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ABSTRACT

We examine the role of the equation of state (EOS) of hot, dense matter in the prompt phase of stellar
collapse. In order to achieve this goal, we have carried out radiation hydrodynamic simulations using an
adjustable EOS that is consistent with constraints placed on the EOS by neutron star observations, nuclear
systematics, and laboratory experiments. Our simulations of stellar collapse show that these constraints
restrict the role that the EOS can play in determining the dynamics of shock propagation. We find that
certain nuclear force parameters do not substantially affect the dynamics of collapse as strongly as previously
believed. In particular, we find that the shock stall radius is practically independent of the compression
modulus and symmetry energy when other constaints on the EOS are satisfied. In contrast, the nuclear sym-
metry energies have more profound effects on the collapse via electron capture, and these effects may be
detectable by means of the neutrino signature of a nearby supernova.

Subject headings: dense matter — equation of state — shock waves — stars: neutron — supernovae: general

1. INTRODUCTION

It has been suggested that the equation of state (EOS) of hot,
dense matter may underlie the explosion mechanism of gravi-
tational collapse supernovae. The usual assumption is that
softer EOSs work in favor of the explosion mechanism. One of
our goals in this paper is to explore this assumption and
another is to explore the analogous question for the symmetry
energy behavior of the EOS.

The role that the EOS of hot, dense matter plays in Type II
supernovae has long been the subject of detailed numerical
investigations. These investigations have largely been moti-
vated by the fact that the behavior of matter at nuclear den-
sities and above is not yet well constrained by experiment or
observation. Yet the behavior of matter at high densities plays
a critical role in both the dynamics of the “ prompt ” phase (the
epoch encompassing the collapse and bounce of the iron core)
as well as the subsequent evolution to later times.

Following the bounce of the core, when the density in the
core exceeds nuclear density, a powerful shock wave is pro-
duced. At one time it was thought that this shock would pro-
pagate through the outer core regions and through the rest of
the star, producing an explosion and a supernova. Although it
is widely believed that this shock cannot, by itself, lead to an
explosion, the existence of the shock is certainly necessary for
all plausible explosion mechanisms. These include neutrino
reheating that reenergizes the shock and convective overturn
that rapidly transports energy into the region behind the
shock. Moreover, the strength of the initial bounce and the
structure of the post-bounce core are crucial to the operation
of these “late-time” mechanisms. Thus, it is vital to under-
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stand how the uncertainties in the EOS will influence the col-
lapse and bounce of the core.

One can characterize aspects of the EOS of matter at nuclear
densities in terms of parameters which can, in theory, be con-
strained by laboratory measurements. In practice, however, a
number of these parameters have proved very difficult to
extract from experimental data. This is because the experi-
ments are performed on finite-sized nuclei which do not span a
large range of neutron excesses, densities, or sizes.

Three of the most interesting, and uncertain, parameters
involve the incompressibility, symmetry energy coefficient, and
the specific heat of bulk nuclear matter. These parameters can
be expressed as second derivatives of the Helmholtz free energy
per baryon, f, of bulk nuclear matter and are defined by
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where n, is the saturation density of cold, symmetric nuclear
matter, x is the proton fraction, and T is the temperature.
Estimates of n, lie in the relatively small range of 0.148-0.17
fm~3. K, is the bulk incompressibility, S, is the bulk, or
volume, symmetry energy coefficient, and a, is the bulk specific
heat of nuclear matter. As we show in § 3, other important
EOS parameters are largely correlated to the values of K, and
S,. The role of the level density parameter is largely muted by
the dynamics of the collapse as we will discuss in § 5. For this
reason, the role of the EOS in stellar collapse can be conve-
niently addressed by confining attention to the variation of K
and S,.

A number of studies have been conducted in an attempt to
delineate the exact role of the EOS in the collapse and bounce
phases of a Type II supernova (Baron, Cooperstein, & Kahana
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1985a, b [hereafter BCK]; Baron et al. 1987; Myra & Bludman
1989 [hereafter MB]; Bruenn 1989a, b; Cooperstein & Baron
1990; Miralles et al. 1991). Many of these investigations have
been largely motivated by the observation that softening the
EOS above nuclear densities in some cases results in stronger
bounces and shocks. This was first indicated in a systematic
study (Van Riper 1978) where it was found, using a polytropic
EOS, that shock strength was directly correlated with EOS
softness, up to the point where the collapse never halted and a
black hole was formed (Van Riper 1979). BCK and Baron et al.
(1987) used the Cooperstein & Baron (1990) EOS (hereafter
referred to as the CB EOS), in which the incompressibility and
adiabatic index of supernuclear matter were varied, and found
this same general trend. Additionally, they claimed that suffi-
ciently soft equations of state could be devised that could result
in explosions before collapse to a black hole ensued. More
series of confirming simulations were performed Myra &
Bludman (1989) and by Bruenn (1989a, b) using the CB EOS.
A constraint which all these studies have failed to address is
that the maximum mass of a neutron star is at least 1.44 M
(Weisberg & Taylor 1984). Most of the aforementioned simula-
tions have utilized equations of state that do not meet this
requirement.

