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ABSTRACT

Recently proposed neutrino emission processes in high-density matter result in the relatively rapid cooling
of a neutron star’s interior followed by a precipitous drop in the surface temperature. We show that the time
interval between the formation of the neutron star and the drop in the surface temperature is primarily deter-
mined by the structure of the neutron star and is relatively insensitive to the rapid cooling mechanism itself.
Thus, observations of thermal emissions from neutron stars have the potential for constraining the neutron
star’s structure and the underlying equation of state of dense matter.

Subject headings: dense matter — stars: evolution — stars: interiors — stars: neutron

1. INTRODUCTION

Although the masses of several neutron stars have been reli-
ably determined, the structure and interior constitution of
neutron stars remain elusive. Theoretical estimates of a
neutron star’s radius are in the range 8-20 km, which indicates
the present uncertainty in the supranuclear equation of state
(EOS). Direct observational determinations of a neutron star’s
radius, from cyclotron line features in the spectra of X-ray
pulsars (Hoshi 1992), from X-ray bursts (Inoue 1992), and from
the SN 1987A neutrinos (Lattimer & Yahil 1989), for example,
are not currently very accurate. However, as we show in this
paper, the detection of true thermal emission from a neutron
star has the potential of establishing a neutron star’s structure,
and, by inference, could constrain the EOS of dense matter.

Neutron stars are born with interior temperatures of order
20-50 MeV, but cool via neutrino emission to temperatures of
less than 1 MeV within minutes (Burrows & Lattimer 1986).
The subsequent cooling consists of two phases: a neutrino-
dominated cooling epoch followed by a photon-dominated
cooling epoch. Even during the neutrino epoch, thermal
photons are radiated from the neutron star’s surface. The tem-
perature and luminosity of this thermal radiation is controlled
by the interior temperature evolution of the star. Until recent-
ly, the general view was that the interiors of newly-formed
neutron stars would cool relatively slowly, unless they con-
tained nonstandard or exotic matter, such as a pion conden-
sate, a kaon condensate, or quark matter. In the standard
model, the interior cooling is slow enough that the surface
temperatures of neutron stars remain above 10° K for about
10° yr, and they are potentially observable for this length of
time in the X-ray or UV bands. When exotic matter with
enhanced neutrino emissivity is present, the core cools so
rapidly that a temperature inversion develops. The size of the
cooler interior grows as the energy from the hot crust is con-
ducted to the core. After about 1 to 100 yr, depending upon the
star’s structure, this cooling wave reaches the surface and the
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surface temperature plummets, perhaps to unobservably low
values.

However, Lattimer et al. (1991) and Prakash et al. (1992)
have suggested the possibility that all neutron stars will cool
rapidly, whether they contain exotic matter or not. Lattimer et
al. (1991) showed that ordinary (nonexotic) matter with a
proton/nucleon ratio in excess of some critical value lying in
the range 0.11-0.15 can cool by the direct Urca process even
more rapidly than matter in an exotic state. Prakash et al.
(1992) further showed that matter with any proton/nucleon
ratio can rapidly cool by the direct Urca process if A hyperons
are present. In addition, in the presence of a pion or kaon
condensate, Thorssen, Prakash, & Lattimer (1994) have shown
that the proton fraction will necessarily rise to values in excess
of the Urca threshold. It is not unlikely that one or more of
these situations will, in fact, occur in neutron stars.

The time for a neutron star’s center to cool by the direct
Urca process to a temperature T has been estimated to be
about

t=20Ty*s 1)
(Lattimer et al. 1991), where T, = T/10° K. The direct Urca
process and all the exotic cooling mechanisms only occur at
supranuclear densities. Matter at subnuclear densities in the
neutron star’s crust cools primarily by diffusion of heat to the
interior. Thus, the surface temperature remains high, in the
vicinity of 106 K or more, until the crust’s heat reservoir is
consumed. After this diffusion time, which is of order 1-100 yr,
the surface temperature abruptly plunges to values below
5 x 10° K. The diffusion time depends upon the size of the
crust, the heat capacity, and the thermal conductivity of the
matter at subnuclear densities. It does not, as we will demon-
strate, depend upon the details of the core cooling mechanism,
assuming, of course, that sufficiently rapid cooling occurs at all.
The direct Urca process is estimated to occur for densities in
excess of 2-3 times the standard nuclear density, p, = 2.7
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x 10'* g cm ™3, and is faster than the conventional cooling

mechanism, the modified Urca process, by a large factor of
about 5 x 10°T4 2. Since core temperatures become less than
T, = 1 after several seconds, this cooling mechanism is suffi-
ciently rapid.

The extent to which the surface temperature finally drops is
chiefly determined by the core temperature. If the direct Urca
process in the core continues unabated, the core temperature
as a function of time is given by inverting equation (1), or

Tore ~ 3 x 107(¢/yr)"1* K . @

The surface temperature will be about a factor of 100 less than
this, depending on the details of the star’s envelope (Van Riper
1988). However, when the core temperature drops to 1 MeV or
less, nucleons in the neutron star’s core may become superfluid.
If this happens, the neutrino emissivity from the direct Urca
process will be quenched by a factor ~exp (—A/kT), since, for
the process to occur, the total energy of particles in the initial
or final state must exceed A, the larger of the neutron and
proton gaps. The size of the gaps are uncertain but have been
calculated to be on the order of a few hundred keV. Thus, when
kT < A, the neutrino cooling is significantly reduced. As Page
& Applegate (1992) have shown, nucleon superfluidity results
in surface temperatures that are intermediate between those
produced by standard cooling and unquenched rapid cooling.
They suggest that observations of neutron stars with these
intermediate surface temperatures would be evidence of
nucleon superfluidity. Actually, if a cooling process could be
found that was just a few times faster than the modified Urca
process, or if the region in which a rapid cooling process
occurred was limited to a tiny fraction (10~ %) of the core, it
would also be possible to achieve intermediate temperatures in
the absence of superfluidity. However, at present, neither of
these situations seem likely.

