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ABSTRACT

Collapse conditions for large expanding shells and rings in a disk galaxy are derived and shown to lead to a
condition for star formation that is similar to the condition Q < 1 for spontaneous instabilities. This result
implies that both spontaneous and stimulated star formation are sensitive to Q, and that the observation of a
critical surface density for star formation that is based on Q does not necessarily imply that star formation
results from large-scale quiescent instabilities. The results also suggest that in regions with high gas densities
and high rotation rates, such as starburst galaxy nuclei, the normal balance between stimulated and sponta-
neous star formation mechanisms could shift to give a higher proportion of stars forming in shells and other
swept-up debris, and less in giant cloud complexes containing the local Jeans mass.

Subject heading: stars: formation

1. INTRODUCTION

Star formation is often observed along the periphery of giant
expanding shells or rings. One of the best-known examples is
Constellation III in the Large Magellanic Clouds (Westerlund
& Mathewson 1966). The Lindblad ring could be another
example with the Orion, Perseus, and Sco-Cen molecular
clouds and OB associations on the periphery (Elmegreen 1982;
Olano 1982). Many other examples are reviewed in Elmegreen
(1985a, 1987), Tenorio-Tagle & Bodenheimer (1988), and
Elmegreen (1992). Such star formation is presumably initiated
by the formation of new molecular clouds in the swept-up
matter along the shell or ring. The clouds form as the material
expands because of gravitational instabilities in the com-
pressed gas. The first models of this type were by Ogelman &
Maran (1976), Tenorio-Tagle (1981), Elmegreen (1985b),
Tenorio-Tagle & Palou$ (1987), McCray & Kafatos (1987),
and Franco et al. (1988). A recent model is by Comeron &
Torra (1994).

Here we derive approximate conditions for the collapse of
expanding and decelerating shells and rings. The results illus-
trate the basic time and length scales for the process, and
suggest some constraints on whether collapse will or will not
occur. In particular, we suggest that on a large scale this
mechanism of triggering should operate in an interstellar
medium where the stability parameter Q for the gas is close to
or less than the threshold value of 1 if the shells or rings are
relatively thick.

2. DERIVATION

2.1. Collapse in Decelerating, Expanding Shells

Consider a three-dimensional shell expanding into a
uniform medium. The unperturbed mass column density in the
shell is o,, which is assumed to increase with radius as
(4nR3p,/3)/(4nR?) = p, R/3 by mass conservation with a pre-
shell density p,, and the shell expansion speed and radius are
V and R, which are assumed to vary as V oc t~°# and R oc t°-¢
for continuous energy deposition into the cavity (Castor,
McCray, & Weaver 1975).

The shell will in general contain perturbations in the column
density and transverse velocity that may lead to instabilities of
various types. The perturbed column density will be denoted

by o, and the transverse (perturbed) velocity in the shell is
v = R00/dt for a small region with angular coordinate . We
consider the angular velocity 00/0t = Q of part of the shell,
rather than the translational velocity v = RQ because R
changes with time and the collapse of the shell along the
periphery is a collapse in angular coordinates. We also assume
that the perturbed pressure times thickness in the shell is ¢, c?
for constant velocity dispersion c in the shell.

The perturbed equation of motion for transverse flows in the
shell is

0Q
GORE= —c2Vo, + 009, — 40, QV (1)
where the perturbed gravitational acceleration satisfies
Poisson’s law,

Vg, = —4nGpg.y - V)]

The last term in equation (1) is from the expansion of the
shell and the accretion of new mass. It comes from the total
inertial force on the perturbed region, which is the rate of
change of total transverse momentum for perturbed mass
M,: d(M ,v)/dt = d(M {RQ)/dt = (dM/dt)RQ + M, VQ +
M, R(dQ/dt). We set M, = 4nap,R?/3 for fractional solid
angle of the perturbation «, so dM,/dt = 4nap, R?V, and then
divide all of these terms by the instantaneous perturbation area
A, = 4naR? with o, = po R/3. The last term in equation (1) is
then a combination of the term M, VQ/A, = g, VQ from the
expansion of the shell and (dM/dt)RQ/A, = 35, VQ from the
accretion of new matter. These are the same as the first two
terms in equation (2.15¢) in Vishniac (1983).