The relative softness of the EOS is not the only property that
has been explored in supernovae simulations. The strength of
supernovae shocks also strongly depends on the extent to
which electron capture reactions deleptonize the core during
the collapse epoch. A high rate of electron capture results in a
smaller homologous core, which, in turn, results in a weaker
shock (Lattimer, Burrows, & Yahil 1986). In addition, when
the homologous core is smaller there is more of the outer iron
core that the shock must transverse in order to escape. Since
the primary work done by the shock is in dissociating nuclei, as
the outer core size increases, so does the energy spent by the
shock traveling through it. The extent of electron capture is
primarily controlled by the nuclear symmetry energy, which
can be conveniently expressed in terms of f, the difference of
neutron and proton chemical potentials. The electron capture
rate varies directly with u, — fi, so the larger ji is, the smaller
the consequent capture rate. Bruenn (1989a) also investigated
the role of the nuclear symmetry energy and has found that
decreasing fi leads to weaker shocks.

Beyond the uncertainties imposed by the inability to fix fun-
damental nuclear parameters, such as the nuclear incompres-
sibility and the nuclear symmetry energy coefficients,
additional inconsistencies have been introduced by the use of
EOSs that do not fully satisfy nuclear systematics. This has
been the case with the EOSs used in the aforementioned
parameter studies. The recent development of a consistently
parameterized EOS (Lattimer & Swesty 1991, hereafter LS)
allows us to explore in more precise detail the role of the EOS
in gravitational collapse.

In § 2 we briefly discuss the EOS. In § 3 we offer a few
comments about nuclear parameters and systematics. In § 4 we
briefly describe the radiation hydrodynamics code and the
initial model. Our results are presented in § 5, while we offer
conclusionsin § 6.

2. THE EQUATION OF STATE

The EOS we have employed for most of our simulations is
the finite temperature compressible liquid drop EOS (Lattimer
& Swesty 1991), which is based on the finite temperature com-
pressible liquid droplet model of Lattimer et al. (1985, hereafter
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LLPR). The LS EOS is fully adjustable in its parameters, and
the variation of its parameters is constrained by nuclear sys-
tematics. In order to maintain brevity we omit the details of the
LS EOS here; for details the reader is referred to LS and
LLPR. In the LS EOS matter is modeled as a mixture of a
single species of heavy nuclei, alpha particles, “dripped”
nucleons (which exist outside of nuclei), electrons, positrons,
and photons. The basis of the model is the use of an adjustable
Hamiltonian density describing the kinetic and potential
energy densities of nucleons plus the energy density due to the
nucleon-nucleon interaction. We use this interaction to
describe bulk nucleonic matter both inside and outside of
nuclei. Thus interactions among dripped nucleons are auto-
matically consistently incorporated into the model.

The portion of the Hamiltonian density reflecting the
nucleon-nucleon interaction echoes the basic density depen-
dence of Skyrme-type Hamiltonians. We thus write the inter-
nal energy density of bulk nuclear matter as

hZ cnl +4
Epunln,, n,) = Tm* (t, + 7,) + an® + bn,n, + T3 a1
where n, and n,, are the neutron and proton number densities,
n=n, + n,, and where 7, and 7, are the kinetic energy den-
sities as defined in LS. The parameters a, b, ¢, d, and ¢ deter-
mine the particular nucleon-nucleon interaction. We use the
desired values of the nuclear force parameters, namely the
compression modulus, the bulk symmetry energy, the nuclear
saturation density, and the binding energy to determine g, b, c,
and d. Note that this interaction differs from the LS interaction
(see LS eq. 2.8) by the addition of the (1 + dn®~*)~! factor,
where d > 0, in the last term. Such an interaction could pos-
sibly result from a finite range interaction (Gogny 1975;
Prakash, Ainsworth, & Lattimer 1988) and was first suggested
as a way to maintain causality at high densities (Bludman &
Dover 1980). We emphasize that with realistic incompres-
sibilities the LS EOS remains causal at all densities of interest to
the supernovae problem without this parameter. We employ this
factor to effectively soften the EOS at densities above nuclear
density and not to maintain causality. In the limit of d > 0 we
recover the LS interaction. At present there is no firm nuclear
constraint on d, and its choice is ad hoc. We discuss the choice
of this parameter in § 5.

