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ABSTRACT

The analysis of whole-sky galaxy surveys commonly suffers from the problems of shot-noise and incomplete
sky coverage (e.g., at the Zone of Avoidance). The orthogonal set of spherical harmonics is utilized here to
expand the observed galaxy distribution. We show that in the framework of Bayesian statistics and Gaussian
random fields the 47 harmonics can be recovered and the shot-noise can be removed, giving the optimal
picture of the underlying density field. The correction factor from observed to reconstructed harmonics turns
out to be the well-known Wiener filter (the ratio of signal to signal + noise), which is also derived by
requiring minimum variance. We apply the method to the projected 1.2 Jy IRAS survey. The reconstruction
confirms the connectivity of the supergalactic plane across the Galactic plane (at Galactic longitude I ~ 135°
and | ~ 315°) and the Puppis cluster behind the Galactic plane (I ~ 240°). The method can be extended to
three dimensions in both real and redshift space, and applied to other cosmic phenomena such as the COBE

microwave background maps.

Subject headings: galaxies: clustering — large-scale structure of universe — methods: statistical

1. INTRODUCTION

Two basic problems commonly appear in analysing the dis-
tribution of galaxies. First, if one assumes that the distribution
of luminous galaxies samples an underlying smooth density
field, then the discreteness of objects introduces Poisson *“shot-
noise.” Second, incomplete sky coverage, e.g., due to the
obscuration by the Galactic plane (the Zone of Avoidance), is
an obstacle in mapping the whole-sky distribution. In this
Letter we show how to recover the all-sky projected density
field, characterized by an assumed power spectrum of fluctua-
tions, from a galaxy survey which suffers incomplete sky
described by a known mask.

The recovery of a signal from noisy and incomplete data is a
classic problem of inversion. A straightforward inversion is
often unstable, and a regularization scheme of some sort is
essential in order to interpolate where data are missing or
noisy. In the Bayesian spirit we use here raw data and a prior
model to produce “improved data.” The prior model does not
necessarily require a speculative assumption. In the context of
this work we simply require a reconstruction which obeys the
constraint of the two-point correlation function of the
observed galaxy distribution, as derived from a smaller section
of the sky. Using the above principles we derive a Wiener filter
(the ratio of signal to signal + noise), which also follows from
requiring minimum variance (e.g., Rybicki & Press 1992).
There are many (related) variants of this approach, including
maximum entropy (e.g., Gull 1989). The reconstruction prob-
lems can be addressed within the framework of conditional
probability and constrained realizations of Gaussian random
fields (Bertschinger 1987; Binney & Quinn 1990; Hoffman &
Ribak 1991). This has been applied to reconstruct the density
field from the observed peculiar velocities (Kaiser & Stebbins
1991; Stebbins 1993; Ganon & Hoffman 1993).

A simple example of a Wiener filter is given in § 2, and the
formulation for the whole-sky reconstruction in spherical har-
monics is shown in § 3. Section 4 shows application to the
projected 1.2 Jy IRAS survey, and future work is discussed in
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§ 5. We shall give the full mathematical details and extension of
the method to three-dimensional harmonics elsewhere
(Zaroubi et al. 1994, in preparation).

2. A SIMPLE EXAMPLE OF WIENER FILTER

Let us first consider a simple pedagogical example. Assume
two Gaussian variables, x and y, with zero mean,
(x> =<(y) =0 (hereafter angle brackets denote ensemble
average). The probability for x given y is by the rule of condi-
tional probability

Plaly) = T

P@y) ’

where P(y) is a one-dimensional Gaussian probability distribu-
tion, and the joint probability P(x, y) is a bi-variate Gaussian
distribution. It is straightforward to show that P(x|y) is a
“shifted Gaussian” with the maximum probability occurring
for

M)

£ =Qp/Ky*dy .

In the special case of Gaussian fields the most probable recon-
struction is also the mean field. Hereafter we term them
together as the “ optimal reconstruction.”

Exactly the same result for the “optimal reconstruction” is
also obtained by a different approach, by asking for the linear
filter F which minimizes the variance {(x — F y)?>. Minimizing
with respect to F gives indeed F = (xy)/{y*) and % = Fy, as
above. Note that although the results of the two approaches
are identical, due to the quadratic nature and linearity of filter
of the functions involved, the underlying assumptions are quite
different. The conditional probability approach (eq. [2])
requires to specify the full distribution functions (Gaussians in
our case). On the other hand, the minimum variance approach
only considers the second moment of the distribution function,
but assumes a linear filter F.