An additional term in Vishniac’s equation (2.15c¢) is from the
action of the shock-driving pressure on perturbations in the
trailing surface of the shell. This term leads to transverse
motions in the shell on the dynamical timescale R/V, but these
motions are apparently not disruptive as suggested by Vish-
niac (1983), nor should they prevent the eventual gravitational
instability on the longer timescale (Gpgpey &)~ */* for M = V/c.
The transverse flows appear to be regular and confined to the
shell in the nonlinear regime (Mac Low & Norman 1993). They
probably affect the gravitational instability by adding kinetic
energy to the collapsing gas (Vishniac 1994). At the same time,
some of the energy in the shell will be lost by various nonlinear
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dissipation mechanisms related to turbulence and motions in
the shock front. To simplify all of these matters, we assume
that the total internal kinetic energy in the swept-up gas can
be represented by the velocity dispersion ¢, which enters into
the pressure term. The swept-up magnetic field in the shell can
also be represented to some extent by an additional pressure
contributing to ¢. The value of ¢ is uncertain without a detailed
calculation of the sources and sinks of energy and magnetic
pressure in the shell. Nevertheless, we parameterize our results
with a dimensionless quantity .# = V/c, which is a measure of
the shell’s compression or thickness (.# is not the Mach
number of the shock, which would be V divided by the sound
speed ahead of the front). When .# is large, the shell is thin and
the collapse is rapid because of the high density. Strong
dynamical instabilities in the shell tend to make .# small if the
corresponding energy does not dissipate, and this delays the
collapse by making the shell thick and the average shell density
low. More complete discussions of the dynamical instability
are in Hunter et al. (1986), Vishniac & Ryu (1989), Nishi (1992),
and Yoshida & Habe (1992).

The perturbed equation of mass continuity in the transverse
direction is

do vV

a_tl = —09RV; - Q — 20, = R’ 3)
where the first term is from the convergence of the perturbed
flow in the shell and the second term is from the stretching of
the region of perturbed surface density with the expansion.
This second term comes from the time derivative for the per-
turbed mass M, per unit area A; for constant M, that is,
(M ,/4naR?)/0t = —2M,/4naR?*)(V/R) = —20, V/R.

Now we approximate the perturbation by sine functions in
the small part of the shell under consideration. We write o, =
6, cos n0 for angular coordinate 6 along the shell and constant
angular wavenumber # = kR; here k is the spatial wavenum-
ber, equal to 2z divided by the wavelength (k varies as 1/R).
Then Vo, = —ké, sin 110 We also write the perturbation’s
angular velomty Q = Q sin #0. Finally, we write o for the time
derivatives in analogy with the exponential growth rates found
in other instability problems, even though there is no real
exponential growth in this problem because of the expansion
and time dependence of g,. This latter approximation would
be replaced, in a more exact solution, by a numerical integra-
tion of the equations over time (e.g., Yoshida & Habe 1992). (If
gravity and internal pressure were ignored, the solution would
be a power law, as found by Vishniac 1983).

