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ABSTRACT

We investigate two kinds of constraints on the ellipticity of the Galactic disk: local constraints, based on
the kinematics of the solar neighborhood (such as the Oort constants, the axis ratio of the velocity ellipsoid,
the vertex deviation, and the radial velocity of the local standard of rest relative to the Galactic center), and
global constraints (H 1 tangent point velocities, the velocity fields of distant carbon stars, Cepheids, and H 11
regions, and the kinematics of distant H 1). Local and global constraints independently suggest that the Sun
lies near the minor axis of the potential of an elliptical Galactic disk, with equipotential axis ratio 0.9. The
kinematic data are consistent with a flat rotation curve of constant ellipticity, with a mean rotation speed of

200 km s~ !. In this model, the present velocity of the local standard of rest is 180 km s

-1

Subject headings: Galaxy: fundamental parameters — Galaxy: halo — Galaxy: kinematics and dynamics —
Galaxy: structure — solar neighborhood

1. INTRODUCTION

Most astronomers believe that disk galaxies are surrounded
by massive unseen halos. If these halos form through dissi-
pationless collapse of primordial density fluctuations, few of
them should be round; rather, a typical galactic halo is
expected to be strongly triaxial (e.g., Dubinski & Carlberg
1991), although triaxial halos tend to become oblate under the
uncertain influence of dissipation in the gaseous component of
the collapsing galaxy (Katz & Gunn 1991).

The shapes of orbits in the disk are influenced by the halo
potential: in particular, if the disk lies in a principal plane of a
triaxial halo then we expect the closed orbits in the disk to be
elliptical. Binney (1978) was the first to consider the effects of
triaxial halos surrounding disk galaxies, showing that they
might explain the observed warps and apparent twists seen in
many disks. Kuijken & Tremaine (1991, hereafter KT) used
halo parameters taken from Dubinski & Carlberg’s (1991)
simulations to estimate that the disk axis ratio g at 15 kpc in a
typical galaxy should be given by 1 — g =~ 0.1.

The distribution of axis ratios of nearby disk galaxies can be
estimated from the distribution of apparent ellipticities and
inclinations (determined from the Tully-Fisher relation) or of
differences between photometric and kinematic position angles
and inclinations (KT; Franx & de Zeeuw 1992). The data indi-
cate that typically 1 — g =~ 0.1, although with considerable
uncertainty and possible systematic biases that tend to increase
the apparent ellipticity. Franx and de Zeeuw have argued that
the scatter in the Tully-Fisher relation for disk galaxies sets an
upper limit 1 — ¢ < 0.1. They also argue that ellipticity is
unlikely to be the sole source of the “cosmic” scatter in the
Tully-Fisher relation, and suggest that, on average, 1 —q <
0.06.

The observational data on the shapes of halos is as modest
as the data on the shapes of disks. The flaring of H 1 disks at
large radii, the spherical distribution of tracers such as globu-
lar clusters, and the similarity of the rotation curves of polar

rings and equatorial disks all suggest that halos are “more
nearly spherical than flat” (in the words of Kormendy’s 1988
review), but do not constrain halo triaxiality at the level we are
considering here. A more recent investigation by Sackett &
Sparke (1990) of the polar ring galaxy NGC 4650A concluded
that the halo has a polar flattening between E3 and E7. All of
these observational constraints are on flattening and do not
address the likely deviations from axisymmetry in dark halos.

In this paper, we will examine the evidence for non-
axisymmetric distortions in the disk of our own Galaxy. We
shall focus on nonrotating elliptical distortions such as might
be caused by a triaxial halo, although many of our methods
and conclusions are also relevant to more general distortions.

The detection of nonaxisymmetric distortions in our Galaxy
is difficult, in part because the Sun lies within the disk. The
most obvious signature of such a distortion is asymmetry
between Galactic longitudes / and —I. The difficulty of detect-
ing a distortion increases substantially when the Sun lies near a
symmetry axis of the distortion, because then there are no
asymmetries between positive and negative longitudes. In fact
we shall argue that this is the case: that there is a significant
distortion of the disk, of about the magnitude expected from
the theoretical and observational arguments above, that has
not been obvious simply because the Sun happens to lie near a
symmetry axis. More generally, an arbitrary small distortion
can be decomposed into “even” and “odd” components, in
which the potential and density are even and odd, respectively,
under reflection through a plane containing the Sun, Galactic
center, and Galactic poles. Most of our discussion is directed
toward constraining the even component, which has received
little or no attention in the literature so far.

After reviewing the dynamical consequences of an elliptical
distortion in § 2 we will concentrate on two basic kinds of
observation that can be used to probe for distortions:

1. Local observations, based on the kinematics in the solar
neighborhood (§ 3). These included the Oort constants C and

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...421..178K

[TO02ARY: - 74217 TI78K,

1992

GALACTIC DISK ELLIPTICITY 179

K, the velocity of the local standard of rest along the Sun-
Galactic center line, and the shape and orientation of the
velocity ellipsoid.

2. Global observations, based on the kinematics of distant
objects, mostly between the solar radius R, and 2R, (§ 4). The
tracers we will discuss include H 1, H 11 regions, carbon stars,
and Cepheids.

More details on some of this work are described in KT.

1.1. Notation

Throughout this paper, we employ polar coordinates (R, ¢)
in the Galactic plane, with R = 0 at the Galactic center. The
Sun is at (Ry, ¢ = 0), and ¢ is measured in the direction of
Galactic rotation. The usual Galactic longitude is denoted by L
Motions perpendicular to the Galactic plane will be ignored.
The local standard of rest (LSR) is the frame in which the mean
velocity of the stars in the solar neighborhood, corrected for
asymmetric drift, is zero. We use f, as shorthand for df/ox.
Bars denote averages over all stars at a given position; thus
v(x) is the mean velocity at position x.

2. A SIMPLE MODEL OF AN ELLIPTICAL DISK

We consider the potential

F(R, ¢) = ¥o(R) + ¥(R) cos 2A¢ — ¢) 1)

where ¢, is a constant. The axisymmetric part of the potential
is chosen to yield a power-law rotation curve v (R) =
(R/Ry)*v,, where v, is the circular speed in the solar neightbor-
hood:

v (R\* .
TO(R)=£<R—> if a#0,
0

or v2In(R)

. 2

if a=0; @)
the nonaxisymmetric potential (assumed small) is stationary in
an inertial frame and has twofold symmetry, which are appro-
priate assumptions if the potential arises from a triaxial halo.
This potential is also chosen to be a power law in radius:

W(R) = Yo(R/Re), Yo =0. ©)

Plausible values of p range from — 3 (for a bar or triaxial bulge
located well inside the solar circle) to + 2 (for a halo with core
radius much larger than the solar circle). The equipotential
surfaces are approximately elliptical, with axis ratio qy = 1
— €y + O(e), where

2Y(R)
Uc2 irc(R) .

Since Y(R) is positive, ¢ = ¢, is the minor axis of the potential.
More general perturbations (including nonstationary poten-
tials as well as potentials with different azimuthal
wavenumbers) are discussed in KT. For a cold (low-velocity
dispersion) population, the mean velocity ‘at (R, ¢) in the
potential (1) can be shown to be v(R, ) = Tgeg + Tye,
+ O(€%), where (KT, eq. [20])

€y(R) =

)

_ 144 .

Ug = — (tip)&y Veire SN 2() — ) ; (5a)
1+ ipa1

50 = e = | A D c0s 20— 9. (50

The mean velocity field near the Sun can be expanded in
powers of the distance r from the Sun, to yield mean line-of-
sight velocities 7, and proper motions ji relative to the LSR:

B = MK + A sin 2l + C cos 2I) + 0(r?) ;
d=B+ Acos2l— Csin2l+0(). ©6)

In an axisymmetric, stationary disk, C = K =0 and 4 and B
are the usual Oort constants,

— 1
A= Aaxi = E(Dcirc/R - vcirc,R)Ro )

B=B - %(vcirc/R + Ucirc,R)Ro . (7)

In a more general velocity field, we have (KT, eq. [13])

axi =

24 = 54/R — Gg /R — Tp 5 »

2B = —54/R + g /R — Ty,

2C = — /R — 5 /R + gy s

2K = /R + By ,/R + Tg ¢ » ®)

all evaluated at R = R,,. For the elliptical potential (1) we have
from equation (5)

_ . €y U,
A—A"’“+2R0
1-— 1p[7 — 20 — o 1
N o + zpl a—a” 4+ p( +a)]cos2(¢-—¢,,);
1—a
€y U,
axi 2R0
1+a—3p[l —a?+p(l
R R () PV
1—«a
egv, 1 —a+p(l +3p) .
C= oy T sin 29— ¢
epv, 1 +a(l +p)—p(l + 3p) .
K= (1 +p) — p( 2p)sm2(¢_¢b)’ )

2R, 1—a
with errors O(€2).