Consider now the special case that y = x + o, where g is a
Gaussian noise uncorrelated with the true signal x (hence
{xa) = 0). It follows that the optimal estimator of the signal %
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given the (noisy) measurement y is

(x*)
RO
The factor (F) in front of the measurement y is the well-known
Wiener filter commonly used in signal processing (for review
see, e.g., Press et al. 1992; Rybicki & Press 1992). Note that it
requires a priori knowledge of the variances in the signal and
the noise. When the noise is negligible the factor approaches
unity, but when it is significant the measurement is attenuated.

A third approach to the problem, in which the Bayesian a
posteriori probability (cf. eq. [2]),

—InP(x|y) = —[In P(y| x) + In P(x)]
=3[y — x)*/<a*) + x*KxP)],

is maximized with respect to x, also yields the same result as
the other two approaches. In fact, this is a special case of the y2
(log-likelihood) minimization subject to regularization of the
form x? + af (x), where f(x) is the regularizing function [e.g.,
f(x) = x* in our case, and in other applications taken as the
“entropy” f(x) = x In x], and « is a Lagrange multiplier. We
see that a regularization with a prior f(x) = x? is essentially
equivalent to a Wiener filter.

_)%:

@

3. NOISE REMOVAL AND MASK INVERSION

For simplicity, we shall consider here projected (two-dimen-
sional) galaxy samples. We formulate our problem as follows:
What are the full-sky noise-free harmonics given the observed
harmonics, the mask describing the unobserved region, and a
prior model for the power-spectrum of fluctuations?

3.1. Expansion in Spherical Harmonics

Here we use spherical harmonics to expand the galaxy dis-
tribution in a whole-sky survey. This technique has been con-
sidered for two-dimensional samples (e.g., Peebles 1973; Scharf
et al. 1992) and more recently for analysing redshift surveys
(Scharf & Lahav 1993; Lahav et al. 1993; Fisher, Scharf, &
Lahav 1994). Basically, the projected density field over 4= is
expanded as a sum:

m=+1
S0, ¢) = ; > Gim Y,,(6, ¢) , ©)]
where the Y,,’s are the orthonormal set of spherical harmonics.
A reconstruction up to harmonic [, resolves structure on
angular scale of n/l_,,. The spherical harmonic analysis pro-
vides a unified language to describe the local cosmography as
well as the statistical properties (e.g., the power spectrum) of
the galaxy distribution.

3.2. Mask Inversion Using Wiener Filter

We turn now to the more complicated problem of the har-
monics with incomplete sky coverage. Here we consider a
“sharp” mask, in which observed regions are assigned equal
weight, while masked regions are assigned zero weight. The
observed harmonics c,,, . (With the masked regions filled in
uniformly according to the mean) are related to the underlying
“true” whole-sky harmonics a,, by (cf. Peebles 1980, eq.
[46.33])

Clm.obs = Iz’ Z] W;'ll’m'[al’m’ + O'a] ’ (4)

where the monopole term (I’ = 0) is excluded. We have added
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the shot noise o, in the “true” number-weighted harmonics
a,,,s (not in the c,,’s). The noise variance is estimated as
{62y = A (the mean number of galaxies per steradian, inde-
pendent [ in this case). The harmonic transform of the mask,
Wi, introduces “cross talk ” between the different harmonics
and acts as a “point spread function” (in analogy with prob-
lems in image processing).
By the rule of conditional probability (cf. eq. [1])

P G(a’ cobs)
Pgleoss)

where the vectors a and c,, represent the sets of observed
harmonics {a;,,} and {c,, o} and Pg stands for an assumed
Gaussian distribution function with variance and covariance
which depend on an assumed power spectrum. As in the simple
example above one can now find the estimator @ which gives
maximum probability. This is a special case of a constrained
realizations formalism (Hoffman & Ribak 1991), but here the
formulation and computation are greatly simplified due to the
orthogonality of the harmonics. An alternative approach is
finding the minimum of the variance {|a — FW ™ 'c_,|?) with
respect to a desired Wiener filter matrix F (here W~ 1! stands for
the “pseudo-inverse” of W = {W};™}). We shall present the
full derivation by the two approaches elsewhere (Zaroubi et al.
1994, in preparation), but the answer for the optimal recon-
struction can be seen by analogy with the simple example given
above (eq. [2]):

P(a | cobs) = (5)

a=FW 'cy,, ©)

with the diagonal matrix

F = diag { )]

(adw + 02>

Only the diagonal elements appear in the F matrix due to the
orthogonality of the harmonics. We emphasize again that in
the special case of underlying Gaussian field the most probable
field, the mean field and the minimum variance Wiener filter
are all identical. Hence these different approaches are unified.

