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ABSTRACT

We study the diffusion of helium and other heavy elements in the solar interior by solving exactly the set of
flow equations developed by Burgers for a multicomponent fluid, including the residual heat-flow terms. No
approximation is made concerning the relative concentrations, and no restriction is placed on the number of
elements considered. We give improved diffusion velocities for hydrogen, helium, oxygen, and iron, in the
analytic form derived previously by Bahcall & Loeb. These expressions for the diffusion velocities are simple
to program in stellar evolution codes and are expected to be accurate to ~15%. We find that the inclusion of
the residual heat flow terms leads to an increase in the hydrogen diffusion velocity. We compare our numeri-
cal results with those obtained analytically by Bahcall & Loeb using a simplified treatment, as well as with
those derived numerically by Michaud & Proffitt. We find that for conditions characteristic of the Sun, the
results of Bahcall & Loeb for the hydrogen diffusion velocity are smaller than our more accurate numerical
results by ~30%, except very near the center where the error becomes larger. The Michaud & Proffitt results
differ from the numerical results derived here by <15%. Our complete treatment of element diffusion can be
directly incorporated in a standard stellar evolution code by means of an exportable subroutine, but, for con-
venience, we also give simple analytical fits to our numerical results.

Subject headings: diffusion — stars: abundances — stars: interiors — Sun: interior

1. INTRODUCTION

Precise solar evolution calculations must be carried out to compare model results with observations of solar neutrino fluxes and
of p-mode oscillation frequencies. In particular, element diffusion affects the element abundances, the mean molecular weight, and
the radiative opacity in the core of the Sun, and therefore affects the calculated neutrino fluxes and oscillation frequencies. The
characteristic time for elements to diffuse a solar radius under solar conditions is of the order of 6 x 102 yr, much larger than the
age of the Sun. Element diffusion therefore introduces only a small correction to standard solar model calculations. Bahcall &
Pinsonneault (1992a, b) showed that helium diffusion increases the predicted event rates by ~11% in the chlorine solar neutrino
experiment, by 3% in the gallium experiment, and by 12% in the Kamiokande and SNO experiments, while increasing the inferred
primordial helium abundance by 0.4% and decreasing the calculated depth of the convection zone by 2%. Christensen-Dalsgaard,
Proffitt, & Thompson (1993) calculated the sound speed as a function of radius in the solar model and concluded that helium
diffusion causes a significant difference in the computed radial profile of the sound speed. Guenther, Pinsonneault, & Bahcall (1993)
demonstrated that the helioseismological effects of helium diffusion depend upon the degree and frequency of the p-mode being
discussed and have typical amplitudes of order 1-3 MHz.

Since the effects of diffusion are small, there is in principle no need for very high accuracy in its treatment. However, discrepancies
appear between various results in the literature, depending on the approximations made. Previous studies of element diffusion in the
Sun (Aller & Chapman 1960; Michaud et al. 1976; Noerdlinger 1977, 1978; Cox, Guzik, & Kidman 1989; Paquette et al. 1986;
Bahcall & Loeb 1990, hereafter BL; Proffitt & Michaud 1991; Michaud & Proffitt 1992; Bahcall & Pinsonneault 1992a, b;
Christensen-Dalsgaard et al. 1993; Guenther et al. 1993; Vauclair & Vauclair 1982 and references therein) have usually included one
or more of the following simplifying assumptions: neglecting thermal diffusion, or treating it using a simplified empirical formula;
neglecting the presence of heavy elements when calculating helium diffusion; assuming a negligible helium abundance when
calculating the diffusion of heavier elements; adopting a single constant value for all Coulomb logarithms. In this paper, we provide
a simple but complete treatment of the problem, making none of the above approximations, and we compare our results with those
obtained under different simplifying assumptions. In particular, we compare our results with those obtained by BL and those
obtained by Michaud & Proffitt (1992, hereafter MP). BL made most of the above simplifying assumptions; they used empirical
results for the thermal diffusion coefficients and a single value for the Coulomb logarithms, equal to 2.2. MP solved the Burgers
equations and then represented the effects of the residual heat flow vectors by an ad hoc correction to the results obtained when
neglecting those heat fluxes. The principal difference between this work and most previous studies is that we solve the Burgers
equations exactly and then represent the numerical results by simple analytic functions, rather than trying to obtain analytic
solutions by various approximations.

Element diffusion in stars is driven by pressure gradients (or gravity), temperature gradients, composition gradients, and radiation
pressure. Gravity tends to concentrate the heavier elements toward the center of the star. In a pure hydrogen-helium plasma, helium
diffuses toward the center of the star, while hydrogen diffuses outward. The local rate of change of the hydrogen mass fraction is
equal and opposite to the rate of change of the helium mass fraction. The light electrons also tend to rise, but are held back by an
electric field which counteracts gravity. Temperature gradients lead to thermal diffusion, which tends to concentrate more highly
charged and more massive species toward the hottest region of the star, its center. Concentration gradients oppose the above
processes. Radiation pressure causes negligible diffusion in the solar core and will be neglected in this paper.
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We study the relative diffusion of hydrogen, helium, and heavier elements, such as oxygen and iron. In contrast to many previous
studies, no approximation is made concerning the relative concentrations of the various species, and no restriction is placed on the
number of elements considered. Our method is therefore applicable to a wide variety of astrophysical problems, such as the diffusion
of elements in white dwarf envelopes (see, e.g., Fontaine & Michaud 1979; Pelletier et al. 1986) and in globular cluster stars (see, e.g.,
Chaboyer et al. 1992). In this paper, we concentrate on calculating the diffusion velocities in the temperature and density ranges
relevant to the Sun, although our exportable subroutine can be used to calculate diffusion velocities in red giants and in white
dwarfs.