The distribution of residual velocities (velocities of stars rela-
tive to the local mean velocity) is described by the velocity-
dispersion tensor o;; = (v; — v;)(v; — v;), or equivalently by the
velocity ellipsoid, which is an imaginary surface given by
x;05; ' x; = 1. Apart from a scale factor, the planar components
of the velocity-dispersion tensor are specified by two param-
eters: the vertex deviation [, (the Galactic longitude of the long
axis of the velocity ellipsoid), and the axis ratio X, given by
X? = 04,/0gg. In an axisymmetric, stationary disk, the vertex
deviation I, is zero and furthermore, provided the velocity dis-
persions are sufficiently small, X is determined by the Oort
constants:

X2 = axi__ _
A,i—B

(Rucirc),R
2v

_1+oc
)

(10)

axi axi circ R=Ro

For a flat rotation curve, this relation predicts X2 = $. Unfor-
tunately, “sufficiently small” barely applies in the solar neigh-
borhood: even when ogzg =~ 0.0402, a typical value for an old
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disk population, corrections arising from radial gradients in
stellar density and velocity dispersion can (and do) spoil the
validity of this relation.! For example, if we model the Galactic
disk as having a constant circular speed, with surface density
and radial velocity dispersion satisfying

Z(R) oc ogg oc e R/ (11)

(as suggested by observations of our own and other disk
galaxies), the predicted axis ratio is given by (KT, eq. [6])

X?=X3=3+GE-¢—-pb+ 00, 12)

where b = ogg/v? and ¢ = R/h. Local values for old disk stars
are b = 0.03-0.04, ¢ = 2-2.5, which implies X2 = 0.66 + 0.06:
the correction to the leading-order prediction X2 = 1 can thus
be as large as 40%. In spite of this complication, it will turn out
that observations of X are of considerable interest for our
study of the disk ellipticity.

An elliptical potential of the form (1) with |ey| < 1 will
produce the following vertex deviation and axis ratio pertur-
bation (KT, egs. [19] and [27]):

_ 2+ pl4+ 1+ 0)3p —20)]

! €y sin 2(¢ — ¢); (13a)

v 41 — (1 + 20)
X2 31 -0+ p2+ 02+ 3p—9)
X2 (1 —a)(1 + 20)
X €y COS 2(p — ¢y) . (13b)

These equations were checked by numerical integrations
similar to those reported by Blitz & Spergel (1991). We fol-
lowed 10* orbits in an axisymmetric (y = 0) potential of the
form (1), with starting positions and velocities distributed at
random so as to give the surface density and (Gaussian) radial
velocity distribution specified by equation (11). All orbits were
started with v, = v,. Each orbit was then followed for a ran-
domly chosen interval, to randomize its epicycle phase. Finally
the perturbation amplitude was smoothly increased to y over
10 orbital periods, after which the stars’ positions and velo-
cities were recorded at equally spaced time intervals over a
further 30 orbits. The stars were then binned in R and ¢, and
the mean velocities and velocity dispersions in each bin calcu-
lated. The predictions of equations (5a), (5b) and (13a), (13b)
agreed with the simulations to within 10% as long as the vertex
deviation remained smaller than about 30°.

The theoretical results in this section form the basis for the
observational search for axisymmetric distortions in our
Galaxy. The search employs two broad categories of test,
based on the kinematics of the solar neighborhood (§ 3), and
mapping of the large-scale velocity field of the Galaxy (§ 4).

2.1. The Standard Model

To reduce the number of free parameters, we will mainly
focus on a “standard ” model in which o = p = 0, so the rota-
tion curve is flat [v,,(R) = v (Ro) = v.] and the equipo-

! The condition ozg < v? basically means that the epicycle size is <R;
however, eq. (10) is only valid if the epicycle size is also much less than the scale
length for changes in the density or velocity dispersion, which is a more strin-
gent condition.
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tentials have ellipticity independent of radius (models with
other rotation curves and perturbing potentials will be dis-
cussed in § 6). The standard model is somewhat unrealistic, in
that normally the ellipticity would be expected to increase or
decrease with radius (if the nonaxisymmetry were due to a dark
halo or triaxial bulge, respectively), but it offers a simple
approach to estimating the qualitative effect of non-
axisymmetry on the observations.

The nonaxisymmetric potential is specified by €y (now inde-
pendent of radius) and ¢,, or, equivalently, by the dimension-
less constants

Cy = €y COS 2¢, , S¢ = €y sin 2¢, . (14)

These parameters have at least two advantages over €y and ¢,:
(1) the perturbing potential and the dynamical response are
linear in ¢y and sy in the limit ey — 0, whereas ¢, is undefined
when ey — 0; (2) their observational consequences are gener-
ally independent—for example, a nonzero sy induces asym-
metries between positive and negative longitudes, which cy
does not.

For the standard model, equations (5), (9), and (13) simplify
to

v—R(ﬂzs\ycosZ(/)—c\ysianS,
UC
—%@:1—CW0052¢—swsin2¢,
A== (1+cy), B= ——(1+cy (15)
" 2R, ¥ T R, v
v v
C= c K= — c
2R, Y’ 2R, ¥’
l,=—2sy, 0X*/X2= —3cy,

where all of the quantities except the velocity field are evalu-
ated at the solar position, R = R,;, ¢ = 0. Note that the
streamlines have the same axis ratio as the equipotentials, but
are oriented at right angles to them.

Most of the observational data that we discuss are based on
line-of-sight velocities, and hence in the axisymmetric case an
arbitrary uniform angular velocity can be added to the rota-
tion curve without affecting the results (i.e., the flat rotation
curve can be generalized to an arbitrary linear rotation curve).
This is no longer true in the nonaxisymmetric case, since equa-
tions (15) are no longer valid if the rotation curve is not flat.

3. LOCAL CONSTRAINTS ON ELLIPTICITY

A discussion of the observational properties of the Galaxy
that are sensitive to nonaxisymmetry is given by KT, and
usually we simply quote their results in the section below. The
error bars associated with these results are derived by the fol-
lowing procedure, which is somewhat arbitrary but fairly rea-
listic. We assume that each measurement in the literature is
subject to uncertainties given by (1) the error bars quoted in
the original paper, plus (2) a random error that affects all mea-
surements and that is not included in the quoted error, whose
variance is determined from the spread of the values in the
literature. We combine the two errors to find the weighted
mean of all the measurements in the literature and its standard
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deviation, then arbitrarily double the standard deviation to
obtain an error estimate that we call the “likely ” error.

3.1. The Oort Constants

A compilation of measurements of C and K in the literature
yields the best estimates and likely errors (KT, eq. [14])

C=06+11kms 'kpc™!;

(16)
K=-035+05kms !kpc?,
showing no evidence for nonaxisymmetry: C and K are less
than 10% of | A| and | B|. Also note that C + K = #g z, which
is known to be zero within tight limits (<1 km s~ ! kpc™!)
from the mean velocity and width of the H 1 absorption feature
toward the Galactic center (Radhakrishnan & Sarma 1980;
KT). In the standard model, these results imply sy = 0.05
+ 0.09 from C and sy = 0.03 4+ 0.04 from K (using eq. [15],
v, ~#200kms ™!, R, ~ 8 kpc).
A recent review of measurements of 4 and B (Kerr &
Lynden-Bell 1986) yields

A=144+12kms tkpc !,

B=—-120+28kms ! kpc?!, (17
where the errors are those assigned by Kerr and Lynden-Bell.
In the standard model (eq. [15]), A = — B whatever the non-
axisymmetric perturbation strength may be, and the observa-
tions are consistent with this result within the errors. If
differences between 4 and — B are detected, they may reflect
either a nonflat rotation curve (« # 0) or a radial gradient in
the ellipticity (p # 0).

3.2. Radial Motion of the Local Standard of Rest

If the Galaxy is stationary and axisymmetric, the radial
velocity v of the LSR should be zero. We gathered a variety of
measurements of the LSR velocity relative to populations that
are either near the Galactic center or representative of the
Galaxy as a whole (OH/IR stars, globular clusters, high-
velocity stars, planetary nebulae, etc.). We did not include CO
observations, since the CO distribution in the central several
hundred parsecs is asymmetric (most of the gas is at positive
longitude), so that effects of Galactic rotation on the mean
velocity are uncertain. (The raw average of the CO data implies
that the LSR recedes from the Galactic center at ~14 km s™1))
The combined result of these measurements (KT, eq. [15]),

bg=—1+9kms™ !, (18)

shows no evidence for nonaxisymmetry. For the standard
model, this result implies (eq. [15]) sy = —0.01 + 0.05.

3.3. Vertex Deviation

Young, low-dispersion populations of stars can exhibit
vertex deviation as a result of spiral structure, or of incomplete
mixing around their orbits since their formation; in order to
use the vertex deviation to study the large-scale shape of the
potential, it is therefore necessary to restrict the sample to
kinematically hotter stars. Available data for populations with
ox# > 30km s~ ! give (KT, eq. [26])

l,=55+4%2 . (19)
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Here, too, there is little or no evidence for nonaxisymmetry.
For the standard model this result implies (eq. [15]) sy =
—0.05 + 0.04.

3.4. The Axis Ratio of the Velocity Ellipsoid

In a low-dispersion axisymmetric disk, the squared axis ratio
X? = 0,44/0rr s related to the local circular speed and its slope
(eq. [10]), but in the solar neighborhood higher order correc-
tions to this relation tend to increase this ratio by at least
20%—-40% over the value of 0.5 appropriate for a flat rotation
curve, to 0.66 + 0.06 (eq. [12]). On the other hand, observa-
tions yield the significantly smaller value X2 = 0.42 + 0.06
(Kerr & Lynden-Bell 1986; see also Lacey 1991, his Figs. 3 and
4). Thus

6X?2

X3~ 0.36 + 0.11 . (20
In the standard model (eq. [15]) this result implies ¢y = 0.12
+ 0.04.

