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ABSTRACT

We present a new analytic study of the equilibrium and stability properties of close binary systems contain-
ing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy varia-
tional principle. We consider both synchronized and nonsynchronized systems, constructing the compressible
generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a
wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all
allowed to vary over wide ranges and independently for each component. We find that both secular and
dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with
decreasing binary separation. High incompressibility always makes a given binary system more susceptible to
these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we con-
struct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the
orbital evolution of close binary systems under the combined influence of fluid viscosity and secular angular
momentum losses from processes like gravitational radiation. We show that the existence of global fluid insta-
bilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic
solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations

in three dimensions.

Subject headings: binaries: close — hydrodynamics — instabilities — stars: evolution

1. INTRODUCTION

Essentially all recent theoretical work on close binary
systems has been done in the Roche approximation, where the
noncompact components are modeled as massless gas in
hydrostatic equilibrium in the effective potential of a point-
mass system (see, e.g., Kopal 1959). This model applies well to
very compressible objects with centrally concentrated mass
profiles, such as giants and early-type main-sequence stars.
Some theoretical work has also been done in the completely
opposite limit of binaries containing a self-gravitating, incom-
pressible fluid (see Chandrasekhar 1969 and references therein,
hereafter Ch69; see also Hachisu & Eriguchi 1984b, hereafter
HE). An essential new result found in the incompressible case is
that the hydrostatic equilibrium solutions for sufficiently close
binaries can become globally unstable. The main goal of this
paper is to explore how far into the compressible domain these
instabilities persist. We parameterize compressibility by adopt-
ing a polytropic equation of state and varying the polytropic
index.

In a previous paper (Lai, Rasio, & Shapiro 1993a, hereafter
LRS1), we have presented a comprehensive analytic study of
ellipsoidal figures of equilibrium for both single rotating poly-
tropes and polytropes in binary systems. We have been able to
provide compressible generalizations for all the classical
incompressible solutions (Ch69). Our approach is based on the
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use of an energy variational principle to construct approximate
equilibrium solutions and study their stability. Some applica-
tions of our results to the problem of binary coalescence have
been discussed in Lai, Rasio, & Shapiro (1993b, 1994, hereafter
LRS2 and LRS3). As in Ch69, we have so far treated only
binary systems containing one star (extended component) in
orbit around a point-mass companion (as in the classical
Roche problem) or two identical stars (as in the classical
Darwin problem). We have also treated some nonsynchronized
generalizations of these cases (the so-called Roche-Riemann
and Darwin-Riemann configurations; see Aizenman 1968).

In this paper, we extend our study to the most general case
of binary systems containing two different polytropes. Specifi-
cally, we allow the two components to have different masses,
radii, entropies, polytropic indices, and, for nonsynchronized
systems, spins. We refer to these binary models as general
Darwin-Riemann configurations. Earlier work based on the
tensor-virial method suggested that Darwin-Riemann binary
models could be constructed only for the particular cases
where the mass ratio is either unity or tends to zero (Ché69).
Instead, we show here that our energy variational method can
be generalized quite naturally to construct binary models with
arbitrary, unequal-mass components.

The usefulness of our analytic approach lies in its simplicity.
Numerical codes can be used to construct very accurate hydro-
static equilibrium configurations in three dimensions, but they
require appreciable computer resources. By contrast, to obtain
an equilibrium model with our method simply involves solving
a set of algebraic equations, a task that can be performed on a
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workstation in seconds. As a result, we can explore a wide
variety of possible binary models. In addition, our analytical
treatment can provide physical insight into difficult issues of
global stability that are easily missed when using multidimen-
sional numerical calculations. In our analytic treatment, insta-
bilities are identified simply from turning points appearing
along sequences of equilibrium configurations. Specifically,
along an equilibrium sequence parameterized by the binary
separation r, the onset of instability occurs at a point r =r,,
where the total energy E and angular momentum J of the
system simultaneously attain a minimum. We showed in LRSI
that such a turning point along a binary equilibrium sequence
marks the onset of instability. Depending on the nature of the
equilibrium sequence considered, the instablity can be either
secular or dynamical.

As far as we are aware, dynamical instabilities of close binary
systems have never been discussed before, except in the context
of the classical Darwin problem for incompressible fluids
(Tassoul 1975; Chandrasekhar 1975). The existence of a
minimum of the total angular momentum J at some r = r,, has
been noted before in simple models of synchronized (i.e., uni-
formly rotating) binary systems (Counselman 1973; Hut 1980).
In synchronized systems, the minimum comes essentially from
the angular momentum and energy of the spins, which increase
as r decreases. In this case the minimum marks the onset of
secular instability. Counselman (1973) and Hut (1980) have
discussed this secular instability for binary systems where the
two stars can be represented by rigid spheres. This can apply
only to systems with extreme mass ratios, such as planet-
satellite systems, which have r,,/R > 1, where R is the radius of
the more extended component. In most binary systems,
however, we find that r,,/R 2 1, and the tidal distortion of the
more extended component cannot be neglected.

Our results have important implications for a variety of
astrophysical systems of great current interest. Both secular
and dynamical instabilities can lead to an acceleration of the
orbital decay of a close binary, and eventually, drive the two
stars to a rapid coalescence. Close neutron star binaries are
the most important sources of gravitational radiation in the
Universe and are the primary target for the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) project
(Abramovici et al. 1992). The coalescence of two neutron stars
is at the basis of numerous models of y-ray bursters (see
Narayan, Paczynski, & Piran 1992 and references therein). The
consequences of fluid instabilities for the final orbital decay of
neutron star binaries and the corresponding gravitational radi-
ation waveforms have been explored in LRS3. Double white
dwarf systems are now generally thought to be the progenitors
of Type Ia supernovae (Iben & Tutukov 1984). They are also
promising sources of low-frequency gravitational waves that
should be easily detectable by future space-based interferome-
ters (Evans, Iben, & Smarr 1987). In addition to producing
supernovae, the coalescence of two white dwarfs may also lead
in certain cases to the formation by gravitational collapse of an
isolated millisecond pulsar (Chen & Leonard 1993) or the for-
mation of blue subdwarf stars in globular clusters (Bailyn
1993). In the case of coalescing magnetized white dwarfs, a
neutron star with extremely high magnetic field may form, and
such an object has also been proposed as a source of y-ray
bursts (Usov 1992). Coalescing main-sequence star binaries are
the likely progenitors of blue stragglers in stellar clusters
(Mateo et al. 1990). Contact main-sequence star binaries are
also directly observed as W UMa systems. The requirement
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that these systems live long enough to be observed during a
contact phase (i.e., remain stable) could place important con-
straints on theoretical models of their interior structure (Rasio
1994). Finally, mass transfer systems, such as X-ray binaries
and cataclysmic variables, could also be affected in instabilities
if the donor star is sufficiently incompressible or massive. A
version of the secular instability described here was recently
considered by Levine et al. (1991, 1993) in the context of the
orbital evolution of LMC X-4 and SMC X-1.

This paper is organized as follows. In § 2 we present our
analytic method of constructing equilibrium binary models. In
§ 3 we discuss the various stability and Roche limits for these
models. We then study in § 4 the general characteristics of
simple models for astrophysical systems containing white
dwarfs, brown dwarfs, planets, main-sequence stars, and
neutron stars. In § 5 we compare some of our analytic results
with those of recent numerical calculations. In § 6 we discuss
the secular orbital evolution of close binaries in the presence of
dissipation.

2. COMPRESSIBLE DARWIN—-RIEMANN MODELS

In this section, we describe our energy variational method to
construct general Darwin-Riemann equilibrium models. In
§ 2.1 we briefly summarize the basic ideas and assumptions.
More details about the method in general, as well as many
other applications, can be found in LRS1. The equilibrium
equations for compressible Darwin-Riemann configurations
are derived in § 2.2. The method of solution and the construc-
tion of equilibrium sequences are discussed in § 2.3.

2.1. Basic Assumptions

Consider an isolated, self-gravitating fluid system in steady
state. The system is characterized by conserved global quan-
tities such as its total mass M and total angular momentum J.
The total energy of the system (not necessarily in equilibrium)
can always be written as a functional of the fluid density and
velocity fields p(x) and v(x). In principle, an equilibrium con-
figuration can be determined by extremizing this energy func-
tional with respect to all variations of p(x) and v(x) that leave
the conserved quantities unchanged. The basic idea in our
method is to replace the infinite number of degrees of freedom
contained in p(x) and »(x) by a limited number of parameters
®y, ®5, ..., in such a way that the total energy becomes a
function of these parameters:

E=E(a, 05, ...; M, J,...). 2.1

An equilibrium configuration is then determined by extrem-
izing the energy according to

2.2)

where the partial derivatives are taken holding M, J, ... con-
stant.

An expression like equation (2.1) can be written down for the
total energy of a binary star system provided that enough
simplifying assumptions are made. In this paper, we consider
only binaries in circular orbit, and we adopt a polytropic equa-
tion of state for the fluid. Under the combined effects of cen-
trifugal and tidal forces, the stars assume nonspherical shapes.
We model these shapes as triaxial ellipsoids. Specifically, we
assume that the surfaces of constant density within each star
can be modeled as self-similar ellipsoids. The geometry is then
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completely specified by the three principal axes of the outer
surface. Furthermore, we assume that the density profile p(m)
inside each star, where m is the mass interior to an isodensity
surface, is identical to that of a spherical polytrope with the
same volume. The velocity field of the fluid is modeled as either
uniform rotation (corresponding to the case of synchronized
binary systems), or uniform wvorticity (for nonsynchronized
systems). The vorticity vector is assumed to be everywhere
parallel to the orbital rotation axis.

For an isolated rotating star, these assumptions are satisfied
exactly when the fluid is incompressible (polytropic index
n = 0), in which case the true equilibrium configuration is a
homogeneous ellipsoid (see Ch69). For a star in a binary
system, our assumptions are strictly valid in the incompressible
limit only if we truncate the tidal interaction to quadrupole
order. We adopt this quadrupole-order truncation of the inter-
action potential in this paper. For polytropes with n # 0, our
assumptions are only satisfied approximately. In that case, our
two-ellipsoid models should be considered as trial functions
used in combination with the energy variational principle to
find approximate equilibrium solutions.

2.2. Derivation of the Equilibrium Equations

We consider a binary system containing two polytropes of
mass M and M’ in circular orbit around each other. Through-
out this paper unprimed quantities refer to the star of mass M
and primed quantities refer to the star of mass M’. Following
Ché69, we denote the mass ratio as p = M/M'. The density and
pressure are related by

P = Kp(1+1/n) , Pl — K/p/(1+l/n’) . (2.3)

Note that we allow the two stars to have different polytropic
indices (n # n') and different polytropic constants (K # K').
This allows us to model realistically a variety of astrophysical
systems where the two stars have different masses and radii (see
§ 4). The binary separation is denoted by r, and the principal
axes of the two ellipsoids by a,, a,, a;, and a}, a5, a3. The
orientation is such that a, and a} are measured along the
binary axis, a, and d), in the direction of the orbital motion,
and a; and aj along the rotation axis. In place of the three
principle axes a;, it is often convenient to introduce as indepen-
dent variables the central density p. and two oblateness
parameters defined as

2/3 2/3
A= <&> , A= <@> .
a; a,

Similarly, we can introduce p., A}, and A}, in the place of the
three a}’s. Thus, the seven independent variables which specify
the structure of our models are {o;, i = 1,..., 7} = {r, p., 41, 45,
Per X1, A3}

(2.4)

2.2.1. Energy Function

We first obtain an expression for the total energy of the
system under the assumptions given in § 2.1. A detailed deriva-
tion for the similar case of Roche-Riemann configurations was
given in LRS1 and will not be repeated here. References to key
equations in LRS1 are indicated with numbers preceded by an
“1”. Throughout this section, when two similar expressions
can be written for the two stars, we only give the one corre-
sponding to M, the other being obtained trivially by replacing
unprimed by primed quantities.

The total internal energy in each star is given by

U= J‘% dm = k,Kpl"M (2.5)
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(see eq. [1.3.1]). The self-gravitational potential energy can be
written as

3 GM?
5—n R

W= — f= —k,GM*3p!3f  (26)

(see eq. [1.4.6]), where we have defined the mean radius R =

(a,a, a3)'" and the dimensionless ratio

a3+ A, a3 + Ajal
2R? ’

such that f= 1 for a spherical star. The index symbols A, are
defined as in Ch69 (§ 17),

F=flhy i) =2 @7

A=aaa rd_“
i = “14%2 43 o A(ai2+u)’

with A? = (a? + u)aZ + u)a? + u) . 2.8)

They are functions of A, and A, only. In equations (2.5) and
(2.6), k, and k, are dimensionless polytropic structure con-
stants (depending only on n), defined as

n(n + 1 3 [4=|0 ]\
L= 0 k= (BT e
1

where 0 and & are the usual Lane-Emden variables for a poly-
trope (see, €.g., Chandrasekhar 1939). Values of k, and k, for
different n are given in Table 1 of LRSI, but they are not
needed explicitly for constructing equilibrium solutions.

The fluid velocity field inside each star is modeled exactly as
in a Riemann S-type ellipsoid (see LRSI, § 5, for details). Fol-
lowing Ch69 and LRS1, we introduce a parameter f; defined as

£
Q ’
where Q is the orbital angular frequency and ( is the fluid
vorticity in the corotating frame,

Jr

(2.10)

a? + a2

=V cey = —
(=(Vxu- e, 4,4,

A. (2.11)

The quantity A is the angular frequency of the internal fluid
motions. The velocity field in the corotating frame is given by

u= Q1x281 + Qz xlez . (2.12)
where
2
ai a;
Q = - C= +— A s
! ai + a3 2
2
a3z a
=4+——=({=—-——A 2.13
QZ + a% + ag C 01 ( )

Here e, is along the binary axis, directed from M to M, e, is in
the direction of the orbital velocity, and the origin is at the
center of mass of M. The fluid velocity in the inertial frame is
given by

W =u+Qxx, (2.19)
and the vorticity in the inertial frame is
(O=Vxu® - e;=Q2+)Q. (2.15)

Uniform rotation (synchronization) corresponds to fg ={ =
A = 0. An irrotational velocity field is obtained when f = —2.
Note that the two equilibrium figures (the geometric outer
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shapes of the two stars) always rotate at the orbital angular
frequency Q as seen in the inertial frame.