Burgers (1969) has provided a complete and straightforward set of equations to describe the evolution of a multicomponent fluid.
In order to include the effects of thermal diffusion, he introduced the so-called “residual heat flow vectors.” Here we will use the
Burgers equations, including the residual heat fluxes, to describe the plasma in the solar interior. Even though these equations can in
principle be solved analytically, the algebraic complexity increases rapidly with the number of species considered. For example,
because of computational limitations, Noerdlinger (1977) included only three species (hydrogen, helium, and electrons) and adopted
a single constant for all the Coulomb logarithms. In contrast, we solve the full set of Burgers equations numerically, and place no
restriction on the number of species. The Coulomb logarithm is obtained by calculating the collision integrals using a pure
Coulomb potential with a long-range cutoff at the Debye length. However, the result obtained for the Coulomb logarithm is valid
only for plasmas that are sufficiently hot and rarefied, i.e., such that the plasma parameter A is much larger than unity. For
conditions characteristic of the solar interior, the Coulomb logarithms are small, and can even become negative for collisions
between heavy elements. For such plasmas, the collision integrals can be calculated numerically using a screened Debye-Huckel
Coulomb potential. The results can then be fitted to simple analytic functions. We adopt an expression for the “effective ” Coulomb
logarithm obtained by Iben & MacDonald (1985) by fitting numerical results for Fontaine & Michaud (1979b).

It should be relatively easy to incorporate our complete treatment of element diffusion into any standard solar evolution code.!
However, we have obtained simple analytic fits to the exact results, which can provide a convenient alternative. These fits can be
expressed as follows: following BL’s notations (see footnotes 2 and 4) and using BL’s dimensionless variable (see § 2), the mass
fraction of element s satisfies the equation
aXS _ _l_ i 2 5/2

at - pr2 ar r XsT és(r)] ’ (1)
where the partial derivatives are evaluated in the local rest frame of a mass shell in the star, i.e., in Lagrangian coordinates. The
function &(r) is related to the diffusion velocity w of species s through

E(r) = wyr)p(r)/ T(r) . @
It is convenient to express &, in terms of the logarithmic deviates of the local pressure, temperature, and hydrogen concentration:
Olnp olnT 0ln Cy
= — —— 44 . 3
=4 p(s) or + Ar(s) or + Ay(s) or (3

Convenient expressions for 4,, Ay, and Ay are given for the important species of hydrogen, oxygen, and iron in equations (56)-(58)
of §7.

We ignore in this work the effects of meridional circulation and of turbulent mixing below the base of the convection zone. For
this outer region of the Sun, effects not discussed here are probably required in order to account for the depletion of lithium (see,
however, Proffitt & Michaud 1991 for a strong upper limit to the effect of turbulent mixing on the surface helium abundance). In
standard solar models computed by different groups, there is no significant mixing in the solar interior over essentially the full
main-sequence lifetime of the Sun (see, e.g., Bahcall 1990). Meridional circulation velocities are estimated to be several orders of
magnitude smaller than diffusion velocities in the solar interior (see, e.g., Michaud & Vauclair 1991). There is also some helio-
seismological evidence that suggests that there has not been substantial mixing in the solar core (see Elsworth et al. 1990). Our
results can, therefore, be applied self-consistently to the calculations of the solar interior of standard solar models.

This paper is organized as follows. In § 2, we introduce the notation and basic equations. In § 3, we describe the method of
solution. In § 4, we give the results for the hydrogen and helium diffusion coefficients, for a fixed value of the temperature and
density, characteristic of the solar core. We compare these results with those obtained by BL and MP. In § 5, we give the results for
the heavy element diffusion coefficients, obtained under the same conditions. In § 6, we give the diffusion velocities in the Sun, and
again we compare our results with those obtained by BL and MP. In § 7, we give analytical expressions for our numerical results. In
§ 8, we compare our expression for the electric field with the value obtained by Braginskii (1965, p. 205). Finally, in § 9, we give a
summary of the most important results.