3.5. Summary of Local Constraints

The observations of C, K, ¥g, and I, all constrain sy in the
standard model, and yield an unweighted mean and standard
deviation

sy = 0.01 + 0.04 . 1)

The only local observable that constrains cy, is the axis ratio X,
which yields

cy =0.12 4 0.04 . (22)

If the standard model is correct, these results imply that ¢, ~ 0
(more accurately, 3° + 9°), so the Sun lies near the minor axis
of a potential with axis ratio gy = 1 — €y = 0.88 + 0.04.

The derived axis ratio is sensitive both to the assumed rota-
tion curve and to the assumed shape of the nonaxisymmetric
potential, as specified by the parameters « and p, which are
both zero in the standard model. Models in which these
parameters take other values are discussed in § 6.

4. LARGE-SCALE ASYMMETRY

If the Sun lies close to the symmetry axis of an elliptical
potential, it is natural to ask whether the ellipticity could be
detectable in the kinematics of populations that are visible at
large distances from the Sun. Just as was the case for local
observations, it is hard to detect, let alone measure, any distor-
tion of the disk with even symmetry. In particular, if we are
exactly on the symmetry axis, the kinematics at longitudes [
and —[ will be the same.

Before discussing the evidence from distant objects for a
distortion with even symmetry, we briefly review the evidence
for odd distortions:

1. The stars at distances up to 1.5R, from the Sun, in the
direction of the Galactic anticenter, systematically show a
mean outward motion with respect to the LSR of about 7 km
s~! (Lewis & Freeman 1989; Metzger & Schechter 1993),
which appears to be independent of distance down the line of
sight. There are at least two possible explanations for this
observation: (1) the LSR is perturbed (an LSR velocity of 7 km
s~ 1 is within the errors determined in § 3.2) by a local distor-
tion with odd symmetry (similar perturbations affecting stars
at other radii would tend to be washed out by limited statistics
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and distance errors); or (2) there is a global perturbation with
odd symmetry that gives rise to an outward motion whose
magnitude changes fairly sharply near the solar radius.

2. The H 1 density shows systematic differences between
positive and negative longitudes, which Blitz & Spergel (1991,
see their Fig. 4) interpret as evidence for an elliptical distortion
with odd symmetry. It is difficult to analyze this asymmetry
quantitatively, since the signal is dominated by gas that lies not
too far outside the solar circle;> however, an approximate sub-
traction of the local emission (Blitz 1992) does not remove the
effect.

Thus there are some observations of distant objects suggest-
ing an odd distortion is present, but the interpretation of these
observations is still unclear. In any case, as noted above, the
observational consequences of distortions with even and odd
symmetry are usually independent as long as the perturbations
are in the linear regime, and therefore the conclusions we will
draw below about even distortions are independent of the
nature and existence of a possible odd distortion.

For the sake of simplicity we shall first consider only the
standard model, that is, a potential of the form (1) with
a=p=0 (see § 6 for more general models). Moreover, we
shall set sy = 0 in order to focus on the possible effects of an
even distortion, described by a ¢y term (and from now on,
when we refer to the “standard model,” we shall take it to
include the choice sy = 0).

Therefore, still working to first order in ¢y, and assuming
sy = 0, we have from equations (15)

p= —Cyl,SiN2¢, 0,=10, —Cyv,COS20¢, (23)

both independent of radius. We can then calculate the mean
line-of-sight velocity relative to the LSR for material at radius
R, azimuth ¢, observed at Galactic longitude I:

Vs = Ug(R, @) sin (¢ + 1) — 14(R,, 0) sin |
— Ug(R, ¢)cos (¢ + ) + vx(Ry, 0) cos I (24a)
= yp[sin(¢ + ) —sinl] + cy v [sinl + sin (¢ — )]
(24b)

= UC(%Q - 1) sinl'+ cyv,[sinl +sin(¢p —1)].  (24c)

The first line of this equation is valid for an arbitrary velocity
field, but the second and third lines hold only in the standard
model.

4.1. The Distance to the Galactic Center

If the Galaxy is axisymmetric, all objects on the solar circle
R = R, should have zero line-of-sight velocity with respect to
the LSR. Thus, in principle, we can search for non-
axisymmetric distortion by comparing the distances to objects
with zero relative velocity to the distance to the Galactic
center.

Setting v, = 0 in equation (24b), we find that the corre-
sponding distance is

d = 2R, cos (1 + 2¢cy) + O(cd) . 25)
This formula has been used by several authors to determine the
distance to the Galactic center by assuming the Galaxy is

2 In Blitz and Spergel’s analysis the H 1 flux is averaged over a fixed range
in Galactic latitude. The distant gas layer is thinner in projection than the
latitude window used, effectively weighting against the distant emission.
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axisymmetric, in which case R, = 3d/cos I. Here we assume
instead that R, is known from other methods, and use the
formula to constrain cy. We find

apparent R,

— 2

true Ry 14+ 2cy + O(cy) , (26)
where the “apparent” R, is the distance to the Galactic center
that would be déduced by assuming axisymmetry. If ¢y is as
large as 0.1, the fractional error in the apparent value of R,
determined from equation (25) is 0.2. In fact the error is even
larger: equations (26) and (24) are only valid to linear order in
¢y, Whereas a numerical solution of equation (24a) with the
true velocity field of the standard model shows that the actual
fractional error at | = 45° is 0.25 when ¢y = 0.1 (see Fig. 1). Of
course, these results only hold for the standard model
(o = p = 0). For the more general case in which the rotation
curve is flat (x = 0), but the parameter p that describes the
radial dependence of the nonaxisymmetric potential (eq. [3]) is
nonzero, the fractional distance error is 2cy (1 + 1p cos? 1)
+ 0(c).

The appeal of this method is conceptual simplicity rather
than robustness. In practice it is sensitive to local streaming
(e.g., from spiral arms) and hence is probably not the best way
to determine either R, or c¢y. The quality of the available con-
straints is illustrated by a recent measurement of the distance
to the H,O masers in W49(N), which lies at / = 43° and has
near zero line-of-sight velocity with respect to the LSR. Gwinn
et al. (1989) determined the distance to W49(N), and deduced
Ry, =7.6 £+ 1.6 kpc assuming an axisymmetric velocity field.
Their value is 1.01 + 0.24 times the best estimate from direct
methods, R, = 7.5 + 0.9 (obtained from the data listed by Reid
1989 that do not rely on kinematic models of the Galaxy).
Taken at face value, this result implies that —0.14 < ¢y < 0.10
in the standard model, but measurements at several longitudes
would be needed before a determination of ¢y from this
method could be considered reliable.

M —— ——— —r—
F i 0.2 ]
g
s 0.5 \L/ -
o L 0.1 i
|
(] L B
— e R o 5 S —
< L J
a
5 | 0.05 i
° W49(N)
s 0F 0 —
& | -0.05 i
~0.1
r —— 1 —-0.15 7
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F1G. 1.—Fractional error in measurements of R, that are based on the
distance to objects with zero line-of-sight velocity, as a function of ellipticity
and Galactic longitude (§ 4.1). The Galaxy is assumed to obey the standard
model (§ 2.1), the Sun is assumed to lie on a symmetry axis (sy = 0), and the
curves are labeled by c¢y. The data point shows the ratio between determi-
nations of R, using the distance to the maser source W49(N) (Gwinn et al.
1989) and from nonkinematic direct measurements (Reid 1989).
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4.2. Tangent Point Measurements of the Inner Rotation Curve

The rotation curve inside the solar circle is measured from
the velocities at the tangent points, where a line of sight with
|1] < 90° runs tangent to a circle of constant R < Ry, so that
the circular velocity is parallel to the line of sight. Points closer
to or further from us than the tangent point lose some of their
velocity in projection, and thus in an axisymmetric disk, for
most realistic rotation curves, the emission from the tangent
point has the highest |v,,;| of any gas along the line of sight.
For conciseness, results in this subsection will be given for
0° <1 < 90° only; the corresponding results in —90° <[ < 0°
follow from the obvious symmetries.