An expression for the “spin” kinetic energy T, (ie., the
kinetic energy in internal fluid motions) in the inertial frame
can be obtained from equations (2.12)—(2.14). One finds

T, = 31(A% + Q%) — 2k, Ma,a, AQ
(see eq. [1.5.6]), where
I = Lk, M(a? + a?) (2.17)

is the moment of inertia. We have defined the dimensionless
coefficient

(2.16)

_Sfp e
"T3ogl1e0
so that x, = 1 for n = 0. Values of k, are given in Table 1 of

LRS1. Similarly, the “spin” angular momentum J; can be
written as

(2.18)

J, = IQ — %k, Maa, A (2.19)

(see eq. [1.5.5]). Another important conserved quantity is the
fluid circulation C along the equator of the star. Following
LRS1 (§ 5.1), we write

1 1
€= <— o x,,M)C = <— o K,,M)nalaz ¢

=IA — % K,Maa,Q .
The quantity € has the dimensions of angular momentum but
is proportional to the conserved circulation C = na,a, {©. We
usually refer to % itself as the circulation for convenience. Note
the complementary roles played by the variables (J,, ¥) and
(2, A) (compare expressions [2.19] and [2.20]).

We can now obtain simple expressions for the total kinetic
energy and angular momentum in the system. We first rewrite
T, in a form that is more convenient for taking derivatives of
the energy function (see LRSI, § 5.1). We first combine equa-
tions (2.19) and (2.20) to derive the result

Jsi(g=%li(QiA)s

(2.20)

2.21)
where

I, =2k, M(a, F a)® = 21/, . (2.22)
Here I, = 2x, MR? is the moment of inertia of a sphere with
the same volume as the ellipsoid, and h, = 2R%/(a; F a,)%

Using equation (2.21), the kinetic energy T, can then be

expressed as
L=T,+4+T_, (2.23)

with

1
T, =i 1@+ AP =—— (J, + 9. (2.24)
8 2,

The orbital contributions to the total angular momentum and
kinetic energy are simply

Jo=ur'Q, T,=3u0%*, (225)
where u = MM’/(M + M’) is the reduced mass.* The total

“# Note that the quantity u = GM'/r? introduced in LRS1 is called yg in this
paper; see below.
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angular momentum and kinetic energy of the system are then
given by
J=J;+Js+Jy, T=T,+T;+T,. (2.26)
Finally, the gravitational interaction energy W, between the
two stars is given, up to quadrupole order, by

GMM' GM _,
Wi= ——— =55 @ —In—1I)
GM’
T3 @Iy, — 1y, — I33), (2.27)
,
(see Appendix B of LRS1), where we have defined
Iy =4k, Ma}s;, Iy= e, M'a?5;. (2.28)

The total energy of the system, not necessarily in equi-
librium, is given by

E(rs Pecs '11’ )'Zs p;a ’15 }-IZa M3 Mla (g, (g,’ J)

=U+U+W+W+T+ W,

together with equations (2.5), (2.6), and (2.23)—(2.27).

When extremizing the energy fuction (2.29) to find equi-
librium solutions, we must hold all the conserved quantities M,
M, J, €, and ¥’ constant. Clearly, the form of T given by
equations (2.23)-(2.26) is not ideally suited to such a pro-
cedure, since its dependence on J, %, and %’ is not explicit.
However, using equations (2.21) and (2.26), we can express Q as
a function of the adopted variables {o;} and the conserved
quantities as

1 hy —h_ W, — .
0=——|Js+9 @ 230
w1, [J + <h+ n h_> * <h’+ n h’_>:| > (230

where

(2.29)

21 2

S

hy +h_ +h'+ +h_
Expressions for A and A’ can then be obtained using equation
(2.20). In principle, we can substitute these expressions into
equation (2.29) and obtain an appropriate expression for T
which does not contain Q, A, or A’ and depends only on {a;}
and the conserved quantities. Instead, it is more convenient to
use the following expression for T,

_J+ %) + (J,—%)? + (J—J,—ur’Q+ %)
T2, 21 2r,

(J—=J,—uQ—%)» 1 ,
£ — ur’Q? .
+ 21~ e
Although Q and J, appear in this expression, we can treat them
as constant parameters when taking a first derivative of E with
respect to «; This is because JE/0Q = dT/0Q =0 and

0E/dJ, = 0, as can be shown easily with the help of equation
(2.21).

(2.31)

I,=

T

(2.32)

2.2.2. Equilibrium Conditions

We can now derive the equilibrium conditions (2.2) for a
general Darwin-Riemann configuration.

The first equilibrium condition, dE/dr = 0, gives a relation
between Q2 and 7, i.e., the modified Kepler’s law for the binary

GM + M)
T e

Q? 1+6+9)

1
= +p)1 + 6+ &)= ug(l + ;)(1 +6+5) (233
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(see eq. [1.7.6]), where we have defined

ur = GM'/r3, ur=GM/[r?, (2.34)
and
_E (14, — I35 — I33) ,_2(21'11"1'22”1133)
o= > Mr , 0= 2 M2 . (2.35)

Note that for Roche and (equal-mass) Darwin configurations,
Ch69 uses Q%= Q% =GM + M)/r* and Q? = Q%1 + §),
respectively, whereas our equation (2.33) gives Q% = Q2(1 + J)
and Q% = Q%(1 + 26). Our value of Q? is more accurate than
that used by Ch69 (see LRS1, Appendix C, for a complete
discussion). Moreover, in our treatment, there is no restriction
on the allowed ratio of M/M'.

The second condition, 0E/dp, = 0, leads to the virial relation
for the star of mass M,

3 GMM’
;U+W+2'1;=— R g, (2.36)
(cf. eq. [1.7.8]), where
R 2R
g'EMrS (2111_122—133)=§75- (2.37)

From equations (2.5), (2.6), and (2.36), the equilibrium mean
radius can be obtained as

— —n/(3—n)
R= Ro[f(zl, A»(l -2, ;1) - (53—1,")9] . @39)

where R, is the radius of the spherical polytrope,

o B (n + I)K n/(3 —n) M 1-n/3—-n)
= 210 (1 =n)/(3 —n)
Ro = &,(81161 ) |: yre y )

(2.39)

Clearly, the third condition 0E/dp. = O gives a similar expres-
sion for R,

T, s—n\ e
R’ = Rollf (i, A;>(1—2|W,|)—< ; )pg,] :

(2.40)

The fourth and fifth conditions, 0E/0A, = 0E/0A, =0,
together with the virial relation (2.36) can be written in the
form

=My +1;,(Q + 2up +2Q0,) + 1,,03%,

I

|l 3| 3|

|
Il
2

=y + 122(92 —ur —2Q0,) + IuQ% s

— irls; (2.41)
(see eq. [1.8.4]), where the Q; are given in equation (2.13). Here
we have introduced the potential-energy tensor

2

M= ——27:G[)A,~(%ﬁ> no summation  (2.42)
—hn
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(Ch69), such that W = ;. The quantity p = 3M/(4nR3) is the
mean density. The form of equations (2.41) is identical to that
of the corresponding equations for Roche-Riemann configu-
ratons (LRSI, § 8), but the expression for Q is different. Equa-
tions (2.41) and (2.42) can be used to obtain relations for the
principal axes

2 Q
qnﬁk{% a? +,|:2 +04+pl+6+0)+2 QLanf + ag}

R R
=2(aiA, — a3 43),

2 20,Q
q,,ﬁn{—Q2 al + [(1 +p1+6+8)—1- 20,0 ]a% + ag}
Hr Hr

=2a2 A, — a2 Ay) (243)

(see eqgs. [1.8.5], [1.8.6]), where we have defined

=x 1_2 ﬁ:”k
qn = Ky 5) =565

Using equations (2.13) and (2.33) we see that the quantities
02?/ug and Q, Q/ug appearing in equations (2.43) are given by

(2.44)

2
& _ 0214 p)1 + 6 + O\ S
Hr
.Q ”
22 _ 601+ P+ + ) fu, (245)
MR
where
2 2
A a? A aj
=4 - : 24
Ql a% + ag, Q2 a% + a; ( 6)

Here again, the two structure equations (2.43) are very similar
to those obtained in the Roche-Rieman case. The similarity
results from the fact that, to quadrupole order, each star acts
on the other like a point mass. The only real coupling is
through Q: in equations (2.43) and (2.45) we have the factor
(1 + & + &) instead of simply (1 + J) in the Roche-Riemann
case.

Finally, the last two conditions, 0E/0A, = 0E/0A, = 0, yield
two structure equations similar to equations (2.43) for the
other component,

: 1 .97, , s
qﬁ.ﬁ&ﬂ—,a’22+ 2+ 1+;(1+6+5’)+2 y: a? + af

R R
2 2
= 2(d{ A} — a3’ 4y),

2 1 2 , Q
4n ﬁk{—QZ,’ a + [(1 + —)(1 +6+8)—1— Q—}]a'; + a';}
Hr P Hr
= 2a? A} — afdy), (247)

where ¢, = k(1 — n'/5), fix = pr/(nGp’), and p' = 3M’/ (4nR’3).

The seven equations in (2.33), (2.38), (2.40), (2.43), and (2.47)
completely determine the equilibrium configurations. Once the
equilibrium values of the seven variables {o;} are determined,
the total equilibrium angular momentum can be obtained from
equations (2.19), (2.25), and (2.26). Using the virial relations (eq.
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[2.36] and the corresponding expression for M’), the total equi-
librium energy of the system can be written explicitly:

, 1 GMM'
Eeq=Es+Es+5urZQZ— .
2n+ 3\ GM’
—< 6 >r3 QL — 1, — I35)
2 + 3\ GM _ | , ,
—< 6 )r—3(2111_122“‘ 33), (2-48)
where
(3—n) GM? 3—-2n\ T,
E = — j, 1—- .
=o' G- (5 )| @9

and the expression for E is similar.

2.3. Construction of Equilibrium Sequences

For many astrophysical applications, it is useful to construct
sequences of equilibrium configurations with varying binary
separation. The onset of instabilities can often be determined
by locating turning points along such sequences (see § 3). In
addition, equilibrium sequences can sometimes be used to
describe approximately the orbital evolution of a system
driven by some dissipation mechanism (see § 6). Different types
of equilibrium sequences can be constructed depending on
which quantities are held constant along the squence.

A particularly useful dimensionless ratio that can be used to
parametrize an equilibrium sequence is

r

F=

it d (2.50)
Because a, and 4} can be double-valued functions of r in our
models, the quantity 7 does not, in general, specify uniquely the
absolute separation between the centers of mass of the two
components. Instead, it is a measure of how closely the surfaces
of the two ellipsoids approach each other. The usefulness of the
definition (2.50) in practice lies in the existence of a unique
equilibrium solution for each value of 7 along the sequence. In
particular, the contact solution, corresponding to the point
along a sequence where the surfaces of two ellipsoids are first
touching, can be readily determined by setting 7 = 1. Physical
solutions require # > 1 in our models, since the energy function
is calculated for two ellipsoids that do not overlap. Therefore,
all our equilibrium sequences terminate at the contact solution.

2.3.1. Darwin-Riemann Sequences

Following traditional practice for sequences of classical
Riemann S-type and Roche-Riemann ellipsoids (Ch69), we
define a Darwin-Riemann sequence as a sequence of Darwin-
Riemann configurations along with the quantities fz and f¢
(see eq. [2.10]) are held constant. ,

Darwin-Riemann sequences are constructed as follows. We
adopt units such that G = M = R, = 1 and fix the values of
p = M/M’, Ry/Rj, (or, equivalently, K/K’), fg, and f along the
sequence. For each value of 1 <7 < oo, we solve the equi-
librium equations for the variables (X;) = (d,, 4,, 43, 4}, 43, @3),
where 4; = a;/(a, + a}) and d; = aj/(a, + a)). Specifically, we
solve the coupled set of algebraic equations numerically by a
Newton-Raphson iteration method. The following six func-
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tions must vanish simultaneously:
F,=a,+a,—1,
R a\a,ay
F; = LHS (eq. [2.43a]) — RHS (eq. [2.43a]), (2.51)

F, = LHS (eq. [2.43b]) — RHS (eq. [2.43b]),
Fy = LHS (eq. [247a]) — RHS (eq. [2.47a]) ,
F¢ = LHS (eq. [247b]) — RHS (eq. [2.47b]),

with R, R’ given by eqs. [2.38] and [2.40]. We use the standard
Newton-Raphson algorithm described by Press et. al. (1987),
except that here the matrix (0F /0X;) needed in every Newton-
Raphson iteration must be evaluated numerically by finite dif-
ference. An equilibrium solution can be calculated to an
accuracy of da;/a; <1073 in ~1 CPU second on a Sun
SPARC workstation. We start the calculation for a large value
of 7, so that spherical stars can be used as an initial guess. As 7
is decreased, we use as an initial guess the equilibrium solution
determined for a slightly larger 7. Once the principal axes are
determined, other physical quantities such as E, J, and Q can
then be calculated using the expressions given in § 2.2.
From equation (2.29), we can easily prove that the relation

dE = QdJ + Ad% + N d%’ (2.52)

(see LRS1, Appendix D), must be satisfied along any equi-
librium sequence. This provides a convenient check on our
numerical results. In particular, for synchronized sequences
(A = A’ =0) and constant-circulation sequences (see below),
we must have dE = QdJ (see Ostriker & Gunn 1969).

2.3.2. Compressible Darwin Sequences

The classical Darwin problem (Ch69) concerns two identical,
incompressible objects (n = 0) in a synchronized (uniformly
rotating) system. Here we generalize the classical Darwin con-
figurations by allowing for compressibility as well as noniden-
tical components. The synchronized Darwin sequences can be
constructed as a special case of the general Darwin-Riemann
sequences where we set fp =fr =0. In this case we have
A=A =0, and there are no internal fluid motions in the
corotating frame of the binary. As an illustration, Figure 1
shows the variation of the total equilibrium energy E (eq.
[2.48]), total angular momentum J, and orbital frequency Q
along selected Darwin sequences. Note that the kinetic energy
(eq. [2.32]) for Darwin configurations can be written simply

. 1 2 nNO2 — J_2 -
T 2(;¢r +1+1Q W+ I1T)

Synchronization can be achieved in close binaries if there is a
large enough effective viscosity to maintain the tidal coupling
between the spins and orbital motion. This is expected to be
the case for the majority of close binaries with the possible
exception of double neutron star systems (see § 4.3). If there is
another dissipation mechanism, e.g., gravitational radiation,
that drives orbital decay on a timescale much longer than the
viscous dissipation timescale, then we can expect the system to
evolve along a synchronized equilibrium sequence (see § 6).

(2.53)

2.3.3. Constant-Circulation Sequences

In the opposite limit, when viscosity is completely negligible,
a system whose orbit is decaying because of gravitational radi-
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FiG. 1.—Equilibrium curves of total energy E, angular momentum J, and
orbital angular velocity Q as a function of r along selected Darwin-Riemann
sequences. All sequences have K =K', n=n'"=15 and fy=f=0
(synchronized spins). Curves corresponding to different values of the mass
ratio p = M/M' are shown: p = 1 (solid lines), p = 0.8 (dotted lines), p = 0.6
(short-dashed lines) and p = 0.5 (long-dashed lines). To obtain convergence of
all the curves at large r, the units of energy and angular momentum are chosen
to be E, = GMM'/(R, + Rp) and J, = [GM2M'*(R,, + Rp)/(M + M')]'/, The
quantities  E_, = —[(3 — n)/(5 — mJGM?*/R, — [(3 — m)/(5 — n)IGM"*/R;,
and Q2 = G(M + M')/r® have been subtracted for convenience.

ation evolves along a sequence of configuration with constant
% and €'. This is because the gravitational radiation reaction
forces conserve the fluid circulation (Miller 1974). Constant-
circulation sequences may describe the orbital evolution of
coalescing neutron star binaries (Kochanek 1992).