From this bulk Hamiltonian we construct the bulk free
energy. To this we add finite nuclear-size terms from the liquid
drop model to describe the surface, Coulomb, and trans-
lational free energies. Next, the total Helmholtz free energy is
minimized with respect to the compositional variables in order
to obtain exact chemical and pressure equilibrium equations
describing matter in thermodynamic equilibrium. The equi-
librium equations are solved numerically in order to obtain the
values of the compositional variables. With the composition of
the system in hand, the necessary thermodynamic quantities
such as the pressure, chemical potentials, etc., can be calculated
by taking the appropriate combinations of derivatives of the
free energy as described in LS.

“

3. NUCLEAR SYSTEMATICS AND THE PARAMETER SETS

The bulk energy density is determined by the choice of a, b,
¢, and 0 in equation (4), whose values are given in terms of the
parameters for symmetric matter, namely, the saturation
density, n,, the binding energy of symmetric matter, B, the
volume symmetry energy, S,, and the compression modulus,
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K,. Explicitly, the relevant relations are
_ K, 420+ dn}” (K, — 40 — 18B)
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b= . (6)
- (@/3 + B1 + dnl” ') , )
6—1
and
4 &(o + B) — 20/3 + dn’~ (/3 + B) b ®)

nfl — 9)

where o = (31%2/10m)(3n2n,/2)?/3. To repeat, d will be treated as
a free parameter.

In addition to the terms describing bulk matter, the liquid
drop EOS we employ contains finite-size terms describing con-
tributions to the nuclear mass by surface, Coulomb, and trans-
lational effects. These finite-size terms contain other nuclear
parameters, but they are highly correlated with the bulk
parameters. Specifically, we refer to the surface energy, which
can be parameterized in terms of the surface tension for cold
symmetric matter, g,, and the derivatives of the surface tension,

1 0%
Ss = —477:7’2 - 2 ’ (9)
N8 0x? |y cpx=1/2.7=0
1 0%
a,= —4nry = = ’ (10)
N2 or? n=ns,x=1/2,T=0

which define the surface symmetry energy coefficient, S,, and
the surface contribution to the nuclear specific heat parameter,
a,. The surface tension of cold symmetric matter, o, and the
binding energy, B, are both well constrained -by nuclear mass
fits. The remaining finite-size terms, the Coulomb and trans-
lational energies, do not introduce any major additional
nuclear parameters.

The surface specific heat parameter, a, is inherently con-
nected to the K parameter. This relationship can be deduced
as follows. First, the critical temperature of bulk matter, which
is the maximum temperature for which two-phase coexistence
of bulk matter is possible, is determined by

oP o’pP

only,~ on?

where P is the bulk pressure. This condition leads to the

scaling relation
| K,

which, as shown in LS, is valid for Skyrme-type Hamiltonians.
Second, the surface energy is temperature dependent. As the
critical temperature is approached, the surface tension of bulk
matter vanishes. Calculations (Lattimer & Swesty 1991) indi-
cate that the temperature dependence of the surface tension
implies that ag oc T, 2, which is proportional to K, !. Using
this dependence, one can readily see that variations in K, wili
cause variations in the specific heat of matter and hence the
temperature along a given adiabat. Thus the total nuclear spe-
cific heat, and hence the entropy, depend directly on the
nuclear incompressibility.

=0, 11)

Tc
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Another correlation exists between the two symmetry energy
coefficients, S, and S,. Fits to nuclear masses are unable, by
themselves, to fully establish values for S, and S,. Estimates of
the volume symmetry energy coefficient, obtained mostly from
nuclear mass formula fits, are from S, ~ 27 MeV to S, ~ 36.5
MeV, while the concordant variation of S is quite large. The
dependence of the surface symmetry energy coefficient on S, is
strong. This can be explained by the need to maintain, on
average for a multitude of nuclei, a constant symmetry energy
contribution to the mass of a nucleus despite variations in the
symmetry energy contributions S, and S,. In the liquid droplet
model (LDM), we can write the symmetry energy per baryon of
a nucleus as

Z\? S,
Eom = (1 =2 Z) <1 + (SS/SD)A*‘“) ' 1)

For a given average nucleus, where E,, 4, and Z are fixed,
consider a variation of the symmetry energies about some fidu-
cial set of values, S,, and S,. Obviously, we require
S, .
1+ (Sy/S,)A~13 — 707
where o, is a constant, in order that E
This implies that

(14)

m remain unaffected.

1/3

S, = AZ 82 —a,S,), (15)
%o

ie., that S, varies approximately quadratically with S,. Allow-
ing for variations in the other nuclear parameters, such as B
and o, (and including shell and pairing effects), complicates the
relationship between S, and S,. However, the basic trend of
equation (15) remains unchanged. We have carried out mass
fits using a basic droplet model and confirmed such a corre-
lation between S, and S,. It should be pointed out that Brown
(1992) argues that this correlation is weakened by finite-
temperature effects; we believe such effects need further investi-
gation.