2. BASIC EQUATIONS

Each species of particles s is described by a distribution function F(x, v, ) normalized to unit integral, a mean number density n_,
an ionic charge g, = Z e, and a mass m,. All species are assumed to be at the same temperature T and in an overall hydrostatic
equilibrium, since the temperature and pressure equilibration timescales are much shorter than the diffusion times. The mass and
charge densities are p, = ny,m,and p,, = n, q,. The mean fluid velocity of each species is defined by

ug = ijsdv . 4)

! Our FORTRAN routine will be made available upon request.
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The mean fluid velocity is given by

PR ©)

s

bl’-‘

where p = Y p,is the total mass density. The diffusion velocity for species s is defined by
w,=u,—u 6)

and is therefore measured relative to the mean velocity of the fluid as a whole. We define the “ residual heat flow vector ” for species s
by (Burgers 1969):

_| M _ a2y
r*—[ZkBTJF“(v u)|v—ul*dv 2"’3], @]

where kg is Boltzmann’s constant. The cross section for Coulomb scattering between particles of species s and of species ¢ (s can be
equal to t) is given by

0y = 2722 Z2a T) P In A, ®

where In A, is the Coulomb logarithm (A,, is the “plasma parameter ”), a correction factor taking into account the logarithmic
contribution of binary encounters with impact parameters up to the Debye shielding length. For the Coulomb logarithm, we adopt
the following expression, obtained by Iben & MacDonald (1985) using numerical results for Fontaine & Michaud (1979b),

624 4
InA, = L 6; 2 1n [1 +0. 18769( szzTiﬂ , )

s te

where A = max (Ap, ao), Ap = (kg T/4me* Y n,Z2)'? is the Debye length, and a, = (3/4n Y ;o0 1;)'/? is the interionic distance. The
friction coefficient between species s and ¢ is
= (2/3)us2ky T/ps)'*n o0 (10)

where u, = mym,/(m; + m,) is the reduced mass for species s and t.
The Burgers equations for mass, momentum, and energy conservation can then be written as

on 1o , ong
s 1
PR <6t )1 (D

dp,

7 +pg — pesE = Z Kst[(wr wy + 0. 6(xst s — Vst )1, (12)

t#s
and
n kB d Z Kst{ st(ws - wt) - yst[1'6xst(rs + rt) + Yst Fs — 4'3xst rt]} - 0'8Kss T . (13)
t#s

In these equations, g = —[GM(r)/r*]é, is the gravitational acceleration, g = |g|, E is the electric field, E = | E|, x,, = ug/m,,
Ve = Ug/My, and Y, = 3y, + 1.3x,m,/m,. The numerical coefficients in equations (12) and (13) are related to the collision integrals
and were obtamed using a pure Coulomb potential with a long-range cutoff at the Debye length. More accurate results can be
obtained by using numerical values derived from calculations using a screened Coulomb potential. We have assumed spherical
symmetry and included a term for composition changes due to nuclear burning in equation (11). Using equation (12), it is
straightforward to show that

dp,
g:(dr +psg pesE>_0’ (14)
or
dp
hut o —p E= 1
o T P9 PE=0, (15)

where p = ) p, and p, _22 p.s are the total pressure and total charge dens1ty The departure from local charge neutrality is very
small, with p_ E/pg ~ Gm /e ~ 10737 (see discussion and eqs. [22]-[23] in BL). Equation (15) therefore reduces to the familiar
equation of hydrostatic equ111br1um

dp/dr = —pg . ' (16)
In addition, the following constraints must be satisfied : charge neutrality,
Y desng=0; (17)
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current neutrality,

Z qes ns Ws = 0 5 (18)
and local mass conservation,

Y monw,=0. (19
Note that equation (19) follows from the fact that the diffusion equations are solved in the rest frame of the plasma. The set of linear
equations (12)—(13) and (18)—(19) forms a closed system for the diffusion velocities w,, the residual heat flow vectors r,, the
gravitational acceleration g and the electric field E in terms of the pressure, temperature, and concentration gradients. Since we
already know the value of g = GM(r)/r?, this relation provides a useful check on the numerical results.
If we ignore thermal diffusion, the electric field is given by E = —(1/en)X0p./0r). When thermal effects are included, the electric
field can be written as (see eq. [57] in BL)

ton T
n, or %e'® op

Using his two-component fluid equations, Braginskii (1965) has obtained the values «, ~ 0.71 for a pure hydrogen plasma and
o, ~ 0.9 for a pure helium plasma.

eE =

(20)

3. METHOD OF SOLUTION

The system of equations (12)—(13) and (18)—(19) can be solved numerically. If there are S species in the system (S — 1 ions plus
electrons), there are § momentum equations (12) and S energy equations (13). The unknowns are the S drift velocities w, and the S
heat fluxes r,. The gravitational acceleration and the electric field are also treated as unknowns, and we use the two additional
equations for mass and charge conservation, equations (18) and (19), to help determine g and E. Note that the hydrostatic
equilibrium condition (eq. [16]) should be satisfied automatically, providing a useful check on the numerical results.