We take equation (24b) at fixed longitude I, and evaluate the
aximuth ¢,, at which (dv,,,/d¢) = 0. We find

v, cos (I + ¢,) + cyv, cos (¢, — ) =0, 27
which can be reduced to
Om = 37— |+ cy sin 2 + O(c?) . (28)

Hence to O(cy) the maximum line-of-sight velocity is
v, = 0. [1 —sin I + cy(sin I + cos 2])]
=v,[1 —sinl + 3cg(l —sinl) — 2cy(1 —sinl)?] . (29)

If the Galaxy is axisymmetric and the rotation curve is flat, the
slope of a linear fit of v,, versus (1 — sin [) is just v,; thus from
the tangent point data near | = 90° we find that

apparent v,

v 1+ 3cy . (30)

A fit of the form v,, oc (1 — sin [) over a larger span in [ will
return a slope somewhat nearer the true value of v, ; in particu-
lar, a least-squares fit between sin | = 1 and sin [, yields

apparent v,

3 .
true o, =1+ 3 cy(l + sin 1) . 31

Estimates of the apparent circular speed from the tangent
points include 220 km s~ ! (Gunn, Knapp, & Tremaine 1979)
and 214 km s~ ! (Rohlfs et al. 1986) from fitting between
sin [ = 1 and sin I, = 0.5; or 284 km s~ ! (Rohlfs et al. 1986)
and 260 km s~ (Merrifield 1992) from fitting between sin [ = 1
and sin [, = 0.8. Taking the means of these results, we have to
O(cy)

true v, = 272 km s~ (1 — 2.7¢y) for

true v, = 217 km s~ (1 — 2.25¢y) for

sin l, = 0.8,
sinlp=05. (32

4.3. Surveys with Absolute Distance Information

The outer rotation curve is usually measured from velocities
of tracers with known distances, such as Cepheids (Caldwell &
Coulson 1989) or OB stars in H 11 regions (Fich, Blitz, & Stark
1989). Thus we assume that the distance to the object d, the
line-of-sight velocity relative to the LSR v,,,, and the distance
to the Galactic center R, are known.> We also assume that the
Galaxy is described by the standard model. Then from equa-
tion (24c) we have

1 + sin ¢ cot I — cos ¢
Ry/R — 1

apparent v,

33
true v, (33)

1 +cy

3 More precisely, we require the ratios d/R,, of the tracers to be known.
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We have contoured this ratio in Figure 2 for ¢y = 0.1, as a
function of position in the Galactic plane. The plot has several
significant features:

1. There is a singularity at the solar circle, R = R, where the
error diverges. This is the case discussed in § 4.1: when R = R,
the velocity relative to the LSR is zero if the disk is axisym-
metric, so no change in the rotation curve can reproduce the
relative velocity caused by nonaxisymmetries.

2. Toward I = 90°, the ratio (apparent v /true v,) is constant
atl — cy.

3. Near the solar position, the contours bunch together
about the singularity on the solar circle. This bunching occurs
because in the limit d < R, the line-of-sight velocity field is
determined by the Oort constant A (eq. [6]), with (apparent
A/true A) =1 + cy (eq. [15]).

4. In the second or third quadrants (90° <[ < 270°), the
apparent value of v, is relatively independent of distance down
the line of sight, and the fractional error is less than cy in
absolute value. In the first or fourth quadrant (0° <1 < 90° or
270° < I < 360°), the error is much larger, and has the same
sign as ¢y for R < R, and the opposite sign for R > R,,.

5. ForR > R,

apparent v,

=1—cy(l +2 . 34
true v, coll + cos ) 34

Thus in the standard model distant objects near I = 120°
would yield the correct value for v, irrespective of cy.

Most surveys of the outer Galaxy rotation curve concentrate
on objects in the second and third quadrants, since they are
closer: an object at 2R, is 2.2 times further away at [ = 45°
than at I = 135°. As shown in Figure 2, objects in these quad-
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1 1 | 1 1 1 1 ‘ 1 A1 1 1 J 1 1 lx 1 | I‘ 1 1 1
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FiG. 2.—Contours showing the fractional error in the determination of the
circular speed from measurement of line-of-sight velocities of tracers with
known distance. The Galaxy is assumed to be of the standard model form
(§ 2.1) with sy, = 0 and ¢y = 0.1. The Sun is at X = Y = 0. On adjacent con-
tours the derived circular speed differs by a factor of 1.05; the full range is a
factor of 2.63 (of course, the linear approximation we have used is no longer
accurate at the larger errors). On the dashed contour the error is zero; on the
other contours the derived circular speed increases with contour thickness. The
heavy circle centered on the cross is the solar circle, where the error diverges.
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rants generally lead to an error in v, of the same sign as cy
(except close to I = 90° or 270°). In sufficiently deep surveys, a
comparison of distances and velocities of objects with R > R,
in the first and second (or fourth and third) quadrants could be
a powerful probe for nonaxisymmetric distortions, because the
errors in v, in the two quadrants would have different magni-
tudes and signs.

A difficulty with this approach is that absolute distances
d/R, are much harder to measure than the relative distance
d,/d, of two tracers of the same type, since d and R, are usually
determined by different methods. In practice, current measure-
ments of the distance to the Galactic center are uncertain by
about +15% (§ 4.1). Figure 3 shows the devastating effect of
this uncertainty. It is similar to Figure 2, but shows the ratio
(apparent v /true v,) arising from a 10% error in R, in an
axisymmetric Galaxy (i.e., the distance to the Galactic center is
assumed to be 0.9R,). The general shape of these contours is
similar to those in Figure 2, suggesting that it is difficult to
disentangle the effects of ellipticity from those of errors in R, in
velocity surveys. This problem will be investigated in more
detail in § 4.4.

The H 11-region survey of Fich et al. (1989) is an example of a
modern survey with “absolute ” distances. They analyzed their
data with the standard IAU values R, = 8.5 kpc and v, = 220
km s~!, which resulted in a flat rotation curve. They also
repeated the analysis with different values for R,, and found
equally acceptable rotation curves for a wide range from 5 to
10 kpc, Ry = 6 kpc giving the best fit to a power-law rotation
curve. There is a 25% uncertainty in the distance scale for the
stars embedded in the H n-regions, large enough that there is
little hope of separating the effects of distance errors from the
signal of any plausible “even ” ellipticity of the disk.

_| T T T T { T T T j—| T T T T [ T T T T | T

1+ (assumed/true) R, = 0.9 —

0.5 —

L o J

L o

[=] _ -
£ of
> L
-0.5
1

&
N e e e e e R ]
-1 -0.5 0 0.5 1
X/R,

F1G. 3.—Same as Fig. 2, except that the Galaxy is assumed to be axisym-
metric and the distance to the Galactic center is mistakenly taken to be 0.9R,.
The heavy circle shows the solar circle calculated with the erroneous distance
to the Galactic center, and the cross the corresponding location of the Galactic
center. Note the similarity of the pattern of deviation to Fig. 2, particularly
outside the solar circle, which implies that it is difficult to distinguish the effects
of an error in R, from ellipticity of the Galactic disk.
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4.4. Surveys with Relative Distance Information

An alternative approach, which does not require measuring
absolute distances, is to tie the distance scale to R, from the
observations themselves, essentially by measuring the curva-
ture of the velocity field over distances ~ R, or greater. This
approach is described by Schechter et al. (1989) for their
carbon-star data. We will follow their analysis technique,
which involves a least-squares fit of all the data to a flat rota-
tion curve, varying the parameters R, and v, to obtain the best
fit to the data.

To illustrate how this approach can work in principle, we
consider the case of tracers at large distances, d > R,: in this
limit, to O(R,/d) we have Ry/R = Ry/d, sin ¢ =sinl
+ (Ro/d)sin I cos 1 and cos ¢ = — cos [ + (R,/d) sin? , so that
equation (24c) becomes

Vjos = vc(% — 1> sin [

, R, R,\2
+ ¢y, sin | 1+2cosl+7cos21 + 0 R (39)
Fitting the slope and intercept of this linearized function of d !
to the analogous expression for a circular disk, we have to

O(C‘l‘),
apparent v,

= 1 —_
true o, cy(l +2cos ),

apparent R,

— 1 2 . 6
true R, + 2cy(cos® I + cos ) ; (36)

the first of these expressions is the same as equation (34). Thus,
for very deep surveys, data at a single longitude suffice in prin-
ciple to provide apparent values for R, and v,, which however
vary with longitude if the disk is not axisymmetric. At present,
the determination of R, and v, from observations at a single
longitude is not practical: the reason is that maximum tracer
distances are only d &~ R,, so that determining the asymptotic
value of v, as Ry/d — 0 requires a large extrapolation. There is
of course also no guarantee that the rotation curve remains flat
at very large radii.

The freedom-to vary R, is a very great one in fits to data
with d < R,, as can be seen from the similarity of the error
contours in Figures 2 and 3. In the limit d < R,, line-of-sight
velocity data can only constrain the Oort constant 4 =
1 [apparent (v./R,)], so best-fit values for v, and R, from such
data will be highly correlated.

To illustrate what can be learned from the data, we carried
out several simulations. In our first simulation, we mimicked a
deep survey near the direction of Galactic rotation, by sam-
pling 50 stars uniformly spread along each of the lines of sight
I =50°,70°90° 110°, and 130° out to distances of R, from the
Sun. We determined their line-of-sight velocities in the stan-
dard model from equation (24c). Each stellar velocity was
assumed to have an additional random Gaussian scatter of
dispersion o, = 0.1v,, due to velocity dispersion and measure-
ment errors. We then used least-squares fitting to determine
the best apparent values of v, and R, for an axisymmetric
model Galaxy with a flat rotation curve.