As was shown in LS, the neutron-proton chemical potential
difference, & = p, — p,, and thus the free proton fraction, is
strongly dependent on the surface symmetry energy. Therefore,
one expects that the electron capture rate for protons will be
sensitive to the symmetry energy parameterization, and it is
vital to model the total symmetry energy consistently. We
return to this point later.

We have employed in this study the self-consistent sets of
parameters described in Table 1. These parameter sets can be
grouped into two categories. The first consists of three sets in
which the compression modulus varies while the symmetry
energy coefficients remain constant. The second group of three
consists of three parameter sets in which the symmetry energy
coefficients vary while the compression moduli remain con-
stant. In the first group, the parameters are those of the Skyrme
I’ parameter set, with the exception of the compression moduli
and the effective masses. The effective masses are set equal to
the bare masses. We denote these parameter sets by the nota-
tion Sk375, Sk220, and Sk180 to indicate compression moduli
of K, = 375, 220, and 180 MeV respectively. In these param-
eter sets we have maintained d = 0 in equation (4) in accord-
ance with LS. The latter three parameter sets arise from fits to
nuclear masses or giant resonance energies. These three
parameter sets were chosen by virtue of their having essentially
the same incompressibility (K, ~ 240 MeV), while having
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TABLE 1
NuUCLEAR FORCE PARAMETERS FOR MODELS IN THIS WORK

PARAMETER SET

PARAMETER Sk180 Sk220 Sk375 PADNFT MMST MSKEH
K,MeV) .............. 180 220 375 2348 240 240
29.3 29.3 29.3 275 325 36.5
45.8 45.8 45.8 184 80.84 159.03
16.0 16.0 16.0 15.85 16.279 15.986
1.15 1.15 1.15 1.06 1.36 1.20
0.155 0.155 0.155 0.161 0.153 0.147

widely varying symmetry energies. We now briefly discuss the
origin of each, in the order in which they appear in Table 1.

The PADNFT parameter set is drawn from the mass fits of
Pearson et al. (1991) which is based on nuclear masses calcu-
lated by the extended Thomas-Fermi technique. Such tech-
niques offer both advantages and disadvantages over the more
traditional LDM mass fits. To their advantage, the Extended
Thomas-Fermi (hereafter ETF), mass formulae require only
nine parameters as opposed to the 25 or so parameters
required for LDM mass formulae. Ostensibly, a model with
only nine parameters better reflects the underlying physics
than one with 25 parameters. The mass fits, however, are based
on laboratory nuclei that are nearly isospin symmetric. In con-
trast, the nuclei one encounters in a collapsing stellar core are
extremely neutron-rich. The nine parameter mass formula
ought to remain more accurate as one extrapolates to the more
neutron-rich nuclei encountered in astrophysical situations.
Also, the ETF formalism allows microscopic corrections to the
mass formula to be added in a natural and consistent fashion,
as opposed to the LDM mass formulae in which corrections
are simply “added on.” The disadvantages are that the mass
formula does not fit quite as well as the LDM models and that
the ETF model tends to underbind the heavier nuclei
(A > 250). As can be seen in Table 1, PADNFT ETF mass
formula yields the symmetry energy coefficients of S, = 27.5
MeV and S, = 18.4 MeV. Our values for S, and S; were drawn
from some preliminary calculations of Pearson et al. and differ
slightly from the final values they published.

The MMST parameter set is based on the LDM mass
formula of Moller et al. (1988). The advantages of LDM mass
formulae relative to the ETF mass formulae have been dis-
cussed above. Note that the LDM model yields a slightly
higher volume symmetry energy coefficient, S, = 32.5 MeV,
which explains the much larger surface symmetry energy coeffi-
cient, S, = 80.84 MeV.

The MSKEH parameter set comes from the Myers et al.
(1977) LDM model for the giant dipole resonance (GDR)
observed in nuclei. The liquid droplet parameters in this model
are adjusted in order to fit the position of the resonance ener-
gies as well as nuclear masses. While the fit to the GDR ener-
gies is quite good, the symmetry parameters are substantially
larger than the other two sets used here. Note, however, that
this parameter set does not result from an attempt solely to
model nuclear masses. From Table 1 we see that S, = 36.5
MeV while S, = 159.03 MeV. Comparison of the symmetry
energy coefficients for the PADNFT, MMST, and MSKEH
parameter sets thus clearly illustrates the strong relationship
between S, and S,.

For the purposes of comparison we have also employed the
EOS of Cooperstein & Baron (1990, hereafter CB) which

incorporates the supernuclear parameterization of BCK). This
EOS, though adjustable in its parameters, is not necessarily
fully consistent with nuclear systematics. Most notably, the
parameterization of the nuclear symmetry energy does not
allow for separate surface and volume symmetry energy coeffi-
cients.