We now rewrite the basic equations in a dimensionless form that is better suited to a numerical treatment. The radius r is
expressed in units of R, the mass density p in units of 100 g cm 3 and temperature T in the units of 107 K, characteristic values at
the center of the Sun, and the time ¢ is in units of 7, = 6 x 103 yr, a characteristic diffusion time in the Sun (see, e.g., Kippenhahn &
Weigert, p. 60, or eq. [9] in BL). We write the Burgers equations (12)—(13) and the constraints (18)—(19) as

P dlnp dinT S dlnC;\ 25*2
=, —— . + ——d ) = A W. 21
K, (a, dr Y L v dr j; R 1)

j=1
j#e2

where the following notations have been introduced. The concentration of species s is defined by

C,=nyn,. (22)
It is related to the mass fractions X, = m ny/p by
C, = z—);‘/—;iz (23)
or inversely
X, = Z/.-lSA CC z 24)
where A, is the atomic number of species s, and the sum is over all species, including the electrons. For the electrons,
A, =m,[mg , (25)
where m, and m, are the electron and atomic masses, and
C,=1. (26)
The constant K, is given by
K, = 1.144 x 107407 322 | 27)

where T and p are expressed in the characteristic units defined above. We use the ideal gas equation of state, p, = n kg T, and
equations (22), (25), and (26) to write

Kio _200 <Z c)(z A, cs> , (28)

p
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where we have written the electron number density in terms of the mass density, p = myn, Y A, C,. The variables W, are
; fori=1,...§,
ri_ fori=8+1,...25,
wi=g 7 (29)
K;'n,eE fori=28+1,
Ko'n,mgg fori=2S+2.
If we define C = Y ; C,, the coefficients on the left-hand side of equation (21) are given by
= fori=1,2,..8§,
0u=1:C (30)
0 fori=8+1,...28 +2,

C;_
25—5  fori=S+1,...28,

v, = C (31
0 fori=1,...,Sandi=25+ 1,285+ 2,
C; C; C,\ Z,C;
s, — =2 (5., — 22) 2izi fori=1,..., 8,
=4 C |:< N C> ( . C) Z, Cz:l ot (32)
0 fori=S+1,...,28+2.
The coefficients on the right-hand side of equation (21) are given by
r—Ztcik forj=1i,
k#i
Kij forj=1,...,Sandj#1i,
0.6k, x; forj=i+ 8§,
Ay = 2, Ok / (33)
—0.6K; ;_sVii-s forj=S+1,...,28Sandj#i+ S,
Z.C; forj=25+1,
—A4:C; forj=25+2,
fori=1,..., S, by
(Y 1.5k 5.4 Xi_s.4 forj=i—§,
k#j
—1.5K;_5,; X;—5,j forj=1,...,Sandj#i- S,
A =4 —kZ Ki—suYi-s (16X s + Yi_5) — 0.8, _5,;_s forj=i, (34)
#i
27K _5,j—sYi-s,j-sXi-5,j—8 forj=S+1,...,28Sandj #1i,
0 forj=25+1,28+2,

fori=S+1,...28;by

Z,C; forj=1,...,8,
Ay =] %o (35)
0 forj=S+1,...,28+2,
fori = 2§ + 1; and finally by
A;C; forj=1,...
Aij= J J or] ’ 1S’ (36)
0 forj=S+1,...,28S+2,
fori = 25 + 2. In these expressions, the coefficient k, is defined by
A A, \M?
Kg = <AST;1,> Cs C,Z? Z,2 In Ast . (37)

It is related to the friction coefficient through K, = K k,. We have used the constraint of charge neutrality to eliminate the
concentration gradient of species 2 in equation (21),

dinC, i Z,C; dlnC[-‘ (38)
dr =1 Z,C, adr
#e,2
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Since p/K is proportional to T*2/p (see eq. [28]), all the velocities will be proportional to T3/2/p. Therefore, we introduce the
function &, (following BL), such that

w, = (T*?/p)¢; . (39)
The rate of change of the element mass fractions due to diffusion is now written in dimensionless form as
0X 1 0 _,
S = Z[r2X, T2 , 40
e & ML () (40)

the generalization of equation (1) of BL to the case of arbitrary concentrations and a more accurate treatment of the plasma physics.
Equations (21) are linear. Therefore, we can combine linearly the solutions obtained by keeping only one of the gradients different
from zero. We write the results in terms of generalized diffusion coefficients A (s), 47(s), and A(s) for species s, as

Olnp 0lnT dlnC,
A —_— A
or + 4109 or + ,;:e‘ 2 49) or

If In A is assumed identical for all the interactions, the coefficients 4,, A7, and 4, are functions of the mass fractions only. If In A is
defined by equation (9), these coefficients also depend on the charges, the temperature, and the density.

¢lr) = Als)

. 41)

4. HYDROGEN AND HELIUM DIFFUSION

First, we consider the diffusion of hydrogen and helium, neglecting the presence of heavier elements. We calculate the hydrogen
diffusion velocity. The helium diffusion velocity is then simply obtained from the constraint that there is no mean fluid velocity,
Y, X,w, = 0. Neglecting the electron mass compared to the proton mass, we have w, = —(X/Y)wy. The rate of change of the
helium number density is therefore equal and opposite to the rate of change of the hydrogen number density, (0Y/dt) = —(0X/0t).
Helium diffuses toward the center of the star, whereas hydrogen diffuses outward.

In the absence of heavy elements, the function & is given by?

dlnp olnT dlnCy
ar + A4(H) o + Ay(H) o

We have chosen helium as element number 2; i.e., we write the diffusion velocity in terms of the hydrogen concentration gradient,
using equation (38) to eliminate the helium concentration gradient.