With these approximations, and with g; = —2nG6, sin 70,
we can rewrite the equations of motion and continuity as

0o RoQ = ¢?ké, — 21G6,0, — 46, QV 4)

w6, = —a,nQ —26,V/R, %)

and then eliminate Q and 4, to get the instantaneous growth
rate o as a function of the angular wavenumber #:

k1% V2 2nG cin?\1?
om - (rEer- 20T e

The peak growth rate occurs at the wavenumber where
dw/dn = 0, which is

nGp,y R?
Hpeak = _3—:2_ 5 (7)

and the peak growth rate is

3V V2 nGpo R\? 112

Wpeak = _?+|:F+< 3pco > :| . (8)
The peak growth rate is smaller than what it would have
been for a nondivergent shell because of the dilution of the
density perturbation with accretion and the stretching of the
density perturbation with expansion. These effects stabilize the
shell when R is small (Ostriker & Cowie 1981). Instability

occurs only for w,,,,, > 0, which requires

nGp, 8’V
3 © R ©)
Writing V/R = 0.6/t, this constraint becomes
0.986
—_— 10
"> Gro )" (10

where .# = V/c and c is the rms dispersion in the shell. For an
adiabatic shock, .# = (16/5)'/2 = 1.8, which gives a long col-
lapse time and a thick shell with large R at the time of collapse.
Approximately the same value of .# applies to cloud agglom-
eration fronts that have traveled less than or equal to several
cloud mean free paths (Elmegreen 1988), or to shocks in which
dynamical instabilities are active and clumps form with an rms
speed of around the shock speed, or magnetic shocks in which
the magnetic pressure dominates the thermal pressure, or very
old shells for which V is small. In all of these cases, the shell is
thick and the density relatively low, so the collapse takes a long
time. If most of the shock energy dissipates and the shell is thin,
then ./ can be large and the collapse rapid. The value of .# for
a particular region can be inferred from observations of the
relative shell thickness AR because .# = (3AR/R)™'/? for a
shell-to-preshell density ratio equal to .#2.

There is another constraint for the calculation to be valid
and that is that the minimum wavelength for instabilities must
fit inside a fraction of the shell circumference. The minimum
wavelength comes from the equation w(n) > 0, which gives

GPo

1 <R 1 -, (11)
where the dimensionless parameter
812V /R
g YR (12
nGpo R/3¢

was implicitly used for the condition that wpe, >0, ie., & <1,
as discussed above. For the minimum wavelength less than the
shell radius, we write 27 < n, so we have

R2
2 < TRy 1 -y, (13)
which is the same as
21/221 <141 —=¢&H2 (14)

or £ < 0.428,0.748, and 0.994 for .# = 0.5, 1, and 2. Larger ./
makes equation (14) satisfied automatically when wp.,, > 0;
because .# has to be fairly large anyway for the approx-
imations involving a shell geometry to be valid, this size con-
straint, 21 < #, is not likely to be important.
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The collapse begins when w,, >0, but the collapse
becomes well developed so that clouds form only at a later
time, defined by ¢ & 1/w,,(?). To evaluate this condition, we
write @,,,,, from above in terms of £:

1/2
wpcak=£[—3+<1+%> ] (15)

and set this equal to 1/t =(5/3)(V/R). Then we find that
¢ = 0.62 when t = 1/w(t), independent of .#. This gives a time
and distance for significant collapse and cloud formation,

1.25 ng M\~ 112
Lelouds form = (Gpo ﬂ)l/Z = 103<cm_3> Myr, (16)

12 ¢ ng \~'?
Rclouds form — 176.4 km S_l cm_3 pc. (17)

The angular wavenumber of peak growth at this time,
nGpy R%/3c?, gives the wavelength relation

1 A 0.354¢ 0.22c

i S R
so that ~(4V/c)* big condensations form in the shell; recall

that V is the instantaneous expansion speed and c? is the
average ratio of total pressure to density in the swept-up-gas.