Even if the sky coverage is 4n (W = I), the Wiener filter is
essential to reveal the optimal underlying “continuous”
density field, cleaned of noise. In the absence of other prior
information of the location of clusters and voids, the correction
factor is “isotropic” per /, i.e., independent of m, so in the case
of full sky coverage, only the amplitudes are affected by the
correction, but not the relative phases. For example, the dipole
direction is not affected by the shot noise, only its amplitude.
But of course, if the sky coverage is incomplete, both the ampli-
tudes and the phases are corrected. The reconstruction also
depends on number of observed and desired harmonics. Note
also that the method is noniterative.

The variance of the residual from the optimal reconstruction
for Gaussian random fields is given by

(o>
af > + <02>

The scatter is independent of the estimated optimal reconstruc-
tion. In the limit of negligible shot noise the scatter vanishes
and the reconstruction is deterministic. However, if {(a?), <
{a2) then the statistical scatter is that predicted by the a priori
cosmic power spectrum <{a?»,,.

<a12 Dt } )

Nl — ay |2> = { }<a12>m . ®)
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FiG. 1.—Harmonic expansion (1 < I < 15) of the projected raw IRAS 1.2 Jy data in Galactic Aitoff projection. Regions not observed, in particular |b| < 5 (dashed
lines), were left empty. The contour levels of the projected surface number density are in steps of 100 galaxies per steradian (the mean projected density is A~ ~ 400

galaxies per steradian).

3.3. Singular Value Decomposition

We solve equation (6) by writing it as c,,, = Bd, where
B = WF~!, and by applying a singular value decomposition
(SVD) algorithm (e.g., Press et al. 1992). Briefly, the matrix B
(of arbitrary dimensions) can be decomposed as B = U diag
{A;} V", where both U and ¥ are orthonormal, and /s are the
singular values of B. The least-square solution is @ = V diag
{1/4}U"¢c,p,. The singular values Z; give insight into the
amount of useful information in the problem. To ensure stabil-
ity of the reconstruction it is essential to set to zero A;’s which
are much smaller than the maximal 4,,,, before inverting by
“backsubstitution” (see Press et al. 1992). We find that in our
problem of a | b| = 5° mask (see below) the inversion is rather
insensitive to this truncation level (which controls the amount
of regularization), but it is of great importance in the case of a
larger mask (suggesting the need for an extra regularization).
Other recent applications of the SVD approach in astronomy
include the analysis of galaxy spectra (Rix & White 1992) and
helioseismology (Christensen-Dalsgaard, Hansen, & Thomp-
son 1993).

4. APPLICATION TO IRAS 1.2 Jy DATA

Here we apply the method to the sample of IRAS galaxies
brighter than 1.2 Jy (Strauss et al. 1992; Fisher 1992) which
includes 5313 galaxies, and covers 88% of the sky. This incom-

plete sky coverage is mainly due to the Zone of Avoidance,
which we model as a “sharp mask” at Galactic latitude
|b| < 5°. The mean number of galaxies is A" = 392 per stera-
dian, which sets the shot noise, {62>. As our model for the
cosmic scatter {a?), we adopt a fit to the observed power
spectrum of IRAS galaxies (Fisher et al. 1993) which is
described (empirically) by a cold dark matter model with a
shape parameter I' = 0.2, and with real-space normalization
specified by the rms fluctuation in the number of IRAS galaxies
in 8 h~! Mpc spheres, oz = 0.7. The Wiener filter (eq. [7]) in
this case drops monotonically with [, e.g.,

{ <alz>th
aidm +<02>

forl = 1, 10, 15, and 30, respectively.

Figure 1 shows the reconstruction of the raw two-
dimensional IRAS 1.2 Jy sample in Aitoff projection (in Galac-
tic coordinates) for harmonics 1 <1< 15 The Zone of
Avoidance was left empty, and clearly it “ breaks” the possible
chain of the supergalactic plane and other structures.