Two major simplifications are usually made when calculating the hydrogen and helium diffusion velocities in the absence of heavy
elements. It is usually assumed that the Coulomb logarithms In A;; are identical for all interactions. This allows the factorization of
In A outside the function &y, (see, e.g., Noerdlinger 1977; Bahcall & Loeb 1990). In that case, the coefficients 4,, Ay, and Ay depend
only on the hydrogen (or helium) concentration, not on density, temperature, and ionic charges. The second simplification is to
ignore the residual heat fluxes r,. Then, the diffusion velocities are easier to calculate analytically, since there is no need for the heat
equations (13) and the number of variables and equations is reduced by a factor of 2. However, these simplifications can lead to large
relative errors in the diffusion velocities. In particular, it has been argued by MP that thermal diffusion can increase the diffusion
velocities by 30%.

In Figures la-1c, we show the variation of the coefficients 4,, Ay, and Ay with the hydrogen mass fraction X. To obtain these
results, we have assumed T = 10”7 K and p = 100 g cm 3, typical values in the core of the Sun. The exact results are represented
with solid lines, the results obtained neglecting the heat fluxes are represented with short-dashed lines, and the results obtained by
keeping the heat fluxes but using In A = 2.2 for all interactions® are represented with long-dashed lines. If the heat fluxes are totally
neglected, the two coefficients 4, and A4y are underestimated, and A = 0. In Figure 1d, we show the relative errors on the
coefficients due to these approximations. The short-dashed line represents the error on 4, and Ay when the heat fluxes are
neglected. It can be as high as 45% for small values for the hydrogen mass fraction (not relevant to the Sun). The long-dashed lines
represent the error due to In A = 2.2. The errors on A4, Ay, and Ay are smaller than 20%, except when X ~ 1. In the interior of the
Sun, X varies approximately between 0.3 and 0.7. For these values of X, the error does not exceed 20%.

¢u = Ay H) (42)

4.1. Comparison with Bahcall & Loeb

In order to keep the analytical calculations simple without neglecting the thermal effects one can use “effective ” thermal diffusion
coefficients (obtained through fits to the exact numerical results). In Figure 2a, we show the ratio between the “exact” coefficients
and those obtained by BL who neglected the residual heat fluxes, assumed a Coulomb logarithm of 2.2 for all the interactions, and
used an “effective ” thermal diffusion coefficient. The expressions obtained by BL are

Olnp p0InT 0ln Cy
ABL
or +Ar or +Au or

&) = A"

43)

% Note that BL define &, with the opposite sign. They also write &, in terms of the mass fraction gradient instead of the number concentration gradients. These are
simply related by d1n C/or = dIn X /or — (¥, Z, X/A)™' ¥, (Z;X,;/A))dIn X /or or inversely, dIn X /or = dIn C Jor — (¥, A,C)™* ¥ A;C;01n C,/or. If hydrogen
and helium are the only elements, dIn X/or = (1 + X)dIn Cy/or.

3 This value is usually considered representative of the Coulomb logarithms in the solar interior (see, e.g., Noerdlinger 1977 and BL).
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F1G. 1.—Variation of the hydrogen diffusion coefficients with the hydrogen mass fraction in a pure hydrogen-helium plasma, with T = 10’ K and p = 100 g
cm 3. The solid lines represent the results obtained using Burgers equations, with no approximation. The short-dashed lines represent the results obtained when
neglecting the heat fluxes. The long-dashed lines are the results obtained by using a single value for all the Coulomb logarithms, equal to 2.2. The dash-dotted lines
are the results obtained when neglecting the heat fluxes and using a single value for all the Coulomb logarithms, equal to 2.2. (a) Pressure gradient coefficient4,,. (b)
Temperature gradient coefficient A;. (c) Hydrogen concentration gradient coefficient Ay,. (d) Relative errors due to the approximations. The short-dashed line is the
error on A, and A4, when the heat fluxes are neglected. The long-dashed lines are the errors made by using In A = 2.2, and the dashed-dotted line is the error on 4,
and A, when both approximations are made.
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F1G. 2.—(a) Ratio of the exact hydrogen diffusion coefficients and those obtained by various approximations, in terms of the hydrogen mass fraction X, with
T = 10" K and p = 100 g cm ~ 3. (@) Comparison with Bahcall & Loeb (1990). (b) Comparison with Michaud & Proffitt (1992). The solid lines and the dashed lines are
the results obtained using egs. (51) and (9), respectively, for the Coulomb logarithms in the Michaud & Proffitt formulae (48)—(50).
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with

AP = —51 - X)/4, (44)

ASF = —6(1 — X)(X + 0.32)/(1.8 — 0.9X)3 + 5X), (45)

‘ ARt = —(X +3)/(3 + 5X) . (46)

The result for the thermal diffusion coefficient was obtained by fitting values obtained previously by Aller & Chapman (1960)
Montmerle & Michaud (1976), and Noerdlmger (1978). For values of X between 0.3 and 0.7, the error made by BL on 4, and Ay is
smaller than 40%, whereas the error on Ay is as large as 70%. However, as we will show in § 6, large errors on Ay do not necessarlly
lead to large errors on the diffusion velocities, since the temperature gradient in the Sun is much smaller than the pressure and
concentration gradients.

It is important to notice that the heat fluxes affect not only the thermal diffusion coefficients, but also the pressure and
composition gradient coefficients.