The value of € is set by the spin angular frequency Q of M
when the binary separation is large, and likewise for ¢’. From
equation (2.33) we see that, for large r, we may set
Q2 = G(M + M’)/r3, and we then have

Jour*Q —IA — I'N' = pr®Q + 1Q, + I'Q,
€—IA=—IQ,,
@ >IN =—IQ, (2.54)

(cf. egs. [2.19] and [2.20]), where we have identified Q, =
—A(r = ) and Q, = —A'(r = o0). Note that when Q; is posi-
tive (i.e., the spin is in the same direction as the orbital Q), ¥ is
negative.

A particularly interesting special case is the so-called irrota-
tional Darwin-Riemann sequence, for which ¢ = ¢’ = 0. From
equation (2.15), we see that f = fr = —2 are also constant
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along such a sequence. This corresponds to the case where the
stars have negligible spin at large r and evolve in the absence
viscosity.

In general f; and f} vary along the constant-circulation
sequences. Numerically, for given 7, eight variables are now
required to specify an equilibrium solution: the six variables X;
introduced previously plus f; and fz. Two more functions need
to be set equal to zero in the Newton-Raphson scheme:

1
Fy= (‘ o K,,M>1ta1a2(2 +/RQ-F,

1
Fy= (- = M’)na’la’z(Z FfQ—-% (255

(cf. egs. [2.15] and [2.20]).
2.3.4. Sequences with Constant Angular Momentum

Since viscous dissipation conserves the total angular
momentum, a binary system evolving through viscosity only
will follow a sequence of configurations with constant J. Note
that, for a given value of J, the equilibrium sequence is not
uniquely determined, since the two stars can have different
spins to give the same total angular momentum. However, if
initial values of ¥ and ¥’ (or fg and f3) are specified, then a
unique sequence with J = constant starting from those initial
values can be constructed, provided that we know the energy
dissipation rate due to viscosity. Constant-J sequences are dis-
cussed in more detail in § 6.2.2.

2.3.5. Asymptotic Solutions for Large r

Explicit solutions of our equations can be obtained analyti-
cally in the limit where r > R, + Ry. The results are sum-
marized in Appendix A for several types of equilibrium
sequences. The asymptotic solutions for large r have been used
in LRS3 to calculate the lowest order deviations from the
point-mass results for the gravitational radiation waveforms
emitted during the coalescence of two neutron stars.

3. STABILITY LIMITS AND ROCHE LIMITS

3.1. Secular and Dynamical Stability Limits

In general, stability requires that an equilibrium con-
figuration correspond to a true minimum of the total energy
E(ay, ay, ...; M, J, ..)), ie., that all eigenvalues of the matrix
(0*E/0a; daj),, be positive. The onset of instability along any
one-parameter sequence of equilibrium configurations can be
determined from the condition

2
det oE =0,
00; 0t/ o

(LRS1, § 2.3). When this condition is satisfied, one of the eigen-
values must change sign. It may then become possible for the
system to further minimize its energy by evolving away from
the equilibrium configuration considered.

As discussed in LRS1 (§ 2.4), the nature of the instability
depends on the type of perturbation considered about equi-
librium. A dynamical instability can develop only when J, €,
and €' are all conserved by the perturbation; a secular insta-
bility requires viscous dissipation, which conserves only J.
Mathematically, we locate the point of onset of dynamical
instability by evaluating the second derivatives in equation
(3.1) hold J, %, and €’ all fixed. If instead we evaluate equation
(3.1) by fixing J alone, then we locate the point of onset of

i,j=1,2,...(onset of instability) (3.1)
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secular instability. For general Darwin-Riemann configu-
rations, there are 28 independent matrix elements that need to
be evaluated in equation (3.1). They are listed in Appendix B.

Alternatively, we can show that the stability limits deter-
mined from equation (3.1) coincide with turning points along
appropriately constructed equilibrium sequences (LRS1, § 2.3).
Specifically, a dynamical stability limit coincides with the point
where the total equilibrium energy and angular momentum are
both minimum along a constant-circulation sequence. A
secular stability limit coincides with similar minima appearing
along a synchronized sequence. Note that the minima in E and
J must coincide along synchronized or constant-circulation
sequences since dE = Q dJ along such sequences (see eq. [2.52]
and Appendix D of LRS1).

Nonsynchronized configurations can never be true equi-
libria in the presence of viscosity. Therefore we consider only
dynamical stability along constant-circulation sequences. A
minimum of E and J at some r = r,, along these sequences
indicates the onset of dynamical instability. Indeed, atr = r,,,, it
becomes possible for a small dynamical perturbation of the
system (which conserves ¥ and %’) to cause no first-order
change in the total equilibrium energy or angular momentum.
This indicates a change of sign in the eigenfrequency w? associ-
ated with the perturbation (see, e.g., Shapiro & Teukolsky
1983, Chapter 1).

Along synchronized equilibrium sequences, both secular and
dynamical stability limits can exist. A minimum of E and J
along these sequences marks the onset of secular instability. In
the presence of viscosity, configurations with r < r,, will be
driven away from synchronization in order to minimize their
energy (see § 6). The instability at r = r,, cannot be dynamical
here because the neighboring configurations along the
sequence are still in uniform rotation and cannot be reached by
a small perturbation unless viscosity is present. True dynami-
cal instability along a synchronized sequence can occur at
some r < r,, where neighboring configurations with the same
values of € and ¥’ can be reached with no change in total
equilibrium energy to first order. In practice, to obtain the
dynamical stablity limit along a synchronized sequence para-
metrized by 7, we can proceed as follows. At every 7, we calcu-
late the equilbrium energy of the synchronized configuration
E(7) and the corresponding values of %, ¢’. We then construct
a neighboring equilibrium model, with 7 larger by a small
increment A7, having the same values of ¢ and %', and obtain
its energy Eeq(f + A7). The onset of dynamical instability is
then located where [E . (f + A7) — E . (f)]/A? = 0.

We can use either the determinant equation (3.1) or the
turning point method to locate the critical instability points
along an equilibrium sequence. The two methods are mathe-
matically equivalent (see LRS1, § 2.3). In many cases we have
used both criteria to verify the numerical accuracy of our iden-
tifications.

To illustrate these points, consider an example where the
binary contains two identical components with n =20
(incompressible fluid). We show in Figure 2 how the total equi-
librium energy E., varies along the synchronized sequence, as
well as several sequences with constant circulation. The
minimum of E(r) along the synchronized sequence indicates
the onset of secular instability, while the minima along the
constant-circulation curves correspond to the onset of dynami-
cal instability. We see that there is a unique point on the syn-
chronized sequence at which the constant-circulation curve
that intersects it attains a minimum. This point corresponds to
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F16. 2—Equilibrium curves of total energy as a function of binary separa-
tion along selected Darwin-Riemann sequences containing two identical com-
ponents with n = 0. The solid line is for the synchronized sequence, the dotted
lines are for constant-circulation sequences with, from top to bottom,
2€/(GM3Ry)'? = —0.32, —0.2832, —0.16, and 0, corresponding to
Q/(GM/R3)'? = 0.4,0.354,0.2, and 0. The sequence having 26/(GM3R,)!/? =
—0.2832 (slightly thicker dotted line) has an energy minimum located precisely
on the synchronized sequence. This point (solid circle) marks the onset of
dynamical instability along the synchronized sequence. The energy minima
mark the onset of secular instability along the synchronized sequence and
dynamical instability along the constant-# sequences. The thick dashed line
connects the dynamical stability limits of all constant-¢ sequences. It rep-
resents the boundary of the region containing dynamically stable equilibrium
configurations in the (E, r) plane.

o

the onset of dynamical instability along the synchronized
sequence.

3.2. Roche Limits and Contact Configurations

When the masses of the two binary components are differ-
ent, a Roche limit may exist prior to contact along an equi-
librium sequence. Recall that we define contact simply as the
point where the surfaces of the two ellipsoids first touch. The
Roche limit in our ellipsoidal models is defined as the point
where the binary separation r has a minimum value below
which no equilibrium solution exists. At the Roche limit, the
slope of the E, (r) curve becomes infinite (see Fig. 1). This
behavior is somewhat artificial, resulting probably from the
truncation of the interaction potential to quadrupole order.
The same effect can be seen, but less marked, even in fully
numerical solutions going to much higher order but still
retaining only a finite number of terms in the multipole expan-
sion of the interaction potential (see § 5).

Equilibrium solutions continue to exist beyond the Roche
limit (at smaller 7) in some of our models. This second branch
of solutions beyond the Roche limit is clearly unphysical since
it has higher energy than the main equilibrium branch for the
same value of J. The equilibrium configurations beyond the
Roche limit must therefore be at least secularly unstable (see
§ 6). Indeed, we note that the Roche limit itself must already be
situated beyond the point where E and J are minimum, indi-
cating instability.

Equilibrium sequences for systems with a mass ratio
p = M/M’ sufficiently close to unity may terminate at 7 = 1,
i.e.,, reach contact, before encountering a Roche limit. We do
not know if this has any physical significance. Clearly, equi-
librium sequences for real systems with p # 1 always terminate
at the onset of Roche lobe overflow and mass transfer. This
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could most naturally be associated with the Roche limit as we
define it here. It may be that our contact equilibrium solutions
with p # 1 correspond to true asymmetric contact configu-
rations that can be reached, e.g., after a brief episode of mass
transfer in a semidetached system. However, confirmation of
this must await more detailed numerical hydrodynamics calcu-
lations including the treatment of mass transfer.

3.3. General Classification of the Equilibrium Sequences

Depending on the masses, radii, and polytropic indices of
the two components, different behaviors are possible for the
equilibrium sequences near contact. We summarize all possible
types of behaviors for a synchronized system in Figure 3, where
we show schematically the equilibrium energy curves E,(r),
along which we located the points of secular instability,
dynamical instability, and the Roche limit. As discussed above,
along such synchronized sequences, the energy minimum cor-
responds to the onset of secular instability, while the point of
minimum r corresponds to the Roche limit.

Six different possible behaviors can be distinguished.

(a) The binary encounters no stability or Roche limit prior
to contact; hence, stable equilibrium solutions exist all the way
to contact.

(b) The binary encounters a secular stability limit prior to
contact but no dynamical stability or Roche limit. Beyond the
secular stability limit, the system becomes unstable on the
viscous dissipation timescale, but all equilibrium solutions are
dynamically stable.

(c) The binary encounters a secular stability limit and a
Roche limit before contact, but not a dynamical stability limit.
The binary at the Roche limit is secularly unstable but dynami-
cally stable.

(d) The binary encounters a secular stability limit and a
dynamical stability limit prior to contact but not a Roche limit.
The system becomes secularly unstable first, then dynamically
unstable.

(e) The binary encounters a secular stability limit, a dynami-
cal stability limit, and a Roche limit prior to contact. The
binary becomes dynamically unstable before the Roche limit is
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reached, and thus a binary at the Roche limit is dynamically
unstable.

(f) The binary encounters a secular stability limit, a Roche
limit, and a dynamical stability limit prior to contact. The
Roche limit is reached prior to the dynamical stability limit.
The binary at the Roche limit is secularly unstable but dynami-
cally stable.

The situation for equilibrium sequences with constant circu-
lation is simpler. In this case, the minimum of E,(r) corre-
sponds to the dynamical stability limit. The different behaviors
can then be summarized as in Figures 3a-3c. In Figure 3a,
equilibrium solutions all the way to contact are dynamically
stable; in Figure 3b a dynamical instability is encountered
prior to contact; in Fig. 3¢ the binary first encounters a
dynamical stability limit and then a Roche limit prior to
contact.

4. APPLICATIONS

In this section, we show how the general Darwin-Riemann
configurations for polytropes can be used to construct simple
models for a variety of different astrophysical systems. We
exploit the freedom to assign different polytropic indices n and
n’ and different constants K and K’ for the two components.
The choice of n and n’ allows us to model the distribution of
mass inside each component independently, while the choice of
K and K’ allows us to mimic different types of realistic mass-
radius relations (see eq. [2.39]).

4.1. Models with K = K': Low-Mass W hite Dwarfs and Planets

Low-mass white dwarfs with 1072 <« M/My < 1 are sup-
ported by degenerate pressure from nonrelativistic ideal elec-
trons (see, e.g., Shapiro & Teukolsky 1983). In this mass range,
the equation of state is that of a polytrope with n = 1.5 and
K =1.0036 x 10'3/u3"® (cgs), where u, = (A/Z) is the mean
molecular weight per electron, A is the atomic weight, and Z is
the atomic number; both n and K are independent of mass.
Thus, for a binary consisting of two white dwarfs with masses
M and M’ in this range, the ratio of the stellar radii is Ro/R, =
(M/M/)(l —n)/(3—-n) _ (M/M’)_ 1/3.

(a) (b) (c)
.
[£3}
(d) (e) ()

r

F1G. 3—General classification of equilibrium sequences according to terminal configurations and stability limits. The existence and ordering of the secular
stability limits (circles), dynamical stability limits (squares), and Roche limits (triangles) is shown schematically along equilibrium energy curves. The curves terminate

at the contact solution.
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Models with K = K’ can also be applied crudely to cold
objects with sufficiently low mass, M < 103 M, (Zapolsky &
Salpeter 1969; Lai, Abrahams, & Shapiro 1991), such as
planets and their satellites. For these objects, solid state
(Coulomb) forces render the equation of state quite stiff and the
density near uniform, i.e., the configurations are nearly incom-
pressible with n ~ 0. Thus, for binary systems containing these
objects, we can take Ry/Ry = (M/M")'73,

Some equilibrium properties for systems with K = K’ were
shown in Figure 1. The systems are assumed to be synchro-
nized (fgy =fr =0), and have n = n’ = 1.5. Different curves
correspond to different mass ratios: p = 1, 0.8, 0.6, and 0.5. All
sequences terminate at contact, where 7 = 1. We see that for
n= 1.5, all sequences encounter a secular stability limit
(minimum of E and J) prior to contact. When M and M’ are
sufficiently different, a Roche limit is found prior to contact.

In Table 1 we present selected equilibrium sequences for
synchronized Darwin-Riemann binaries with K = K’ and
n=n'. Each sequence is parametrized by monotonically
decreasing values of the parameter 7 (see eq. [2.50]). All
sequences terminate at contact ( = 1) or at the Roche limit.
For each equilibrium solution, we list various physical proper-
ties of interest, including the ratios a,/a,, as/a,, R/R,, and the
quantities

ot -2 gy __J
S Ro+ R, T (WG T (GMER)
- E
E=—rrrs—r0, 4.1
GM/Ry) @0

where p = M/(4nR3/3).