(18)

2.2. Collapse of Expanding Rings

The equations are very similar for the collapse of a ring in
the disk of a galaxy. The scenario we have in mind now is the
expansion of a giant shell in which most of the accumulated
material originally in the interior is forced to move outward.
Some of this material may go into the halo, but most of it will
stay in the galactic plane, expanding away from the pressure
source as a ring. We imagine that this ring has a radius R,
half-thickness r, and half-height equal to about r also. Thus,
the shape of a small perturbation is approximately a curved
cylinder. Then the gravity term in the dispersion relation
considered above, 2nGo,k = 2nGp,n/3, which was for part of
a shell, should be replaced by 4nGp,(1 — krK,[kr]) ~
2Gu, k*In(2/[kr]) for Bessel function K,; the latter approx-
imation is for kr <€ 2 with k = #/R. The mass per unit length in
the ring, u, = po Rr, replaces the mass per unit area, g, in the
shell. Also for a ring, the coefficients of the terms in the equa-
tions of motion and continuity that result from the accretion
and expansion change because of the different geometry, giving
for these equations,

0Q

HoR === =V + pogr — 340 QV (19)
au 4
Elt:ﬂﬂoRVT.Q_'ulE. (20)

The dispersion relation for an expanding ring now becomes

2V V2 2Guon*In(2R/yr) c*p* |2
= *7*[? — & g @
From this dispersion relation we can determine that the peak
growth occurs at the wavenumber given by

Tpeak” _ oxp | —0.5( 1 + < 22)
2R GRrp,) |’

Vol. 427
and that the peak growth rate is
14 V2 GpO rnzea 12
Dpea = = 1 + (F + _?u : (23)

Now we set this peak growth rate equal to 1/t = (5/3)V/R
and find the time for significant collapse; the result is an equa-
tion for ¢,

: c? 0.60
t —-0.5(1 =
P [ ( ¥ Ger)] Goo Y
where we have used the condition for pressure balance, p =

po M2, for ring density p = po/(nr?). This equation has to be
solved numerically. We write for simplicity

T
"= G *
and introduce the scale height
i1+ a+p) B2 P
H>="% """ - = _fer
27Gpar or o 3P and B P (26)

with ambient magnetic field strength B, cosmic ray pressure
Pc, turbulent pressure P, velocity dispersion c,, and total
gas + star density por in the gas layer. We also write y, =
nR?2Hpy/(2nR) = Rp, H, or r = H. With these substitutions,

c? 3 0.6(2m)'%¢c/c,
GRrp, T([1+ o+ Blpo/por)'?”
(14 o+ Bpo/por ~ 1, so c*/(GRrpo) ~

(27)

Typically,
(1.5/T)(c/eo)-

With these substitutions, we find that the parameter 7, in the
collapse time satisfies the equation

1.
T, exp [-0.5(1 + T56>] =060, (28)

rCo.
from which we obtain T, = 1.26, 1.59, 2.05, and 2.84 if ¢/c, =
0.5, 1, 2, and 4, respectively. Using a typical value of T, ~ 1.5,
the resulting timescale for significant collapse and molecular
cloud formation is

1.5 ny M\ "2
~ = s M
Lclouds form (Gpo)llzﬂ 124< p— 3 ) yr, (29)

which is comparable to the final result for the shell except that
now ./ appears in the denominator and before it was .#1/2,
The reason for the 1/.# dependence now is that w2, scales
with Gp, rngeak/R from equation (23), but #,., ~ 2R/r from
equation (22), and R/r = n.#? from the pressure relation
p/po = M*, s0 Gpornl../R ~4nGpy #*, and this is pro-
portional to 1/t2 at the time of significant collapse.

This collapse time corresponds to a radius R = 5tV/3 which
is independent of ./ :

2.5¢ c n, \ 2
Rcloudsform ~ (Gpo)llz - 211<kms-1><cm_3) pc. (30)

3. A Q CONDITION

In galaxies with rotation and shear, an expanding shell or
ring will be distorted into an ellipsoid or ellipse by Coriolis
forces. The time when a ring has its maximum extent on the
minor axis, just before the Coriolis force begins to decrease the
minor axis, is ~ 2.5/« for epicyclic frequency « (Palous, Franco,
& Tenorio-Tagle 1990; Fig. 3a). In the solar neighborhood,
2.5/k = 80 Myr. This limiting time for Coriolis forces is a con-
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straint on the collapse of the ring into giant molecular clouds.
If the collapse time is much longer than 2.5/k, then the shell or
ring will deform so severely before new giant molecular clouds
form that the central cavity will begin to close up and the
compressed gas will get stretched in the azimuthal direction of
the galaxy (Palous$ et al. 1990). Thus we require t jouds form <

2.5/x, which for the case of the expanding ring, gives approx-
imately

15 _25
(Gpo)' 2t~ x

Note that a ring is most appropriate for very large scales, once
R exceeds the scale height of the disk.

