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THE TIME-DELAY SPECTRUM OF GX 5—1 IN ITS HORIZONTAL BRANCH

B. VAUGHAN,! M. vaN DER KLis,! W. H. G. LEwIN,2 R. A. M. J. WiiERs,? J. VAN PARADIS,!
T. DotaNL* AND K. MiTsupa*
Received 1993 April 12; accepted 1993 August 9.

ABSTRACT

Using a cross-spectral technique we investigate time delays between intensity variations of GX 5—1 in 10
X-ray spectral channels. The data were taken during a 1989 Ginga observation during which the source was in
its horizontal-branch spectral state. We develop a new method to measure “time-delay spectra” in fixed
Fourier frequency ranges and use it to determine the energy and intensity dependence of time delays in the
low-frequency noise (v < 2 Hz), the horizontal branch QPO, and the QPO second harmonic. These are the
first time-delay spectra of a Z-source in its horizontal branch, and the first detection of time delays in the
second harmonic. We find that

1. In the low-frequency noise, intensity variations at low energies lag those at high energies by tens of milli-
seconds; the lag increases with energy.

2. High-energy photons lag low-energy photons by up to 4 ms, not only at the QPO first harmonic fre-
quency but also in the second harmonic. In both harmonics, the lag increases with energy.

3. Delays are not monotonically related to QPO frequency. The time delays are longest at the low-intensity,
low-QPO frequency end of the horizontal branch, and decrease as the intensity increases and the source
moves along the horizontal branch toward the normal branch vertex; they increase again near the vertex.

4. The time-delay spectra of the QPO first and second harmonic are similar but they are not identical.

5. Intensity variations in the different spectral channels are correlated with one another.

We consider two mechanisms for the production of the time lags: Comptonization and evolving shots. We
perform Monte Carlo simulations of Compton scattering in a homogeneous, isotropic, central corona and
show that it can qualitatively explain the observed energy and time-delay spectra, but that it cannot explain
the differences in the QPO first and second harmonic time-delay spectra, nor the observed dependence of the
QPO fractional rms variability upon energy. We consider implications of our results for millisecond pulsar

searches in low-mass X-ray binaries.

Subject headings: pulsars: general — stars: individual (GX 5—1) — X-rays: stars

1. INTRODUCTION

Following the discovery of rapid intensity-dependent quasi-
periodic oscillations, or QPO, in the X-ray light curves of the
bright low-mass X-ray binaries GX 5—1 (van der Klis et al.
1985a, b) Cyg X-2 (Hasinger et al. 1985, 1986; Norris & Wood
1985), and Sco X-1 (Middleditch & Priedhorsky 1985, 1986;
van der Klis et al. 1985¢), it quickly became clear that at least
two and possibly three classes of QPO behavior occurs in these
sources whose occurrence corresponds to X-ray spectral state.
See Lewin, van Paradijs & van der Klis (1988), and van der
Klis (1989a, 1993) for reviews of QPO and LMXB. Spectral
state is defined by a point in a color-color diagram. The x-axis
gives the ratio of the count rate at low energies (typically 1-3
keV) to intermediate -energies (typically 3—-6 keV), and the
y-axis gives the ratio of the count rate at high energies
(typically 6—12 keV) to intermediate energies. As the spectrum
varies in time, this point moves through the diagram, tracing
out a characteristic pattern. The instantaneous position of the
source in the diagram defines its spectral state. Bright low-
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mass X-ray binaries can be divided into two groups on the
basis of their correlated color-color diagram and QPO behav-
ior: Z sources and atoll sources (Hasinger & van der Klis
1989). Z sources, of which GX 5—1 is one of six known exam-
ples, are characterized by spectral variability with the property
that the points in color-color diagrams fall on Z-shaped
curves.

The upper limb of the Z is referred to as the horizontal
branch. Power spectra taken when a Z source is in the horizon-
tal branch show a peak in the range 13-55 Hz with a FWHM
of order 5-10 Hz. We refer to such horizontal-branch QPO as
horizontal-branch oscillations, or HBO. The HBO vary with
source intensity, generally increasing in Fourier frequency and
decreasing in fractional root mean square (rms) amplitude as
the intensity increases. A second peak, identified as the harmo-
nic of the HBO, has been observed in power spectra of GX
5—1 (Dotani 1988; Lewin et al. 1992), GX 17+ 2 (Penninx et
al. 1990) and possibly Cyg X-2 (Hasinger 1987). We call the
fundamental peak the first harmonic and the harmonic, at
twice the frequency of the fundamental peak, we call the second
harmonic. The existence of the second harmonic peak implies
that modulations in the source intensity are not sinusoidal. In
addition to the HBO first and second harmonic peaks, three
noise features are seen in all horizontal-branch power spectra
(van der Klis et al. 1987; Hasinger, Preidhorsky, & Mid-
dleditch 1989; Hasinger & van der Klis 1989). A very low
frequency noise term well described by a power-law dominates
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the power spectrum around 1 Hz. An additional component
referred to as low-frequency noise is evident above a few tenths
of a Hertz and dominates the power spectrum around 1 Hz.
Finally, there is broad-band high-frequency noise the can
usually be described by a relatively flat power-law multiplying
an exponential function with a cutoff frequency of 30-70 Hz
(Hasinger & van der Klis 1989). In some cases there is no
evidence for a cutoff in the high-frequency noise.

Shot models for HBO (Lamb et al. 1985; Shibazaki & Lamb
1987; Shibazaki, Elsner, & Weisskopf 1987; Shibazaki et al.
1988) postulate that blobs of matter, called clumps, fall onto
the neutron star, and that accretion from the clumps is modu-
lated at the HBO frequency. The enhancements in X-ray inten-
sity caused by the clumps are referred to as shots. The shots
form an envelope function for the modulations. The low-
frequency noise is the power spectral signature of the shots,
and the HBO peak is the signature of the modulations.

At its right, high-intensity end, the horizontal branch con-
nects with the diagonal limb of the Z, which is referred to as
the normal branch. On the normal-branch, spectral hardness is
correlated with source intensity. Normal-branch oscillations
with centroid frequencies near 6 Hz are seen in normal-branch
power spectra of all Z sources (Hasinger & van der Klis 1989).
Normal-branch power spectra contain no low-frequency noise.
Very low-frequency noise, however, is seen on all spectral
branches.

The normal branch connects at its spectrally soft end with
the flaring branch. The QPO frequency increases and the rms
amplitude decreases as the source moves up the flaring branch
(flaring-branch QPO have been observed near the normal-
branch vertex). A flaring branch has never been observed in
GX 5—1. Evidence for a new spectral branch connected to the
lower normal branch has recently been found in EXOSAT
data from GX 5—1 and may be the previously unseen flaring
branch (Kuulkers et al. 1993). It is thought that the mass accre-
tion rate, M, onto the neutron star increases as the source
moves along the Z track in the color-color diagram from the
horizontal to the normal and finally to the flaring branch
(Vrtilek et al. 1990, 1991; Hasinger et al. 1990). See Lewin, van
Paradijs, & van der Klis (1988), Lamb (1988), Hasinger (1988),
or van der Klis (1989a, b) for reviews of QPO phenomenology
and models.