Nonetheless, it is uncertain that nucleon superfluidity per-
sists to the highest densities found in the centers of neutron
stars. Moreover, it is likely that hyperons are present at supra-
nuclear densities. Nucleon superfluidity would not necessarily
quench the hyperon Urca process and it is not known if hyper-
ons themselves form superfluids in neutron stars. As long as
there exists a core or region in which an unquenched Urca
process can operate, the surface temperature would fall to
unobservably low values. Even potential heating processes,
such as those due to friction between the rotating superfluid
and normal parts of the star, or to the decay of the magnetic
field, would not be strong enough to prevent the surface tem-
peratures from dropping precipitously.

Nearly all potential candidates for thermal emission (see,
e.g, Tsuruta 1986; Ogelman 1993; Becker, Triimper, &
Ogelman 1993) are pulsars, and it is unclear how much of the
observed emission is due to the pulsar phenomenon, to a
synchrotron-emitting nebula, or to thermal emission from the
neutron star itself. Improved spectral resolution in recent
observations shows strong evidence for a thermal spectrum in
sources such as PSR 0656 + 14 (Cordova et al. 1989), PSR
1055—52 (Brinkmann & Ogelman 1987) and Geminga
(Halpern & Holt 1992). Periodicity in the thermal emission
from PSR 0656+ 14 is interpreted as a hotter region on the
surface sweeping past the field of view as the star rotates
(Finley, Ogelman, & Kiziloglu 1992; Anderson et al. 1993). All
objects observed to date, with the exception of SN 1987A, are
more than 100 yr old, and the rapid cooling paradigm suggests
that no thermal emission will be observed from them. In the

case of SN 1987A, no thermal emission is seen as yet. Rapid
cooling may be the reason for the absence of thermal emission
from the young neutron stars which may be present in the
center of the Kepler (Helfand, Chanan, & Novick 1980), Tycho
(Gorenstein, Seward, & Tucker 1983), or SN 1006 (Pye et al.
1981) supernova remnants.

In this paper we show that there is a straightforward
relationship between the diffusion time and the thickness of the
crust of a neutron star. We will define precisely what we mean
by the crust in § 2. Such a result has been anticipated by Brown
et al. (1988), who argued that the time needed for a temperature
drop in the inner core to significantly affect the surface tem-
perature was about R2.,/D, where R, is the thickness of a
neutron star’s crust and D is the diffusivity of the crust. By
including general relativity and making use of detailed numeri-
cal models, we will make this relationship quantitatively useful.
Thus, the crust thickness, the neutron star’s mass and radius,
and the EOS are intimately related. Therefore, should the
surface temperature plunge ever be observed, the mass and
radius of the neutron star could be constrained. Coupled with
other observations, it is possible that properties of the supra-
nuclear EOS could be estimated.

In § 2, results of full numerical simulations of cooling
neutron stars, covering a variety of cooling mechanisms, EOSs,
superfluid models, and neutron star masses are given. In § 3,
the diffusion of heat from the crust of a neutron star is treated
with analytical models. These models establish general numeri-
cal relations between the neutron star’s structure and the diffu-
sion time. These results are compared to the numerical
simulations, which can be used to calibrate the analytic
models. In § 4, the relationships between the crust thickness,
the neutron star mass and radius, and the EOS are detailed,
and the prospects of using observations of thermal evolution to
constrain neutron star or nuclear matter properties are dis-
cussed.

2. NUMERICAL SIMULATIONS

2.1. Cooling Model

Figure 1 illustrates schematically the essential structure of a
neutron star which is relevant for cooling simulations. First,
there is a core, of radius R,,,., in which the density exceeds the
value p..,., Which is of order p,. In the event of rapid cooling,
the core cools much more quickly than the crust (see eq. [1])
and, because the thermal conductivity is high above nuclear
density, reaches isothermality in a few hours. The core is sur-
rounded by a crust which acts as a heat reservoir. We are
basically interested in the diffusion of heat through the crust,
which has a thickness ranging from 0.4-3 km, depending on
the EOS and the neutron star’s mass. We will define the crust,
whose width is Ry, to be the region bounded on the inside by
the density p_... This is not necessarily the same definition
used, for example, in theories of glitches, in which the crust
refers to the region in which nuclei coexist with (partially
superfluid) neutrons. The “ glitch crust” has an inner boundary
defined by the density at which nuclei merge into a uniform
nuclear sea of neutrons and protons, which occurs at densities
perhaps as low as 3p, (see, e.g., Lorenz, Ravenhall & Pethick
1993). The actual definition of the crust boundary will not be
essential to our conclusions, so long as one is consistent in its
definition. We will show in § 4 that the value of R, for a star
of given total mass and radius, depends entirely on the EOS
below p.,.., Which is thought to be relatively well understood.
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F1G. 1.—Schematic neutron star model. Subscript s refers to the visible
surface and is denoted by the dashed circle. The crust-envelope (R, T,,, p,,) and
core-crust interfaces (subscript “ core ”) are indicated by the solid curves.

Therefore, Rg,.,;, defined with a boundary at p,,., is related by
a constant factor (independent of the high-density EOS, the
total mass, and the total radius) to the crust thickness defined
with another boundary density.

Lastly, an envelope extends from p,, = 10!° g cm 3 to the
surface (subscript s). The heat capacity of the envelope, which is
very thin in comparison to the sizes of the other regions, is
negligible; the surface temperature responds nearly instantane-
ously to variations in T, the temperature at p,. The two
boundaries of interest to us are the core-crust interface and the
crust-envelope interface. We will calculate the temperature
evolution at the crust-envelope interface, given the tem-
perature as a function of time at the core-crust interface. The
temperature at the crust-envelope interface is simply related to
the visible surface temperature (Van Riper 1988).