An important constraint that all EOSs should meet is the
neutron star mass constraint imposed by the observationally
measured properties of the binary pulsar system PSR 1913+ 16
(Weisberg & Taylor 1984). The larger of the two neutron stars
in this system has a mass of 1.44 M; thus, the cold beta-
equilibrium EOS should result in a maximum neutron star
mass of at least this value. Additionally, the EOS should
remain causal at all densities found in both neutron stars and
supernovae. We have constructed neutron star models by
numerically solving the Tolman-Oppenheimer-Volkoff equa-
tions with the four extrema of our parameter sets: K375, K180,
MS, PADNFT. For the ease of numerical computation, we
have used the subnuclear EOS of Baym, Pethick, & Sutherland
(1971, hereafter BPS) for all of the hydrostatic models we have
built. The fraction of the neutron star mass originating from
matter at subnuclear densities is insignificant, and the choice of
the EOS in this regime is of little consequence to the maximum
mass. The resulting mass versus central density curves are pre-
sented in Figure 1. We have also presented the mass as a
function of central density curve for the BCK EOS with the
parameters often chosen for supernova simulations (K, = 180
MeV, y = 2.5). We wish to emphasize that although the BCK

,_A
—_1—

n./ns (n; = 0.16 fm™°)

F1G. 1.—Neutron star mass vs. central density (in units of nuclear satura-
tion density) for the three different compression moduli.
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EOS is fully capable of describing the matter in a neutron star
of mass greater than 1.44 M, with many parameter sets, the
parameter sets often used in supernova simulations result in an
EOS that is incapable of meeting the observational lower limit
imposed by PSR 1913 + 16. The failure to meet this constraint
has very important consequences for the prompt explosion
mechanism.

4. THE RADIATION HYDRODYNAMIC MODEL

The work presented here was carried out using a modified
version of the one-dimensional radiation hydrodynamic code
described in Myra et al. (1987), hereafter MBHLSV) and MB.
The code, which we have named BRYTSTAR, has been modi-
fied to use the LS EOS. The hydrodynamical evolution of the
iron core is solved using the one-dimensional general rela-
tivistic hydrodynamics equations in Lagrangean coordinates.
The equations are solved by finite-difference techniques using
the modified Lagrange form of the Richtmyer & Morton (1967)
artificial viscosity as implemented by Noh (1987). In practice
we have used 60 spatial zones, with the zoning weighted
toward the edge of the core. While such zoning may be too
coarse for detailed late-time calculations, it is more than suffi-
cient to allow a comparison between various equations of state
during the infall and bounce stages.

The neutrino transport is described by the general rela-
tivistic radiation energy equation, which we close at the level of
the first moment by means of the Levermore & Pomraning
(1981) flux limiter scheme. The solution of the equations is then
accomplished by finite-differencing them in a Lagrangean mass
coordinate and in the neutrino energy and then solving them
by a method based on an n-precursor scheme developed by N.
Sack (see MBHLSYV). We have employed 25 energy groups
along with the same 60 spatial zones used for the hydrody-
namics differencing. Although we are primarily interested in a
comparison of results among various EOSs, we conducted a
convergence test for our code. In order to see if the shock
dynamics was affected by the number of mass zones, we
doubled the zoning in mass. We have found no notable differ-
ences between the 120 and 60 zone cases in the density profile
at bounce, the location of the shock stall point (in either radius
or mass), etc., within the limit of the resolution. Plots of this
data show nearly identical results between the two cases and
have not been included here.

It is important to have a sufficient number of energy groups
in order to fully resolve the Fermi surface of the neutrino
distribution. As was pointed out in MBHLSV, resolution of
the Fermi surface of the degenerate neutrinos is vital in order
to accurately model the radiation-matter energy exchange. For
this reason, we have insisted on having a relatively large
number of groups in our simulations. The grouping scheme is
geometrical in nature; the width of each group is the width of
the next lower energy group multiplied by a scale factor. The
width of the lowest group is approximately 2.5 MeV. The scale
factor monotonically decreases from approximately 1.18 for
the lowest energy groups to 1.05 for the highest energy groups.
Our experience has shown that the highest energy group,
which is centered at approximately 200 MeV, has little or no
occupancy over the course of our calculations.

All the standard neutrino processes described in MBHLSV
and in MB have been included, with the exception of electron
capture onto heavy nuclei. The overall capture rate is domi-
nated by capture of electrons onto free protons. In addition,
the presence of heavy nuclei influence the depletonization only

“PROMPT” PHASE OF TYPE II SUPERNOVAE 199

for nuclei where N < 40 (Fuller 1982). The use of an N > 40
electron capture cutoff for heavy nuclei is somewhat suspect
when combined with a single-nucleus EOS, and we thus
neglect it. We have included neutrino-electron scattering in the
Fokker-Planck approximation of Bowers & Wilson (1982) as
described in MBHLSV.