4.2. Comparison with Michaud & Proffitt

MP solved the Burgers equations with and without including the heat fluxes, then represented the effects of the heat fluxes by an
ad hoc correlation to the results obtained when neglecting those heat fluxes. In our dimensionless variables, their results can be
written as

dlnp olnT dlnCy
MP, . AMP MP MP
(=4, ar + A7r o + Ay o 47
with
5 (1-X)
AP = 2 , 48
4 (0.7 + 0.3X)(In A,,/2.2) “)
9 (1—X)
AP = = 49
8 (0.7 + 0.3X)(In A,,/2.2)° “9)
X +3)
MP _ 5
Ax (3 + 5X)0.7 + 0.3X)(In A,,/2.2)° (50)
where
1 1. X+3 3
=—1995—=Ilnp — = “InT. 51
InA,, 19.95 2lnp 2ln 2 +2ln 51)

In Figure 2b, we show in solid lines the ratio of our coefficients and those obtained by MP. The difference between our results and
those obtained by MP is smaller than 15% for Ay, and smaller than 5% for 4, and Ay. This small discrepancy will be discussed
in§6.

S. HEAVY ELEMENT DIFFUSION

Because of the complexity caused by the addition of heavy elements, this problem has always been approached with additional
simplifications (Vauclair, Vauclair, & Pamjatnikh 1974; Noerdlinger 1978; BL; MP). One common simplification is to assume a
negligible helium concentration, therefore reducing the problem to a two-species situation. However, this assumption is not valid in
the interior of the Sun, where the characteristic mass fractions of hydrogen, helium, and oxygen are of the order of 0.34, 0.64, and
0.01, respectively (see, e.g., Bahcall 1990).

The functions &, for the hydrogen and oxygen are now written as

dln d ln T d ln C dinC
G = AH) —F o+ Ar(H) T+ AH) T 4 o) (52)
and*
0 ln Jln T Jln C 0 In C
to=A4,0) L+ 4 Ay(0) =2 1 440) =2 (53)

It is interesting to show the variation of the diffusion coefficients as a function of the hydrogen mass fraction for fixed values of the
temperature, density, and heavy element mass fraction. Indeed, as we will show in the next section, in the Sun these parameters
all vary with radius, and it is more difficult to extract the hydrogen mass fraction dependence itself. In Figure 3, we show the
four coefficients 4,(H), A;(H), Az(H), and Ay(H) as a function of the oxygen mass fraction X. These results were obtained using

* Note that BL define the function ¢, such that 0Z/ot = —(1/pr?)o[r’XZT*/>¢ /2 — X)] dr. The function &, is related to the function &, through ¢, =
$ol2 — X)/X.
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T =10"K, p =100 gcm 3 and Z = 0.01, were Z is the oxygen mass fraction. These values are typical in the solar interior. Note
that now X has a maximum value determined by X, ., = 1 — Z, because of the charge neutrality constraint. We notice that the
coefficient Ao(H) is two orders of magnitude smaller than the other coefficients. This was expected, since we have chosen
Kyo/Ky, ~ Z/Y ~ 1072, The error made by neglecting the presence of oxygen when calculating the hydrogen diffusion velocity is
smaller than 2%.

In Figure 4 we show the oxygen diffusion coefficients 4,(0), A(O), A4(O), and Ay(O). Again, the coefficient 4,(O) is much
smaller than the other three coefficients and can be neglected to the level of precision desired in these calculations.

6. DIFFUSION VELOCITIES IN THE SUN

We now calculate the diffusion velocities of hydrogen, helium, and heavier elements in the present solar interior (r < 0.7 Rg). We
use values for the pressure, temperature, density, and mass fractions of the contemporary Sun, obtained from the standard solar
model (Table 4.4, in Bahcall 1990). Since we have the radial profile of the pressure, temperature, and mass fractions, we can calculate
their gradients. The coefficients 4,, Ay, Ay, and A, are computed using the tabulated values of T, p, X, Y, and Z. The iron
abundance is assumed to be uniform and given by log, o (g./ny) = 6.82—12, and its ionization is 21.

In Figure 5, we show the radial variation of the hydrogen diffusion coefficients. In Figure 6, we show the relative importance of the
different terms in the hydrogen diffusion velocity. The oxygen concentration gradient gives a negligible contribution to wy. The
temperature term is not negligible, but is smaller than the pressure term (between 25% and 50% of the pressure term). Therefore, a
large error on the temperature diffusion coefficient does not necessarily lead to a large error for the diffusion velocities.

The timescale for a change in the element abundances can be characterized by t = r/wy. To obtain the time ¢ in units of
to = 5 x 10° yr, the age of the Sun, we simply multiply the dimensionless time by t,/z,, Where 7, is the characteristic diffusion time
defined in § 3. The smaller the time ¢, the faster the element concentrations change. In Figure 7, we show the variation of ¢ with the
radius. The fastest changes in the hydrogen concentration occurs at ~0.05 R, where t,,,;, ~ 70¢,,.

6.1. Comparison with Bahcall & Loeb

In Figure 8a, we compare our exact results with those obtained using the analytic BL formulae, equations (44)—(46) (eqs. [1]-[5]
in BL). The BL formula underestimate the diffusion coefficients. The error on the pressure and concentration diffusion coefficients is
smaller than 30%. The error on the temperature diffusion coefficient is of the order of 50%, except near the center where it becomes
very large.