For cy between —0.2 and 0.2, the best-fit parameters are
tabulated in Table 1. The last column shows ay;,, defined so
that the mean-square deviation between the best-fit model and
the observed velocities is o2 + 62,; thus oy, is the standard
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- TABLE 1 data set therefore yields a decent constraint on each parameter,
:% ERRORS IN v, AND R, DETERMINED FROM A VELOCITY SURVEY WITH KNOWN albei.t with some Correlgtior} between the best-ﬁt values
iy RELATIVE DISTANCES IN AN ELLIPTICAL Disk obtained. The 2 contours in Figure 4, when projected onto the
& coordinate axes, correspond to n-o deviations from the best fit,
L apparent o, apparent R, i for n =1 to 5; the derived error bounds of around 5% on v,
Cy true v, true R, Covariance  true v, and R, will scale with the velocity scatter o, and number of
~020...... 0694+0036 0676 + 0,029 66% 00159 stars observed N as o, N~ '/, provided o, > 0.
—015...... 0.755 + 0.038  0.747 + 0.031 64% 0.0118 Not surprisingly, the fitted R, is very close to the value
—0.10...... 0.825+ 0.040  0.824 + 0.034 63% 0.0079 required to force zero line-of-sight velocity on the solar circle
—005...... 0.906 + 0044 0907 £ 0.038 64% 0.0040 (eq. [26]): this is because the inner Galaxy lines of sight
8:8(5):::::: }:(1)(1)(2) f 8:8‘5‘3 }:(1)(0)(5) :—[ 8:3‘;‘1‘ ggnﬁ 8:%28 provide the best constraints on R, while the remaining data
0.10...... 1246 + 0.064  1.226 + 0.064 75% 0.0080 only really determine a single combination of R, and v,. When
0.15...... 141110077  1.368 + 0.079 81% 0.0121 the error g, — 0, the rms scatter of these simulated data about
0.20...... 1.617 + 0.099 1.536 + 0.100 86% 0.0163

Notes.—Second and third columns contain the ratio between best-fit and
true values for the circular speed v, and distance to the Galactic center R, as
determined from a survey of line-of-sight velocities containing 50 stars in each
of the five directions | = 50°, 70°, 90°, 110°, and 130°. The stars are uniformly
distributed in distance out to R,. The Galaxy is described by the standard
model (eq. [24c]), with ellipticity measured by cy,. Each stellar velocity has a
random scatter with standard deviation o, = 0.1v.. The covariance is between
the measured values of v, and R,, and 63, + o7 is the mean-square deviation
between the best-fit model and the velocities.

deviation of the distribution of residual velocities in the limit
g, — 0. Figure 4 shows contours of constant y? for each of the
lines of sight individually as well as for the total sample of all
five lines of sight, in the particular case ¢y = 0.1. It shows that
data with 90° < I < 270° hardly place independent constraints
on v, and R,, whereas data with |I| < 90° do: the combined

the best axisymmetric, flat rotation curve fit is approximately
given by 0.08| ¢y |v.. Even for ¢y, as large as 0.2, this rms scatter
of ~4 km s~! would be well buried in the scatter from mea-
surement errors and the velocity dispersion of the tracers; thus
it would be very hard to detect nonaxisymmetry from such a
survey. Figure 5 shows the residuals of the data about the best
fit, for ¢y = 0.1 and several different longitudes.

Next we simulated a survey with the same number of stars
per line of sight, more complete sky coverage (30° < I < 150°)
but less depth (d < $R,). The best-fit parameters are given in
Table 2. Even though the total number of stars is larger, the
errors on v, and R, are much larger than in Table 1: the
velocities are now smaller, and so more stars are needed to
obtain the same signal above the velocity dispersion “noise.”
The fitted value for R, is now closer to the true one; it deviates
more from the value required to force zero line-of-sight veloc-

1.6 T T [T
[ longitude 50° 4.5% covariance | longitude 70° 7.3% covariance | longitude 90° 99.4% covariance
14 -+ .
o2 1.2 - C A
° L is . 1
3 L 1 1
I
s L 1 i 4
o 1+ / —
I} L 1 4 4
Z [ '/ ]
hal , =N -4 -
0.8 | - - -
0.6 |- -+ ~ -
1.8 A4 L
[ longitude 110° 99.4% covariance | longitude 1 99.3% covariance | all longitudes 75.2% covariance :
o - L R a
) F T r R
3 L an 5 1
5
> F =4 “+ 4
> — -
> - 4+
Q L 4 4 4
hal F -+ -+ _
17 ) - | n_ P Y M.l |- il PR B 1 ]

PR PR BT 1 P
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Fi1G. 4—Contours of constant x* (goodness of fit), for tracers with known line-of-sight velocity and relative distance (cf. Table 1). The tracers are drawn from a
standard model with sy, = 0, ¢y, = 0.1, and fitted by an axisymmetric model having a flat rotation curve with adjustable circular speed v, and distance to the Galactic
center R,,. The sample consists of 50 stars at distances up to R,, with rms velocity errors of 0.1v,, from each of five lines of sight uniformly spaced between I = 50° and
I = 130°. The first five panels show the constraints placed by the individual lines of sight; the final panel applies to the entire data set. Covariances between the fit
parameters are indicated. Contours of 1, ..., 5 ¢ deviations from the best fit are shown.
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F1G. 5.—rms residuals of line-of sight velocities in the model of Fig. 4 and
Table 1, relative to the best-fit axisymmetric, flat rotation curve model with
adjustable v, and R,. Note the small amplitude of the residuals (given as
multiples of the true v,), which implies that velocity surveys of this kind
perform poorly in detecting nonaxisymmetric distortions if the Sun is near a
symmetry axis.

ity on the solar circle (eq. [26]) than the deeper survey simu-
lated above, because less of the solar circle falls within the
sampling volume. The rms scatter about the best fit is
0.055| cy |v., once again small enough that nonaxisymmetry
would be very difficult to detect.

These simulations were chosen to be crudely similar to two
recent deep velocity surveys, one of carbon stars to distances of
about R, (Schechter et al. 1989), and the other of Cepheids to
distances of about 1R, from the Sun (Caldwell & Coulson
1989). These surveys yield

v, =248 + 16 km s~ ! (carbon stars) ,
v, =228+ 19kms™! (Cepheids),

when analyzed assuming a flat rotation curve and axisym-
metry.

The carbon star survey does not yield an absolute distance
calibration. The Cepheid survey does: combining their result
with a calibration derived from nearby cluster Cepheids, Cald-
well & Coulson (1989) derive R, = 7.8 + 0.7 kpc. Compared
with the direct estimate of 7.5 + 0.9 kpc (§ 4.1), we get a ratio

(37

TABLE 2

ERRORS IN v, AND R, DETERMINED FROM A VELOCITY SURVEY WITH KNOWN
RELATIVE DISTANCES IN AN ELLIPTICAL Disk

apparent v, apparent R, Oir

Cy true v, true R, Covariance  true v,
-020........ 0.586 +£0.092  0.725 + 0.115 93% 0.0104
—0.15........ 0.682 + 0.105  0.799 + 0.122 93% 0.0080
—0.10........ 0.782 £ 0.120  0.868 + 0.131 94% 0.0054
—0.05........ 0.888 + 0.137  0.935 + 0.141 95% 0.0027
0.00........ 1.000 + 0.154  1.000 + 0.149 95% 0.0000
005........ 1.121 + 0.171 1.067 + 0.159 96% 0.0028
0.10........ 1249 £ 0.199  1.133 + 0.175 96% 0.0055
0.15........ 1.386 £ 0.218  1.200 + 0.183 97% 0.0083
0.20........ 1.531 £ 0.240  1.268 + 0.194 97% 0.0110

Notes.—Same as in Table 1, but for a survey of 50 stars, out to distance
0.5R,, in each of the seven directions / = 30°, 50°, 70°, 90°, 110°, 130°, and
150°.
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between apparent and true R, of 1.04 + 0.15. Thus we deduce
from Table 2 the very weak constraint —0.16 < ¢y < 0.30. (If
there were sufficient data to reduce the observational errors in
Table 2 to zero, we would obtain —0.08 < ¢y < 0.15.) This
illustrates once again the difficulty of separating errors in R,
from the signal due to ellipticity.

The sign of the effect of a cy-term on the deduced value of v,
can be understood qualitatively: radial velocity surveys basi-
cally yield the combination of parameters v, = 24AR,, and both
the Oort constant A (eq. [15]) and the apparent (kinematic)
distance to the Galactic center R, (eq. [26]) are increased by a
positive cy; thus the value of v, is affected in the same direction
on both counts.

The discussion above is not intended to be an exhaustive
analysis of the effects of ellipticity on velocity surveys. Never-
theless, it illustrates two important points: first, that velocity
surveys of tracers with only relative distance calibration, out to
distances <R,, are insensitive to disk ellipticity if the Sun is
near a symmetry axis; second, that modest ellipticities (say,
|cg| < 0.1) can substantially affect determinations of the circu-
lar speed from such surveys (by up to 25%). Isolating evidence
for ellipticity from velocity surveys will require either surveys
with greater depth, or an independent determination of R, or
v, to higher accuracy than so far has been achieved.

4.5. Merrifield’s Method

An alternative way to measure distances is to determine the
distribution of a population of tracers on the sky and then
estimate distance in units of R, using the fact that we are offset
from the center of the Galaxy. The most successful application
of this method so far is that of Merrifield (1992), who used the
angular scale height of H 1 emission as a measure of distance.
Earlier attempts based instead on the surface density of H 1 gas
(Petrovskaya & Teerikorpi 1986) turned out to be sensitive to
errors caused by the irregular distribution of H 1 clouds in the
outer Galaxy.