The progenitor is the ~1.2 M core of the 13 M5 model of
Nomoto & Hashimoto (1988). We do not have any particular
affinity for this progenitor model; rather, we have employed it
for these calculations in order to facilitate comparisons to pre-
vious work. Because the EOS used by Nomoto & Hashimoto
differs from ours, we have chosen to maintain the temperature,
density, electron fraction, and velocity from their progenitor
model as we convert to our EOS. Since the electron contribu-
tion to the EOS is well-known and dominates the pressure, the
pressure is essentially maintained also.

5. PROMPT TIMESCALE COLLAPSE SIMULATIONS

The results of our BRYTSTAR simulations are presented in
Figures 2-8. We begin first by an analysis of our results con-
cerning the role of the nuclear incompressibility.

It has long been assumed that the incompressibility plays a
strong role in determining the dynamics of shock propagation
in the collapse and bounce phases of Type II supernovae. The
hypothesis is that a softer EOS allows the shock to propagate
further outward before either stalling or reaching the edge of
the iron core. However, when we employ EOSs constrained by
PSR 1913+ 16, we find (Figs. 2a-2¢) no evidence to support
this hypothesis. These radius versus time plots, in which the
radius at a given enclosed mass is plotted against time, show
clearly that there is no discernible difference in the shock stall
radius among the Sk180, Sk220, and Sk375 cases.

In contrast, the results are radically different when the CB
EOS is employed. Figure 3 shows the time evolution of the
same initial model using the CB EOS. Note that the shock stall
radius is approximately 3 times larger than any of the LS EOS
cases. This surprising difference in the shock dynamics is essen-
tially because the CB EOS with the standard parameter set is
substantially softer than any of the LS EOS cases (see Fig. 10 of
LS). Such behavior was first noted in stellar collapse using a
polytropic EOS by Van Riper (1978). However, the softness of
the CB EOS with K, = 180 MeV and y = 2.5 violates the PSR
1913 + 16 constraint.

In order to ascertain whether or not the shock dynamics
obtained with the LS EOS could be affected by substantially
softening the EOS, we performed more simulations in which
we adjusted the d parameter in our Skyrme-line interaction
potential to just meet the 1.44 M, PSR 1913+ 16 limit. The
Sk180 and Sk375 parameter sets with the additional nonzero d
parameter are designated as Sk180* and Sk375*. Figure 4
illustrates the maximum mass versus central density plots for
the modified and unmodified EOSs. Despite the additional
softening, the shock dynamics on prompt timescales is unaf-
fected: shocks continue to stall near 100 km. We have not
bothered to include a Lagrangean mass plot for this case as the
results show little quantitative difference from the cases shown
in Figures 2a-2c. We conclude that if the EOS is stiff enough to
meet the PSR 1913+ 16 constraint, the variation of nuclear
incompressibility has no noticeable effect on the prompt shock
dynamics.

Next, we examine the neutrino luminosities from the three
LS “Skyrme” models and the CB EOS, which are shown in
Figures Sa—-5c¢ and Figure 6. The very small scale structure
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Sk180 parameter set.
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F1G. 3—Log of the radius of a given mass shell (in kilometers) vs. time (in
units of milliseconds) for the run using the CB EOS with K, = 180 MeV and

y=25.
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(glitches) in the luminosities following the peak corresponding
to shock breakout is numerical in origin and does not affect the
overall neutrino energy radiation rate. There are no substantial
differences among the three LS EOS cases. The electron neu-
trino luminosity does increase with K, which is a result of the
inverse relationship between K and the specific heat as illus-
trated in § 3. With increasing K, the temperature along an
adiabat increases and forces the dripped proton fraction to
increase. It is this increase in the proton fraction and the conse-
quent rise in the electron capture rate that causes the electron
neutrino luminosity to increase with K. The increased electron
capture rate also contributes to the softening of the EOS by
removing part of the pressure support provided by the elec-
trons and allows the collapse to proceed faster. This explains
why the bounce occurs a few milliseconds faster in the stiffer
EOS cases than it does in the softer models. One should note
(see Table 2) that the central density at bounce increases as the
EOS gets softer. Especially note the substantially higher
central densities achieved with the CB EOS. The high density
achieved at bounce is responsible for the peak in the muon
neutrino luminosity at shock breakout seen in Figure 6. This
peak, which was discussed in Myra & Burrows (1990), is a

2.5

Mass (M)

L I L L L L L L LB L B

P SR W R S BN

=l b b b b e L

OiAIIliIlllAll

6 .. 8 10
central density (ps)