Hasinger (1987) measured a delay of ~3 ms between high-
and low-energy light curves of Cyg X-2 obtained on the hori-
zontal branch, using a cross-correlation function. For the pur-
poses of this paper, photons of order 1-5 keV are called soft.
Hard photons have energies above 5 keV. Van der Klis et al.
(1987) found similarly that high-energy photons lag low-energy
photons by a few milliseconds in the neighborhood of the
HBO Fourier frequency in light curves of Cyg X-2 and GX
5—1 obtained on the horizontal branch, using a complex cross
spectrum. At frequencies where low-frequency noise dominates
the power spectrum, the high-energy photons lead the low-
energy photons. The high-energy lag in the HBO was seen
to decrease as the source moved up the horizontal branch
and the QPO frequency increased. It was speculated that
Comptonization in a central corona was responsible for the
lags (Hasinger 1987; van der Klis et al. 1987).

Shortly after the time delay results were published, three
groups published the results of Monte Carlo simulations of
scattering in a homogeneous central corona (Wijers et al. 1987;
Stollman et al. 1987; Bussard et al. 1988). They found that
millisecond high-energy photon time delays can be made con-

sistent with cloud parameters that can simultaneously repro-
duce observed low-mass X-ray binary energy spectra. It was
predicted that the high-energy photon time delay should
increase with energy. More recently, Schulz & Wijers (1992)
have shown that it is possible to fit the energy spectra of a
number of low-mass X-ray binaries, including GX 5—1, all
along their horizontal, normal, and flaring-branches with a
Compton model using only three parameters: input blackbody
temperature, cloud optical depth, and cloud temperature.
Wijers et al. (1987) also found that for some values of the input
spectrum temperature and cloud Compton temperature and
optical depth, photons near 1 keV arrive prior to both higher
and lower energy photons, so that there is a minimum in the
modeled time-delay spectra.

Until recently, it was only possible to measure time delays
between pairs of energies, as high time resolution data in more
than two spectral channels were either unavailable or had low
count rates that required rebinning the data into two broad
spectral channels to see the delays. Observers and modelers
each remarked in their papers that multichannel measurements
of time delays may help illuminate the physics of inner accre-
tion disks. In this paper, we develop a new, sensitive method
for measuring multichannel time delays in weak signals. We
measure complex cross spectra between all pairs of spectral
channels and average over data segments. The method exploits
the fact that cross spectral measurements are dominated by
counting noise. Uncertainties in the average cross spectrum for
each pair of channels are thus independent, and we can find a
best fit using a y? minimization technique. Applying the new
method, we report for the first time the energy dependence of
the time delays in GX 5—1 on the horizontal branch and the
detection of time delays in the HBO second harmonic. We
study the dependence of the “time-delay spectra” on source
intensity, compare the time-delay spectrum at the HBO first
and second harmonic frequencies, and discuss implications to
models of X-ray production in low-mass X-ray binaries, and to
sensitivity limits in pulsar searches.

2. OBSERVATIONS

During 5 days in 1989, the Large Area Counter (LAC) on
Ginga (Makino et al. 1987; Turner et al. 1989) was used to
perform a high time resolution multispectral channel observa-
tion of GX 5—1. The observation was performed using the
MPC-3 data mode at high time resolution, in which the counts
in 12 spectral channels in the range 1-37 keV are recorded
every 8 ms. For timing analysis the data are rebinned into 10
channels. During 4 days of the observation, GX 5—1 was in
the horizontal branch. The total raw count rate (all spectral
channels summed) on the horizontal branch was between 3300
and 9500 counts s~ . HBO with frequencies from a record low
of 13 through 50 Hz were observed. A full report on the depen-
dences of the general QPO and noise characteristics on the
X-ray spectral state has been given by Lewin et al. (1992), to
whose paper we refer frequently for QPO centroid frequency
and rms amplitude values.

3. ANALYSIS

3.1. Best-fit Time-Delay Spectra

The complex cross-spectrum is the method of choice for mea-
suring small time delays between signals. The Fourier trans-
form of the cross-correlation function, and hence containing
the same information, the complex cross spectrum has the
advantage that is measures time delay as a function of Fourier
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frequency, and that no fitting or peak searching is required to
identify and measure time delays. First applied in X-ray
astronomy to Z source QPO data in only two spectral chan-
nels (van der Klis et al. 1987), it has since been used to measure
time delays between a larger number of energy channels. We
shall call the results of such measurements time-delay spectra.
The traditional way to measure time-delay spectra has been to
measure all time delays with respect to one reference spectral
channel, typically the channel with the largest flux. Thus, give
N, spectral channels, measure N, — 1 cross spectra. All time
delays are quoted with respect to the reference channel. For
our analysis, we have used a new, more sensitive, and sym-
metric method that does not rely upon an individual reference
channel, but instead makes use of all available information.

In the following discussion we will consistently use a super-
script tilde (7) to indicate a quantity determined with a single
measurement, no averaging. A hat (7) above a quantity denotes
an average over independent data segments and/or Fourier
frequencies. Intrinsic quantities, such as the intrinsic signal
powers will have no accent. These intrinsic quantities of course
are what we are trying to estimate. Values determined using y2
minimization are indicated with the superscript “fit.”

Time series data in N, energy spectral channels are divided
into N, independent segments each of length T seconds and
containing N time bins of length T/N. Let the number of
photons in time bin k of segment p in spectral channel m be
Xmp(ti), Where t, is the start time of the kth bin. For each
segment and in each spectral channel, calculate the Fourier
coefficient X,,,(v);

N
me vj) = Z imp(tk)eznijk/N . (1)
k=1
The Fourier frequency, v;, is j/T, and i = (—1)"/2. The Fourier
cross amplitude between spectra channels m and n at frequency
v;is defined to be
Gnv) = Tlim E[X5(v, T)X (v, T)] . 2
-+ 00
An asterisk denotes complex conjugation, E indicates an
average over an ensemble of statistically independent measure-
ments, and X (v, T) is defined as

X, v, T)= ijm(t)ez"i“‘ dt, 3)

where x,(t) is the instantaneous count rate at time ¢ in spectral
channel m. Note that although we refer to G,,(v;) as the cross
amplitude, it is a complex quantity. We estimate the cross
amplitude at frequency v; by averaging over independent seg-
ments:

A 1 ¥ ~
Gmn(vj) = F Z X::p vj)an(vj) . (4)
s p=1
The complex cross spectrum is defined as the Fourier cross
amplitude as a function of Fourier frequency.