The three critical points, i.e., the secular stability limit r,,,,
the dynamical stability limit r,,,, and the Roche limit ry,,
along an equilibrium sequence can be calculated using the
method discussed in § 3. In Table 2 we give some results for the
synchronized configurations (fg = fx = 0) withn=n'=0,0.5,
1.5, 2.5. Several different values of p = M/M'’ are considered for
each n. At each of these critical points, various physical quan-
tities are given. Note that for given n and p, not all of these
critical points exist prior to contact. When they do exist, we list
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them in the order of decreasing 7. As noted before, along an
equilibrium sequence, # monotonically decreases, whereas r
can increase beyond the Roche limit. Therefore the critical
point with larger 7 occurs prior to that with smaller 7. The
existence of these critical points and the order of their appear-
ance (see Fig. 3) depend on the values of n and p.

Consider the two interesting cases with n =0 and n = 1.5.
For the n = 0 case, both the secular and dynamical stability
limits always exist. When p < 0.79, a Roche limit also appears
prior to the Roche limit, except when p < 0.0042, for which a
Roche-Riemann model is well adequate to describe the binary
(see below). Now consider the n = 1.5 case. For p =1, only a
secular stability limit exists prior to contact. As the mass ratio
decreases to p < 0.76, a dynamical instability arises; when
p < 0.745, a Roche limit also appears. For 0.267 < p < 0.745,
the dynamical instability is encountered prior to the Roche
limit, but for p < 0.267, the Roche limit is encountered first.

To summarize, we show in Figure 4 (left) a p — n diagram,
distinguishing the different behaviors illustrated in Figure 3.
The figure treats synchronized configurations only. The
diagram was constructed as follows. For given n and p, we first
determine whether a critical point exists prior to contact. For
this we only need to solve for two neighboring equilibrium
configurations around 7 = 1 and compare the values of 7, E,
(or J,) for these two neighboring solutions (see § 3 and Fig. 3).
For example, if A7/A7 > 0 at 7 = 1, then a Roche limit does not
occur prior to contact; otherwise a Roche limit exists. When
the dynamical stability limit and the Roche limit both exist, we
need to determine which one occurs first by comparing the
values of # at which they occur. In Figure 4 (left), only the
boundary line between regions e and f requires solving for the
values of 74, and #,;,,. From Figure 4 (left), we see that for the
binaries to be dynamically stable at the Roche limit, the stars
must be sufficiently compressible (large n), or the masses of the
two components must be significantly different. Moreover, as
n — 3, a Roche limit always occurs before contact.

A similar diagram for irrotational configurations with
K = K’ is shown in Figure 5 (top). Here the Roche limit con-
figuration, if it exists at all, is always dynamically unstable.
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FIG. 4—Diagrams distinguishing the different regimes illustrated in Fig. 3 for synchronized models with (left) K = K’ (low-mass white dwarfs and planets),
(center) Ro/Ry, = M/M’ (low-mass MS stars), and (right) R, = R}, (neutron stars and brown dwarfs). All models have n = n'.
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ﬁ: SEQUENCES OF COMPRESSIBLE DARWIN MODELS* WITH K = K’
1
e r e *  @/a  ojas R/Re a3/a; difa; R/Ry 0 J E
L
n=0 p=038
3.0 3.0459 0.9809 0.9702 1. 0.9847 0.9740 1. 0.1089 2.1913 -1.5645
2.5 2.5656 0.9673 0.9499 1. 0.9739 0.9562 1. 0.1410 2.0496 -1.5797
2.2 2.2841 0.9526 0.9285 1. 0.9621 0.9376 1. 0.1681 1.9686 -1.5905
2.0 2.1012 0.9375 0.9075 1. 0.9501 0.9192 1. 0.1909 1.9190 -1.5982
1.8 1.9239 0.9156 0.8779 1. 0.9328 0.8936 1. 0.2186 1.8762 -1.6058
1.6 1.7552 0.8825 0.8354 1. 0.9067 0.8571 1. 0.2523 1.8453 -1.6120
1.5 1.6755 0.8595 0.8073 1. 0.8888 0.8333 1. 0.2717 1.8371 -1.6139
1.4354* 1.6263 0.8414 0.7860 1. 0.8749 0.8153 1. 0.2852 1.8354 -1.6143
1.3 1.5308 0.7927 0.7310 1. 0.8382 0.7702 1. 0.3157 1.8448 -1.6118
1.2 1.4696 0.7432 0.6786 1. 0.8031 0.7294 1. 0.3397 1.8676 -1.6053
1.1674** 1.4520 0.7236 0.6585 1. 0.7900 0.7148 1. 0.3475 1.8791 -1.6019
1.0 1.3953 0.5693 0.5130 1. 0.7227 0.6428 1. 0.3826 1.9898 -1.5664
n=0, p=05
3.0 3.0463 0.9762 0.9653 1. 0.9881 0.9769 1. 0.1108 3.1942 -2.6422
2.5 2.5664 0.9593 0.9416 1. 0.9797 0.9612 1. 0.1434 2.9977 -2.6636
2.0 2.1026 0.9220 0.8920 1. 0.9613 0.9286 1. 0.1941 2.8223 -2.6888
1.8 1.9260 0.8944 0.8572 1. 0.9479 0.9061 1. 0.2221 2.7682 -2.6985
1.6 1.7585 0.8523 0.8069 1. 0.9280 0.8745 1. 0.2560 2.7334 -2.7056
1.5 1.6798 0.8228 0.7733 1. 0.9145 0.8541 1. 0.2754 2.7274 -2.7070
1.4913* 1.6732 0.8198 0.7699 1. 0.9131 0.8522 1. 0.2772 2.7274 -2.7070
14 1.6062 0.7848 0.7317 1. 0.8979 0.8302 1. 0.2964 2.7326 -2.7057
1.3 1.5398 0.7346 0.6793 1. 0.8780 0.8025 1. 0.3185 2.7531 -2.7002
1.2049** 1.4871 0.6695 0.6147 1. 0.8566 0.7741 1. 0.3394 2.7929 -2.6888
1.15 1.4646 0.6197 05674 1. 0.8449 0.7589 1. 0.3504 2.8286 -2.6781
1.0907*** 14533 0.5478 0.5014 1. 0.8369 0.7480 1. 0.3588 2.8839 -2.6611
n=0 p=0.2
3.0 3.0484 0.9654 0.9530 1. 0.9931 0.9799 1. 0.1192 6.5239 -9.6405
2.5 2.5697 0.9405 0.9209 1. 0.9882 0.9664 1. 0.1542 6.2472 -9.6728
2.2 2.2901 0.9132 0.8869 1. 0.9829 0.9522 1. 0.1835 6.1235 -9.6907
2.0 2.1093 0.8850 0.8531 1. 0.9775 0.9385 1. 0.2080 6.0732 -9.6992
1.8567* 1.9840 0.8568 0.8205 1. 0.9723 0.9256 1. 0.2285 6.0609 -9.7015
1.8 1.9358 0.8431 0.8051 1. 0.9698 0.9197 1. 0.2373 6.0631 -9.7010
1.6 1.7746 0.7778 0.7341 1. 0.9586 0.8940 1. 0.2719 6.1129 -9.6899
1.5 1.7020 0.7304 0.6851 1. 0.9515 0.8785 1. 0.2908 6.1688 -9.6762
14 1.6393 0.6667 0.6220 1. 0.9436 0.8618 1. 0.3096 6.2506 -9.6549
1.3246** 1.6038 0.6016 0.5598 1. 0.9380 0.8504 1. 0.3221 6.3313 -9.6328
1.3 1.5961 0.5757 0.5356 1. 0.9367 0.8474 1. 0.3253 6.3613 -9.6244
1.2621*** 1.5908 0.5288 0.4922 1. 0.9355 0.8447 1. 0.3286 6.4111 -9.6103
n=05 p=08
3.0 3.0367 0.9853 0.9769 1.0010 0.9893 0.9815 1.0009 0.1119 2.1535 -1.4826
2.5 2.5527 0.9747 0.9609 1.0017 0.9816 0.9687 1.0015 0.1453 2.0053 -1.4989
2.0 2.0817 0.9513 0.9267 1.0033 0.9647 0.9416 1.0029 0.1977 1.8623 -1.5199
1.8 1.9004 0.9339 0.9025 1.0046 0.9523 0.9225 1.0040 0.2272 1.8113 -1.5292
1.6 1.7263 0.9072 0.8669 1.0067 0.9336 0.8948 1.0056 0.2633 1.7689 -1.5382
1.5 1.6432 0.8885 0.8430 1.0082 0.9208 0.8765 1.0068 0.2844 1.7531 -1.5419
14 1.5639 0.8644 0.8134 1.0102 0.9046 0.8542 1.0083 0.3076 1.7427 -1.5446
1.3194* 1.5036 0.8398 0.7843 1.0125 0.8886 0.8328 1.0099 0.3278 1.7397 -1.5454
1.3 1.4896 0.8330 0.7764 1.0131 0.8843 0.8271 1.0103 0.3328 1.7399 -1.5453
1.2 1.4225 0.7909 0.7293 1.0172 0.8588 0.7948 1.0128 0.3597 1.7481 -1.5428
1.0787** 1.3561 0.7162 0.6516 1.0253 0.8212 0.7493 1.0169 0.3926 1.7813 -1.5320
1.0 1.3300 0.6410 0.5791 1.0347 0.7984 0.7225 1.0196 0.4105 1.8260 -1.5164
354
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TABLE 1—Continued

b F az2/ay asfey R/Ro a3/ay a3fay R'/R§ Q J E
n=05 p=05
3.0 3.0391 0.9796 0.9701 1.0011 0.9923 0.9850 1.0008 0.1199 3.0766 -2.6367
2.5 2.5562 0.9649 0.9494 1.0020 0.9869 0.9746 1.0014 0.1555 2.8721 -2.6608
2.0 2.0876 0.9322 0.9052 1.0040 0.9751 0.9528 1.0027 0.2112 2.6786 -2.6911
1.8 1.9082 0.9075 0.8737 1.0057 0.9666 0.9377 1.0036 0.2422 2.6121 -2.7041
1.6 1.7373 0.8694 0.8272 1.0085 0.9541 0.9163 1.0050 0.2799 2.5598 -2.71589
1.5 1.6568 0.8422 0.7955 1.0107 0.9458 0.9024 1.0059 0.3015 2.5423 -2.7202
1.4 1.5813 0.8067 0.7558 1.0138 0.9358 0.8862 1.0071 0.3248 2.5336  -2.7226
1.3763* 1.5644 0.7966 0.7448 1.0147 0.9331 0.8820 1.0074 0.3305 2.5332  -2.7227
1.3 1.5134 0.7589 0.7048 1.0183 0.9241 0.8678 1.0084 0.3491 2.5377 -2.7214
1.2 1.4584 0.6917 0.6370 1.0255 0.9119 0.8489 1.0099 0.3727 2.5614 -2.7139

1.1741%* 1.4476 0.6694 0.6153 1.0282 0.9090 0.8445 1.0103 0.3780 2.5723 -2.7103
1.1029** 1.4322 0.5926 0.5430 1.0385 0.9043 0.8365 1.0110 0.3886 2.6192  -2.6947

n=20.5 p=0.2

3.5 3.5376 0.9762 0.9675 1.0011 0.9975 0.9927 1.0005 0.1158 6.2701 -10.9014
3.0 3.0513 0.9623 0.9490 1.0017 0.9961 0.9886 1.0008 0.1446 5.9372 -10.9387
2.5 2.5746 0.9349 0.9138 1.0032 0.9935 0.9810 1.0014 0.1868 5.6233 -10.9832
2.2 2.2976 0.9045 0.8765 1.0049 0.9907 0.9731 1.0020 0.2218 5.4597 -11.0120
2.0 2.1198 0.8729 0.8391 1.0070 0.9879 0.9656 1.0025 0.2506 5.3711 -11.0301
1.8 1.9519 0.8252 0.7853 1.0104 0.9842 0.9555 1.0033 0.2844 5.3098 -11.0442
1.6375* 1.8286 0.7664 0.7225 1.0153 0.9804 0.9453 1.0041 0.3149 5.2910 -11.0489
1.6 1.8029 0.7491 0.7046 1.0170 0.9794 0.9428 1.0043 0.3221 5.2922 -11.0486
1.5 1.7426 0.6925 0.6477 1.0228 0.9768 0.9361 1.0049 0.3404 5.3092 -11.0437
1.4050** 1.7044 0.6191 0.5768 1.0317 0.9749 0.9309 1.0053 0.3541 5.3508 -11.0311
1.4 1.7032 0.6147 0.5726 1.0323 0.9749 0.9307 1.0054 0.3546 5.3540 -11.0302

1.3607*** 1.6985 0.5752 0.5355 1.0380 0.9746 0.9297 1.0054 0.3574 5.3835 -11.0211
n=15 p=0238

3.0 3.0245 0.9913 0.9863 1.0028 0.9956 0.9924 1.0018 0.1230 2.0585  -1.2546
2.5 2.5353 0.9851 0.9766 1.0049 0.9925 0.9870 1.0030 0.1603 1.9032 -1.2735
2.2 2.2456 0.9781 0.9660 1.0072 0.9890 0.9812 1.0044 0.1924 1.8078 -1.2880
2.0 2.0552 0.9709 0.9552 1.0097 0.9855 0.9753 1.0059 0.2198 1.7443  -1.2993
1.8 1.8684 0.9601 0.9394 1.0135 0.9804 0.9668 1.0080 0.2537 1.6822  -1.3120
1.6 1.6869 0.9433 09155 1.0196 0.9727 0.9543 1.0112 0.2962 1.6238  -1.3259
1.5 1.5993 0.9312 0.8989 1.0242 0.9674 0.9458 1.0135 0.3212 1.5972 -1.3329
1.4 1.5146 0.9153 0.8777 1.0304 0.9608 0.9354 1.0164 0.3491 1.5737 -1.3398
1.3 1.4342 0.8940 0.8502 1.0392 0.9525 0.9227 1.0201 0.3798 1.5546 -1.3458
1.2 1.3599 0.8645 0.8138 1.0520 0.9424 0.9073 1.0247 0.4130 1.5423  -1.3500
1.1406* 1.3201 0.8410 0.7861 1.0628 0.9354 0.8970 1.0280 0.4331 1.5400 -1.3508
1.0 1.2518 0.7531 0.6901 1.1090 0.9198 0.8739 1.0359 0.4753 1.5618  -1.3421
n=15 p=0.5
3.0 3.0366 0.9827 0.9746 1.0047 0.9979 0.9958 1.0011 0.1574 2.7593 -2.7676
2.5 2.5532 0.9701 0.9566 1.0084 0.9965 0.9930 1.0019 0.2042 2.5560  -2.7992
2.2 2.2695 0.9560 0.9372 1.0127 0.9949 0.9899 1.0027 0.2438 2.4330  -2.8229
2.0 2.0851 0.9413 09174 1.0173 0.9934 0.9870 1.0035 0.2770 2.3527  -2.8410
1.8 1.9073 0.9192 0.8885 1.0247 0.9913 0.9829 1.0047 0.3170 2.2767  -2.8605
1.7 1.8222 0.9037 0.8690 1.0302 0.9900 0.9803 1.0054 0.3399 2.2418  -2.8704
1.6 1.7408 0.8840 0.8448 1.0375 0.9884 0.9773 1.0063 0.3645 2.2103  -2.8800
1.5 1.6649 0.8582 0.8142 1.0477 0.9867 0.9739 1.0073 0.3905 2.1840  -2.8886
1.4 1.5973 0.8237 0.7750 1.0625 0.9848 0.9703 1.0083 0.4168 2.1660 -2.8949
1.3267* 1.5563 0.7905 0.7387 1.0780 0.9834 0.9676 1.0091 0.4349 2.1611 -2.8966
1.3 1.5439 0.7763 0.7235 1.0852 0.9830 0.9668 1.0094 0.4408 2.1619  -2.8963