We explore the thermal evolution of neutron stars using the
general relativistic code developed by Van Riper (1988, 1991).
This code uses a diffusion algorithm to follow both the conduc-
tion of heat and energy losses by neutrino emission inside the
star. Van Riper (1991) has detailed the thermal conductivities,
neutrino emissivities, and heat capacities used in this code (see
also the next section). We compute the temperature distribu-
tion interior to the density 10'° g cm ™3 and treat the envelope
external to this as a boundary condition using the algorithm of
Van Riper (1988). For all models, a surface magnetic field
strength B = 10!'?2 G is assumed. Magnetic field effects are
important only at densities <10'° g cm~3 and can affect the
relation between the visible surface temperature and the crust-
envelope interface temperature. At higher densities, a field
B < 103 G has little impact on the conductivity, heat capacity,
and EOS and thus will not affect the details of the thermal
evolution. Our spherical envelope model is based upon opa-
cities parallel to the field, the direction in which they are most
diminished from their nonmagnetic values. Envelope models
for other orientations show the parallel envelope results are
still appropriate for most of the surface (Miralles & Van Riper
1993). We considered a series of models to explore the depen-
dence of the thermal evolution upon stellar properties, the
nature of the cooling process, and the presence and properties
of nucleon superfluids, both in the crust and the core.

100 10" 102 108 10* 105 108

Age (years)
F1G. 2—Cooling of a neutron star in the standard model compared to the
rapid cooling case. In the rapid cooling case, the time necessary for the cooling

wave to reach the surface is denoted by t,. The dotted curve assumes no
diffusion and that the core and crust are isothermal.

A typical example of the effect of rapid cooling compared to
standard cooling is shown in Figure 2. Here the standard and
rapid cooling curves coincide until a cooling wave reaches the
surface at t,, = 15 yr. We define the cooling time t,, as the
instant when the cooling curve has the greatest (negative) slope
(indicated in Fig. 2 by the filled circle). Following the abrupt
drop in surface temperature, the part of the star interior to the
envelope becomes isothermal, as shown in Figure 3. Figure 3
shows how the temperature profiles in the outer parts of a
neutron star evolve. Note that the ratio of the temperatures of
the crust-envelope interface (T,,) and the core-crust interface
(T.ore) remain uniformly large even as the core is rapidly cooled.
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Fi1G. 3.—Thermal evolution of the outer parts of a neutron star. The red-
shift is denoted by e?. Each curve corresponds to the labeled age. The core-
crust interface is indicated by R, ; curves end at the surface, R.
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The cooling in both the standard and rapid cooling cases is
dominated by neutrinos until about 10° yr when surface
thermal photon emission takes over and the cooling curves
steepen.

The two most important features evident from Figure 2 are
the cooling time ¢,, and the temperature during the isothermal
era. We will delineate how these potential observable param-
eters could be connected to the EOS or to the structure of the
neutron star.

2.2. Stellar Size

Our first investigation centers on the dependence of t,, with
the size of the star. To facilitate this study, we used the emis-
sivity from the Urca process on percolating quarks (Kiguchi &
Sato 1981) for an accelerated cooling mechanism. This particu-
lar process has a lower threshold density (equal to nuclear
density) than other cooling mechanisms and thus permits
accelerated cooling models over a wider range of stellar masses
and radii. We effectively varied the stellar radius R by fixing
the (gravitational) mass and using different dense matter EOSs
or by varying the central density (and hence the mass) while
employing a single EOS. For these simulations a variety of
EOSs were used. They included those of Prakash, Ainsworth,
& Lattimer (1988, hereafter PAL), Friedman & Pandharipande
(1981), Pandharipande & Smith (1975), and Baym, Pethick, &
Sutherland (1971).

The results are shown in Figure 4, in which ¢, is plotted
against R. It is evident that a monotonic correlation exists
between t,, and R, with t,, roughly varying as RS. However, the
relationship appears to depend on the neutron star mass as
well as the radius. The curve obtained by varying the neutron
star mass with a fixed EOS has significantly more curvature
than do the curves obtained with constant mass.

As we will show in the analytical treatment of § 3, there are
strong physical reasons for believing that ¢, depends more
directly on the thickness of the neutron star’s crust than upon
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R. For the moment, we define Rg,.;, = R — R,,,. to be a fidu-
cial measure of crust thickness, where R, is the radius at
which the density is equal to p,,. = po, the standard nuclear
matter density. Although the definition of R, seemingly
depends arbitrarily upon our choice of the boundary density
(in this case p,), the results we will find are, in fact, insensitive
to our choice of p.,.. As seen in Figure 4, we find that the
variation among the curves, and hence the mass dependence, is
greatly reduced when t,, is plotted versus R, compared to R.
A rough power-law fit is ¢,, oc Ry, Where 1.7 < n < 1.8. This
general behavior appears to be valid regardless of whether
superfluidity is assumed or not, and whether the variation in
Rgenn is due to variations in the total neutron star mass or due
to variations in the nuclear EOS. These results will be inter-
pretedin § 4.

2.3. Crust Size

In models where crust neutron superfluidity is present, t,,
decreases by about a factor of 3 compared to the correspond-
ing nonsuperfluid model. This change is due to the reduction of
the heat capacity of the neutrons in the crust. (The particular
model for the quark Urca process which produced the rapid
cooling in this series of simulations is itself unaffected by core
superfluidity; neither is the heat capacity of the quark core.)
We will establish in § 4 that ¢,, is proportional to the specific
heat in the crust. Once the neutron contribution to the specific
heat is suppressed by superfluidity, the specific heat becomes
dominated by the electrons. The effective reduction in the
crustal heat capacity in the superfluid case is a complicated
average over density and temperature distributions, and we
have not found a simple (analytic) explanation for the particu-
lar factor of 3 found in our numerical simulations.