To obtain the average cross amplitude of the HBO we
average over the Fourier frequency range, or some part of the
Fourier frequency range, of the HBO, in addition to averaging
over independent data segments. Let us average fromv_tov,.
We indicate the frequency-averaged cross amplitude of the
HBO by G,,,,

1

Gmn = m Z Gmn(vj) s (5)

V=V—
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where the frequency range has width Av =v, — v_ and con-
tains TAv Fourier frequency channels. Similarly, we define the
intrinsic cross amplitude of the HBO to be

1 v+
mn =X; L

G Gnl(v)dv , 6)

For a stationary and Gaussian, or nearly Gaussian, random
process, in the limit of large N, G,,, approaches G,,, (Bendat &
Piersol 1986):

lim G, = Gy, - ™

Ns— ©
If we substitute equation (2) into equation (6), we see that G,,,, is
the mean, over the HBO peak frequency range, of the product
XXX, (v). If the relative phases of the signals are constant or
nearly constant over the Fourier frequency range averaged, the
mean value of the product is approximately equal to the
product of the mean values, and we can express the intrinsic
cross amplitude as the product of intrinsic Fourier coefficients;

Gy = Xn X, - ®

The phase of the cross-spectrum measures the phase differ-
ence between the Fourier coefficients in spectral channels m
and n as a function of Fourier frequency. We define phase on
the interval [ — 4, 11, and hence the phase difference is given by

1
Obmn(v;) = 5~ arg [Gpu(v))] - ©®

To measure time delays in the HBO, we divide the phase of
the average Fourier cross amplitude by the average Fourier
frequency of the HBO.

With N, spectral channels it is possible to calculate N (N,
— 1)/2 different average cross amplitudes, one for each pair of
spectral changes. For noise signals such as the ones we are
dealing with here, averaging a large number of independent
data segments and Fourier frequencies results in an essential
statistical independence of each of the N (N, — 1)/2 average
cross amplitudes. We have developed a 2 technique to utilize
all N, (N, — 1)/2 cross spectra simultaneously to determine a
best fit time-delay spectrum. In this section we only give an
outline of our method. Details of implementation and uncer-
tainty estimation are discussed in the Appendix.

The underlying physical quantities we wish to estimate
are intrinsic Fourier coefficients X, for each energy channel,
which in various combinations through equation (2) yield
N (N, — 1)/2 intrinsic cross amplitudes.

By measuring N (N, — 1)/2 average cross spectra G,,,, we
obtain N (N, — 1)/2 statistically independent estimates of the
products of intrinsic Fourier coefficients X X,. If N, is greater
than three, the number of measured cross spectra exceeds the
number of spectral channels. In this case we can determine
values of the Fourier coefficients that best fit the observed
average cross spectra, defining best fit in the y-squared sense.
Specifically, we define y2 as

_ ¢ XX — G
=% 3 , (10)

m<n amn

and minimize y2 to find best-fit values of the intrinsic Fourier
coefficients. We show in the Appendix that in the case of
Gaussian statistics and a Poisson-dominated signal (which is
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our present regime), the variance is approximately given by

2 Gmm Gnn

Omn =

, (1)

2n,

~ . .
\ where n, is the total number of measurements used to obtain

, the average; n, = N, TAv. Because we typically average of
order 10* measurements to obtain an estimate of each G,,,, the
Gaussian approximation can be expected to be very good.
Note that the derivation in the Appendix uses equivalent but
more mathematically elegant transfer functions instead of
intrinsic Fourier coefficients.

By minimizing 3> we obtain a best-fit value for the average
Fourier coefficient of the HBO in each spectral channel. The
phase delays between the channels can be read off from the
phases of the coefficients. We thus obtain a y> best-fit time-
delay spectrum. It should be stressed that because cross spectra
measure only phase differences, we do not measure absolute
phases with the 2 method, only differences.

Note that although we quote time delays and uncertainties
relative to a particular spectral channel, simply because we
must choose some zero level, the y? technique uses no preferred
spectral channel in determining the delays. The relative values
of the phases are invariant to the choice of zero level.

The method assumes that the intrinsic signal in each energy
channel in the Fourier frequency range under investigation
resembles that in the other energy channels up to a shift
in phase and a scaling in amplitude, a property called
“coherence.” The value of y? provides a measure of the extent
to which this assumption is in accordance with the data; in our
case the assumption turns out to be a very good one. If the
signals are not coherent, the method will measure the time lags
between the coherent parts of the signals, and the reduced x2
value will exceed unity.

We checked that the results we obtained using our new
method are entirely consistent with those obtained using the
traditional approach with one reference channel. Our method
produces more tightly constrained values for the time lags.

Because the method outlined here is new, we performed
numerical simulations with simulated signals and noise to test
our mathematical results. We found that we could determine
both the time delays and strengths of the simulated signals
through the phases and amplitudes, respectively, of the best-fit
Fourier coefficients.

3.2. Coherence Spectra

The best-fit Fourier coefficients described in the previous
subsection can be converted to Fourier powers in the manner
of standard Fourier coefficients:

Gl = X5 X5 (12

Because best-fit Fourier coefficients are found using cross
spectra which are sensitive only to coherent signals, the power
in spectral channel m found using equation (12) is a measure of
the average signal power in channel m at the HBO frequency
that is coherent with all of the other spectral channels. We call
Gt the correlated power. The ratio of the correlated power in
channel m to the total intrinsic power in channel m (Poisson
noise subtracted) is the mean squared fraction of the QPO
signal that the coherent with the signals in the other channels.
We define

Gl
m P b

(13)
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where P, is the signal power averaged over the QPO with
Poisson noise subtracted. y2 is the intrinsic coherence
(Vaughan 1991). The intrinsic coherence, 2 is defined such
that a value of unity indicates perfect coherence, and a value of
zero indicates a complete a complete lack of coherence. We
define the coherence spectrum to be the intrinsic coherence
found using equation (13), as a function of energy. If the coher-
ence, corrected as in equation (13) for Poisson noise, is unity
for all spectral channels, we can conclude that the signal in
each channel is the same as in each other channel up to a phase
shift and amplitude scaling; a strong indication that the same
physical process underlies the signal in each channel. A
reduced y? value consistent with unity is also an indication
that the signals are the same up to the phase and amplitude
factor. The coherence, y2, provides a measure of the coherence
separately for each spectral channel relative to the others,
where the value of y? provides a measure for the entire data set.

4. RESULTS

4.1. HBO Time-Delay Spectra

The HBO properties in GX 5—1 are strongly correlated
with color-color diagram position, and hence with source
intensity. In Lewin et al. (1992), the dependence of horizontal-
branch power spectral characteristics such as HBO frequency
and HBO and low-frequency noise fractional rms amplitude
are discussed in detail for the same data set we have analyzed.
We present a summary of the HBO properties in the following
paragraph.