1.1973** 1.5178 0.7056 0.6513 1.1247 0.9820 0.9646 1.0101 0.4560 2.1855  -2.8871
1.1939*%**  1.5178 0.7027 0.6485 1.1265 0.9820 0.9646 1.0101 0.4562 2.1871  -2.8865

2 Here p = M/M'; 7 = r/(a, + a,); 7, Q, J, and E are defined by eq. (4.1); R = (a,a, a;)'’3, R, is defined by eq. (2.39), and
similarly for R’ and Ry,
b An asterisk (*) marks the secular stability limit, (++) the dynamical stability limit, and (**+) the Roche limit.
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TABLE 2
CRITICAL POINTS ALONG COMPRESSIBLE DARWIN SEQUENCES* WITH K = K’

P P 7 az2fa1  asfay R/Ro a3fa; a3fa; R'/R; Q J E
n=20 )
1 sec 1.4293 1.6211 0.8573 0.7995 1. 0.8573 0.7995 1. 0.2861 1.5233  -1.3203
dyn 1.1622 1.4473 0.7556 0.6853 1. 0.7556 0.6853 1. 0.3488 1.5599 -1.3098
0.8 sec 14354 1.6263 0.8414 0.7860 1. 0.8749 0.8153 1. 0.2852 1.8354 -1.6143
dyn 1.1674 1.4520 0.7236 0.6585 1. 0.7900 0.7148 1. 0.3475 1.8791 -1.6019
0.5 sec 14913 1.6732 0.8198 0.7699 1. 0.9131 0.8522 1. 0.2772  2.7274  -2.7070
dyn 1.2049 1.4871 0.6695 0.6147 1. 0.8566 0.7741 1. 0.3394 2.7929  -2.6888
lim 1.0907 1.4533 0.5478 0.5014 1. 0.8369 0.7480 1. 0.3588 2.8839 -2.6611
0.2 sec 1.8567 1.9840 0.8568 0.8205 1. 0.9723 0.9256 1. 0.2285 6.0609 -9.7015
dyn 1.3246 1.6038 0.6016 0.5598 1. 0.9380 0.8504 1. 0.3221 6.3313  -9.6328
lim 1.2621 1.5908 0.5288 0.4922 1. 0.9355 0.8447 1. 0.3286 6.4111 -9.6103
n=205
1 sec 1.3125 1.4961 0.8641 0.8078 1.0112 0.8641 0.8078 1.0112 0.3221 1.4553  -1.2425
dyn 1.0573 1.3386 0.7609 0.6909 1.0218 0.7609 0.6909 1.0218 0.3916 1.4949 -1.2298
0.8 sec 1.3194 1.5036 0.8398 0.7843 1.0125 0.8886 0.8328 1.0099 0.3278 1.7397 -1.5454
dyn 1.0787 1.3561 0.7162 0.6516 1.0253 0.8212 0.7493 1.0169 0.3926 1.7813 -1.5320
0.5 sec 1.3763 1.5644 0.7966 0.7448 1.0147 0.9331 0.8820 1.0074 0.3305 2.5332  -2.7227
dyn 1.1741 1.4476 0.6694 0.6153 1.0282 0.9090 0.8445 1.0103 0.3780 2.5723 -2.7103
lim 1.1029 1.4322 0.5926 0.5430 1.0385 0.9043 0.8365 1.0110 0.3886 2.6192 -2.6947
0.2 sec 1.6375 1.8286 0.7664 0.7225 1.0153 0.9804 0.9453 1.0041 0.3149 5.2910 -11.0489
dyn 1.4050 1.7044 0.6191 0.5768 1.0317 0.9749 0.9309 1.0053 0.3541 5.3508 -11.0311
lim 1.3607 1.6985 0.5752 0.5355 1.0380 0.9746 0.9297 1.0054 0.3574 5.3835 -11.0211
0.1 sec 2.0668 2.2245 0.8161 0.7785 1.0105 0.9939 0.9726 1.0024 0.2790 9.3721 -36.2146
dyn 1.6189 1.9497 0.5946 0.5569 1.0340 0.9905 0.9583 1.0037 0.3437 9.5381 -36.1677
lim 1.5908 1.9474 0.5686 0.5324 1.0378 0.9905 0.9580 1.0037 0.3449 9.5617 -36.1606
n=15
1 sec 1.1002 1.2742 0.8854 0.8344 1.0470 0.8854 0.8344 1.0470 0.4079 1.3202 -1.0152
0.8 sec 1.1406 1.3201 0.8410 0.7861 1.0628 0.9354 0.8970 1.0280 0.4331 1.5400 -1.3508
0.75 sec 1.1621 1.3454 0.8319 0.7771 1.0658 0.9464 0.9119 1.0238 0.4353 1.6124 -1.4812
dyn 1.0059 1.2805 0.7241 0.6622 1.1242 0.9349 0.8939 1.0299 0.4761 1.6437 -1.4686
0.7 sec 11869 1.3756 0.8232 0.7686 1.0685 0.9561 0.9256 1.0201 0.4365 1.6942 -1.6422
dyn 1.0385 1.3174 0.7204 0.6600 1.1243 0.9484 0.9128 1.0243 0.4723 1.7236 -1.6304
lim 1.0304 1.3171 0.7121 0.6517 1.1295 0.9483 0.9126 1.0244 04730 1.7280 -1.6286
0.5 sec 1.3267 1.5563 0.7905 0.7387 1.0780 0.9834 0.9676 1.0091 0.4349 2.1611 -2.8966
dyn 1.1973 1.5178 0.7056 0.6513 1.1247 0.9820 0.9646 1.0101 0.4560 2.1855 -2.8871
lim 1.1939 1.5178 0.7027 0.6485 1.1265 0.9820 0.9646 1.0101 0.4562 2.1871 -2.8865
0.4 sec 1.4333 1.7008 0.7740 0.7242 1.0827 0.9913 0.9813 1.0056 0.4312 2.5388  -4.4349
lim 1.3093 1.6700 0.6978 0.6467 1.1250 0.9908 0.9801 1.0060 0.4468 2.5613 -4.4263
dyn 1.3087 1.6700 0.6974 0.6463 1.1253 0.9908 0.9800 1.0060 0.4468 2.5615 -4.4262
n=25
0.95 sec 1.0409 1.2380 0.9140 0.8731 1.1767 0.9668 0.9467 1.0650 0.4774 1.2311 -0.6587
0.9 sec 11319 1.3396 0.9089 0.8675 1.1844 0.9833 0.9721 1.0327 0.4787 1.2697 -0.7523
lim 1.0487 1.3191 0.8772 0.8271 1.2654 0.9823 0.9705 1.0348 0.4915 1.2795 -0.7482
0.8 sec 13056 1.5669 0.9022 0.8608 1.1912 0.9956 0.9923 1.0089 0.4776 1.3758 -1.0505
lim 1.2153 1.5487 0.8737 0.8252 1.2623 0.9955 0.9920 1.0093 0.4875 1.3842 -1.0470
dyn 1.0681 1.6496 0.7924 0.7321 1.5157 0.9963 0.9934 1.0078 0.4478 1.4714 -1.0114
0.7 sec 14774 1.8158 0.8962 0.8553 1.1956 0.9990 0.9981 1.0023 0.4752 1.5181 -1.6605
lim 1.3795 1.7990 0.8701 0.8232 1.2591 0.9989 0.9981 1.0023 0.4830 1.5256 -1.6574
dyn 1.1954 1.9097 0.7902 0.7326 1.5015 0.9991 0.9984 1.0020 0.4456 1.6144 -1.6215

* Here p = M/M'; 7 = r/(a, + a}); 7, Q, J, and E are defined by eq. (4.1); R = (a,a, a,)'’, R, is defined by eq. (2.39), and similarly for
R’ and Ry, The three critical points are secular stability limit (“ sec ), dynamical stability limit (“dyn ”), and Roche limit (“ lim ).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...423..344L

CLOSE BINARY SYSTEMS 357

1 T T T T T T T T T T T T T

0.9

0.8

0.7

RENLA L L B S L L B L P

Q
co v v b by g B

M/M

p:

0.8

0.6

0.4

1*[||x]|rl‘r‘|*lT".

o
—

F1G. 5—Same as Fig. 4, but here for irrotational configurations (fy = f =
—2) with (top) K = K’ and (bottom) R, = R}, all withn = n'.

When K = K’, the less massive component always suffers
a larger tidal deformation. This can be seen from Table 1 by
comparing the axis ratios of the two components (e.g., a,/a; vs.
d,/d;). When p = M/M’ is sufficiently small, the more massive
star suffers little tidal deformation and can be treated as a
point mass. The binary can then be modeled as a Roche-
Riemann configuration (see § 4.4).

4.2. Models with R,/Ry = M/M': Low-Mass
Main-Sequence Stars

Low-mass main-sequence (MS) stars with 0.1 Mo <M <
0.8 M, have extensive convective envelopes and can be
modeled approximately as polytropes with n ~ 1.5-3. For ref-
erence, we have constructed polytropic models of low-mass,
Population IT MS stars by simply matching the radius and
ratio of central to mean density obtained in detailed stellar
structure calculations (D’Antona 1987). In Table 3 we list the
radii and effective n obtained for different masses. The mass-

TABLE 3
PoLYTROPIC MODEL FOR LOw-MAss
MS STArs®
M[Mo R/Ro ney  kn
0.70 0.658 2.82 0.2192
0.60 0.519  2.27 0.3246
0.50 0.413 1.66  0.4697
0.40 0.353  1.56  0.4953
0.30 0.279 1.56  0.4953
0.25 0.238 1.56  0.4953
0.20 0.191 1.54 0.5006
0.15 0.141 1.52  0.5059
0.11 0.093 1:38  0.5437

2 Based on D’Antona 1987.

radius relation can be fitted approximately by a power-law
relation R, oc M? with a ~ 0.8-1. Here, for simplicity, we
adopt « = 1, and we model the stars as polytropes with n = n’
and with K and K’ adjusted to obtain Ry/Ry, = M/M'. We
assume synchronization, since the effective viscosity in convec-
tive envelopes is very large (Zahn 1977).

In Figure 4 (center), we show the p —n diagram dis-
tinguishing the different types of equilibrium sequences for this
model. In particular for n = 1.5, we find that secular instability
always sets in prior to contact or the Roche limit. When
p < 0.56, dynamical instability can also arise. These results are
only partially confirmed by more accurate, fully numerical cal-
culations, which indicate that Roche lobe overflow occurs
before any instability when the mass ratio p is sufficiently close
to unity (see § 5). Dynamical instabilities in models with
n =n' = 1.5 have been identified in fully numerical solutions,
but only for equilibrium configurations where the two stars are
in deep contact (see Rasio 1994; Rasio & Shapiro 1994).

4.3. Models with R, = Ry,: Neutron Stars and Brown Dwarfs

The internal structure of neutron stars is determined by the
nuclear equation of state (EOS) (see, e.g., Shapiro & Teukolsky
1983). They are generally characterized by a very stiff poly-
tropic index n ~ 0.5-1 for masses well above the minimum
mass (M 2 0.1 M,). For many realistic EOS, the stellar radius
is not very sensitive to the mass for an appreciable mass range.
For example, the recent nuclear EOS of Wiringa, Fiks, & Fab-
rocini (1988) gives a value of R, ~ 10 km almost independent
of the mass for 0.8 Mg S M < 1.5 M. Thus, for a simple
description of binary neutron stars we can adopt Ry/Ry = 1
andn =n' ~ 0.5-1.

For brown dwarfs with 0.001 < M/M < 0.08, the depen-
dence of radius on mass is also very weak (Zapolsky & Salpeter
1969; Lai et al. 1991; Burrows & Liebert 1993). Therefore,
models with R,/Ry = 1 can also be used to describe approx-
imately brown dwarf binaries, although here n < 1.5.

Figure 4 (right) shows the p — n diagram for synchronized
configurations with Ry/Ry = 1 and n = n'. The similarity with
Figure 4 (left) is expected since here also the more massive star
suffers less tidal deformation (see § 4.5). Figure 5 (bottom)
shows the analogous diagram for irrotational configurations.

The evolution of most close binary systems that are
observed may be tracked along sequences of synchronized
equilibrium configurations. But this may not be true for
neutron star binaries undergoing orbital decay due to gravita-
tional radiation emission (Bildsten & Cutler 1992; Kochanek
1992). In this case, the viscous dissipation time may never be
small enough to achieve synchronization. Therefore, binary
neutron stars may actually evolve along irrotational equi-
librium sequences (Kochanek 1992). We see from Figure 5
(bottom) that all irrotational sequences contain a dynamical
stability limit as long as n < 1.2, Thus, all neutron star binaries
(except those containing very low mass components) encounter
a dynamical instability during their evolution. In particular,
for typical n = 0.5-1, we see that the Roche limit configuration
is always dynamically unstable. On the basis of this result
(confirmed by recently fully numerical calculations; see Rasio
& Shapiro 1994), we argued in LRS3 that stable mass transfer
in binary neutron stars (as proposed by Clark & Eardley 1977,
see also Jaranowski & Krolak 1992) cannot occur. The only
exception would be when the mass of one of the two com-
ponents is very small (M < 0.4 M) and the viscosity is suffi-
cient to maintain synchronization. Indeed, we see in Figure 4
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(right) that dynamically stable Roche limit configuration can
exist for synchronized systems only when n = 1.5 or when the
mass ratio p is very small.

The irrotational sequences correspond to neutron stars with
no intrinsic spin (see eq. [2.54]). When the stars have nonzero
spins, the appropriate sequences are those with constant ¥ and
%’ (§ 2.3.3). Examples of such sequences are tabulated in LRS3,
where a more realistic model for neutron stars has also been
considered. In this more realistic model, the radius and effec-
tive polytropic index are obtained from the nuclear EOS of
Wiringa et al. (1988).