2.4. Cooling Rate

The next series of numerical simulations focuses on the
sensitivity of the thermal evolution to the exact form of the
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F1G. 4—Cooling time as functions of neutron star radius (left) and neutron star crust thickness (right). Cooling by means of the Urca process on percolating
quarks is assumed ; cases in which nucleon superfluidity exists in the crust are denoted by SF. The solid curves refer to simulations in which the total neutron star
mass is fixed at 1.4 M, ; different neutron star radii and crustal thicknesses are obtained by varying the nuclear EOS. For this figure, R, is defined by the boundary
Peore = Po- The dashed curves show cases in which the EOS was kept fixed and the neutron star mass was varied. See Table 3 for a description of EOS 2.
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accelerated cooling process.
included:
i) the direct Urca process (Lattimer et al. 1991),

The processes investigated

Y.\
€epy = 4.00 x 1027<ﬁ) mim*T§ ergs cm™> s 1 ;

p > 44p,, 3)

ii) the Urca process on percolating quarks (Kiguchi & Sato
1981),

3.2
p P
€p = 1.56 x 1026(% - 0.16) TSergscm™3s7!;

P> po @

and iii) neutrino emission from a pion condensate (Maxwell
etal. 1977),

€, =314 x 10°m*2TS ergscm™3s7!; p>20p,. (5

In these expressions € is the emissivity, m¥ and m} are the
neutron and proton effective masses in units of the nucleon
mass, and Y, is the electron fraction. This series of simulations
was performed for a constant neutron star mass of 1.4 M.
Different values of R, were obtained by varying the EOS.
Since we wished to examine the relation between t,, and the
cooling rate in a fashion that was independent of structural
effects, we did not include in these calculations the variations in
the star’s structure that would have resulted from the quark-
hadron transition (in case ii) or the pion condensate (case iii).
In reality, stars with phase transitions to quarks or pion con-
densates can have radically different structures (i.e., much
higher central densities and smaller radii) than “normal ” stars.
The different structures will have a large impact on the cooling
times. The effect of phase transitions is covered in more detail
in § 4. To recapitulate, at this point we are strictly interested
only in the relation between the neutrino emission rate and the
effective surface cooling time.

The result of using these physically motivated forms of rapid
cooling is shown in Table 1. The cooling times are remarkably
insensitive to the details of the cooling process. There is a slight
decrease in t,, for stronger cooling models which results from a
larger initial decrease in the central temperature. This behavior
is predicted by the analytic calculations presented in § 3. That
the direct Urca cooling times in two of the superfluid cases
exceed those of the slower quark process can be explained by
core superfluidity suppressing the direct Urca rate but not the
quark rate. Finally, note that when superfluid effects are
included in the model (indicated by “SF” in the second

TABLE 1
CoOLING TIMES FOR M = 1.4 M : PHYSICAL MODELS

TABLE 2

Vol. 425

CooLING TIMES FOR M = 1.4 M : GENERIC

MODELS

pl tW

(10** g cm™3) log,o 4  (y1)

28 e, 28 29.1
28 e, 27 322
28 e, 26 362
28 e, 25 419
28 e 24 488
28 e 23 60.4
28 i 26 362
56 e 26 375
100 oo, 26 39.7

£,(y1)
Rshell
(km) SF (0] DU n
036 ..ccoevvniiinnnnn. SF 1.17 1.37
12 i SF 6.99 7.53
SF 113 11.1
N 359 329
SF 16.6 17.8
N 59.5 52.8
SF 21.7 31.2
N 77.3 734

column of Table 1), the cooling time ¢,, is reduced by a factor
3—4 relative to the cooling time when these effects are ignored
(indicated by “ N ”) because of the reduction of heat capacity in
the crust.

We also considered a generic accelerated emissivity,

€ = ATS, (©)

to explore the dependencies on the overall magnitude A and
threshold density p, separately. The variations t,, with emis-
sivity model are shown in Table 2 and in Figure 5. The depen-
dence of t,, on the parameters for the generic emissivity is slight
as long as the overall rate is much larger than that of standard
cooling, for which the effective value of A is around 102,
Although there is an apparent increase in t,, with decreasing A4,
there is very little change in ¢,, when p, is varied. This empha-
sizes that there is no need to relate the inner boundary defining
R iy With p,. Only the total amount of cooling, integrated over
the core, is relevant. The relationship we have obtained, ¢t,, oc
R% o1, Where n ~ 2, is therefore independent of the precise defi-
nition of Ry ;-

The temperature evolution of the star following the rapid
temperature drop at t,,, when the core and crust of the star are
isothermal, is determined by the core’s cooling rate. The more
rapid the cooling rate, the lower the temperature that is

T T T T
10° €5 =ATE
— 8 —
g 10 Log A
° ~
= 23
- T
107 T
-
\_\
\\\ ~
106 | l L l
100 10! 102 103 104 10°

Age (years)

FiG. 5—Temperature of the crust-envelope interface (T,,) as a function of
time for 1.4 M  neutron stars cooling according to eq. (6).
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achieved. The temperature during this isothermal epoch can be
readily estimated by combining the generic cooling rate, equa-
tion (6), with the total heat content of the star. The result is
given by a formula analogous to equation (2):

1028 yl' 1/4
T, ~2| ——— ,
=5)

where T, = T/107 K. The calculations in Figure 5 follow this
result closely. Surface temperatures that are intermediate
between the standard and rapid cooling models can be
obtained if the cooling is suitably adjusted. One way of achiev-
ing this is to quench rapid cooling with superfluidity, as we
now discuss.

2.5. Crust and Core Superfluidity

As pointed out by Page & Applegate (1992), when core
superfluidity is present, the interior temperature drops to a
value determined by the magnitude of the superfluid critical
temperature. Page & Applegate argued, further, that the two
temperatures are related by T, io/Torie & 0.2. Levenfish &
Yakovlev (1992) have shown the suppression of the emissivity
is less than assumed by Page & Applegate, so the temperature
ratio will be somewhat lower than 0.2. After the cooling wave
reaches the surface, the surface temperature reflects the super-
fluid critical temperature until the onset of the photon cooling
epoch. The surface temperature is intermediate between the
standard cooling and rapid cooling cases. However, this result
only applies to those rapid cooling processes that are quenched
by superfluidity. The direct Urca and condensate cooling pro-
cesses are quenched, but it is uncertain whether quark cooling
is also quenched (Bailin & Love 1984). In addition, this result
applies only if, effectively, the entire core is superfluid. If some
part of the rapidly cooling core lies in a density regime outside
of the superfluid region, the rapid cooling will continue
unabated.