Figure 1 shows a hardness-intensity diagram of the
horizontal-branch data we have analyzed. At the low-intensity
end the QPO frequency is as low as 13 Hz, the lowest HBO
frequency ever observed (Lewin et al. 1992), with fractional rms
variability as high as 7.5% in the 1-18 keV channel. A second
harmonic peak is seen in all cases for which it is below the
Nyquist frequency of 64 Hz. See Figure 2 for a sample power
spectrum. The HBO first harmonic peak at 13 Hz is clearly
visible. The HBO second harmonic peak at 26 Hz appears as a
shoulder in the power spectrum. HBO frequency increases with
intensity. At its high-intensity end the horizontal branch con-
nects with the normal branch. Near the normal branch vertex
the HBO frequency approaches 50 Hz and the fractional rms
variability of the HBO is only ~3% (1-18 keV). We divided
the horizontal branch into 10 regions on the basis of source
intensity. These regions are indicated in Figure 1, along with
the HBO frequency and fractional rms amplitude in each
region.

We measured time-delay spectra in each horizontal-branch
intensity region for the HBO first harmonic, and for the second
harmonic when the Nyquist frequency permitted (regions 1-4),
averaging data within the FWHM of the HBO first or second
harmonic peak in each region. As the source moved up the
horizontal branch toward the normal branch vertex both the
HBO rms amplitude and the time lags decreased. The data in
regions 5-8 in the middle of the horizontal branch are rela-
tively sparse. This led to large errors bars in the time delay
spectra of these regions. The 10 measured time-delay spectra of
the HBO first harmonic, and the four measured time-delay
spectra of the second harmonic for regions 1-4, are shown in
Figure 3. In addition, we measured a composite, best-fit phase-
delay spectrum for the low-intensity end of the horizontal
branch by averaging all cross amplitudes within one FWHM
of the HBO peak for intensity regions 1-3. Because the HBO
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frequency varies with intensity, different frequency ranges are
averaged for each region. For this reason we quota phase
rather than time delays for the composite. We did the same for
the second harmonic. The phase delay spectra are shown in
Figure 4.

The time-delay spectra vary with source intensity, but
exhibit certain common characteristics. The time delay is an
increasing function of energy. There is evidence for a leveling
off at 10-12 keV in the time-delay spectra of regions 1-5 inde-
pendent of intensity, hence of HBO frequency. Limited S/N in
regions 6—10 make it impossible to determine if the time-delay
spectra level off, but a leveling off as in regions 1-5 is sta-
tistically consistent, at the 3 o level, with the observed time-
delay spectra. In some time-delay spectra, particularly for
region 2, there is evidence for a turnover both at low and at
high energies in both the HBO first and second harmonic time-
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F1G. 2—Power spectrum of GX 5—1 intensity region 1, 1.2-18.4 keV. The
intensity is ~ 700 millicrab.
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delay spectra. The magnitude of the maximum time delay
decreases with intensity from ~4 ms for region 1 to 1 ms for
region 6. We discuss the time delay spectra in the context of
Compton scattering and shot models in the following section.

In addition to HBO time-delay spectra we binned the data
into two spectral channels and measured time delays as a func-
tion of Fourier frequency from 1 to 35 Hz using a two-channel
cross spectrum. Such a procedure makes it possible to investi-
gate the intensity dependence of the time lags and facilitates
comparison with previous observations. We chose 1.2-5.8 keV
for the low-energy channel and 5.8-18.4 keV for the high-
energy channel, both to utilize all the energy channels and to
match as closely as possible the EXOSAT channels used in the
previous analysis of time delays in GX 5—1 (van der Klis et al.
1987). The time delay is plotted in Figure 5a as a function of
intensity. We plot the phase delay as a function of intensity in
Figure 5b. The time delay decreases with intensity from
2.0 + 0.2 ms at 7000 counts s~ !, the lowest intensity observed,
to 0.16 + 0.2 ms at 11,000 counts s~ !, then increases again to
0.87 + 0.2 ms at 12,800 counts s~ !, at the normal-branch
vertex. The phase delay decreases from 0.025 + 0.003 at 7000
counts s~! to 0.019 + 0.003 at 10,000 counts s~!, then
increases to 0.041 + 0.01 at the normal branch vertex.

4.2. Low-Frequency Noise Phase-Delay Spectra

We measured the energy, intensity, and Fourier frequency
dependence on phase differences in the low-frequency noise,
defined as 0.25 to 2 Hz. Rather than convert phase delays to
time delays, we quote phase delays because there is no pre-
ferred frequency to divide by.

To investigate the energy dependence of the low-frequency
noise phase lags, we determined y? best-fit phase delay spectra
by the same technique used to find the HBO first and second
harmonic time-delay spectra. Figure 6 shows phase delay
spectra of intensity regions 1, 3, and 5 obtained by averaging
Fourier frequencies from 0.25 to 2 Hz. A negative phase differ-
ence indicates that the low-energy photons lag the high-energy
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FIG. 4—(a-b) Phase delay spectra of the HBO first and second harmonics,
obtained by averaging measured cross amplitudes within one FWHM of the
HBO first or second harmonic peak for intensity regions 1-3.

photons. We find that variations in low-energy photon inten-
sity lag behind variations in high-energy photon intensity. The
length of the low-energy lag increases with energy up to a
maximum of ~0.03. At 1 Hz, a phase difference of 0.03 trans-
lates to a time difference of 30 ms. The magnitudes of the
low-frequency noise phase lags are comparable to the magni-
tudes of the HBO phase lags, but with opposite sign. Because
the Fourier frequency is much lower, the length of the low-
frequency noise time lags is an order of magnitude greater than
the length of the HBO time lags.

The phase delay spectra of regions 1, 3, and 5 are qualit-
atively similar. To investigate the intensity dependence, we
binned the data into two spectral channels, as in the previous
subsection, and measured the phase delay as a function of
source intensity for the frequency range 0.25-2 Hz. The result
is shown in Figure 7. Notice that the phase delay decreases
with source intensity. The average phase delay in the intensity
range 10,000-12,800 counts s~ is 0.013 + 0.003.

To measure the Fourier frequency dependence of the phase
delays, we again chose the same two broad spectral channels
and calculated the cross spectrum. Results for intensity regions
1, 3, and 5 are shown in Figures 8a-8c. It is difficult to deter-
mine if the phase delay varies with Fourier frequency at low
frequency because of the large uncertainties in the phase lags.
To improve the statistics, we combine intensity regions 1-5
and calculated a composite cross spectrum. The result is shown
in Figure 84. We find that the low-energy phase delay
decreases with Fourier frequency. Because the time delay is
equal to the phase delay divided by the Fourier frequency, the
time delay decreases even more rapidly with Fourier frequency.

4.3. Coherence Spectra

Using the best-fit Fourier coefficients determined with the y2
technique we computed coherence spectra (cf. § 3.2) of the
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Fi1G. 5—a) Intensity dependence of the time delay between variations in
5.8-18.4 keV relative to those in 1.2-5.8 keV at the HBO frequency. (b) Phase
delays, same energy ranges. The phase delay is v times the time delay and thus
contains the same information. A positive delay indicates a hard lag.
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the low-frequency noise as a function os source intensity. The soft channel is
1.2-5.8 keV, as the hard channel is 5.8-18.4 keV. A negative value indicates a
soft lag. Frequencies from 0.25-2 Hz averaged.