4.4. Extreme Mass Ratios: Roche-Riemann Binaries

Let us compare the tidal deformation of the two components
in a general Darwin-Riemann configuration. The ellipticity of
M due to the tidal field of M’ can be estimated as

AR M (R,\?
~N—n~—|—]) . 4,
TR M(r) “2)
Suddenly for M,
, M (Ry)
e~M,<r). 4.3)

Clearly, we have

M\ (R (M~ .
'~ =) [22) = = = ep? 3@ 4.4

where we have assumed that R,/Ry = (M/M’')*. We see that
when « < %, € — 0 as the mass ratio p = M/M’ -0, ie., the
more massive star suffers no tidal deformation and behaves
like a point mass in this limit. Therefore when « < %, our
Darwin-Riemann solutions should approach the Roche-
Riemann solutions (LRSI, § 8) for sufficiently small p (and as
long as spin effects can be neglected). This is confirmed by our
numerical calculations.

Consider first the models with K = K’ and n = n’ (§ 4.1). For
these models we have a = (1 — n)/(3 — n), so the inequality
a < % is always satisfied. Thus, for small p, these models
become Roche-Riemann configuration. For example, in the
model of a planet-satellite system, we can take n = 0 so that
a =3, and we have M., > M, . SO that the tidal defor-
mation of the planet is negligible. The planet can therefore be
represented by a point mass, even though its size is much larger
than that of the satellite. The binary neutron star models with
R, = Rj discussed in § 4.3 also have this asymptotic property.

In contrast, for typical low-mass MS stars with 0.8 S a <1
(§ 4.2), we have the opposite result: the more massive star
suffers a larger tidal deformation than the less massive star as a
result of its much larger size. In fact, in this case, as p —» 0, we
approach the extreme opposite limit of a Roche-Riemann con-
figuration, i.e., a test particle around a massive companion (see
LRSI, § 8.3).

As discussed in LRSI, irrotational Roche-Riemann con-
figurations always encounter a dynamical stability limit
(minimum of E and J) followed by a Roche limit (minimum of
r), while the synchronized Roche configurations always
encounter a secular stability limit followed by a Roche limit.
The existence of a dynamical instability for Roche configu-
rations depends on the values of p and n. We show in Figure 6
the boundary line between the two regimes. As expected, this
line coincides exactly with the long-dashed lines in Figure 4
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F1G. 6.—Same as Fig. 4, but here for synchronized Roche-Riemann configu-
rations with p = M/M’ < 1 (i.e., the point mass is more massive than its finite-
size companion). In many cases, Darwin-Riemann configurations approach
Roche-Riemann configurations as p — 0 (see text).

(left) and (right) in the limit of small p. Note that for p = 0 (e.g.,
a star orbiting synchronously around a supermassive black
hole), the Roche limit is always encountered prior to the
dynamical stability limit.

5. COMPARISON WITH RECENT NUMERICAL WORK

To assess the validity of our binary equilibrium models, we
have performed extensive comparisons with the results of fully
numerical studies by HE, who used a grid-based technique in
three dimensions, as well as our own recent calculations using
the smoothed particle hydrodynamics (SPH) method (see
Monaghan 1992 for a recent review). The SPH method is used
to construct hydrostatic equilibrium configurations by letting
a system containing initially two spherical polytropes relax in
the presence of artificial friction forces. The binary separation r
is maintained constant during the calculation, which is per-
formed in the corotating frame of the binary. See Rasio &
Shapiro (1992, 1994) for details. Similar comparisons were pre-
sented in LRS1 for binary models containing two identical
components. Here we present selected results for binary
models with mass ratio p # 1. The comparison is limited to
synchronized models (Darwin configurations), since no
numerical data are available for nonsynchronized configu-
rations in three dimensions. While the self-consistent—field
method of HE can only give hydrostatic equilibrium solutions,
the SPH method can be used to test directly the dynamical
stability of the solutions. This is done simply by using the
equilibrium configuration as an initial condition for a dynami-
cal calculation. Unstable systems evolve to a rapid coalescence
and merging of the two components in just a few orbital
periods, while stable systems maintain their circular orbit
indefinitely (Rasio & Shapiro 1992, 1994).

In Figure 7 we compare our ellipsoidal results for incom-
pressible Darwin models (n = n' = 0, f = fg = 0) with p = 1.5,
5, and 10 to those of HE. Following HE here for convenience,
we show the variation of Q2 as a function of J, and we adopt
the units defined in equations (4.1) (note that R = R,, in the
incompressible case). We note immediately that both calcu-
lations agree in predicting the existence of a minimum of J prior
to the Roche limit. This is an important point, which gives us
complete confidence that the secular instability identified here
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FiG. 7.—Comparison between our results for incompressible Darwin models and those of Hachisu & Eriguchi (1984b). Mass ratios p = M/M’ = 1.5, 5, and 10
have been considered. The square of the orbital frequency Q2 is plotted as a function of the total angular momentum J in the system. The units are defined in egs.

(4.1). The solid lines show our results, the dots are from Table 1 of HE.

is real and not a mathematical artefact caused by our simplify-
ing approximations. Indeed, HE interpret correctly the exis-
tence of the minimum in terms of a secular instability, which
they refer to as the “ gravogyro ” instability. Quantitatively, the
agreement between our results and those of HE is excellent
away from the Roche limit. Very near the Roche limit, the
truncation of the interaction potential to quadrupole order
introduces nonnegligible errors in our models. As a result, the
Roche limit appears slightly earlier along the numerically
determined sequence. As expected, the deviations are smaller
for the systems with more extreme mass ratios, where the
Roche limit is at larger r. Note that the Roche limit also
appears as a turning point (where dQ?/dJ = 0) followed by a
(very short) second branch of equilibrium solutions in the cal-
culations of HE. As discussed in § 3.2, we believe this to be the
result of truncating the interaction potential to some high but
finite order in a multipole expansion. Unfortunatey, the
numerical calculations of HE were limited to the incompress-
ible case (Hachisu & Eriguchi 1984a and Hachisu 1986 have
considered compressible binary models, but only with p = 1).
Rasio & Shapiro (1994) have recently performed a series of
calculations for compressible systems with p # 1 using the
SPH method. As far as we are aware, these are the first three-
dimensional calculations for compressible binary systems with
M#M.

In Figure 8 we present a comparison with these recent SPH
results for models of MS star binaries with n = n’ = 1.5 and
Ry/Ry = M/M’ (see § 4.2). For p = 1 it is possible to extend the
equilibrium sequence calculated with SPH all the way into
deep contact. This sequence (Fig. 8a) terminates when mass
shedding occurs through the outer Lagrangian points. In con-
trast, all sequences with p = M/M’ # 1 terminate at the onset
of Roche lobe overflow, beyond which an equilibrium solu-
tion no longer exists for that value of p. In all cases, the equi-
librium J(r) curves determined by the two ‘methods are in
excellent quantitative agreement all the way to the onset of
Roche lobe overflow or point of first contact (for p = 1), as
determined by SPH. An important conclusion is that for suffi-
ciently compressible fluids, the much simpler quasi-analytic
results derived here can be used even for applications requiring
high quantitative accuracy, as long as the precise location of
the Roche limit is not required. A similar situation was encoun-
tered in LRS1 (see § 3 of that paper) with respect to the mass

shedding limit along equilibrium sequences of single rotating
stars. The energy variational method can be used to determine
equilibrium properties of uniformly rotating polytropes quite
accurately up to the mass shedding limit, but it cannot by itself
predict accurately the position of the mass shedding limit. Note
also in Figure 8 that the numerically determined terminal con-
figurations, corresponding to the onset of Roche lobe overflow
and mass transfer, are secularly unstable (past the minimum of
J) only for sufficiently small mass ratios (p < 0.5). This is in
contrast with the prediction of § 4.2 that all Roche limit con-
figurations should be secularly unstable in this case. In addi-
tion, all SPH solutions with 0.25 < p < 1 remain dynamically
stable all the way to the Roche limit. The sequence of contact
solutions with p = 1 (beyond the point marked C in Fig. 8a)
encounters a dynamical instability prior to the mass shedding
limit (onset of mass loss through the outer Lagrangian points;
see Rasio & Shapiro 1994 for details).

In Figure 9, we show a similar comparison with SPH for
models of a binary containing two highly incompressible
degenerate stars with n = n' = 0.5, K = K’, and p = 0.85. The
two methods agree in predicting that the Roche limit configu-
ration is both secularly and dynamically unstable. Quantitat-
ively, the agreement is excellent prior to the minimum of J
[deviations are < 1% between the two J(r) curves], and slightly
less good (~1%) from the minimum of J to the Roche limit.
The values of r,./R, predicted by the two methods agree to
within 5%, the values of r,;,/R, within 10%. We conclude that
for sufficiently incompressible fluids, the quantitative accuracy
of the ellipsoidal solutions is always excellent, both for deter-
mining the global physical properties along an equilibrium
sequence and for locating the onset of instability and Roche
lobe overflow.

6. BINARY EVOLUTION TRACKS

In this section, we show how the equilibrium sequences cal-
culated in § 4 can be used to describe the secular orbital evolu-
tion of close binary systems in the presence of dissipation. We
consider two astrophysically important dissipation mecha-
nisms that can drive orbital evolution: viscosity and gravita-
tional radiation. We first derive the secular rates of dissipation
due to these mechanisms for binaries in circular orbit. Our
treatment is exact in the ellipsoidal approximation.
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F1G. 8.—Comparison between our results for models of MS star binaries 1.34 -
and those of recent SPH calculations. All models have n = n’ = 1.5 and poly- L
tropic constants such that R,/M = Ry/M’. Mass ratios p = 1.0, 0.75, 0.5, and |
0.25 are considered. The dashed lines show our quasi-analytic results, the solid
lines were determined using SPH. The onset of Roche lobe overflow as deter- r
mined by SPH is indicated by the thick vertical line segments marked RL. The 1.32 |-
point of first contact along the SPH sequence with p = 1.0 is indicated by the |
thin vertical segment marked C. |
J 13
6.1. Dissipation Rates and Timescales r
6.1.1. Viscous Dissipation i
. AN _
In any fluid system, the rate of energy loss due to shear 1.28 - ~— /)
viscosity is given by i )/ i
L , ]
/
. L , .
Ev = —J‘O'ijvi‘j d3x (6.1) 1.26 |- // ]
- / -
/
(Landau & Lifshitz 1987), where v, is the fluid velocity and o;; is e T —
the viscous stress tensor, 2.5 3 R 3.5 4
T o

05 =N, + V5 — 364 064) - (6.2)
We denote by n = pv the dynamical shear viscosity, where v is
the kinematic shear viscosity (units cm? s~ !). Consider the

viscous dissipation in the star of mass M. Using equation (2.14)

Fi1G. 9—Comparison between our results and those of recent SPH calcu-
lations for models with n = n' = 0.5, K = K, and p = M/M’ = 0.85. Conven-
tions are as in Fig. 8. The dynamical stability limit determined by SPH is
indicated by the short vertical dashed line. The thin dashed line to the right
shows the corresponding result for a binary model containing two rigid
spheres (cf. § 6.3).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...423..344L

No. 1, 1994

! This is essentially the quadrupole formula (see, e.g., Shapiro &
Teukolsky, pp. 469-472) written for a binary system contain-
ing two ellipsoids. Fluid circulation is conserved by the gravi-
tational radiation reaction forces, i.e., €gw = €sw = 0 (Miller
1974). From equation (2.52), the secular rate of angular
momentum loss is given by

, E
Jow = % . (6.7)
Other energy and angular momentum loss mechanisms such
as magnetic braking and mass loss from the system are far
more difficult to model and will not be considered here.
However, we expect our qualitative discussion below to hold
quite generally.

6.1.3. Timescales

There are four physically distinct timescales relevant to the
evolution of the binaries: the internal hydrodynamical time,
tayn = (R3/GM)'2, the orbital period, P = 2m/Q; the timescale
for the fluid circulation to change, t, = |4/% |; the timescale
for angular momentum loss, t; = | J/J|. Most binary systems
have ty,, < P <ty <1,

For angular momentum loss due to gravitational wave emis-
sion, t; is given by (see eqs. [6.6] and [6.7])

o 5¢° ré
77 64G* MM'(M + M')°
To estimate ty,, we use equations (2.20) and (2.54) to write

A ~ Q — Q for large r. The angular frequency A thus measures
the departure from synchronization. From equation (6.5) we

then get
2/p2
a,a, RG\ Q;
ty ~ - —=. 6.9
¢ (af—a%>(ﬁ)/\ ©9)

Note that ¢, is proportional to the viscous dissipation time
t.is = R3/v. Note also that exact synchronization can never be
achieved, since t, —» o0 as A — 0.

Using a, ~a, ~R, and (a; — a,)/Ry ~ (M'/M)Ro/r)?,
equation (6.9) gives

(6.8)

ty ~ Xs tsyn ’ (610)
where we have defined the synchronization time
M 2 6 G M R 1/2 R 3\1/2
o= (MY GMR)T (Ro \E 6y
Y M') \R, v GM

This scaling for ¢, agrees with the results of the standard
weak-friction model of tidal interactions (Alexander 1973;
Zahn 1977). For solar-type MS stars, the average plasma vis-
cosity is of order 10°> cm? s™! corresponding to
V/(GMRg)'? ~ 10~ 15, This is far too small to explain the high
degree of synchronization observed in close MS star binaries.
However, turbulent viscosity associated with convection in
late-type systems can give 1 2 vV (GMRy)'? » 1075 (Zahn
1977). A different hydrodynamical mechanism involving large-
scale meridional flows (“Ekman circulation”) may be more
important for achieving synchronization (Tassoul & Tassoul
1992a, b), especially for early-type stars. Our model precludes
this mechanism because we do not allow for any fluid motion
perpendicular to the orbital plane (see eq. [2.12]). Possible
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sources of anomalous viscosity in degenerate stars are dis-
cussed by Kochanek (1992).

6.2. Orbital Evolution
6.2.1. Basic Assumptions

Depending on which mechanism dominates, the timescale
for energy loss according to equation (2.52) can be either ¢; or
te, ie., t; = | E/E| ~ min (t4, t;). We only consider regimes
where both t; and t, are much longer than P and t4,, so that
the binary evolves quasi-statically along an equilibrium
sequence. This applies to the majority of observed binary
systems, with the possible exception of neutron star binaries
near coalescence. The secular rate of the binary separation can
then be written

E

f =, 6.12
" T dE. jir (6.12)
and the orbital evolution time ¢, is given by
r r|dE,/dr|
t=—=—3— 6.13
ERERE @)

Normally, when |dE,/dr| ~ | E/r|, we have t, ~ tg, ie., the
orbit decays on the energy-loss timescale. But it is important to
note that t, can become significantly smaller than t; as
dE, /dr — 0. The quasi-static description of the orbital evolu-
tion becomes invalid when a dynamical stability is
approached.