Figure 2 shows our optimal reconstruction where we have
used observed harmonics c;,’s with 1 <1< 15(255 indepen-
dent coefficients in total) and reconstructed the whole-sky a,,’s
also for 1 < I < 15. Now the structure is seen to be connected
across the Zone of Avoidance, in particular in the regions of

} ~09,07,06, and 03

FIG. 2—4n Wiener reconstruction of the two-dimensional 1.2 Jy IRAS galaxy sample, for harmonics 1 < I < 15, plotted in Aitoff Galactic projection. The
reconstruction corrects for incomplete sky coverage, as well as for the shot noise. The assumed prior model is an empirical fit to the observed power spectrum of
IRAS galaxies. The reconstruction indicates that the supergalactic plane is connected across the Galactic plane at Galactic longitude ! ~ 135° and [ ~ 315°. The
Puppis cluster stands out at the Galactic plane at | ~ 240°. The horizontal dashed lines at b = +5° mark the major Zone of Avoidance in the IRAS sample. The
contour levels of the projected surface number density are in steps of 100 galaxies per steradian (the mean projected density is 4~ ~ 400 galaxies per steradian).
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Centaurus/Great Attractor (I ~ 315°), Hydra (I ~ 275°) and
Perseus-Pisces (I ~ 315°), confirming the connectivity of the
supergalactic plane. We also see the Puppis cluster (I ~ 240°)
recovered behind the Galactic plane. This cluster has been
noticed in earlier harmonic expansion (Scharf et al. 1992) and
other studies (Lahav et al. 1993, and references therein). The
other important feature of our reconstruction is the removal of
shot noise all over the sky. This is particularly important for
judging the reality of clusters and voids.

We have also compared our reconstruction with the one
applied (using a 47 Wiener filter) to the IRAS sample in which
the Zone of Avoidance was filled-in by extrapolating “by
hand ” across the Galactic plane (Yahil et al. 1991). The recon-
structions look very similar both visually, and by y? and cross-
correlation measures. We also found good agreement in the
angular power-spectrum of the two reconstructions. As
another test, we have used as a prior model the standard cold
dark matter model (with I' = 0.5), and found that the recon-
structions changed very little.

As a more chalenging test of the method we have also used
an N-body simulation of standard cold dark matter (so the
whole “sky ” true harmonics are known) and varied the size of
the Zone of Avoidance. We find that for mask larger than
|b| = 15° it is difficult to recover the unobserved structure.
Clearly the success of the method depends on the interplay of
three angular scales: the width of the mask, the desired
resolution (n/l_,,.) and the physical correlation of structure.

5. DISCUSSION

In this Letter we have presented a Wiener filter method of
reconstructing the full-sky galaxy distribution and removing
the shot noise. We have also shown that a variety of statistical
approaches to the problem all lead to the same optimal Wiener
estimator. The prior assumptions only depend on the observed
two-point galaxy correlation function and the nature of the
shot noise. Our assumption in equation (5) that the density
field is Gaussian is only an approximation, valid for the large
scales (small ). The observed galaxy distribution function
(counts-in-cells) is actually skewed towards high-density cells.
Our conditional probability formalism can be extended to
non-Gaussian distribution functions, but then the mean and
most probable reconstructions are not the same, and also the

expression for the scatter is different. We note however that the
minimum-variance approach is self-consistent since it only
considers the second moment. While well-known in image and
signal processing, the Wiener method has not been implement-
ed before (to our knowledge) in reconstructing the large-scale
structure in both amplitude and phase.

The two-dimensional spherical harmonics presentation and
Wiener filtering approach can be also applied to other cosmic
phenomena, e.g., to maps of the COBE microwave background
and the HEAO 1 X-ray background. Klypin, Strukov, & Sku-
lachev (1992) have used a similar regularization approach to
analyze their Relikt map of the microwave background.
However, their Tikhonov regularization procedure does not
reflect the physical correlation of the underlying fluctuations.

Currently, we are developing the method further to three
dimensions by expanding the density field in spherical harmo-
nics and spherical Bessel functions j(kr):

p(r) = ; Z Z plmnjl(knl r)y;m(":) ’ (9)

(e.g., Binney & Quinn 1991 and Lahav 1993 for a preliminary
application to the 2 Jy redshift survey). This expansion gener-
alizes the Wiener filter to handle the radial selection function
and redshift distortion in harmonics (see Fisher, Scharf, &
Lahav 1994), as well as the shot noise and incomplete sky
coverage. The Wiener method is not limited to spherical har-
monics or orthonormal set of functions, and can be implement-
ed in Cartesian presentation as well (e.g., Hoffman 1993). Our
procedure will be applied to new all-sky IRAS and optical
redshift surveys, and to surveys of the peculiar velocity field.
The three-dimensional noise-free p,,, coefficients will allow
objective (nonparametric) comparison of different surveys of
light and mass in the local universe.
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