HBO in intensity regions 1 and 3. The coherence spectra, cor-
rected for Poisson noise and thus measuring intrinsic coher-
ence, are shown in Figure 9. We found that for all spectral
channels the coherence is consistent with unity. As explained in
§ 3.2, a value of unity is consistent with the reduced y? values
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obtained in the fits. Reduced y2 values for the best-fit time-
delay spectra are consistent with unity at the 3 ¢ level for all
intensity regions.

The measured intrinsic coherence spectrum tells us that
within the errors, the HBO signal in each spectral channel is
the same up to a phase and amplitude factor, suggesting that
the same physical mechanism is responsible for all the signals.
There is no measurable source of intrinsic variability in the
HBO frequency range in any spectral channel that is uncor-
related with the other spectral channels. We can typically
exclude such independent variability at a level of 20% of the
HBO rms variability.

Because the coherence spectrum of the GX 5—1 HBO is
unity, the correlated power is equal to the total intrinsic
(Poisson-noise-subtracted) power in the HBO frequency range.
If the same is true at all frequencies, the correlated power as a
function of Fourier frequency in each spectral channel will be
the same as the power spectrum, with Poisson noise sub-
tracted, in that channel. In that case it is possible to estimate
the power spectrum of the source using only cross spectra.
Cross spectra have the advantage that they are sensitive only
to correlated power, and hence have no Poisson noise offset.
Cross spectra can be used to estimate intrinsic power spectra
without requiring the estimate of the Poisson noise level
Perfect coherence also means that if one divides the data into
two broad spectral channels and calculates the amplitude of
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a soft lag. Panel d was obtained by averaging over intensity regions 1-5.
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the other channels. The coherence values plotted here have been corrected for
the effect of Poisson noise and hence represent measurements of intrinsic
source coherence.

the cross spectrum between the two channels as a function of
Fourier frequency, the resulting amplitude cross spectrum will
be nearly, although not necessarily exactly, the same as the
shape of the intrinsic power spectrum of the sum of all of the
spectral channels. The amplitude cross spectrum is a quick
method of determining the shape of the power spectrum,
requiring no Poisson noise subtraction. Figure 10 shows the
amplitude of the cross spectrum between spectral channels 1-4
(1.2-5.8 keV) and channels 5-10 (5.8-18.4 keV) in intensity
region 1 as a function of Fourier frequency. The HBO first
harmonic peak is clearly visible. The second harmonic peak is
perhaps visible as a broad shoulder. Compare Figure 10 with
Figure 2.

5. DISCUSSION

5.1. Compton Scattering Model

To investigate the possibility that the time delays we
observed are caused by inverse Compton scattering we per-
formed Monte Carlo simulations of scattering in a finite,
homogeneous, spherical Comptonizing cloud centered on the
neutron star. We attempted to synthesize both the energy spec-
trum and the time-delay spectrum. The input spectrum is a
blackbody. The principal physical parameters of the model are
the blackbody temperature of the input spectrum, the electron
temperature and optical depth of the Comptonizing cloud, and
the cloud radius. The cloud radius affects only a time-delay
spectrum, and only by a scaling factor. For a detailed dis-
cussion of numerical calculations of Comptonization in a
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Fi1G. 10—The amplitude of the cross spectrum between the 1.2-5.8 keV and
5.8-18.4 keV light curves for intensity region 1. Compare this with Fig. 2.
Because this figure was obtained using cross spectra that are only sensitive to
correlated variability, there is no noise offset, and no Poisson subtraction was
necessary to obtain this figure.

cloud, see Pozdnyakov et al. (1983). The code we used was
developed by Wijers, an Paradijs, & Lewin (1987). Recently,
Schulz & Wijers (1993) used the code to fit the energy spectra
of a number of low-mass X-ray binaries, including GX 5—1, all
along their horizontal, normal, and flaring branches.

In Figure 11 we show a time-delay spectrum obtained with
the Comptonization model using a 0.7 keV blackbody input
spectrum and a 6 keV Comptonizing cloud with an optical
depth of 5.6 and a radius of 5 x 107 cm. The blackbody tem-
perature, electron temperature, and optical depth are best fit
GX 5—1 values from Schulz & Wijers (1993) for the low-
intensity end of the horizontal branch. By increasing the black-
body temperature and decreasing the Compton temperature
we can obtain time-delay spectra with turnovers at both low
and high energy, but at the expense of the worse fit to the
energy spectra. This simple scattering model can reproduce the
main features of the time delay and energy spectra.

There are problems, however, with the Comptonization
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FiG. 11.—Time-delay spectrum obtained using a Monte Carlo simulation
of photon scattering in a spherical, isothermal, homogeneous central corona.
The blackbody temperature is 0.7 keV. The cloud has a Compton temperature
of 6 keV, an optical of 5.6, and a radius of 5 x 107 cm.
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model. The code used in our simulations assumes the existence
of an isothermal and homogeneous cloud around the neutron
star. It does not attempt to be self-consistent. Estimates of the
energy-loss rate to photons traversing an electron cloud with
an optical depth of order unity and with a large enough radius
(~ 1000 km) and temperature (~ 10 keV) to produce 3 ms time
delays indicate that neither conversion of gravitational energy
nor radiative heating can provide enough energy to the cloud
at large radii to maintain the cloud temperature (Stollman et
al. 1987; Shibazaki et al. 1988). Thus, the model has problems
with energy conservation.

Observationally, there are two difficulties. The com-
ptonization model predicts that signals in different channels
are copies of one another, up to a shift in time and a scaling in
amplitude, as long as the time scale of variations in the signals
is much longer than the time delays between the signals. The
signal we observe in each spectral channel at the HBO time
scale should be modulated with the same relative amplitude as
the input signal that produced it, delayed by up to several
milliseconds. Therefore the HBO rms amplitude spectrum—
fractional rms amplitude as a function of energy—should be
flat. Further, the time delay between any two channels should
be independent of Fourier frequency, provided the Fourier
period is much longer than the time-delay.

The observed fractional rms amplitude spectrum is shown in
Figure 12. All values have been corrected for cross talk induced
by dead time using the frequency domain technique described
in Lewin et al. (1992) and, independently, using a time domain
technique as described in Mitsuda & Dotani (1989), with con-
sistent results. Note that the assumption made by Lewin et al.
in calculating rms amplitudes of HBO in GX 5—1 for this
same data set—that the magnitudes of horizontal-branch time
delays are small enough relative to the HBO frequency that the
time delays may be neglected in computing dead-time-induced
corrections to the rms amplitudes—is correct. We see that the
fractional rms amplitude is much larger at high energies than
at low. Thus, a simple Compton model as presented here is
inconsistent with the fractional HBO rms amplitude spectrum
observed.