We now summarize Merrifield’s method for extracting kine-
matic distances from the observed H 1 distribution in (I, b, v,,).
In an axisymmetric disk, equation (24a) implies that

Vyos = l:% Veirc(R) — vc] sin | = W(R) sin [, (38)
where, as usual, v, = v;,(R,) is the circular speed at the solar
radius. Provided W(R) is monotonic, which is usually the case,
all gas with the same observed W = v, /sin [ lies in a ring at a
single radius R from the Galactic center. Merrifield observed
that, provided R > R,, the distance to such a ring can be
measured by looking at the variation in its projected extent in
Galactic latitude b around the sky. If the characteristic height
Az(R) of the gas is the same at all azimuths, the projected
latitude width Ab should vary in a characteristic manner with
longitude:

Az

_Rocosl+,/R2—R(2, sin? |’

By fitting this variation, the radius of each slice of constant W
can be determined (in units of R,), and used to construct the
rotation curve of the outer Galaxy for assumed values of R,
and v,, via

Ab R>R,. (39)

R
vcirc(R) = R—o [W(R) + Uc] . (40)
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With this method, Merrifield (1992) obtained a rotation
curve for the Galaxy out to R ~ 2R,; his results imply that the
outer rotation curve is approximately linear in R (i.e., W(R) is
linear in R ™!, see his Fig. 2) and can be fit by the expression

R
Veiro(R) = 165 km s_i(l — —) + 0, R , 41)

RO RO
so v, = 165 km s~ if the rotation curve is flat. This result led
him to argue that either the Galaxy has the most steeply rising
rotation curve of all nearby, well-observed Sbc galaxies or v,
should be decreased from its standard (IAU) value of 220 km
s~ t0 200 km s~ ! or even lower.

How is this striking conclusion affected by an elliptical dis-
tortion of the disk? To provide an analytic illustration, we
consider only the gas near the directions | =0 and 180°. In
these directions the projected latitude widths are at opposite
extremes, and values of R derived from the ratio of these
widths are a reasonable approximation to the result of a fit of
Ab to equation (39) over all longitudes. (Note that we concen-
trate on gas near [ = 0° and 180° for the sake of mathematical
simplicity only. In reality the emission from all radii has the
same velocity in these directions, and hence the separation of
different W = constant curves is impossible. However, the
center and anticenter directions provide a first-order approx-
imation to the projected scale heights around these longitudes;
we have checked that a longitudes as much as 60° either side of
the center and anticenter directions, which carry the dominant
signal in Merrifield’s determination of R(W), a similar treat-
ment results in the same apparent circular speed to within 5%.)

Near the Galactic anticenter (AC), | ~n, ¢ ~ (1 — Ry/R)
(m — 1), so equation (24b) for the standard model yields

Rlim UITI = RWyc = (Ry — R)v, + c(Ro — Ry, ,  (42)
l-n

while for gas beyond the Galactic center (GC) with [ ~ 0, ¢ ~
7 — (1 + Ry/R)l and hence

RWge = (Ry — R)v, + cy(Rg + 3R)y, . 43)

Thus, gas observed near the AC or GC with a given W lies at
radius

v.(1 + cy) v(1 + cy)
Ryc=—7———""———R Roge=—""——""—
AT L ot og © O T W o (1= 3eg)
(44)
whence it presents a projected width
Az(R,() Az(Rgc)
Abyc = ——= Abgc = 45
AR R, %= Reo + Ry (45)

Assuming axisymmetry would lead one to deduce a radius Ry,
generally incorrect, for the constant-W ring of gas of

_ Abac + Abge

R, = )
¥ Abye — Abge °

(46)

The assumption of axisymmetry and constant rotation speed
would then lead to an apparent rotation speed given by (eq.

[38])
w (Ab"c + 1) . @7

apparent v,
T 20, \Abge

true v,
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To O(cy) we then have
apparent v, -1+ Cy _
true v, 1+w
x [w? 4+ 4w + 3 — 22 + w)Ro(In Az) ], (48)
where w = W/y,.
Some comments on this expression are in order:

1. The expression simplifies in the limit R > R,, where
w — —1, to the form

apparent v,

R
true v, =142y I—(; [1—(n Az),1,4] . 49)

Notice that the error caused by a fixed distortion cy grows at
larger radii. Also, in this limit it can be shown that the effects of
a nonaxisymmetric distortion mimic the effect of a change in
circular speed at all longitudes, not just toward the Galactic
center and anticenter.

2. In Merrifield’s (1992) analysis of the outer H 1 distribu-
tion, a typical value of wis —0.5 (R = 2R,), which implies

apparent v,

true o, =1+ cy[5 — 6(InAz) 1, &]

(50a)

~1—10cy, (50b)
where in equation (50b) we have used (In Az) ,,x = 1 for the
flaring rate, which is a typical value estimated by Merrifield.
Note that the large numerical coefficients in the square
brackets nearly cancel for the particular value of the flaring
rate chosen in equation (50b); thus there is substantial uncer-
tainty in the result (50b) (cf. the numerical simulation below).

3. An oversimplification in our derivation is that we have
neglected the possibility of azimuthal variations in the scale
height Az at fixed radius. The fractional amplitude of such
variations is difficult to estimate without first understanding
the three-dimensional shape of the nonaxisymmetric potential,
but is probably of order cy. A justification for their neglect is
that near the directions I = 0° and 180° the twofold symmetry
of the elliptical distortion ensures that the scale heights are the
same at corresponding radii; [the scale height of a self-
gravitating gas layer varies in inverse proportion to the surface
density, provided the velocity dispersion remains the same; in
the standard model the disk scale height would vary oc(1 — ¢y
cos 2¢)] more generally, any twofold distortion of the actual
scale height is largely decoupled from the asymmetric distor-
tion of the apparent scale height caused by our offset from the
center.

We have carried out numerical simulations of the effect of
ellipticity on Merrifield’s determination of the rotation curve.
We assumed that the scale height of the gas along the [ =0,
180° axis was given by a relation of the form

R <Ry,

51
R >R,, 1)

L, Zg , for
" zo[1 + s(R/Ry — 1)], for

where s is a measure of the flaring of the gas layer; Merrifield
finds s ~ 1.4 for an axisymmetric disk. (A linear relation of the
form [51] is a better description of flaring observed in disk
galaxies than, for example, a power-law InAz ;. = constant.)
We then constructed “apparent” rotation curves for
—0.2 < ¢y < 0.2 according to equations (42)—(47), and read off
the circular speed deduced from data at [ ~0, 180° and
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F1G. 6.—Ratio between apparent and true circular speed that would be
derived with Merrifield’s method in an elliptical Galaxy described by the stan-
dard model. The solid curves are labeled with the different values used for the
flaring parameter s, as defined in eq. (51). The kinks are caused by the discon-
tinuous change in the slope of the scale height vs. radius relation that occurs at
R, in eq. (51). The dotted curve connects those models that reproduce the
flaring seen in the data.

(apparent) radius R = 2R,,. These circular speeds are plotted as
solid curves in Figure 6, for different ellipticities and flarings.
The kinks at negative cy seen in these curves are caused by the
abrupt change in the slope of the scale height at the solar
radius, showing that the analysis with an axisymmetric model
can incorrectly place gas that is really inside the solar circle at
radii beyond 2R, when ¢y < —0.1. Over the plotted range of
positive cy, this does not happen, and moreover the derived
rotation curves are linear to a good approximation.

As demonstrated in equation (50a) and Figure 6, the sign
and magnitude of the change in apparent circular speed
depend sensitively on the ellipticity and flaring of the outer
disk. However, not all of the models considered in Figure 6 are
good representations of the H 1 data, as they must also repro-
duce the apparent flaring of the gas. The dotted line in Figure 6
connects the models that have apparent Az(2R,)/Az(R,) ~ 2.4
(equivalent to s = 1.4), as Merrifield finds from the actual H 1
data. For the roundest model consistent with the results
derived in § 3, with ¢y = 0.08, Merrifield’s analysis underesti-
mates the true value of v, by 20%, and the true flaring rate s
would be about 1.9.

5. COMPARISONS BETWEEN THE METHODS:
SIGNS OF ELLIPTICITY?

The different determinations of the circular speed v, listed in
§§ 4.2-4.5 do not agree very well, and the cause(s) of the differ-
ences between these determinations are obscure. Here we
investigate the hypothesis that all measurements are affected
by an elliptical distortion of the disk, and try to build a coher-
ent picture in which they might be reconciled. We focus our
attention on the standard model (§ 2.1), although a thorough
investigation would require analyzing a much broader class of
models (see § 6). We emphasize once again that the large-scale
data we have analyzed only constrain the even perturbation
terms (cy).

Each measurement of the “apparent” v, from the nearby
and far H 1 tangent points, the carbon star and Cepheid veloc-
ity surveys, and the outer Galaxy H 1 (respectively, 272 and 217
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km s~ ! from eq. [32], 248 and 228 km s~ ! from eq. [37], and
165 km s~ ! from eq. [41]) can be converted with our simple
simulations into a relation between the “true ” v, and cy. These
relations, obtained from Tables 1 and 2, equations (32), and
Figure 6 are plotted in Figure 7. While the H 1 tangent point
data and the stellar velocity surveys are all affected in more or
less the same way by ellipticity, tending to overestimate the
circular speed for positive cy, Merrifield’s reliance on a distinct
kind of distance indicator biases his result quite differently. The
different relations can be reconciled if ¢y >~ 0.08, v, ~ 200 km
s~! (the rms spread among methods of the deduced “true”
circular speeds is 14 km s ™!, as compared to 40 km s~ ! for the
apparent values*), suggesting that ellipticity in the outer disk
may be the source of much of the apparent discrepancy
between the different data sets. These parameters correspond
to an axis ratio for the equipotentials of 0.92, with the Sun near
the minor axis. The axis ratio of the streamlines is the same in
the standard model, with the long axis of the streamlines
oriented at right angles to the long axis of the equipotentials.