Equation (31) corresponds to a condition on the stability
parameter Q if p, is converted into a disk gas column density ¢
using the scale height H given above. Then we get

(1)

ey _ 254
nGo ~ 1.52n[1 + a + Blpo/por)*’>

Q=
R 1/2
~ 0.66.4 ~ 0.37<7> (32)

for (1 + o + B)po/por = 1. This value of Q is comparable to
that found by Kennicutt (1989) for the threshold of star forma-
tion in galactic disks, namely, Q =~ 1.4, if # =~ 2 (or R/r ~ 14),
which is approximately what we expect for energetic or mag-
netic rings with internal total pressure-to-density ratios com-
parable to the square of the shock speed, or for old rings that
have slowed down to near the ambient rms velocity dispersion.
Note that in most galaxy disks with ny ~ 1-4 cm ™3, (Gp,) /2
is longer than the duration of the high pressure phase of a
supershell, so .# will have decreased to near unity at the time
of collapse. Rings or shells in the ambient medium that dissi-
pate a significant fraction of the energy in the swept-up
material (/ large) can collapse with higher ambient Q, as can
rings or shells that propagate into regions with above average
densities (i.e., into molecular clouds). Nevertheless, Q serves as
a useful discriminant for both stimulated and spontaneous
cloud formation processes on a large scale, because they both
involve a balance between gravitational and Coriolis forces.
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These results imply that spontaneous star formation driven
by gravitational instabilities and stimulated star formation
driven by centralized pressure sources are likely to be impor-
tant in the same regions of a normal galaxy disk. Thus observa-
tions of a surface density threshold for star formation
(Kennicutt 1989) do not necessarily imply that all star forma-
tion results from spontaneous collapse; a significant amount of
star formation throughout the disk can be from stimulated
processes too. Conversely, galactic disk models with only pro-
pagating star formation are likely to be missing an equally
important contribution from large-scale spontaneous pro-
cesses, which should operate simultaneously in normal gal-
axies.

This balance between spontaneous and stimulated star for-
mation could be very different when the ambient gas density is
so large that the basic gravitational timescale of (Gp,) ™ /2 is
less than the duration of the shell-driving pressure, which is
determined by the timescale for massive stellar evolution. Then
M could be much larger than order unity at the time of col-
lapse because the shock-driving pressures are still strong then.
If the ambient density exceeds 103m;; cm ™3, for example, then
(Gpo)~ % < 3 Myr, which is the lifetime of an early type O star.
In this limit, which may apply to starburst galaxy nuclei,
the analysis suggests that stimulated star formation could be
much more important than spontaneous star formation from
gravitational instabilities primarily because the stimulated
time scales of (Gpo.#)~'? or (Gpo.#%) 12, depending on
geometry, are much less than the spontaneous timescale
(Gpo) 2 when 4 > 1 at the time of collapse. Nuclear disks
with high densities could even have Q > 1 from the rapid rota-
tion but if # > 1 at the time of collapse, then Q can still be less
than 0.66.# when clouds form. In this case only the stimulated
star formation mechanism would operate (cf. Morris 1993).

Such a change in the ISM properties for very dense regions,
leading to a change in the balance between spontaneous and
stimulated star formation, would lead to a qualitative differ-
ence in the morphology of star formation. Instead of observing
most star formation in the dense cores of clouds that contain
the local Jean mass, star formation in very dense regions could
be more scattered in the swept-up debris from other star
formation.
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