A second difficulty with the Comptonization model arises
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F1G. 12—HBO fractional rms amplitude as a function of energy for the
HBO in intensity region 3. The fractional rms amplitude increase with energy
from ~6% in the range 1.2-2.3 keV to nearly 20% in the range 13.8-18.4 keV.
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from the time delay spectrum of the HBO second harmonic.
Recall that the measured time delay at frequency v is defined as
the phase difference at frequency v divided by v. The phase-
delay spectrum of a set of signals in a frequency range centered
at v, is identical to the time-delay spectrum, with a multiplica-
tive factor of v,. A phase-delay spectrum is an alternate way of
presenting a time-delay spectrum. If the observed delays are
true time delays, as will be the case if Comptonization is
responsible for the delays, the prediction is that the first and
second harmonic will show an identical time-delay spectrum,
or in other words the phase delay of the second harmonic will
always be twice that of the first harmonic. The ratio of the
phase delay spectrum of the second harmonic to the phase-
delay spectrum of the first harmonic, the ratio spectrum,
should be flat, and should have a value of 2. We calculated the
ratio spectrum using values found by the y? technique to evalu-
ate the hypothesis of an identical time delay.

In Figure 13 we show the ratios of the second to the first
harmonic phase delay spectra (ratio spectra) for regions 1-3.
Figure 13d is the ratio of the average HBO second harmonic
phase delay spectrum, combining data in regions 1-3, to the
average HBO first harmonic phase delay spectrum of those
regions, i.e., the ratio of Figure 4b to Figure 4a. To obtain the
average phase delay spectra combining regions 1-3 we used
data within one FWHM of the HBO first and second harmo-
nic peaks in each intensity region. Thus, the Fourier frequency
range over which the average is performed is different for the
four different intensity regions. For this reason we use the ratio
of phase delay spectra, rather than time-delay spectra.

Notice that in each region the ratio spectrum increases with
energy. The increase is even more apparent in the average ratio
spectrum. A nonconstant ratio spectrum contradicts the
Compton model prediction. We can either conclude that the
model is wrong, or that another signal, with a different time-
delay spectrum, is influencing our results.

We can estimate the possible effect of the low-frequency
noise contribution because we know how its amplitude
depends upon frequency. At the HBO first and second harmo-
nic frequencies, we find that its Fourier amplitude is so small
that it will not have a measurable effect upon the HBO time-
delay spectra, regardless of the phases of the low-frequency
noise Fourier coefficients.

Another possibility is that there is a high-frequency noise
signal with a different phase-delay spectrum that has different
effects upon the first and second harmonic phase delay spectra.
Because of the low Nyquist frequency of the data used (64 Hz)
we could not evaluate the strength of the high-frequency noise.
Previous observations at higher time resolution have found
high-frequency noise components with fractional rms ampli-
tude variations of order a few percent (Hasinger & van der
Klis 1989). We cannot rule out the possibility that such a signal
is causing the differences between the first and second harmo-
nic phase delay spectra.

Finally, the Compton model predicts a flat ratio spectrum
only if all the radiation originates at or extremely near the
neutron star surface. If the disk also emits, its radiation would
be softer. The increase in the ratio spectrum with energy may
reflect that at higher energies a higher fraction of the radiation
comes from Compton reprocessing of photons from the
neutron star surface. However, for disk radiation to contribute
to either the HBO first or the second harmonic time-delay
spectrum, its intensity must be modulated at the HBO first or
second harmonic frequency.
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5.2. Evolving Shot Models

The intensity modulations causing HBO peaks in power
spectra of low-mass X-ray binaries are thought to originate
near or at the neutron star surface as material falls through the
magnetosphere and onto the surface of the neutron star. Shot
noise models are the mathematical class of models that
describe variations in intensity as a stochastic series of overlap-
ping shots. They have been invoked to explain the X-ray light
curves and power spectra of low-mass X-ray binaries. See
Alpar & Shaham (1985) for a description of shot models.

It is possible that the observed low-energy lags at low
Fourier frequencies occur because the shot envelopes in the
lower energy channels lag and/or differ from those in the
higher energy channels (van der Klis et al. 1987; Shibazaki et
al. 1988). Such a model comes under the general heading of a
softening shot model. Shibazaki et al. (1988) discuss softening
shots in detail in the context of standard QPO shot models,
such as the beat frequency modulated accretion model (Alpar
& Shaham 1985; Lamb et al. 1985; Shibazaki & Lamb 1987).
They find that energy-dependent shot profiles can produce
low-energy phase lags in the cross spectrum at frequencies
typical of the shot time scale (tenths of a Hertz to a few Hertz)
without noticeably affecting the cross spectrum at higher fre-
quencies.

To simultaneously explain the low Fourier frequency low-
energy phase lags and the higher frequency high-energy phase
lags, the shot envelopes causing the low-frequency noise must
be treated independently of the oscillations in the shots causing
the HBO peak. The high-energy lag in the HBO can be
explained if the oscillations causing the HBO peak in the

higher energy channels lag those in the lower energy channels.
If an energy-dependent response function, h(E, At), connects
the accretion rate, r(t), across an accretion gap onto the
neutron star, with the observed intensity at energy E and time
t + At, the observed time delays will reflect differences in the
characteristic conversion time as a function of energy.
However, if the response function is the mathematical realiza-
tion of heating as blobs fall to the surface, the delays should be
of order the free-fall time. Since the free-fall time is no more
than 0.5 ms, 4 ms delays should not be produced. Mathemati-
cally, shot models can produce almost any time-delay spec-
trum, but like Comptonization models, they have problems on
physical grounds.

5.3. Time Delays and Millisecond Pulsar Searches

If the HBO time-delay spectrum is caused by an external
process that acts upon signals produced in the inner disk or at
the neutron star, rather than being intrinsic to to the HBO
signal itself, we may think of the process as a kind of dispersion
that will act upon any signal produced at or near the neutron
star, regardless of its frequency. One particularly interesting
kind of signal originating at the neutron star surface is coher-
ent pulsations. Making no assumptions about the physical
nature of the process causing the time delays—only that it is
dispersive—we can calculate its effect upon the sensitivity of
millisecond pulsar searches.

Millisecond X-ray pulsar searches have been conducted
using X-ray data with the high time resolution available, which
for current instruments is typically of order 1 ms (Wood et al.
1991). Millisecond data always have a smaller number of wide
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energy channels, as high time resolution necessarily comes at
the expense of spectral resolution due to satellite telemetry
limitations. For spectral channels typical of Ginga or
EXOSAT and for a time-delay spectrum such as we see in GX
5—1, the signal at the low end of a spectral channel can arrive
milliseconds earlier than the signal at the high end. In Cyg X-2,
horizontal branch time lags observed with EXOSAT are even
larger (van der Klis et al. 1987). We calculate how much the
observed power from a coherent oscillation is reduced by such
time delays.