We have considered two models for the superfluid gaps
above nuclear density, which are shown in Figure 6. The
“standard ” model gaps are from Takatsuka (1972) and Chao,

weos 4 44

3 -

Neutron (1Sg) /"-" \ Extrome

g of “ y  neuron (Fa),
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: 1 proton ('S, i
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.. neutron (3P,)} ;
. i :
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F1G. 6—Superfluid gaps as a function of density. All superfluid models
contain the neutron 'S, gap which affects the crust. Standard model neutron
3P, (Takatsuka 1972) and proton 'S, (Chao, Clark, & Yang 1972) gaps and
extreme model gaps are shown. The central density of 1.4 M, stars for the
three PAL equations of state are indicated by arrows.
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F16. 7.—Direct Urca cooling of 1.4 M, neutron stars with different treat-
ments of superfluidity. Results for each of three PAL equations of state (see
text) for 1.4 M, stars are indicated.

Clark, & Yang (1972) for the neutron 3P, and proton 'S, gaps,
respectively. The extreme model substantially increases both
the energy of the gaps and their extent in density. We do not
consider the extreme model to be physically realistic, but have
included it for the purposes of comparison. The same neutron
1S, gap of Takatsuka (1972) below nuclear density is used in
both cases. This gap does not affect the neutrino emission but
is crucial in determining the specific heat of the crust and
therefore t,. In the nonsuperfluid models we omitted both
crust and core superfluidity.

Figure 7 shows the results of cooling simulations using the
direct Urca emissivity and different superfluid (SF) gaps for a
mass of 1.4 M. The equations of state were taken from PAL
and have, as free parameters, the bulk incompressibility (K,)
and the high density stiffness of the EOS (parameterized by the
quantity B’). All other EOS parameters are the same as in PAL
for the case in which the potential energy contributions to the
symmetry energy are assumed to be linear. Positive values of B’
yield softer high-density EOSs and smaller values for the
maximum mass, relative to the case B’ = 0. Three different
parameter sets were used for these simulations and they are
detailed in Table 3. The central densities (p,) of 1.4 M, stars
for each of the three parameter sets are also listed in Table 3.
With EOS 4, p. is more than twice the highest density of super-
fluid matter in the standard model, and there is very little
difference between the cooling curves with no superfluidity and
with the standard superfluidity. There is, however, a difference

TABLE 3
PARAMETERS AND PROPERTIES OF SELECTED PAL EQUATIONS

OF STATE

KO Mmax Pc/ﬂo Of
EOS (MeV) B M) 1.4 M, Stars

1o, 180 0. 1.74 3.85
2 180 0.895 1.45 171
3 240 0. 2.05 2.81
4 240 0.67 1.44 7.50
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in the timing because of the dependence of t,, on the crustal
specific heat, which does depend on the existence of super-
fluidity in the crust. For EOS 1 and EOS 3, the neutron *P,
gap involves a substantial fraction of the neutrons in the core,
and the cooling curves do not drop to as low a level after the
time t, as when the emissivity is not suppressed; the super-
fluidity effect is greater for lower p, because the effective gap
temperature is lower at higher densities. The temperature the
core maintains once superfluidity begins is related to an effec-
tive critical temperature, as Page & Applegate (1992) found.
However, there is no simple relationship between the
maximum critical temperature and the surface temperature
because of the density dependence of the gap energy. Since the
density profile of the core is relatively flat, the effective gap is
mostly determined by the value of p,. From Figure 6, the
effective gap is largest at the lowest density. The extreme
superfluid models, of course, give much more quenching
of the emissivity, again with the quenching being greater at
smaller p..

In summary, the observation of an intermediate value of the
surface temperature of a neutron star would be evidence for
both rapid cooling and superfluid quenching. Nevertheless,
even if one knew the central density of the neutron star, the
uncertain dependence of the gap energy on density would
prevent a reliable estimate of the superfluid’s maximum critical
temperature.

3. ANALYTICAL MODEL

To understand the results of the numerical simulations, a
qualitative explanation of the main trends is useful. In this
section, we explore analytic solutions to the problem of
neutron star cooling based on the schematic model of Figure 1,
in which the heat stored in the crustal reservoir diffuses to the
inner core where it is rapidly radiated by neutrinos. Energy
transport in a neutron star is dominated by electron conduc-
tion, except in the outer envelope layers which can be treated
separately. For clarity, we will initially ignore the effects of
general relativity on the energy transport, but will include
these effects in the final results. Such effects are included in the
numerical calculations presented in § 2.

The Newtonian equations of radiative transport and energy
balance are

etk T L yac 9T

L 4nr°K o’ o 4nr<C, o’ )
where L is the luminosity and r is the radial coordinate. It is
assumed that the structure of the neutron star does not change
as the star cools. The thermal conductivity is K and the heat
capacity is C,. We apply these equations to the crust, where
energy losses via neutrino emission serve primarily to deter-
mine the initial temperature profile but are unimportant com-
pared with conduction in the presence of the temperature
inversion.

The thermal conductivity K in our numerical simulations, in
the solid phase, is taken from Itoh et al. (1984) and, in the
liquid regime, is taken from Itoh et al. (1983) (with quantum
corrections from Mitake, Ichimaru, & Itoh 1984). These con-
ductivities are functions of the nuclear abundance and the
charge and mass of the nuclei, which, in turn, have been esti-
mated using the LLPR (Lattimer et al. 1985) EOS. The
resulting conductivity is shown in Figure 8 as a function of
density and temperature for matter below nuclear density. It is
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apprent that for temperatures below several times 107 K the
conductivity varies as 1/T, but above 108 K the conductivity is
nearly independent of T. For the purposes of this section, we
choose to parameterize K to reflect each of these dependencies

as
A s
Kz—,";(ﬂ> : (
Po

1

~
x

where, for m=1, A, ~4 x 10®° ergs Kcm ! s™! and s = 1
and,form =0, 4y ~ 10** ergscm ™~ !s ' ands = %.