The local constraints examined in § 3 also point towards an
ellipticity near 0.1 in the context of our standard model. The
shaded bands in Figure 8 represent the 1 ¢ regions of the
(v., cy)-plane allowed by the observed values of the Oort con-
stants A and B, and the velocity ellipsoid axis ratio X, using
A=144+12 km kpc™!, B= —120+28 km s ! kpc™!
and R, =7.5+0.9 kpc (see § 3 and § 4.1). The three bands
intersect near ¢y = 0.12, v, = 180 km s™!: a formal best-fit
solution to these local data gives

cg=012+004, v,=181+26kms !,
=04 (1dof). (52)

4 The most discrepant curve in Fig. 7 comes from tangent point data fitted
down to R = 4R,. This discrepancy could indicate a change of either the
circular speed or the axis ratio in the inner Galaxy, where the relative contribu-
tions of the bulge, halo and disk to the rotation curve are changing rapidly
with radius (e.g., Kuijken & Gilmore 1989). The other four curves, which span
data over a similar radial range 0.8R, < R < 2.5R,, agree nicely.

300 —— — f“
w250 —
E L 4
=~ |l o HI Az b
0 | o HI tgt (sin 1 > 0.5) |
° | = HI tgt (sin 1 > 0.8) |
[;_:_’: 200 | © Cepheids |

| # Carbon stars J

150 -0.2 -0.1 0 0.1 0.2

Fi1G. 7—*“True” circular speed derived from different data sets, corrected
for different assumed ellipticities in the context of the standard model with
sy = 0. H1 Az: Merrifield’s method (§ 4), from Fig. 6; H 1 tgt: H 1 tangent
points (§ 4.2), from eq. (32); Cepheids and carbon stars: from eq. (37), with
corrections derived from simulated data in Tables 1 and 2. The convergence
near ¢y = 0.08 of the curves for outer Galaxy data is evidence for an elliptical
disk.
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FiG. 8—“True” circular speed derived from local observations, in the
context of the standard model with sy = 0. Cross-hatched regions are allowed
at the 1 ¢ level by constraints from the axis ratio of the velocity ellipsoid (X, see
§ 3.4) and from the Oort constants 4 and B (§ 3.1). As in Fig. 7, the data point
toward an ellipticity near ¢y = 0.1.

Thus, local and global data independently point toward an
ellipticity of the Galactic disk of about 0.1, with the Sun near
the minor axis of the potential, and a circular speed well below
the IAU standard value of 220 km s ™ *.

6. MORE GENERAL ELLIPTICAL DISK MODELS

So far, we have concentrated our analysis on the standard
model in which the rotation curve is flat and the equipotential
curves have the same ellipticity at all radii (x = p =0 in the
notation of eqs. [2] and [3]). We now relax these assumptions,
allowing nonzero values for the exponents « and p. Thus the
ellipticity parameter cy (egs. [4] and [14]) is a function of
radius, cg(R) = cy(O)R/R,)’~ %% We continue to search for
even perturbations (cy) only, and to assume that the potential
is stationary.

The velocity field in these more general models was given in
equations (5a) and (5b). The axis ratio of the velocity ellipsoid
for “warm ” stars in an axisymmetric model is assumed to be
given by (cf. egs. [10] and [12])

X2 =066+ Lo + 006, (53)

where we have assumed that the velocity dispersion-dependent
correction to the axis ratio is independent of «. We have con-
firmed that this relation is adequate with orbit integrations of
the type described in the introduction to § 2.

For each choice of the four parameters v., cy(©®), « and p,
our simulations predict the amplitude of the best-fit flat rota-
tion curve to the tangent point data (§ 4.2), distant stars (§ 4.4),
and the thickness of the H 1 layer (§ 4.5), as well as local quan-
tities: the Oort constants A, B (§ 3.1), and the axis ratio X
(§ 3.4). Assigning observational errors of 20 km s~ ' to each of
the measurements of v, from distant data, and using the errors
on A, B, and X given in equations (17) and (53), we can form a
y? statistic that tests the predictions of these four parameters
against observed values. Projections of this statistic onto the
various possible two-parameter planes, obtained by mini-
mizing x* over the suppressed variables, are presented in
Figure 9. The best-fit model (marked by a dot in each panel)
has y? = 2.0 (4 degrees of freedom), with parameters v, = 184
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km s}, cg(®) = 0.08,« = —0.1, p = 0.1. The best-fit standard
model (for which y? = 3.6, 6 degrees of freedom) has ellipticity
0.082 and circular speed 197 km s~ . Both fits are quite satis-
factory, with no statistically significant improvement in the
goodness of fit of the four-parameter models over the standard
model. Axisymmetric models appear to be ruled out quite
strongly (x> > 9, corresponding to a likelihood that is lower
than the best-fit elliptical model by 2.6 o), with the best fits
requiring, implausibly, that o ~ —0.45, which would give the
Milky Way the most steeply falling rotation curve known
among large spiral galaxies.

The y2-contours are rather asymmetric, showing a marked
truncation for p above the best-fit value. The truncation arises
because the H 1 layer thickness analysis of § 4.5 breaks down at
a radius below 2R,, for quite small ellipticities when p > 0: at
larger cy, no constant-W slice in these models will have the
required ratio of 1:3 between the projected angular scale
heights near [ =0° and 180° if the H1 layer flares as is
observed. These models therefore cannot reproduce the
observed data. As can be seen in Figure 9, at positive p the
best-fit model tends to lie close to the maximum ellipticity for
which the analysis still works, and as a result the error distribu-
tion is skewed rather strongly. Nevertheless, we can obtain
approximate 1 ¢ confidence intervals for the four parameters
from the innermost y2-contours:

v, =184 15 km s, cy(®)=008%30%,
a=—0.1%31, p=01%32. (59

The analogous result for the standard model is
0, =197 +9kms™', cy=0.082+0014; (55

since allowing a and p to vary produces no significant improve-
ment in the fits we shall adopt the values (eq. [55]) throughout
the rest of this paper.

In summary,

1. The standard model provides a satisfactory description of
an elliptical distortion that could explain the observed pecu-
liarities in Galactic rotation and kinematics;

2. The best-fit four parameter model in which the ellipticity
and rotation curve are power-law functions of radius has a
slightly falling rotation curve (v, oc R~%'), but the improve-
ment in the fit over the standard model is not statistically
significant;

3. Axisymmetric models give poor fits to the data.

We have not explored at least two remaining free param-
eters, a nonzero pattern speed or other azimuthal wavenum-
bers thanm = 2.

7. ASYMMETRIES IN THE OUTERMOST GAS

It has often been noted that the H 1 distribution in the
Galaxy is not symmetric about the axis [ = 0°~180°. The most
recent and thorough investigation of this phenomenon has
been carried out by Blitz & Spergel (1991), who showed that
much of the large-scale asymmetry can be explained by postu-
lating an outward motion of the LSR of about 14 km s~ . They
then constructed a model in which this motion is the result of a
rotating quadrupole potential with an inner Lindblad reson-
ance near R = 1.5R,, and long axis near ¢ = 135°, and showed
that their model is consistent with many observational con-
straints.

Subsequently, Kuijken (1991) has argued that a lopsided
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FIG. 9—Projections of x? for four-parameter model fits of local and rotation curve data to elliptical disk models. v, is the circular speed at the solar radius, cg(®)
is the ellipticity of the isopotentials near the Sun, and 2« and p are the exponents of the axisymmetric and nonaxisymmetric components of the potential, respectively
(egs. [2] and [3]). Contours are spaced at y2 = 1,2, ..., 20 above the minimum, whose location is indicated by a dot in each panel.

disk might explain the data equally well, though neither this
possibility nor the Blitz and Spergel model can account for all
the data perfectly. He also concluded that the irregularities
seen in the structure of the H 1 warp at large radii suggest that
the outer gas may not be in dynamical equilibrium, in which
case the use of this distant gas to probe the potential would be
suspect. This notion is supported by strong evidence (see § 4)
that on average the distant anticenter stars move outward
slightly with respect to the LSR, whereas the H 1 line shows a
wing of gas approaching us.

In KT, we compared the local observations summarized in
§ 3 of this paper with the predictions of the Blitz and Spergel
model. The comparison is summarized in Table 3. Although
the observations are reasonably consistent with the Blitz and
Spergel model (except for the vertex deviation, where the pre-
diction differs from the observation by 3.5 times the likely
error), a stationary axisymmetric model (or, equivalently, a
nonaxisymmetric model with sy = 0), for which all four quan-
tities in the table should be zero, provides a substantially better
fit.

The H 1 emission that led Blitz and Spergel to their conclu-
sion arose from gas at distances beyond 2R,. At such large
distances there is little evidence to suggest that the gas is in
equilibrium. Merrifield’s (1992) method also breaks down

around this radius, since the observed function R(W) (see § 4.5)
is no longer monotonic. We now argue that for R < 2R, there
is no evidence that favors the Blitz and Spergel model over
an axisymmetric one, and that for R 2 2R, the gas is not in
equilibrium.