There are two regimes of interest. When the fluid viscosity is
sufficiently small so that ¢, > t;, the evolution of a binary
system as it loses angular momentum proceeds along constant-
circulation equilibrium curves such as those shown in Figure 3.
The values of ¥ and ¢’ are determined by the initial spins of
the stars (see eqs. [2.54]). The orbit decays on the timescale
tg ~ t; until a dynamical instability is encountered, followed
by rapid coalescence and merging of the two stars (Rasio &
Shapiro 1992, 1994). This regime is most relevant to the
coalescence of binary neutron stars driven by gravitational
radiation. Indeed, for these systems, it has been argued that the
viscosity is always too small to maintain synchronization
(Bildsten & Cutler 1992; Kochanek 1992). We refer the reader
to our discussion of this regime in LRS3 for more details.

Here we focus on the opposite regime when viscosity domi-
nates and t,, <t;. This regime applies to most observed
binary systems containing at least one nondegenerate com-
ponent. The inequality can be written

2 52 1/2
(1) @R
ty R,/ \c?R, v

In this regime, binaries evolve along constant-J equilibrium
sequences. In general, for a fixed value of J, the equilibrium
sequence is not unique: even at large separation, fixing J and r
determines only the sum of the two spin angular momenta.
However, if a complete initial configuration is specified with
given values of ¥ and ¥’ (or fg and fg), then the constant-J
sequence passing through the initial configuration can be con-
structed uniquely provided we know the ratio of the averaged
viscosities within the two components.

6.2.2. Evolution along Constant-J Sequences

(6.14)

For simplicity, we treat only the case where the binary con-
tains two identical components. In Figure 10 we show exam-
ples of constant-J equilibrium curves for n = 1.5 and p = 1.
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Three values of J are considered. We also show the synchro-
nized (Darwin) sequence for comparison. We see that there
exists a critical value J = J;,, equal to the minimum of J
along the synchronized sequence, above which a constant-J
sequence intersects the synchronized sequence. Moreover, this
intersection point exactly coincides with an energy extremum
along the constant-J sequence. This is easy to understand:
from equation (2.52) we have dE = 2A d¥ along a constant-J
sequence; thus, when A = 0 (at synchronization), dE = 0. For
the case shown in Figure 10, the intersection point (point B in
Fig. 10a) lies on the secularly stable branch of the synchronized
sequence. Therefore, it is the point of minimum energy along
the corresponding constant-J sequence, i.e., among all those
configurations with the same J, the synchronized configuration
is the one that has the lowest energy.

Note that if we consider a value of J just slightly greater than
Jmin» the constant-J curve can intersect the synchronized curve
twice, once on the secularly stable branch and once on the
unstable branch (Fig. 10b). Both intersection points corre-
spond to a local energy extremum along the constant-J
sequence. The intersection with the stable branch is a
minimum (point H in Fig. 10b), whereas the intersection with
the unstable branch is a maximum (point I in Fig. 10b). This
explains very clearly the physical nature of the secular insta-
bility. Viscosity will drive a secularly unstable equilibrium con-
figuration away from synchronization at first. As a result, the
orbit can either expand (along IH) as the system is driven
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towards a lower energy, stable synchronized state, or it can
decay (along 1J) as the stars are driven to coalescence.

For the limiting case where J =J_,,, the constant-J
sequence passes through the secular stability limit point along
the synchronized sequence (point C in Fig. 10a). In this case,
the intersection is a stationary point (dE./dr = 0, d’E,,/dr* =
0) of the E. (r) curve for the constant-J sequence. Note that the
first secularly unstable synchronized configuration at point C
will always be driven to coalescence by viscous dissipation (in
contrast to unstable configurations beyond C, for which the
orbit can evolve either way). When J < J;,, the constant-J
sequence never intersects the synchronized sequence, and the
energy decreases monotonically as r decreases. Therefore, con-
figurations with J < J_;, can never reach synchronization, and
are always driven to coalescence by viscous dissipation.

Clearly, the orbital evolution of a binary system depends
critically on its initial angular momentum J;. When J; < J,;.,
as the binary loses energy due to viscous dissipation, it simply
slides down the constant-J curve (e.g., along FG in Fig. 10a).
The timescale for this orbital decay is the synchronization time,
since t, ~ ty ~ tg, in this case. When J; > J_;,, the binary first
evolves toward a (stable) synchronized configuration. If the
star initially spins faster than the synchronized rate (point E in
Fig. 10a), the orbit expands as the system evolves toward syn-
chronization (along EB). The Earth-Moon system is a well-
known example of such an evolution. If the initial spin is
slower than the synchronized rate (point A), then the separa-
tion becomes smaller as the binary evolves toward synchro-
nization (along AB). This evolution takes place on a timescale
t, ~ te. Initially t, ~ t,,,; but t, increases as synchronization is
approached (see eq. [6.9]). As viscous energy dissipation falls
asymptotically to zero (E, oc A2), the orbit will cease to evolve
if there is no other dissipation mechanism.

-
o<
< —1.01
[2¥
=
2
N
&J —
—1.02+ /// ::'—ﬁ
b ——— i
S R Ve
" C
_1 03 l L 1 I 1 I 1 L L L l
' 2.4 2.6 2.8 3 3.2
r/R,

1.33:;7‘ I T T T T l T T T T I T T T fl T T _:
S 1.328F E
e’ 1.326F 3
9 1.324;— ______ .
N 1.322F 3
- F E
1.32: | Il Il 1 1 l ! I 1 ] l 1 il il l Il | l——

LA - LN AL B ) B B LI B

—-1.0141+
L pa
c 1]
~~ - I 7 ]
010_1'01415_ )
roJ -t~ -
~ r o~ S ; 4
NE . N / ]
v —1.0142- S / .
~—’ : N H , :
\ r \\ /, -
= C S - 4
—1.01425- 3
—-1.0143 Lol o0 | MR BT RN TR
' 2.4 2.5 2.6 2.7
r/R,

F16. 10.—Equilibrium curves of total angular momentum and energy for constant-J sequences of Darwin-Riemann configurations with n =n' = 1.5 and
M = M'. In (a) the short-dashed lines are for JAGM?3R)!/? = 1.34, the dotted lines for JAGM3R,)'/? = 1.3202, and the long-dashed lines for JAGM?>R.)"/? = 1.30.
The solid lines show the synchronized sequence for comparison. The regions around points B and C are magnified in the inserts. In (b) the dashed lines correspond to

J(GM3Ry)!? = 1.323.
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6.2.3. Final Approach to Instability

Now consider what happens to a nearly synchronized
system if it is losing angular momentum by some additional
process like gravitational radiation. As the orbit decays, the
binary will very closely track the synchronized curve (along BC
in Fig. 10a) with Q ~ Q, and evolve toward a lower energy and
angular momentum state. This evolution takes place on the
angular-momentum-loss timescale, with ¢, ~t; > t,,. The
degree of synchronization can be estimated by setting ¢, ~
t; ~ tg, which yields A/Q ~ t,,,/t, < 1. Viscous dissipation is
negligible during this phase, as E, ~ @A/ty ~ IQA/t; ~
Egw(A/Q). Equation (6.12) applies, with E.(r) calculated for
the synchronized sequence (§ 2.3.2) and E = Egw (eq. [6.6]).

As the binary approaches the energy minimum (ie., the
secular stability limit, at point C), the orbital decay time ¢,
becomes shorter and shorter as dE./dr — 0 (see eq. [6.13]). At
some point prior to the energy minimum, ¢, becomes compara-
ble to t,,,, iec., the orbit decays so fast that viscosity can no
longer maintain synchronization. Clearly, the evolution cannot
follow the synchronized sequence beyond the point of energy
minimum. As A becomes comparable to Q, viscous dissipation
resumes and eventually becomes dominant, with E, > Egw.
Note that viscosity is now driving the system away from syn-
chronization. The subsequent and final evolution follows
closely the constant-J curve with J = J_;, (along CD in Fig.
10a). Thus, the final coalescence takes place on a timescale
t, ~ tg ~ ty, <t;. It is driven almost entirely by internal
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FiG. 11.—Same as Fig. 10, but for binaries with n=n"=0and M = M'".
The short-dashed lines are for JAGM3R,)!? = 1.6, the dotted lines for
JAGM3R,)"* = 1.523, and the long-dashed lines for JAGM?3R,)"? = 1.45.
The solid lines show the synchronized sequence. The thick dashed lines indi-
cate the dynamical stability limit.
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viscous dissipation, with angular momentum loss playing a
negligible role.

The terminal phase of the orbital decay outlined above
requires modification when a dynamical stability limit exists.
Consider the binary sequence with p = 1 and n = 0 shown in
Figure 11. We consider again the constant-J sequences with
J > Jins J = Jin» and J < J i, Where J;, is the minimum
angular momentum along the synchronized sequence. A
dynamical stability limit is encountered prior to contact for all
these sequences. Along a constant-J sequence, the dynamical
stability limit corresponds to an extremum in both energy and
circulation %, as dE = 2A d% = 0. This is analogous to the
dynamical stability limit along a constant-# sequence, where
dE =dJ =0. As in Figure 10, for J > J_;,, the constant-J
curves also intersect the synchronized sequence where they
reach an energy extremum (as dE = 2A d¢ with A = 0). There-
fore, there are now three extrema along a constant-J sequence
withJ > J 0.

Now consider the orbital evolution of the systems shown
in Figure 11. When J > J,;,, viscosity first drives the binary
to a synchronized state in a time ~t,, (along EB or AB,
depending on whether the initial spin rate is larger or smaller
than the synchronized spin rate). Then the binary follows
closely the synchronized sequence (along BC) for a time ~1,,
until the secular stability limit is reached (point C). Beyond
that point the evolution follows the constant J = J,;, sequence
(along CD), for a time ~t4 ~ t,,,. Before reaching contact,
however, the system becomes dynamically unstable (point D),
and equation (6.12) is no longer valid. The coalescence acceler-
ates abruptly and the two stars merge in a time ~ P. This
transition to a dynamical coalescence has been studied in
LRS2 and LRS3. Similarly, when J < J;,, the binary slides
down the constant-J curve (along HI) in a time ~t, ~ t,,, and
eventually becomes dynamically unstable as well.

6.3. Comparison with Earlier Work

The secular stability of close binary systems has been dis-
cussed previously by Counselman (1973), Hut (1980) and
others, in the limit where both stars can be represented by rigid
spheres (i.e., neglecting spin-induced and tidal deformations).
In this limit, the total angular momentum of a synchronized
system is simply

GM 1/2
IO = (ur* + 1, + 16)( r t) s

where M, = M + M, I, = 2k, MR, and I, = %x, M'R. The
corresponding total equilibrium energy is
GMM' 1 ,. GM

> +5(10+10)—r3'+E«,,

where E is the energy at infinite separation. The secular sta-
bility limit r,, is the point at which dE*/dr = 0, which gives

(6.15)

ESr) = — (6.16)

wrd = 3(I, + Ip) . (6.17)
The corresponding (minimum) value of J is
IS = 303G MXI, + 1)1 . (6.18)

Equations (6.15), (6.17), and (6.18) can be combined together
with the requirement that J > J;, (see § 6.2.2) to show that
synchronization is possible only when the orbital angular
momentum exceeds the spin angular momentum by more than
a factor of 3 (Counselman 1973; Hut 1980).
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The above analysis applies only when tidal effects are small
near r,,, which requires r,, > R, + Rj. Consider for simplicity
the case when Ij, < I, (e.g., when M’ is a point mass). Equation
(6.17) implies that r,, ~ Ro(1 + M/M’)'/2, So the inequality
r, > R, requires M > M, i.e., the mass of the extended star
must be much larger than that of its smaller-size companion (a
typical example is provided by planet-satellite systems). When
these inequalities are not satisfied, the simple analysis based on
spheres is not valid, since tidal effects cannot be ignored.

Our general results agree with these early studies only in the
limit where p = M/M’ > 1. Values of r,, and J;, for different
cases can be read off Table 2, and can be compared with equa-
tion (6.18). As expected, the differences are larger when p is
close to unity. For example, for the case illustrated in Figure 9
(where p = 0.85), the two-sphere model (eqs. [6.17] and [6.18])
predicts r,/Ro ~ 2.0 and J,,;, ~ 1.16, where we find r,,/R, ~
3.0 and J,,;, >~ 1.28. Even for large p, the rigid-sphere model
can give incorrect results at small separation. Figure 12 shows
a comparison between the two models for a system containing
an incompressible star (n = 0) in orbit around a point mass,
with p= M/M’' =10 (M’ is the point mass). Constant-J
sequences with J < J i, J = Jins and J > J;,, are shown.
Combining equations (6.15) and (6.16) and letting I = 0, we
find that the total energy along a constant-J sequence is given
by

GMM' 1 GM\'*)?
— | J— = E
2r +2IO[ ’”(P) ] tEw,
(6.19)

in the rigid-sphere model. We see in Figure 12 that this result
agrees with our calculations at large separation, but becomes
invalid for small r. The expression correctly predicts the exis-
tence of a minimum and maximum residing on the synchro-
nized curve given by equation (6.16). However, expression
(6.19) does not exhibit the additional (third) energy extremum
which corresponds to the onset of dynamical instability (see
Fig. 11).
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APPENDIX A
ASYMPTOTIC RESULTS FOR LARGE SEPARATION

As noted in § 2.2, to quadrupole order, the only coupling between the equilibrium equations for two stars is through the orbital
angular velocity Q. For sufficiently large r, this coupling becomes very small (i.e., we can set 6 ~ 0 and &’ ~ 0 in the equations). Thus,
to determine the structure of the star of mass M, we can treat M’ as a point mass. The general Darwin-Riemann problem then
reduces to the Roche-Riemann problem (LRSI, § 8). Here we derive asymptotic results in the limit where r > (1 + M'/M)'*R,, for
various Roche-Riemann configurations. References to key equations in LRS1 are indicated with numbers preceded by an “1.”