The specific heat is dominated by the degenerate nucleons at
densities above the neutron drip density, 4 x 10! g cm™3,
Additional contributions from the relativistic, degenerate elec-
trons and from the ions are relatively small above the neutron
drip density. The electron contributions become important if
the matter contains superfluid neutrons. The details of the spe-
cific heat depend on the composition of the matter. The specific
heat employed in the numerical simulations is shown in Figure
9 and was calculated using the composition from the LLPR
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FiG. 9.—Specific heat of normal neutron star matter. The structure at high
T and low p is due to ion contributions.
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(Lattimer et al. 1985) EOS. It is evident that the specific heat
above 10'2 g cm ™3 can be well approximated by

p 1/3
Po

where B~ 1.6 x 10** ergs K~

In general, the density varies rapldly with depth in a neutron
star. In the outermost layers, where relativistic electrons domi-
nate the EOS, P «c p*3. In these regions, hydrostatic equi-
librium dictates that p(r) oc (R — r)°, where R — r is the depth.
Beyond the neutron drip density, this relation changes. In the
bulk of the crust, we have found that p oc (R — )", where n ~ 8.
At and above nuclear densities, in the core, the density depen-
dence becomes much less steep.

Combining equations (7)—(9), one may derive the diffusion
equation governing transport in the crust of a neutron star:

1 0[An(pP\,0T| _ (p\'? 0T
r* or [T’” (Po)r ﬁr]_B<po To 19

We will treat separately the two forms of the thermal conduc-
tivity, labeling the cases with the power m.

Figure 3 shows the detailed internal thermal evolution for
one of the models described in § 2. Although the temperature
profile in the crust (p < 2 x 10** gcm ™3, or r > 9.1 km) is not
initially flat, by the time the cooling wave begins to propagate,
the profile has flattened appreciably. Thus, for an initial condi-
tion, we may assume that the temperature is constant through-
out the neutron star crust. The core cools rapidly and within
hours becomes isothermal, with a temperature that is well
below that of the crust. In this case, there is an inner boundary
condition describing the core-crust interface temperature as a
function of time (Pizzochero 1991). If both the conductivity
and specific heat were independent of temperature and density,
analytic solutions of the partial differential equations could be
found employing an arbitrary inner boundary condition.
Indeed, in the limit that the crust is thin, Pizzochero (1991) has
found solutions for this case. However, in general, the conduc-
tivity and specific heat are temperature dependent, and an
analytic solution of the general diffusion equations is not pos-
sible. Instead, we choose to simplify the initial and boundary
conditions so that separable time and radial solutions can be
found even if Cy, and K are functions of T.

Let

T = Toy(r)e(t) » an

where T, is the initial temperature at the crust-envelope inter-
face [ie, Ty = T, (t = 0), and ¢(0) = 1]. We also define the
dimensionless depth x = (R —r)/Rye;, Where Rg.; =R
— R, and the inverse of the relative crustal shell thickness,
q = R/R.;. Assuming that p ... = po, and using the density
law p = p, x", we find

x""3[d xsdy  2x d;p:]

Y2 Ldxymdx  y"g—x) dx

d
o Rha T8 0" = —a, (1)

where o is a separation constant. The function i is chosen to
satisfy, at the surface, Y/(0) = 1 and ¥'(0) = 0. At the core-crust

boundary (1) = T,,,./To ~ 5. Note that |/1(1) is the ratio of
the core and crust temperatures The value 55 can be gleaned
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from Figure 3 (for t ~ 1 yr), which is typical for cooling simula-
tions in which superfluidity does not occur. In the presence of
superfluidity, (1) is about 3 times larger. Note that our model
requires that (1) remains constant with time, despite the fact
that (1) > 1 when ¢t > t, (see Fig. 3). Nevertheless, it will
become apparent that the full numerical solutions give results
similar to those of the simplified model.

We immediately note from the right-hand side of equation
(12) that the cooling time is predicted to be proportional to

RZ./D, where the diffusivity D ~ A/B, just as Brown et al.
(1988) surmised. This is to be compared to the numerical simu-
lations displayed in Figure 4, in which ¢, oc R}y, Where 1.7 <
n < 1.8. The deviation is explained below.

The time dependence is elementary for the two cases of m:

t
1__’
T

m=1: ¢ =

BT? Ryar\? _
T= 24,4 Rszhell 67Tg,o<ﬁ> alyr;

et
m=0: ¢=1--, (13)

BT, Ry \? _
T= A0 =2 Rien = 53T, o( ksll;l”) a tyr.

Above, we have used the notation T, o = T,/10° K. Although
the time dependencies we derived are oversimplified, it can still
be argued that the time ¢,, ~ 7. The precise value of the cooling
time still depends on o, which must be determined from the
solution of the radial equation.

To find analytic solutions to the radial equation, further
simplifications must be taken. We will assume that the density
is constant in the crust, i.e., n = 0. Consider, for the moment,
the case in which the crust thickness is relatively small, i.e.,
q — oo. The radial equation becomes

1 d 1 dy
—-————=—qa. ‘ 14
Vdxymdx (14)
If m = 1, we find the analytic solution,
1
= 15
cosh (\/&x) 13
where
a=[cosh™! y(1)"1]2 ~17. (16)

In the case m = 0, the solution can be expressed as a power
series:

Y= Zo a,a"x*" 17

with the constraints that (0) = a, = 1 and ¢’'(0) = 0. The first
few a, are a;, = —1/2,a, = 1/12, a3 = —1/72, a, = 1/524, etc.
The separation constant satisfies ). a,a" = (1), which yields
o 2~ 3 in the limit (1) - 0. Thus, assuming fiducial values of
T, = 10° K (see Fig. 3) and R, = 1 km, the cooling time is
about 4 yr for the case m = 1. For the case m = 0 the cooling
time is about 17 yr. The latter value is surprisingly close to
those deduced from Figure 4, namely about 15 yr in the
absence of superfluidity in the crust (if T o = 1).
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F1G. 10—Separation constant a as a function of [ =y(1)] and g. The left-hand panel is for the case m = 1; the right-hand panel is for the case m = 0.

