduced photometric errors
are in the errors associated with the mixing lengths. Even for
these two parameters, however, the improvements due to pho-
tometry are not as large as those due to the addition of fre-
quency difference information in the reference case. Adding
oscillation data to improved photometry again makes the
largest change in the estimates of the mixing lengths, and once
again the change is not very large. At larger distances (Figs.
11b and 11c), the improvements resulting from better photo-
metry alone vanish altogether. Better photometry combined
with oscillations continues to yield some gains in precision, but
once again the effects are rather small.

In Figure 12, we have assumed that the errors in parallax,
semimajor axis, and mass ratio have all improved over the
reference case by a factor of 3. The error in orbital period was
not changed, since this error depends so heavily on the tempo-
ral baseline of existing observations. Better technology is there-
fore unlikely to make rapid or substantial changes in the
precision with which P_;, is known for any star. This case at
1.3 pc distance is quite different from the photometric one, in
that better astrometry leads to roughly proportional improve-
ment in the errors for several parameters: the stellar masses,
the distance, and the semimajor axis. These parameters are the
ones that would naturally be thought of as depending on the
astrometric indices. For all these parameters, the improvement
is greater than that which results from adding oscillation data
(even with full frequency information) in the reference case. The
reduction in astrometric errors makes the introduction of oscil-
lation data more helpful for some parameters and less so for
others, but in no case is the change very important. At dis-
tances greater than 1.3 pc, the impact of better astrometry is
smaller, as one would expect.

5.6. Testing Physical Assumptions

As already stated, one of the principal motivations for pur-
suing the study of pulsations in other stars is to test assump-
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F1G. 11.—Same as Fig. 7, but for the case in which the precision of the FiG. 12—Same as Fig. 7, but for the case in which the astrometric indices
photometric indices is assumed to have improved by a factor of 3. (except P,,y,) are assumed to have improved by a factor of 3.
tions concerning the physics underlying stellar structure obtained from the Livermore OPAL tables (Rogers & Iglesias
theory. To investigate the practicality of this idea, we con- 1992; Iglesias, Rogers, & Wilson 1992), matched smoothly,
structed four models of the a Cen system that generally use the near T = 10* K, to the low-T opacities of Kurucz (1991). Case
same parameter values as the reference model but incorporate IIT was otherwise identical to the reference case. In particular,
plausible changes in the physical assumptions. These are listed the same value of the mixing-length parameter o was used;
in Table 4 as cases II-V, case I being the reference model. The since the OPAL opacities are substantially smaller than the
first model used the so-called CEFF equation of state LAOL opacities in the atmosphere, this induces a significant
(Christensen-Dalsgaard & Dippen 1992), where Coulomb increase in the depth d, of the convection zone. For the
effects have been added to the basic Eggleton et al. (1973) purpose of testing the effects of diffusion and gravitational
formalism. In the remaining models, the opacities were settling which depend sensitively on d,, case IV was computed,
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with o reset to the value 1.8371 required to calibrate a solar
model with the OPAL opacities. Finally, the fourth model used
the OPAL opacities and this value of «, but in addition allowed
for gravitational settling of helium from the stellar convection
zones into the radiative interiors, according to the procedures
of Michaud & Proffitt (1993) and Christensen-Dalsgaard,
Proffitt, & Thompson (1993).

When testing the effects of these modifications on the fre-
quencies, we considered pairs of models where only one aspect
had been changed; we have not considered combinations of
the effects. Figure 13 shows the relative frequency differences
induced by changing the opacity or equation of state, or by
introducing gravitational settling, after correction for the
change in radius. As mentioned above, the opacity change
causes substantial changes in the atmospheric structure of the
model, which are reflected in a component of the frequency
differences which vary little with degree and slowly with fre-
quency. However, the I-dependence of dv in this case indicates
that there are also differences in the core of the model. In
contrast, the differences resulting from a change in the equa-
tion of state or from helium settling are dominated by an oscil-
latory behavior coming from changes in the second helium
ionization zone; this results directly from the change of the
equation of state in the former case, and from the change in
envelope abundance due to settling in the latter.