FiG. 4—Neutron star mass vs. central density (in units of nuclear satura-
tion density) for the Sk375, Sk220, and Sk180 cases withd =0 and d = d,,,,
the value of d that produces a maximum neutron star mass of 1.44 M.
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R L A B A AR IR I result of the pair production from the strong shock formed
- with the CB EOS.
= L The CB EOS also has a substantially lower specific heat
g ol than the LS EOS (see Fig. 8 of LS) above nuclear densities. The
§ - lower specific heat combined with the higher bounce density
oo radically affects the temperature profile in the core in the post-
o bounce epoch. This is readily seen from Figure 7 where the
21k temperature profiles for the Sk180, Sk220, Sk375, and CB cases
30 are displayed. Note that the temperature increases outward
- | from the center to the stalled shock for the LS cases, while it
33 L decreases in the same region for the CB EOS. The contrast in
= 0 the central temperatures at bounce is quite striking with a 15
[ MeV temperature for the LS EOS cases and a 25 MeV tem-
L perature for the CB EOS. This difference in temperature pro-
A T SR files is a result of the large difference in central densities at

|-
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Time (milliseconds)

Fi1G. 5S¢

FIG. 5—a) Log of the neutrino luminosities (in foes s~*; 1 foe = 10°! ergs)
vs. time for the run using the Sk375 parameter set. (b)) Log of the neutrino
luminosities (in foes s~ *; 1 foe = 103! ergs) vs. time for the run using the Sk220
parameter set. (¢) Log of the neutrino luminosities (in foes s™!; 1 foe = 10!
ergs) vs. time for the run using the Sk 180 parameter set.
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FiG. 6.—Log of the neutrino luminosities (in foes s™*; 1 foe = 105! ergs) vs.
time for the run using the CB EOS with K, = 180 MeV and y = 2.5.

bounce. (The assumption that m* = m that is employed in the
LS EOS slightly overestimates the specific heat of matter.
Because the stellar collapse models in which we have used the
LS EOS do not achieve high densities, this has little effect on
the actual temperature.)

We turn now to a discussion of varying the symmetry energy
parameterization. Consider the three symmetry energy param-

25 L T T T ] T T T T T Yﬁ‘—hﬁj—ﬁﬁ—ﬁ;
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- ;o Sk220 .
A - Sk180 1
> — —
Ch -~ CB ]
Z ¢ ]
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[ ]
L. T N

% 1 12

FiG. 7.—Temperature profiles at bounce for the cases Sk375, Sk220, Sk180,
and CB.
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F1G. 8—(a) Log of the radius of a given mass shell (in kilometers) vs. time
(in units of milliseconds) for the run using the PADNFT parameter set. (b) Log
of the radius of a given mass shell (in kilometers) vs. time (in units of
milliseconds) for the run using the MMST parameter set. (c) Log of the radius
of a given mass shell (in kilometers) vs. time (in units of milliseconds) for the
run using the MSKEH parameter set.

eter sets: PADNFT, MMST, and MSKEH, where the results
are shown in Figures 8a-8c. The shock stall radius is again
largely constant among the three cases, with a stall radius of
about 100 km as in the previously discussed incompressibility
cases. However, the lower symmetry energy cases do permit
the shock to propagate out through slightly more of the iron
core (~0.1 M) due to the decrease in deleptonization with

TABLE 2

CENTRAL DENSITY AT BOUNCE

Parameter Set Poounce n/ng
PADNFT S, =275) ...... 4.35 x 10'* 1.620
MMST (S, = 32.5).......... 3.89 x 10'* 1.525
MSKEH (S, = 36.5) ........ 3.83 x 104 1.563
K375 . 3.56 x 10'* 1.378
K220 ... 424 x 10** 1.638
KI80 .....oovviiiiits 4.62 x 104 1.785
CB(K =180,y =25) ...... 9.01 x 10'* 3378
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decreasing volume symmetry energy coefficient, which we
discuss below. There is a wider variation among these cases in
the time it takes the collapsing core to reach bounce than
among the varying-incompressibility cases. The bounce in the
MSKEH case occurs approximately 24 ms sooner than bounce
with the PADNFT parameters. This effect is due to the
increased electron capture rate caused by variation of the sym-’
metry energy coefficients. The higher electron capture rate
more rapidly reduces the density of electrons, which provide
the dominant contribution to the pressure, and creates a larger
pressure deficit during the collapse. This high rate of electron
capture is evidenced also in Figure 9¢, where the electron neu-
trino luminosity prior to bounce is much higher in the
MSKEH case than in either the MMST or PADNFT cases.