Assume a signal x(t) is produced at the neutron star surface.
An unspecified process acts upon the input signal with the
result that in a narrow spectral channel of energy E and width
dE we observe y(t) = A(E)x[t — r(E)]dE. In a broader spectral
channel extending from E = E_ to E = E, we observe

E+
) = j A(E)x[t — ©(E)]dE . (14)
E —

To calculate the loss of sensitivity as a function of the signal
frequency v, caused by a time-delay spectrum 7(E) we calculate
the power spectrum and compare the power at v, with the
power we could observe for 7(E) = 0.

The Fourier transform Y(v) of y(¢) is given by

Y() = f Ty(t)ez'"‘vr dt . (15)

Substituting equation (14) for y(t) and integrating over time
yields
E+
Y(v) = X(v) J A(E)e*™ B JE | (16)
E —

where X(v) is the Fourier transform of x(¢). Ignoring normal-
ization, the power at the signal frequency becomes

Po) = | X(vo) [ f " AB)er e gE | (17)
For 1(E) = 0, the power is
P(v,) = IX(vo)PU“A(E)dE]Z . (18)

The fractional power in the presence of time delays is given
by the ratio of equation (17) to equation (18). One minus this
ratio gives us the fractional loss of power. Thus, we define

| ."Et A(E)eZm'vr(E)dE IZ
[JE: A(E)dET?

In Table 1 we tabulate F, [vy, A(E), ©(E)] in regions 1, 3,
and 10 of the hardness-intensity diagram for pulsar frequencies
of 50, 100, and 500 Hertz. To calculate F, it is always neces-
sary to specify pulsed rms amplitude as a function of energy
and a response matrix for the instrument observing the pulsar.
The values tabulated below were calculated using the observed
Ginga PHA spectra of GX 5—1 and assuming the fractional
rms amplitude spectra of pulsars are flat. It is important to

Floss[\)O’ A(E), T(E)] =1—-

(19)
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TABLE 1

PULSAR SEARCH FRACTIONAL POWER L0OSs DUE TO
ENERGY-DEPENDENT TIME DELAYS IN A
BROAD SPECTRAL CHANNEL

F loss F loss F loss
Region (50 Hz) (100 Hz) (500 Hz)
| PPN 0.020 + 0.005 0.080 + 0.020 091 + 0.05
K 0.003 + 0.001 0.011 + 0.005 0.25 + 0.10
10 o, 0.004 + 0.002 0.016 + 0.007 0.34 + 0.11

Notes—The spectral channel extends from 1.6-6 keV. The pulsed
component is assumed to have a flat rms amplitude spectrum and a
typical low-mass X-ray binary PHA spectrum. If the pulsed component
has a narrow energy spectrum, the losses will be smaller.

note that the calculated losses are thus specific to the instru-
ment and to the source.

To perform the integral in equation (19) we fitted the
observed PHA spectrum in the range 1.2-5.8 keV using a
parabola and fitted the time-delay spectra in the same energy
range with a straight line. Because an offset of the line fit to the
time-delay spectra will not affect F,,, only a single
parameter—the slope—is important. To determine uncer-
tainties, we treated the fit to the PHA spectra as fixed and used
the uncertainties in the slopes of the time-delay spectra to
determine 1 o confidence intervals. The spectral range of the
detector is taken to be 1.6-6 keV, a range typical for both
Gingaand EXOSAT.

In region 3 where the time delays are small, the loss of power
is less than 1% for pulsar frequencies under 100 Hz and
reaches only ~25% at 500 Hz. The losses are smaller in inten-
sity regions 4-8, and comparable in regions 9 and 10. Milli-
second pulsar searches, already hampered by small expected
signal modulation depths due to weak low-mass X-ray binary
magnetic fields and possible losses from gravitational lensing
(Wood, Ftaclas, & Kearney 1988; Mészaros, Riffert, & Berth-
iaume 1988; Wood et al. 1991 and references therein), may thus
be relatively free of dispersive losses on a large fraction of the
horizontal branch. However, if the dispersion is caused by
cloud scattering, the isotropizing effect of the cloud may be
much worse (Brainerd & Lamb 1987; Wang & Schlickeiser
1987; Bussard et al. 1988). The case calculated here considers
only the effect of time differences, independent of the direction
in which the photon escapes. In intensity regions 1 and 2, the
larger time delays produce losses of up to 90% at high fre-
quency. As a rule, if the change in time delay over a spectral
channel is large relative to the Fourier period, a significant loss
in power will result.
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APPENDIX
x> TECHNIQUE

In the text we describe the procedure for finding best-fit time delay spectra as a x> minimization search for best-fit Fourier
coefficients whose phases give us the time delays. It is not, however, the absolute phases of the Fourier coefficients that we expect to
be constant from one independent data segment to the next but their relative phases. Under the assumption that the relative phases
of the Fourier coefficients at a given Fourier frequency are the same from segment to segment we can write the Fourier coefficient of
channel m in segment p at frequency v; as

Youp(v) = H(v)X (v, (20)

where H,(v;) is constant from segment to segment and X (v;) is a complex number whose phase is drawn from a distribution
uniformly and randomly distributed on [0, 2=]. H,(v) is the frequency response function, or frequency domain transfer function.
Averaging over the Fourier frequency range of interest and assuming that the phase delay is approximately constant yields

Y, =H,X,. (21
Next compute the cross spectrum is segment p:
Gunp =Yy Yop=HiH, | X, |* . 22
Averaging over a large number of segments yields
G = HRH LX) (23)

In deriving equations (23) we have assumed only that the phase differences between the spectral channels are constant between
segments. To give a physical interpretation of the above equations, assume that equations (20) holds at all frequencies. By taking the
inverse Fourier transform of equations (20) we get the convolution integral

@
Ynll) = j hn(OX(t — 7)dT , (24)
—

where y,,(t) is the right curve in channel m and h,(7) is the transfer function or unit impulse response function, so called because a
unit area ¢ function input, x(t) = d(t), produces output y,(t) = h,(t). The signal x(¢) is an input that is convolved with each of the
transfer functions h,(7) to produce the observed output signals {y,(t)}. The input x(¢) is generally not observable. We only see the
¥.(t). Note that the input signal is a mathematical convenience. There need be no actual input signal for the y2 procedure to work.
The real physical assumption is that the relative phases of the HBO signals are constant. The coherence function defined below and
in § 3 is a quantitative measure of the validity of this assumption, as is the 2 value of the best fit. Even if the relative phases are not
constant the best-fit time-delay spectrum is an estimate of the average relative phases, hence of the time-delay spectrum. A system
described by equations (24), or equivalently by equations (20) is called a constant parameter linear system if the transfer functions do
not change with time.

Good discussions of linear systems theory can be found in books on signal processing. See, for example, Bendat & Piersol (1980,
1986). Much of the background material presented here and in § 3 is covered in detail in chapters 6 and 9 of Bendat & Piersol (1986).