In Figures 9a-9c, we show in solid lines the results for the diffusion velocities of hydrogen, oxygen, and iron. The helium diffusion
velocity w, is related to the hydrogen and oxygen diffusion velocities through the zero mean velocity constraint, equation (19),

W, = —(Xywy + XoWwo + X Wre)/X g - (54)

We also show in short-dashed lines the BL results for the hydrogen and oxygen diffusion velocities, given by equations (44)—(46) for
the hydrogen velocity, and equations (2)—(5) in BL for the oxygen velocity. In the BL approximation, the helium velocity is given by
W, = —(Xy/Xy)wy. The error in wy due to the BL approximations is smaller than 30%, except near the center, where the error is as

. —_

0

T T T —T T T T T T T T T

-0.5

Hydrogen diffusion coefficients
Oxygen diffusion coefficients

X :
FiG. 3 FiG. 4

F1G. 3.—Variation of the hydrogen diffusion coefficients with the hydrogen mass fraction in a hydrogen-helium-oxygen plasma, with T = 10’ K, p = 100 gcm 3,
and Z = 0.01.

F16. 4—Variation of the oxygen diffusion coeficients with the hydrogen mass fraction in a hydrogen-helium-oxygen plasma, with T = 107 K, p = 100 g cm ™3,
and Z = 0.01.
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F1G. 5—Hydrogen diffusion coefficients in the present Sun, as a function of radius
F1G. 6.—Contributions to the hydrogen diffusion velocity in the Sun due to each gradient

high as 70%. However, the error for the oxygen diffusion velocity is very large. This was expected, since BL neglected completely the
presence of helium when calculating wg. The BL results for w, are therefore only valid when X = 1.

6.2. Comparison with Michaud & Proffitt

In Figure 8b, we compare our results with those obtained using the MP formula, equations (48)—(50). The difference between our
results and the results obtained by MP for the diffusion coefficients is smaller than 5% for A, and Ay. Our thermal diffusion
coefficient Ay is larger by ~20%. This discrepancy may result from the fact that we have used z,, = 0.6 for the heat flux coefficient in
equations (12) and (13). If the collision integrals are calculated using a screened Coulomb potential, the value obtained for z,, is ~2

smaller (Proffitt 1993).

200

0

1

Hydrogen

Oxygen

0

0.2

0.4
r/R

0.6

F1G. 7—Local diffusion time of hydrogen, oxygen, and iron as a function of radius, in units of the age of the Sun
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FIG. 8.—a) Ratio of the exact hydrogen diffusion coefficients and those obtained by Bahcall & Loeb (1990) as a function of the radius. (b) Ratio of the exact
hydrogen diffusion coefficients and those obtained by Michaud & Proffitt (1992) as a function of the radius.

In Figures 9a-9c, we show the results for the diffusion velocity of hydrogen, oxygen, and iron. The MP result for the heavy
elements diffusion velocities are given by

éi='_

wp, (in units of Ry/7,)

2

NEY

(d/dr[[ln {[X/5X + )L + X)/5X + 3153+ {1 + Z, — A[(5X + 3)/4]}dlnp/dr>

X(APCi — AYCy) + 4)7C,,

y

' xe [ (AL2C, — ALC,) o2 3] L OS4ATX +225)dInT (o
Bl X(442c,, — AL2C,) + AY*Cy, (InA,, +5) ar ’
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© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...421..828T

No. 2, 1994 ELEMENT DIFFUSION IN SOLAR INTERIOR 839

where A;; = A;A;/(A; + A)) is the reduced mass in atomic number units, C;; = In[exp (1.2In A;j) + 1]/1.2, and In A;; is given by
equation (51). The difference between our results and those obtained by MP is smaller than 15% for the hydrogen diffusion velocity,
and smaller than 20% for the oxygen diffusion velocity.

7. ANALYTICAL FITS

All the results shown above were obtained using the expression (9) for the “effective” Coulomb logarithms. If we use (as in the
previous results) the correct charge-, temperature-, and density-dependent expression for the Coulomb logarithms, we cannot give a
simple analytical fit, as in BL, for the diffusion coefficients in terms of the hydrogen mass fraction. Even though one could, in
principle, incorporate a subroutine which solves the problem of element diffusion in a standard solar model evolution code, it is
useful to give a simple analytical fit of the results obtained here in the solar interior. It is convenient to provide to stellar evolution
programs other types of input physics, such as opacities or equations of state, in the form of tabulated values, or in terms of
approximate analytical fits. In order to provide a similarly convenient service for diffusion, we adopted a constant for each Coulomb
logarithm, the value it has at the center of the Sun. In Figure 10, we show the values of the various Coulomb logarithms in the Sun
computed using equation (9). In Figures 11a-11c, we compare the diffusion coefficients obtained with these Coulomb logarithms
with those obtained using a constant value of A (equal to its central value). In Figure 11d, we show that the error on wy is smaller
than 4% in the solar core (*/Ry < 0.4), and remains smaller than 15% up to the convection zone. The error on the heavy elements
diffusion velocities are <6% in the solar core, and remain <$20% up to the convection zone. We can now fit these results to
second-order polynomials. Since the presence of oxygen and iron have very little influence on the hydrogen velocity, we can assume
that the diffusion coefficients depend only on X. We find