The procedure we used to test the influence of errors in the
physics on the parameter determination was to calculate
observables based on the new physical assumptions, and then
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to use the SVD procedure to estimate parameter changes that
would best match the new observables to models with the
reference physics. In general, such parameter changes in an
incorrect model cannot exactly reproduce all of the changes in
the observables, so some residual errors remain. The central
question is whether the residual errors are observationally sig-
nificant. If the residuals are all small compared to the observa-
tional errors, it is not possible to distinguish parameter
changes from changes in physical assumptions. In general, we
find that stars obeying different physics succeed remarkably
well in masquerading as stars that merely have different
parameters. There are distinctions, however, and in many cases
those distinctions appear to be large enough to be detectable.

We first consider the effect of changing the opacity law (case
ITI—case I), for a system at 1.3 pc. Modifications to the observ-
ables are large in this case: roughly 6 ¢ in the magnitudes, 11 ¢
in the colors, and typically 150 ¢ in the frequencies of individ-
ual modes, leading to some 200 ¢ in the large separation Av,.
The small frequency separation does not change perceptibly,
and of course the astrometric indices remain unchanged by
variations in the stellar model physics. For the most part,
however, the very large changes in mode frequencies arise from
changes in the stellar radius. These are easily simulated within
the framework of the reference model mostly by decreasing the
metallicity Z (by a factor of 1.7) and increasing the mixing
lengths (by factors of 1.3-1.5).

Figure 14 shows the residuals in the observables that remain
after subtracting the effects of the parameter changes. Several
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F1G. 13.—Changes in Inv resulting from changes in the assumed physics, after correction for the change in mean density according to eq. (1). Each line
corresponds to a different value of the degree /, the same line styles being used as in Fig. 2. The cases are labeled as in Table 4. Panel (a) shows the result of changing
the opacity, panel (b) the equation of state, and panel (c) the effect of including helium settling. Note that, as in Fig. 2, the largest changes are functions of frequency
alone, although opacity changes do result in frequency changes with some ! dependence.
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(b) p-mode frequency shifts as a function of frequency for a« Cen A. Different
symbols indicate different values of I/, as shown in the figure. (c) Frequency
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corresponding observable.

of the observables not related to oscillations (notably the color
of component B, the spectroscopic metallicity, and the appar-
ent semimajor axis) show very significant (up to 6 o) discrep-
ancies in this case. The residuals in the oscillation frequencies
are not as large, scarcely exceeding 1 o. The frequency
residuals, especially those for the B component, show a distinc-
tive variation with / and frequency, however; if a reasonable
fraction of the modes shown in Figure 14 were actually
detected, this behavior would be readily apparent even though
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the errors for single modes are about the same size as the
residuals. In this case, therefore, the reference model clearly
fails to reproduce the observations, giving strong evidence for
incorrect physical assumptions. We note, however, that the
dominant frequency-dependent trend in the residuals would be
difficult to distinguish from frequency errors caused by an
inadequate treatment of the oscillations in the near-surface
layers (including, e.g., the use of the adiabatic approximation).