From Figures 9a-9¢ we can see that the electron neutrino
luminosity, and hence the electron capture rate, increases with
the volume symmetry energy. This result is opposite that of
Bruenn (1989) who found, using the CB EOS, that the electron
capture rate decreases with increasing volume symmetry
energy. This discrepancy results from the neglect of the varia-
tion of the surface symmetry energy coefficient in the CB EOS.
In a simple liquid drop analysis, the difference in neutron and
proton chemical potentials is approximately given by

N _ 1 Z
=ty — 1y~ 8S, — A4 ”3Ss)<§—z>- (16)

Note that S enters into equation (16) with sign opposite to that
of §,. Because of the strong correlation between the volume
and surface symmetry energy parameters, as the volume sym-
metry coefficient is increased, the value of i actually decreases;
the relative effect of the surface term outweighs that of the
volume term. For matter during the collapse phase, before the
onset of nucleon degeneracy, which is usually the case before
neutrino trapping occurs, the neutron to proton ratio is given
by

n

n—”:e-ﬁ/f. (17)

n

Thus a larger value of S, increases the number of protons
available for capture if the correlation of S, and S, is con-
sidered.

If one neglects the surface symmetry energy term, as does the
CB EOS, the ji instead decreases with increasing S,, and thus
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3,' AR L L B B B B has formed. Also note that in the PADNFT and MMST
L ~ models the electron neutrino and electron antineutrino curves
~ T T have more or less merged by about 30 ms after bounce. This
K oL ] merging indicates the onset of detailed balance in the electron
§ L § capture and proton capture that produce each of these species.
s F ] However, in the MSKEH case the curves are still substantially
oo T ] separated 30 ms after bounce. This is because the rates are not
Sl - in detailed balance; the collapse has proceeded so rapidly that
30 ] the neutrino trapping has overwhelmed the increased electron
o | ] capture rates. Whether or not these differences could be
33 L - observed in a large neutrino experiment such as Super-
= 0 = Kamiokande or the Sudbury Neutrino Observatory is a
E ) subject that we currently are investigating.
i 1 6. CONCLUSIONS
S IR U RO BRI Y S B S I
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FI1G. 9.—a) Log of the neutrino luminosities (in foes s™*; 1 foe = 10! ergs)
vs. time for the run using the PADNFT parameter set. (b) Log of the neutrino
luminosities (in foes s™!; 1 foe = 10°! ergs) vs. time for the run using the
MMST parameter set. (c) Log of the neutrino luminosities (in foes s™*!; 1
foe = 10°! ergs) vs. time for the run using the MSKEH parameter set.

the amount of electron capture decreases. The neglect of the
surface term is only justified if S, > A~ 1/3S,: a situation that
never occurs for typical values of A and S,.

It is of interest that the CB electron neutrino luminosity
during infall is comparable to the PADNFT case. However,
the CB EOS employs a 31.5 MeV volume symmetry energy
coefficient, while the PADNFT case has S, = 27.5 MeV. This
again illustrates the necessity of separately parameterizing the
surface symmetry energy. To simply vary the volume sym-
metry energy coefficient by itself is not consistent with nuclear
systematics and can substantially affect the electron neutrino
luminosity.

The most remarkable difference between the three symmetry
energy cases is in the neutrino luminosities themselves. The
luminosity is much more sharply peaked in the PADNFT case,
corresponding to a relatively late occurrence of electron
capture and a relatively large homologous core. In the extreme
MSKEH case, the peak is much more spread out. This is
mainly due to the greater depth in the core at which the shock

We have found a number of interesting results regarding the
role of the EOS in stellar collapse on prompt timescales. First,
the cherished belief that the nuclear incompressibility deter-
mines the shock dynamics is unfounded when one incorporates
the 1.44 M, neutron star constraint imposed by observations
of the binary neutron star system PSR 1913+ 16. Only if the
EOS is softened to a degree that is unphysical could the
prompt shock dynamics change appreciably. In order for the
shock to propagate promptly to a larger radius the EOS must
be very soft at densities just above nuclear densities, which
seems to be inconsistent with the 1.44 M constraint. Sur-
prisingly, we have found virtually no change in the shock stall
radius as both the compression modulus and the symmetry
energy coefficients are varied over wide ranges. However, the
variation of the symmetry energy coefficients causes variations
in the rate of electron capture. This produces changes in the
neutrino luminosities, which are potentially observable. This
does not produce a strong change in the trapped lepton frac-
tion in the era just after core bounce. We reiterate, however,
that the parameterization of the symmetry energy and the
variation of the symmetry energy coefficients must be per-
formed in a fashion consistent with nuclear systematics.
Finally, while we have been able to offer some definitive state-
ments about the role of the EOS in the prompt phase of core
collapse supernovae, we are as yet unable to make the analo-
gous statements about the role of the EOS and the late-time
mechanism. We are currently extending these investigations of
the role of the EOS to the late-time epoch.
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