Al. Index Symbol

We start by obtaining expressions for the index symbols 4; and related quantities for small deviations from a spherical shape.
Let’s rewrite the semi-major axes as

a; =Ryl +0a), with o;<1. (A1)

As we show below, the «; are O(R3/r%) in general for large r. Expanding the integrand in the definition (2.8) we get
A, =Ryl "1 _Ra 2 du 2 A2
i = Ro( +“1+°‘2+°‘3)0 -R(z)+u(°‘1+°‘2+°‘3+ o) W+O(ai)' (A2)
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The integral is now elementary and we find

A =%+ 5y + oy + a3) — 50 + 0(af) . (A3)
For spheroids with a, = a, > asand e? = 1 — a%/a? = 2(a; — a3) + O(e?) this becomes
A=A, =% — %+ 06,  Ay=3%+ {5 +06. (A4)

Related quantities of interest are

14,0} + 4,05 + 4345
2 (aia, ‘13)2/3

f= =1+0P), (AS)

(see eqs. [2.7] and [2.43]) and
Aia} — A, aj = (a} — a})B,; = %(0‘1 —a3)R}, Aya; — Azal = (a% - a%)st = 1%(“2 - as)R(ZJ . (A6)

A2. Maclaurin Spheroids

For future reference we first derive the «; for a slowly rotating Maclaurin spheroid (LRSI, § 3). We introduce the dimensonless
angular velocity Q, = Q /(nGp,)'/? as a small parameter in all expansions. As shown below we have «; = 0(Q2) = O(e?).
We first expand expression (1.3.21) for the T/| W | and find
T 2, o 4
—_——— = — - . A7
Y4 159 + 0(e®) 15(“1 a3) (A7)

Similarly, expression (I.3.8) gives g = 1 + O(e*). Inserting these results into equation (I.3.25) gives the volume expansion factor to
o),

afa3

8 n 2 n 2
R3—1—2a1+a3—5(3_ )(0‘1—“3)—15<3_n>e . (A8)

This is one equlllbrlum condition on a; and a;. As a second equilibrium condition, we use the first of equations (1.3.27), together
with expression (I.3.28) for Q. Expanding these to O(e?) we get

Q? = %ez = _g(% —o3) =g, Qz (A9)

We can now solve equations (A8) and (A9) to obtain explicit O(Q?) relations for the volume expansion factor,

3 n _

2 == Q2 A10
a1+cx3 2qn<3_n> s 9 ( )

the eccentricity
e’ =%q,Q?, (A11)

and the axes
3 S+ n\- 3 (5- 3n\~

=— 02 = Q2 Al2
251 16qn(3_n> s 2 03 8 (3—") s ( )

A3. Roche Ellipsoids

Now turn to Roche ellipsoids (LRS1, § 7). We first use equation (I.7.21) for the volume expansion factor, where the term
containing § = O(R3/r’) can be neglected, and we can set f = 1 (see eq. [A5]). Using

T, 1 3 \/GM? 1 [(1+p\R} RS
£ == IQZ = - — _0 0 _0 1
Wi~z /[<S—n>(R>] o '57) o). (AL
a,a,a 2n \/1+p\ R} RS
we get —111—23—3 —l=o; +o,+o3= q,,<3 — n)(T) r—;’ + 0(760 . (A14)
We obtain two more equations for «; from the two equilibrium conditions (1.7.18) and (1.7.19). Since
N GM'/r? 41 Ro RS
b= om@yRT 35 e T O (A15)

is already O(R3/r®), the terms inside the brackets need not be expanded. Using expressions (A6) we then find that the two
equilibrium conditions can be written to this order as

5 (4+p\R3 5 (1+p\R3
0‘1—“3=an<T>r—3°, a2_a3=zqn(T r—so (A16)
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We now solve equations (A14) and (A16) for «;, and find

3SR (25)
o() B 65)-655)
=3 q(%) I:_ [Z (51++21f> - (3 2—nn>] ' i

It is also useful to obtain lowest order changes in the total equilibrium energy and angular momentum of the binary system. These
are defined with respect to a fictitious (nonequilibrium) system containing two spherical (nonspinning) polytropes in a pointlike

Keplerian orbit,
1 GMM' (3 —n
AE,=E, — [5 ur’Qi — —+ < )WO] s Ay =Jq— ur’Qy, (A18)

2%}

L»)I»—-

3
where W, = —[3/(5 — n)JGM?/R,, is the self-gravitational energy of the spherical polytrope and Q2 = G(M + M’)/r3. Using equa-
T,

tion (1.7.11) for E,, we get
(3= R, 3—-2n R3
= (5 -1) + (52 ]+ o)) iy

We now substitute T, = 11,Q2, with I, = 2k, MRZ, (to lowest order) and expresion (A14) for R = (a,a, a;)'’ to find

2 M+M) 1 2 GM + M’ R3] 1 R
AE,, = [12 RZM &;——) +3 (1 - ?")x RZM %][1 + 0( )] =5 1o Q,Z([l + o(r—;’>] . (A20)

To lowest order, this is just the naive result that one would have written down immediately while ignoring the virial theorem. For
the angular momentum equations (1.7.12) and (A18) give immediately

R3
Al =1, QK[I + 0<r—;’>] ) (A21)

It is useful to note that (1) AJ, is considerably easier to calculate than AE,, and (2) once an expression has been derived for AJ .,
AE,, can be obtained very simply by integrating the relation dE,., = QdJ,, (see LRS1, Appendix D). Indeed, using expression (A21)
we find, to lower order,

dAJ, 3 r 1
AE. = jﬂx ——“dr dr -3 I,GM + M) Jr—: =3 1,09¢ , (A22)

in agreement with expression (A20). For the more general configurations considered below, the calculation of AE,, by direct
expansion of E., would be tedious, and we will instead use this shortcut.

Our results (A17), (A20), and (A21) are in agreement with those quoted by Kochanek (1992) (see his eqs. [2.5] and [2.6]), with his
quantity Q2 equal to g,[(1 + p)/p](R3/r®) in our notations (and his I,, = I,/2).

AA4. Irrotational Roche-Riemann Ellipsoids

From equation (1.8.2) with A = 2a,a,Q/(a? + a2) for irrotational configurations we see immediately that T,= T, + T o
(a; — a;)* oc R3(a; — a,)* and, therefore, that T,/| W| = O(R§/r®). Thus, from equation (1.7.21) we see that there is no change of
volume to lowest order,

a1+0£2+ot3=0. (A23)
With Q, = —Q, = Q[1 + O(R®/r®)] and Q2 = ux(1 + p), the two equilibrium conditions (1.8.5) and (I.8.6) give to this order
15 1R}
A — 03 =g, pr_o’ o, —a3=0. (A24)
Combining equations (A23) and (24) we find
5 1R} 5 1R}
a1=§qnpr ’ o(2=a3=_zqr|;r_3o’ (AZS)
in agreement with the result quoted by Kochanek (1992; see his eq. [2.7]).
Using equation (1.8.3) with fy = —2 and the definition (A18), we get for the change in angular momentum,
1, 1,15,
AJeq=§ur Qg d + I—4—I— Qg . (A26)
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Since I;; = Io(1 + 2a)/2 and I =1, + I,, = I((1 + a, + a,), we see that the second term in expression (A26) is of higher order.
Using the results (A25) and the definition (1.7.7) we get

R}

3 4, R}
=3k Quy — oy —ay) = ;

End t =, (A27)
p r

I\)I\D

and equation (A26) gives

45 q,
«a”’g p(1 + p)

1/2 5
G ) R (A28)

- 9 12
R 3IOQK=ZannM <M+M' i‘QT

We now evaluate the change in total energy using the trick described above. Writing Q = Q, + AQ, with AQ = Q, /2, and
expanding the relation dE,, = QdJ . to lowest order we get

A
AE,, = J <QK % AQ d;())dr (A29)

where J, = ur’Q,. Combining equations (A27)—(A29) we find

5

R
4,GM"? 2. (A30)

r

15 g, R}
E=——"—=2],Q2
eq 4p(1+p) r3 0=¢K »

Il
N | W

This does not agree with the result quoted by Kochanek (1992; see his eq. [2.8], which appears to differ in both the magnitude and
sign of the numerical coefficient).

AS5. General Roche-Riemann Ellipsoids

In the limit of small tidal perturbation and slow spin, the deviation of a general Roche-Riemann ellipsoid from a sphere can be
written as a linear superposition of a pure tidal distortion and a distortion purely due to the spin. Thus, the lowest order expressions
for the principal axes are obtained simply by adding expressions (A12) and (A25). The value of Q is determined by the condition
that the circulation € = —1,Q, at large r (see eqgs. [2.54]).

The lowest order changes in energy and angular momentum due to spin are simply AES) = 31, Q2 and AJ$) = 1,Q,, which are
both independent of r. For the calculation of grav1tat10nal radiation phase shifts (see § 4. 3 and LRS3), it is necessary to obtain the
next higher order, r-dependent term in the expansion of E.,. This is done most easily using the same method as above, first
calculating AJ ., and then integrating dE,, = QdJ .. By direct cxpansion of expression (1.8.3) we find

3 [54n\- 5 q, =
AJ‘ei’=IOQS[1+§q,,(3_ )92] OQK<64IiPQ§>. (A31)

Using equation (A29) we then get, after some algebra,

3 _, R}
AES = 37 Fndn GMM'Q? 730 + const . (A32)

The total AE, is obtained by adding expressions (A30) and (A32).

APPENDIX B
SECOND DERIVATIVES OF THE ENERGY FUNCTION

Bl. DYNAMICAL STABILITY LIMIT

To obtain obtain the dynamical stability limit using equation (3.1), we need to evaluate the second derivatives of the energy
function with respect to {o;} = {r, p, 41, 45, p.., 41, A5} while holding J, €, and ¢’ fixed. We adopt the notation of Appendix A of
LRSI, where many of the useful algebraic expressions are given. Using the energy function (2.29) we obtain the first derivatives of
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the energy function as
OE_ oo, GMM'  3GMSI  3GMsI
ar W r? 2r* 2rt
OE L U+ 1 2 + L GM'é1
. mp.  3p, 3p. ° 3p, 1
OE _huw o hoqy S GM’
—_—= T T w 4] 1 1
o7, 2 + ,11 + A +2 ( 11+ 1 + 133),
O0E _hyg h_(z, Lo GM
= T T_+=2w-— 20,, — I B1
6/12 B T 7 7 312 11 + 2l 33)» (B1)

where we have defined 61 = 21,, — I,, — I35 and similarly for 8I'. The other first derivatives 0E/0p, 0E/04), and 0E/0A, can be

obtained from 0E/dp,., 0E/0,, and OE/0A,, respectively, by interchanging the unprimed quantities and the primed quantities. In

equations (B1), we write T, and T, as

J = pr’Q—J, + €)*
4I;

(cf. eq. [2.32]). Note that both Q and J, are functions of the adopted variables {«;} and the conserved quantities J, €, ¢'. The

expression for Q(a;; J, €, €’) is given by equation (2.30); the expression for J, can be obtained from equation (2.21) as

2 h, —h_
J(o;; J, @, fg')=h = 1,Q(c;; J, %,%’)——h++h % . (B3)
+ - + -

To calculate the second derivatives of the energy function, we first calculate (0€2/0a;) and (0J/0x;), then we use

(e~ L (52 L+ [ () ) + [5G 2

For convenience, we define

J, + %)
Ti=hi£‘—41__)_,

s

T, =h, (B2)

Iy=L/(hy +h.),

I,=pr?+ 21, + 1),

Fy=—1+42I,/1,,

I =1,1y/I,,

i=h o Q@+ AN +h o(Q—A), i=12, (BS)

and similarly for I}, F}, and X}. We obtain the following expressions:
0’E 2GMM’' 6GM’'SI MoI' 2
r2(67> = Q- _ SoMl SGMOI' .y, 29)( 2’1" Q) ,
r3

IIf

r r .
(a(:zaic) CMBL_ ) o o) 3 4, 0,
”11< i ) - 3GM’ @Iy + 1, + 133) — (2,”29) 21 ,
( E ) = 3GM, — I +21,;, — I33) — (2,”29) 22 ,
>=§[< >W+2(__%>Ts—<§+;> GA,/I;M]JF%QM;QF.“
Pe 1(‘% 511) = % (heayTye +h_ oy T) + %— W — Gfr‘f’ @Iy, + I, + I53) + ? I,Z,F,,
Pe 2(43/% 5/1) = % hyyTh +h_5)T_) + %— W + 33 (2111 + 21, — Iy3) + — 20 IhEde-
20

) p(am)
7 \0p. p;

n(ue)
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*E\ 20
pci’l( >= @1.xy),

op. i) 3
0’E 20
pc1‘2<a A/>=_3—(2Icz’2)’
0*E 6GM'I
li(a—zg):h*‘“’ T +hoayT-+FanW ——3 — +7‘1,,>: F,,
0*E GM’ Z,
Ay =hyayTe +h g T- +f(12)W+ 3 (41, — 21, + 133) +— 1,2, F,,
044, 2
0’E X,
A =—(2I, %!
1 1(611 ;1> 2 (2 c 1)’
, 0*E z, ,
i) =2 ez,
0*E 3GM'I X
/1§<W> =hiayTe +hogy T+ Iopy W+ ——2 —24 72 I,Z,Fy,
2
0*E
Ay A =212
Hsoer) = Z 1. (8o

The other independent matrix elements can be obtained by interchanging primed quantities and unprimed quantities in the
appropriate expression given above. For example, rp/(02E/dr dp.) can be directly obtained from the expression for rp (02E/or dp,)
given above, giving

3 — Qur 2Q) 41" Q (B7)

’E GMor
‘\ ar dp.
The expressions for h ), # i), h 1 j, and £ ; are given in Appendix A of LRS1.

B2. SECULAR STABILITY LIMIT

To obtain the secular stability limit along a synchronized sequence using equation (3.1), we need to evaluate the second derivative
of the energy function with respect to {o;} with J fixed and holding f; = fx = 0. In this case, equation (2.53) should be used for the
kinetic energy term.

We define

L=u? +1+1, F,=—-1+1/1,, (BS8)

and similarly for F’. The second derivatives of the energy function are then given by

2 ' M8l 6GM4I 2ur?
r2<a_E>  _rr 2GMM'  6G ! o LY ZQ)( Q>’
t

or? r r
()-S5 ot
rl,(afi;l) = — 3GMI @1y, +1,,+153)— (2/17‘29) h(l)
2(8??51 ) 3GM, —— (2, + 21,, — I53) — (Qur*Q) Ii, h)Q,

0*E 1 1 1 2 1 2 1\ GM'SI 2Q 21Q
- ___W 2___ | — — P
”(m) 3[(3 n) +(3 n)Ts <3+n> r3 ]*3 3 e

0’E 2 5 GM’ 20
Pc}q(a 6/11>=§h(1,7;+ﬁW @l + 15, +133) +— 3 hu)IQF ,
2

3 3

S GM
hoy Ts + :,:2) W+ — 33 (2111 + 215, +133)+ h(z)IQFs’
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dp, A, 3 W
0*E 2Q 1I'Q
’ = —— h —_— R
P, lz((a 01,2) 3 "o

0’E GM
11112< >=h(12)’1—;+u¢(12)w+

0,4,
0’E > mrQ
A ( ~) = [hy, QI —
171 all A (1) (1) I,
,{ O°E , 1rQ
i ) Do 52,
0’E
A%(W) =hoy T, + Iy W +
2
[ O%E . 1rQ
A, iz<m> = [h) Qhg, A

3GM'I,,

6GM'I,
—5— + [h)Qlhy, IQF, ,

53 (411, — 215, + I33) + [hy) Qb IQF,

+ [hay Qlhg, IOF,

(B9)

Again, the other independent matrix elements can be obtained by interchanging primed quantities and unprimed quantities in the
appropriate expression given above. The expressions for h and hg; are given in Appendix A of LRS1.
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