For the model with a modified equation of state (case
IT—case I) seen at 1.3 pc, the situation is somewhat different
than for a modified opacity. The changes in the observables in
this case are mostly smaller than in the previous one (15 ¢ for
the magnitudes, 2-4 ¢ for the colors, and less than about 50 ¢
for the mode frequencies.) The model parameter adjustments
required by the fit to the new observations are, however,
smaller yet: the largest changes are decreases of roughly 7% in
Z and 4% in 1. The observational residuals following this
parameter adjustment are shown in Figure 15. Again, by far
the greatest part of the mode frequency variation is well repro-
duced by parameter changes within the framework of the refer-
ence model; the part of the variation that cannot be explained
by simple parameter changes is at most only about 0.5 ¢. The
frequency variation of the residuals is again quite systematic,
with an oscillatory signature that is probably related to the
changes in the second helium ionization zone; the small ampli-
tude would make its unambiguous identification problematic,
however. The parameter adjustments do less well at reproduc-
ing changes in the other observables. The worst match (3.5 ¢
discrepancy) is with the color of the B component, while the
parallax shows a discrepancy of about 1 ¢. Other astrometric
and photometric indices are in error by typically 0.4 ¢. In this
case, it appears that p-mode observations would constrain the
model so as to cause suspiciously bad fits with other observa-
tions. At the assumed levels of observational error, however, it
is unlikely that one could unambiguously determine the reason
for the bad fits.

Finally, Figure 16 illustrates the residuals for the case in
which diffusion of helium out of the convection zone has been
allowed (case V—case IV). The observable changes resulting
from this modification to the physics are even smaller than in
the previous cases: 1-2 ¢ for the photometric indices and less
than about 40 ¢ for the mode frequencies. The model param-
eter adjustments required to match the new observables
consist mainly of changes in the mixing lengths (decreases of
6% and 10% for components A and B, respectively), and a
10% increase in the model metallicity. These changes are qual-
itatively similar to those inferred above when changing the
opacity, but are opposite in sign and substantially smaller in
magnitude. The residuals after adjusting the model parameters
are evidently quite small. The observables with the largest
residuals are the colors and Z, but none of these is larger than
0.6 0. The frequency residuals for the A component show an
oscillatory dependence on frequency, reflecting the change in
the envelope helium abundance, but the magnitude is small;
for the B component, where the deeper convection zone
decreases the effect of settling, this effect is barely visible. Evi-
dently the effect of helium diffusion (at least in these stars of
approximately solar mass) would not be possible to discern
with observations of the quality that we have considered here.

6. DISCUSSION

One of our aims in undertaking this study was to help deter-
mine whether the benefits of oscillation data are sufficient to
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Fi1G. 15.—Same as Fig. 14, except showing the observable residuals caused
by changing from the EFF to the CEFF equation of state (Case II-Case I).

justify the cost and effort of obtaining them. The foregoing
results suggest that the observational effort is indeed worth-
while. At the same time, this study illustrates the vital impor-
tance of combining oscillation data with high-quality
information from other sources, and of seeking out stellar
systems for which the observations can be used to best advan-
tage. Assuming that these things are done, it appears that
stellar oscillation frequency measurements can make a sub-
stantial contribution to our knowledge of the structural
parameters of stars. Though the precision of estimates of mass,
age, and mixing length can be significantly improved, unam-
biguous information about the composition will be harder to
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F1G. 16.—Same as Fig. 14, except showing the observable residuals caused
by inclusion of gravitational settling of helium from the stellar convection
zones (Case V-Case IV).

obtain. Moreover, in favorable circumstances the oscillation
frequencies will allow direct investigation of at least some
aspects of the physics that underlies the theory of stellar struc-
ture. Questions about the opacity of stellar material appear
particularly approachable in this way, and those relating to the
equation of state may be within reach. The role played by
gravitational settling of helium, however, appears to be difficult
or impossible to separate from other effects, given observations
of the precision that we assume.

The current understanding of the excitation of solar-like
oscillations is not adequate to predict the probability of finding
binary systems where both components display detectable
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oscillations. Furthermore, given the constraints involved in
detecting the expected very small signal, it is likely that in
many cases it will not be possible observationally to separate
the two components; evidently the likelihood of this situation
increases with the distance to the system. In such cases, it is
probable that the observed oscillations will be entirely domi-
nated by those of the brighter component of the system, the
oscillations of the fainter component, even if present, being
undetectable. The results obtained in § 5.4 indicate that the
lack of oscillation data for one component will not seriously
compromise the determination of the parameters of the system.