We use equation (23) as the basis of the y? technique. The quantities we wish to find using y*> minimization are the transfer
functions H,,. The average Fourier amplitude of the input signal is {| X |>). By assumption we cannot observe the input so {| X |?)
cannot be measured, but it is the same for each m, n pair, so we do not need it to estimate the relative amplitudes of the transfer
functions. Further, equation (23) are invariant under a transformation of the form H,, — ¢?H,,. We thus cannot determine the
absolute phases of the transfer functions, only their relative phases, a result of our ignorance of the absolute phase of the input
signal.

Setting ¢ | X [2> = 1 yields the set of equations

G,,=H*H,. (29)
From the set of equation (25) we define the y2 static

CA;mn - Hfril‘*H:ai( |2
=y Cm—l 26)

m<n amn

where we show how to estimate o,,, in the following section.
The prescription for obtaining a x? best-fit time-delay spectrum for multichannel data is then as follows.

1. For each data segment measure cross- and auto-spectral densities between all pairs of spectral channels. Correct for dead-
time—induced channel cross talk using either a time domain procedure as discussed in Mitsuda & Dotani (1989), or a frequency
domain procedure (Lewin, van Paradijs, & van der Klis 1988). Average the cross and auto spectra over data segments.

2. Average each measured cross and auto spectrum over the Fourier frequency range of interest to obtain G,,, for all m < n.

3. Compute and minimize y2 as defined in equation (26) to find best-fit transfer functions and confidence intervals. It is crucial
before minimizing to impose one additional constraint on the system. We fix the value of the real or imaginary part of one
parameter. The relative amplitudes and phases of the best-fit transfer functions and thus the time delay and coherence spectra are

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...421..738V

No. 2, 1994 TIME DELAY SPECTRUM OF GX 5-1 751

invariant to the choice of channel. Failure to impose an additional constraint will almost certainly cause any minimization routine
to fail, and at any rate will produce meaningless confidence limits for the transfer function values. The time delay between channels
mand n is given by arg [H* H,]/v, where v is the average Fourier frequency.

4. As always in y? minimization, check that the final reduced x> value is reasonable. A large value means the assumed constancy
of the relative phases and amplitudes of the transfer functions from segment to segment is invalid. Either the process under
investigation is nonstationary or there is an additional process at work in some or all of the channels that is uncorrelated with the
process in the other channels. It does not, however, mean that the best-fit values should be rejected. Even for large 2, the transfer
functions are a best-fit average. A truly large x? value may indicate corrupted data. A single large, previously unnoticed data spike
caused our y2 values to be enormous, although it hardly affected the best fit values of the parameters.

A2. UNCERTAINTY ESTIMATION

In this section we will remove the fit superscript from the transfer functions H,, to simplify notation. We wish to show that the 2
statistic to be minimized in finding best-fit values of the transfer functions can be written

|HAH, — Gy ®
p= 3y memeCeml @
m<n amn
where 62, = (1/21,)G,, G- Recall that a hat indicates a quantity obtained by averaging over independent data segments and/or
Fourier frequencies and that a tild indicates a “raw,” or unaveraged quantity.
The usual form of the y2 statistic is
N [ _ 2
yi —f(x)]
= Z 2 > (28)
i=1 i

0;

where the fit function f is a function of the independent variable x and some number of fit parameters, and the values of the
dependent variable y; are the results of measurements at discrete values x; of the independent variable. The denominator, o7, is the
expected experimental variance in the observed value y,. Fitting observed cross spectra with products of transfer functions differ
from the standard y? problem in that both the observed quantities and the fit functions are complex. However, we are free to
consider the real and imaginary parts of the cross spectra and transfer functions to be the observables and the fit parameters,
respectively. Let G,,, = GR, + iGL,, where G, is the real and GZ,, the imaginary part of G,,,, and similarly let H,, = HR + iH!. We
can now define a y? statistic in terms of real quantities:
2_ (Gpn — HoHy — HLHY)”| | [(Ghy — HoH,y + My, HY)?
=Y Y + '3 .
mn mn

(29
m<n
It remains to calculate the uncertainties in GX, and G%,,. .
Let us first find the variance in a single (unaveraged) measurement of the cross spectrum at a single Fourier frequency, G,,,(v,). At
the risk of confusion we drop the frequency in the following to simplify notation. Written in terms of Fourier coefficents, G,,
becomes

Gon=X*X,=XRXR + XL X" + i XRX! + XL XP). (30)
The real and imaginary parts of G,,, we label C,,, and §,,,, respectively;
Con=XRXX+X0X),  Qum=XnX,+ X, X7 (1)

The variance in C,,, is given by

var [Cp] = <Ch> — KCon?)? - (32)
The expectation value of C,,, is C,,,. Expanding the expectation value of (C,,,)? yields
(G = (EAE? + XXX +2X0 X, X0 (33)
The expectation value of the product of four Gaussian random variables is
{abcd) = {ab)<{cd) + {ac){bd) + {ad){bc) . (34)

Using equation (34) we can evaluate equation (33). To do so we use the following relations (Bendat & Piersol 1986);
ZnXo>=<XiZ> =0, LXDD =LEXD) =@6mm, XD =LEXD = 3G,

KRXD =X, XD =(3)Cp, (XRXD=(X,XD =30 - (35)
We follow an analogous procedure to find the variance in §,,,, and obtain
var [Conl = HGpum Gun + Con — Q) s VAT [Qrnn] = 3(Grum Gon + Qo — Ciia) - (36)

Averaging n;-independent samples and Fourier frequency channels reduces the above variances by factor of 1/n, with the result
that

~ 1 N 1
var [Cmn] = E;I—d (Gmm Gnn + Crznn - Q'%l’l) 2 var [an] = E‘ (Gmm Gn'l + Q'zrl’l - Crznn) * (37)
d
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If the data under investigation is dominated by Poisson noise, as is the case in our data, both of the variances in equation (37) are
dominated by the product of autospectral densities G,,, G,, because both the signal and the noise contribute to the autospectra. We
thus obtain the approximate expression, valid when Poisson noise dominates the signal,

~ ~ 1
var [C,,.] ~ var [Q,..] ~ o Goum G - (38)
d

The variances of the real and imaginary parts are approximately equal and we can write x? as in equation (27). ~

We should note that equation (27) is approximate not only because the variances of the real and imaginary parts of G,,, are not
exactly equal but because the expectation value of the covariance between C,,, and Q,,, is nonzero. However, because the covariance
scales as 1/n,, it becomes vanishing small after averaging a large number of independent segments and frequency channels.
Nonetheless, we performed y> minimization using a statistic incorporating both the exact variances in equation (37) and the
covariance. We found that in all cases the best-fit transfer functions and the uncertainties agreed with those found using equation 27
to within ~ 1%. We thus conclude that the y*> method as outlined in this paper is a good approximation given a large data set in the

presence of Poisson noise.
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