A H) = —2.09 + 3.15X — 1.07X?,
A (H) = —2.18 + 3.12X — 0.96X 2, (56)
Ay(H) = —1.51 + 1.85X — 0.85X2,
for the hydrogen diffusion coefficients;
(4,(0) =0.15 + 1.34X — 0.89X2,
< AH{O) =0.53 + 1.99X — 0.72X 2, (57)
| Au(O) = 0.08 + 0.58X — 0.28X?,
for the oxygen diffusion coefficients; and

(4,(Fe) = 0.25 + 1.31X — 0.87X?,

Aq(Fe) = 0.65 + 1.99X — 0.75X2, (58)
IAH(Fe) =0.09 + 0.53X — 0.27X2,
for the iron diffusion coefficients. The error due to the polynomial fits are of the order of 0.2%. There is no need to use higher order

1+ —

i (He.0) iFe) J

“Coulomb Logarithm™
N

(He,Fe)

(0.Fe) 1
0 : , e
0 0.2 0.4 06

r/R
F1G. 10.—Coulomb logarithms in the Sun
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F16. 11.—Diffusion coefficients in the sun, as a function of radius. The solid lines represent the results obtained using Burgers equations, with no approximation.
The dashed lines represent the results obtained using In A = 3.2 for all the interactions. (a) Pressure gradient coefficient A - (b) Temperature gradient coefficient A .
(c) Hydrogen concentration gradient coefficient A . (d) Relative error on the hydrogen and oxygen diffusion velocities made by using In A = 3.2.

polynomials, since the error made with these second-order polynomials are already much smaller than the errors introduced by the
simplified Coulomb logarithm.
For an easy comparison with BL and MP results, we can factorize the BL results and write the numerical fits as

A H) = —3(1 - X)a,, (59)
6(1 — X)(X + 0.32)

ArH) = = e 093 + 5x) (60)
__X+3
AyH) = — G + 5X) ay - (61)

First-order polynomial fits give the following analytical results:
a,=1.66 — 0.82X ,
ar =446 — 3.65X , (62)
ay =163 —-0.74X .

The error introduced by the polynomial fit is much smaller than the error due to the simplified Coulomb logarithm. Equations
(59)-(62) can be used to improve existing diffusion subroutines that are based on the BL formalism.
It is important to remember that these fits are made for the standard parameters of the solar interior.
8. HYDROSTATIC EQUILIBRIUM AND ELECTRIC FIELD

As explained in § 2, we solve the system of equations (215 for the diffusion velocities, the residual heat flow vectors, the
gravitational acceleration, and the electric field. On the other hand, the equation of hydrostatic equilibrium given by equation (16)
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F1G. 12—Thermal coefficient for the electric field (see eq. [20])

must be satisfied. The numerical results for g can be written as
d

In dinT dinC
g=— % [A,,(g) rp + A-{g) o Ayn(9) "] . (63)

d dr
In hydrostatic equilibrium, A, = 4, = 0 and 4, = 1. The equation of hydrostatic equilibrium is satisfied to 10”7 by the numerical
results.

Similarly, we write the results for the electric field as

E =L I:A,,(E)

en,

dlnp dinT dIn Cy
o+ AnE) —— + AyE) — ]

The coefficients in equation (64) should be compared with equation (20). We find an excellent agreement between our numerical
results and equation (20) for the coefficients in front of the pressure and concentration gradients (with an error smaller than
0.2 x 107 ?). Our values for the coefficient A,(E) are slightly larger than the results obtained by Braginskii (1965) for .. As shown in
Figure 12, we observe, however, the same tendency for this coefficient to increase slightly with an increase in the helium concentra-
tion. We get o, = 0.8 for X = 1,and «, = 0.9 for X = 0.

(64)

9. SUMMARY AND CONCLUSIONS

We have developed a Fortran program to solve numerically the Burgers equations for an arbitrary number of species, without
any approximation. For the discussion of solar conditions given here, we have neglected the radiative forces, but these forces could
easily be incorporated in the numerical routine. The accuracy of the results for the diffusion velocities is limited only by the validity
of the expression for the Coulomb logarithm. The diffusion velocities of hydrogen, oxygen, and iron were calculated in the solar
interior and compared with the results of Bahcall & Loeb (1990) and by Michaud & Proffitt (1992). The results of BL for the
hydrogen diffusion velocity are smaller by ~30%, except near the center, where the error is much larger. The results obtained by
MP for the hydrogen and oxygen diffusion velocities differ by <15%.

We provide analytical fits of our numerical results for the diffusion coefficients as a function of the hydrogen mass fraction in the
solar interior (eqs. [56]-[62]). These fits were obtained by assuming fixed values for the Coulomb logarithms, equal to their values
at the center of the Sun.

We are grateful to M. H. Pinsonneault and C. R. Proffitt for valuable discussions and suggestions. This work was supported by
NSF Grant PHY92-45317.
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