Our results are complementary to recent work on inversions
of simulated stellar oscillation frequencies. Gough & Kosovi-
chev (1993a, b) carried out inverse analyses for the relative
differences in density and u = p/p, p being pressure, as a func-
tion of relative position in the star. They found that it was
possible to obtain localized measures of these quantities in the
core of the star, provided that modes of order as low as 5 were
included. Kosovichev (1993) performed the inversion in terms
of the convective stability measure A* and the helium abun-
dance, using modes in a frequency interval roughly corre-
sponding to the one considered here. From artificial data he
was able to determine the helium abundance and the location
of the base of the convective envelope with considerable preci-
sion, although application to the IPHIR data on solar oscil-
lations (Toutain & Frohlich 1992) was somewhat less
successful. There are two significant differences between these
efforts and ours. First, they are concerned with measuring the
depth dependence of quantities that can be estimated without
the necessity of a full and consistent model of the star. Second,
the precision assumed for oscillation frequency measurements
is a factor of 20 better than the value which we use. Availability
of mode frequencies with this assumed precision (0.1 yHz)
would significantly strengthen many of our conclusions.

The importance of combining different kinds of information
(oscillation frequencies, photometry, astrometry, spectroscopy)
cannot be overemphasized. These different indices respond to
various aspects of stellar structure in different ways; only by
combining them can anything like a comprehensive picture of
the star be obtained. In this connection, we note that there are
several kinds of observations that might have been considered
here, but were not. Photometric indices other than m, and
b — y were mentioned briefly in § 4.1, but we have not pursued
this further. More detailed spectroscopic information (for
instance, estimates of log g, T, stellar magnetic activity, or of
details of the heavy-element abundances) may be even more
useful. Further information, particularly on stellar radii, can be
obtained in the case of detached double-line eclipsing binary
systems, which even in the absence of oscillation data provide

EFFECTIVENESS OF OSCILLATION FREQUENCIES

1033

stringent constraints on stellar evolution theory (e.g., Andersen
1991); in such cases it is unlikely that more than one oscillation
spectrum can be clearly identified, however. Oscillation mea-
surements may also provide a number of observables besides
mode frequencies. These include the rotational splittings of
modes with I > 0, and the lifetimes and mean amplitudes of all
the modes. Frequency splittings provide information about the
depth dependence of the stellar rotation (e.g., Gough 1981).
Combined with a surface rotation rate derived from precision
photometry or from spectroscopy, such information would
help answer questions about the flow of angular momentum
within the stars (e.g., Stauffer 1991; Charbonneau 1992). The
amplitude and lifetime information is less useful at present,
because of the relatively undeveloped state of theories describ-
ing these phenomena. It is reasonable to suppose, however,
that future advances along these lines should yield fairly
detailed information about the dynamics of the upper parts of
stellar convection zones and about the conditions (such as
surface gravity) that influence them. Analysis of star clusters
should provide information of yet a different sort, since they
provide the opportunity to examine many stars of different
mass but with similar composition and age. Gough & Novotny
(1993) have begun to assess the potential of oscillation mea-
surements within star clusters; we are presently engaged in a
companion study to the current one, applying the SVD
approach to existing and anticipated observations of clusters
of stars.

Finally, we repeat that the sensitivities of derived stellar
parameters to errors in the observations depend on the system
under study and on the circumstances of observation in com-
plicated ways. Simple approximations to the dependences are
often misleading, so that some suitably general form of analysis
(such as the SVD formalism) is required. In the current case the
SVD approach does not yield simple physically motivated
relations between the observables and the parameters. This is
not a flaw in the technique, it is simply a feature of the trans-
formation that connects parameters and observables. In its
favor, the SVD formalism allows a precise understanding of
the transformation under consideration, so that interpreta-
tional problems may be identified and opportunities assessed.
We recommend its use in problems of parameter estimation
that involve numerous parameters or observables with dispa-
rate properties.
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