In more general cases, the separation constant a depends
also on ¢, (1) and n. These relations are shown in Figure 10
for n = 0. Clearly, as long as g > 0.5, i.e., as long as the shell is
less than 50% of the star’s radius, the separation constant is
relatively insensitive to ¢g. Note that « decreases, i.e., the cooling
time increases, as the star’s crust occupies a larger and larger
fraction of the star. In the numerical results shown in Figure 4,
this behavior is visible as the positive curvature in the Ry,
curves.

The quantity « also depends upon the value of y(1). In the
case m = 0, this dependence is rather small. In the case m = 1,
the dependence is larger and will affect the calibration of the
t,, — Rgnen theoretical relation. In addition, the full solution of
equation (12) is sensitive to the power, n, of the radial depen-
dence of the density. In general, for values of n > 1, no reason-
able solutions satisfying the boundary conditions we selected
are possible. The assumption that separable time and radial
solutions exist is incompatible with a strong density depen-
dence. To proceed further with less drastic approximations is
tantamount to solving the general transport equations.
However, the chief aim in this section is to provide analytic
support for the full numerical results. Inasmuch as the numeri-
cal results quantitatively agree with the n = 0 models, our
basic aim is achieved.

We have observed that the numerical simulations shown in
Figure 4 have a slope of about 1.7-1.8, while the analytic solu-
tions predict a slope of 2. This difference is due to the neglect of
general relativity in the analytic solution. It is straightforward
to include the general relativistic modifications in the case of a
thin shell, i.e., equation (13). Assuming that the star’s structure
is static, and that the metric functions do not vary within the
star’s crust, one finds

__BTY
(1 +mA,a

where I' = 1/,/1 — 2GM/Rc?. In Figure 11, we have replotted
the cooling simulations discussed in § 2 using R%,, I"* as the

abcissa. Two cases are shown, depending upon the precise defi-
nition of p.,. and, thus, Ry.,;. The scatter of the data is
reduced and the slope of the resulting best fits becomes nearly
equal to 1. In the case p,. = po, the best-fit slopes are 1.00

Rszhell r3 ) (18)

(0.91) for the nonsuperfluid (superfluid) crust situations. In the
case P, = 0.5p0, the best-fit slopes are 1.09 (1.01) for the
nonsuperfluid (superfluid) crust situations. In the case p . =
Po, there is a small positive curvature due to the variation of o
with Rg,.,/R, but this is not apparent in the other case since
Ry 18 less.

Thus, equation (18) seems to be an accurate description of
the relationship between the cooling time and the structure.
Although numerical factors can be estimated from values for
A; B, and T, it is simpler and more accurate to calibrate this
relation from the numerical simulations. This calibration will
depend upon the definition of p,,,.. Combining the results of
all the numerical simulations reported in § 2 for superfluid
crusts (SF), we obtain

o~ 8.4 4 2.0(Ryper/1 km)%(1 — 2GM/Rc?) ™32 yr ,
¥ 24 £ 0.25(Rpe/1 km)*(1 — 2GM/Rc?) ™ yr ,

where the first case is for p,,,. = 0.5p, and the second refers to
Pcore = 1.0p,. For the nonsuperfluid cases, the average cooling
time is about a factor of 3.5 times larger than given by equation
(19). Note that the accuracy of equation (19) is sensitive to the
definition of p,,.. The fit becomes more accurate as the defini-
tion of the crust is broadened, presumably because the region
between 0.5p, and p, contributes substantially to the resist-
ance to heat flow through the crust.

Given the large range of masses and equations of state for
which we have calculated cooling times, it is significant that the
results can be fitted to such a simple formula as equation (19).
In addition, we have verified that this relationship is valid for
EOSs that contain extensive phase transitions, such as those
for kaon condensates and quark matter discussed in Thorssen
et al. (1994). If R;,;; can be connected in a straightforward way
to M and R, observations of the rapid surface cooling of a
young neutron star can yield important information concern-
ing the structure of the star. We explore this connection in the
next section.

(19)

4. NEUTRON STAR STRUCTURE

Given a determination of t,,, what can be learned about the
neutron star and/or the EOS? To analyze this, we examine the
functional dependence of Ry, on the neutron star’s mass and
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radius. This function is not further dependent on the EOS at
high density, including the existence or nonexistence of phase
transitions. To see this, consider the relativistic equation of
hydrostatic equilibrium:

dP _ G[M(r) + 4nr3P/c*1(P/c? + p)

dar r?2 — 2GM(r)r/c? ’

where M(r) = [ 4npr®dr is the mass enclosed within radius r.
We will apply this equation to the region between R, and R,
a region in which we can approximate M(r) ~ M, where M and
R are the total mass and radius. We can also neglect P/c? and
the internal energy density relative to the mass density and
4nr3P/c? relative to M. Hence, we will use the baryon density n
instead of the mass density p. Equation (20) can then be inte-
grated to yield

(20)

iﬂ) , (21)

Pcore dP 1
Jf:_[) nmcz-_zlog (I—RS/R

where R, = 2GM/c%. Here, P, is the pressure at the core-
crust interface, where the baryon density is n,.. The dimen-
sionless quantity #, at constant temperature and for matter in
B equilibrium, is just u,/mc?, where p, is the neutron chemical

core,

potential and m is the baryon mass. It is a function of the EOS
at and below the density n,.. For instance, if the pressure
below n.,,, varies with density in a polytropic fashion (P oc n?),
one obtains # = [y/(y — )I(Poore/Neore)- Below  nuclear
density, y is a complicated function of density because of phase
transitions from nuclei to deformed nuclei and bulk matter
(Lattimer et al. 1985). Though it is not possible to write a
simple relation between s# and P, the two are intimately
connected via the EOS. But the most important result is that
A is quite insensitive to uncertainties in the EOS above
nuclear density.

Despite the fact that it depends only upon the EOS at and
below nuclear density, values of # have a surprisingly large
variation in the literature. Values of s# for the equations of
state we have used are listed in Table 4. However, it should be
pointed out that the Pandharipande & Smith (1975) EOS is an
extreme case (it does not include f equilibrium and it contains
a neutron solid) and is not considered realistic. Neglecting this
EOS, one sees that at the density n,, variations in # amount
to about a factor of 1.7 but are only about a factor of 1.04 at
the density 0.5n,.

The reason for the large uncertainty near n, rests with the
symmetry energy and incompressibility of nuclear matter.

TABLE 4
VALUES OF # = [fer dP/nmc?

EOS H(oore = 0.5n0)  H(Ngore = o)
Bethe, Pethick, & Sutherland 1971 ...................... 0.0248 0.0334
Friedmann & Pandharipande 1981 ...................... 0.0248 0.0402
Pandharipande & Smith 1975 ...............coiiiiini 0.0415 0.0965
Prakash, Ainsworth, & Lattimer 1988% .................. 0.0259 0.0568

2§, = 30 MeV; F(u) = u; Negele & Vautherin 1980 assumed for n < 0.5n,.
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These dependencies are easy to see. In the standard way, one
may write the energy per baryon of cold nuclear matter as an
expansion:

E(u, x) = E(u, %) + S@w)(1 — 2x)* + (22)

where u = n/no is the normalized baryon densuy In equatlon
(22), E(u, %) is the energy per baryon of symmetric matter, x is
the proton fraction, and S(u) is the (density-dependent) sym-
metry energy [note that S, = S(1)]. It has been argued (see,
e.g., PAL) that this expression is adequate for all values of x,
including x = 0 (neutron matter). The total energy is obtained
by adding the specific lepton energy E;(u, x), and in B equi-
librium, one has 4(E + E;)/0x = 0. The equilibrium proton
fraction at u = 1 is small: for the plausible range 25 MeV <
So <35 MeV, one has 0.024 < x < 0.054. For small proton
fractions in the vicinity of u = 1, the pressure-to-density ratio is

PG K, a5(w)
uno_g(u—1)+u 2 (23)
where K, is the incompressibility parameter. At u = 1, this
depends only on S. In addition to the uncertainty in S, there is
also considerable disagreement regarding the density depen-
dence of S. Moreover, at lower densities there will be contribu-
tions from the incompressibility term, which differ among these
equations of state. Below the density 0.5n,, however, nuclei are
present, there are fewer free nucleons around, and the pressure
is dominated by electrons, and the EOS of nuclear matter plays
a secondary role in determining the pressure.

Because the value of # becomes progressively more uncer-
tain at higher densities, it is advantageous to set n,,, . to a value
less than n,. This is opposite to the trend noted in equation
(19), in which the derived relationship between t,, and R,
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was found to be more accurate for larger values of n,,,.. Never-
theless, for the case n_,,, = 0.5n,, the gain in accuracy in J# is
larger than the loss of accuracy in equation (19).

Combining equations (19) and (21), we can establish limits to
M and R for a given value of ¢t,,, should one ever be observed.
For the case of superfluidity in the crust, these limits are shown
in Figure 12. This figure shows how an observed value of t,,
could confine a neutron star’s position in a mass-radius
diagram. Even though the estimated error of the fit given in
equation (19) is of order 25%, the limits are interestingly tight.
Useful information can be obtained even if the mass of the
neutron star cannot be independently determined. Theoretical
arguments suggest that neutron stars produced in gravita-
tional collapse supernovae are in the range 1.15 Mo <M <
1.5 M . The estimated masses of 10 neutron stars measured by
using radio pulsars in binary systems (e.g., Thorsett et al. 1993)
are consistent with this range. Thus, if t,, = 10 yr, this theoreti-
cal mass range implies a radius range of 9 km < R < 11.5 km if
the crust is superfluid and a range of 6.8 km < R < 8.5 km if
the crust is nonsuperfluid. Because of the restricted radius
range, the nature of the high-density EOS would itself be con-
strained by this result. Although further work on the EOS and
the nature of superfluidity at subnuclear densities may modify
the regions illustrated in Figure 12, the qualitative relationship
between rapid cooling and structure will remain unaltered.

5. CONCLUSIONS

We have considered the implications of neutron stars
cooling very rapidly compared to the standard case, in which
cooling is via modified Urca processes. Such stars will undergo
a sharp decrease in surface temperature at the time ¢,,, which is
essentially given by the thermal diffusion time through the

2.5

+ causality

2.0

NN

1.0

e

0.5°

1
10 12 14

R (km)

FiG. 12.—Shaded areas are the allowed regions of mass and radius for a neutron star observed to have the indicated values of the rapid coolmg time ¢,,,.

It is

assumed that p,,. = 0.5p, and that the neutron star crust is superfluid. The mass-radius region excluded by general relativity and causality is indicated by the

hatched region.
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crust. This time primarily depends on the square of the thick-
ness of the crust but is modified by relativistic effects and is also
influenced by the presence of neutron superfluidity in the crust.
The time is not very sensitive to the details of the accelerated
emissivity, such as the density threshold or the net rate, includ-
ing the question of whether or not superfluidity quenches the
rapid cooling. The surface temperature during the isothermal
phase following the time ¢,,, on the other hand, depends strong-
ly on the details of the superfluid gaps above nuclear density
and on the central density of the star, both of which are uncer-
tain.

We have shown that the crustal thickness, appropriately
defined, depends only on the mass and radius of a neutron star
with a relatively small uncertainty arising from the EOS. An

RAPID COOLING AND STRUCTURE OF NEUTRON STARS 813

observational determination of t,,, and the subsequent infer-
ence of the crustal thickness, would therefore constrain the
structure of the star. An estimate of the mass of the neutron
star would, in addition, constrain the high-density EOS.
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