In Figure 10 we illustrate the shape of the warp, by plotting
the elevation of the Galactic midplane as a function of Galactic
azimuth ¢. Different rings R = constant are plotted, using
three different assumptions for the velocity field: (a) circular
motion for the gas and the LSR, with a common circular speed
v, = 225 km s~ !; (b) the Blitz & Spergel (1991) model, with
v, = 225 km s ! and an outward motion of the LSR of 14 km
s~'; and (c) our best-fit standard model, equation (55). Each
vertical column compares rings with the same value of W, =
v.(Ro/R — 1) (compare eq. [38]), rather than the same radius R,
to help ensure that more or less the same emission is used in
the comparison. The calculation is straightforward: for each
velocity field, we evaluate the ring radius corresponding to
W, = —100, —120, and —133 km s~ !; we then calculate the
velocity of points on this ring as a function of longitude, read
off the Galactic latitude of the maximum intensity of H I line
emission at that velocity from the surveys of Weaver & Wil-
liams (1974) and Kerr et al. (1986), and convert this angle into a
height above the (inner) Galactic plane. Figure 10 shows that
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F1G. 10.—Height of rings of constant radius above the Galactic plane for three velocity fields: (a) circular motion with speed v, = 225 km s~ !; (b) the Blitz &
Spergel (1991) model, with circular speed v, = 225 km s~ ! and an outward motion of the LSR of 14 km s™; (c) our best-fit standard model, eq. (55). The radii are
chosen so that W, = v,(Ro/R — 1) is the same in each vertical column; since the circular speed is different in case (c), the rings in the last row have slightly different
radii from the first two rows. In a warped disk composed of tilted rings, which is a good approximation to the expected configuration for a steady state warp, these

curves should be sinusoidal.

1. The axisymmetric velocity field (case [a], first row),
implies that the outer gas layer warps quite irregularly, even at
radii as small as R = 1.8R,—the midplane curve in the first
panel does not have the sinusoidal shape that is required if the
gas is in a tilted planar ring. At larger radii the well-known
asymmetry of the Galactic warp is very noticeable. It is hard to
see how a gas layer of this shape can be in equilibrium.

2. The same irregularity is present if the Blitz and Spergel
model is used (case [b], second row), which is particularly wor-
risome since this model was derived on the assumption that the

TABLE 3
COMPARISON OF THE BLITZ-SPERGEL MODEL TO LOCAL OBSERVATIONS

horizontal motion of gas at radii as large as 2.3R,, is described
by closed streamlines.

3. The irregularities, while still present, are reduced in the
velocity field of the standard model (case [c], third row). The
outermost gas that has been used in the analysis of this (and
Merrifield’s) paper (R < 2R,) appears to lie in a tilted planar
ring (the elevation vs. azimuth plot is approximately
sinusoidal), consistent with a steady state warp.

Thus, in summary, the shape of constant-radius slices
through the gas in the outer Galaxy suggests that the material
at R 2 2R, is not in an equilibrium steady state, which, if true,
erodes much of the evidence for the Blitz-Spergel model. The
shape of the gas layer for R < 2R, is much closer to the tilted
ring characteristic of a steady state warp, especially if the veloc-
ity field of the standard model is assumed.

Parameter Blitz & Spergel Observed Despite the reassurance provided by Figure 10, it is
Oort C(kms~' kpc!) ....... 19 06+ 1.1 upsett.ling for’ our belief in the ste.mdard.model that th_e <_1is-
Oort K (kms~'kpc™Y) ....... 04 —035+ 05 tribution of distant gas shows no direct evidence of an elliptical
Vertex deviation ................ —9°3 595 + 42 distortion: as Blitz and Spergel discuss, the faintest contours of
LSR vg(kms™!) ... 14 -1+9 brightness temperature in the (I, v,,;) diagram do not show the

Notes.—Predictions of the Blitz & Spergel 1991 model, and
observed values (KT). The observational errors listed are “likely”
errors as defined in § 3.

characteristic deviation from sine curves that would be
expected of the outer regions of an equilibrium elliptical disk.
Perhaps the elliptical distortion decays slowly with radius, or
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perhaps the nonequilibrium distribution of gas in the outer-
most disk obscures the kinematic signature of the ellipticity.

8. THE VELOCITY OF THE LOCAL STANDARD OF REST

In the standard model, with the Sun on a symmetry axis of
the potential, the velocity of the LSR is v gz = v.(1 — ¢y). For
our best-fit parameters (eq. [55]), we find vy g = 180 + 10 km
s~ !, much lower than the conventional IAU estimate of 220
km s~ 1. (For the more general power-law models of eq. [54],
we find v;gg = 172 + 17 km s~ 1) We now ask how this sub-
stantial revision of v g affects our understanding of the
dynamics of the Galactic halo and the local Group.

The reduction in v; gz from 220 to 180 km s~ ! changes the
line-of-sight velocity of M31 relative to the Galactic center
from —120 to —150 km s~ !. The higher infail velocity
increases the mass of the Local Group estimated from the
timing argument (Kahn & Woltjer 1959; Peebles et al. 1989;
Raychaudhury & Lynden-Bell 1989; Kroeker & Carlberg
1991): if the age of the universe is 15 Gyr, the estimated Local
Group mass is increased by about 35%, from 3.7 x 10'? to
50 x 1012 M o> Which is still consistent with plausible models
of galaxy formation.

The velocity v, g of the Sun with respect to the barycenter of
the Local Group may be estimated from the statistics of the
line-of-sight velocities of independent Local Group members,
without assuming a value for v . We adopt Einasto &
Lynden-Bell’s (1982) “first” solution, which gives v, g = 304
km s~ ! toward I = 97°, b = —1°. Assuming that the momenta
of the Galaxy and M31 are equal and opposite with respect to
the local Group barycenter, which is plausible since they
contain most of the stars, this result yields (Einasto & Lynden-
Bell 1982, p. 70)

M, /Mg = 645 — 0.020, ¢z = 6.45 — 0.020,(1 — cy), (56)

where M, and Mg are the masses of M31 and the Galaxy.
Einasto and Lynden-Bell suggest that we use the Tully-Fisher
relation” to set Mg/M, = (v./250 km s~ *)* (assuming identical
mass-to-light ratios for M31 and the Galaxy). Together with
equation (56), this gives us a relation between v, and cy. For an
axisymmetric disk, cy = 0, we find v, = 200 km s~ !, somewhat
lower than the IAU value of 220 km s, while for ¢y = 0.08
we find v, = 191 km s !, in adequate agreement with our best
estimate from disk kinematics, v, = 197 km s~ ! for ¢y = 0.08.
The errors in this determination are at least +30 km s~ 1, so
Local Group kinematics do not provide an accurate way to
determine v, but our result does show that the non-
axisymmetric model that we are advocating is compatible with
the observed motion of the Sun relative to the Local Group.
The velocity of the LSR also influences models of the orbits
of the Magellanic Clouds and Magellanic Stream (a narrow
band of H 1 gas extending along a great circle arc of ~ 100°).
The barycenter of the Large and Small Magellanic Clouds is

5 Both these numbers, as well as IAU estimate, are consistent with Backer
& Sramek’s (1987) measurement of the proper motion 6.0 + 0.7 milliarcsec
yr~* of the radio source Sgr A* at the center of the Galaxy: using Ry = 7.5
+ 0.9 kpc (§ 4.1) and correcting for the contribution of the solar motion
relative to the LSR yields an azimuthal LSR velocity of 198 + 34 km s~ *.

6 Because v is the velocity used to convert heliocentric line-of-sight velo-
cities of extragalactic objects to the Local Group barycenter, revisions of v, ¢
do not directly affect extragalactic velocity fields such as the Virgocentric flow.

7 We note in passing that changing v, as we advocate, from 220 to 200 km
s~ ! substantially affects the Galaxy’s position on the Tully-Fisher relation. If
the Galaxy were the sole calibrator of this relation (cf. de Vaucouleurs 1983),
the change would lower the Hubble constant by 20%.
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presently 50 kpc from the Galactic center and moving outward
(at68 kms ! ifv g =220 km s, or 100 km s~ ! ifp; g = 180
km s~ '), so in most plausible models the Clouds have recently
passed pericenter. The Magellanic Stream is believed to consist
of tidal debris from the Clouds that was torn off at the prior
pericenter passage and is now trailing behind the Clouds
(Murai & Fujimoto 1980; Lin & Lynden-Bell 1982). The prin-
cipal theoretical challenge for models of the Stream is to repro-
duce the high infall velocity at the tip of the Stream 100° from
the Clouds, v;, = —380 km s™' + 0.82v, . The high infall
velocity requires a highly eccentric orbit for the Clouds, since
the gas roughly traces the Clouds’ orbit; however, if the eccen-
tricity is too high or the halo potential gradient is too weak, the
orbital period of the Clouds becomes so large that the Stream
disperses in less than one orbital period.

These considerations are quantified by Lin & Lynden-Bell
(1982), who derive v, = 244 + 12 km s~ ! by fitting the Stream
kinematics, assuming that the halo is spherical with circular
speed v, and that v gz = v.. Our model, with v,z = 180 km
s~ !, yields a Stream infall velocity | v, | that is larger by 52 km
s~ ! and requires a more massive halo to generate these larger
velocities, perhaps v, ~ 340 km s~ ! in the region of the Cloud
orbit.® A halo that is so massive is not excluded by the
observations—we have only crude observational constraints
on halo potentials at distances 230 kpc—and in addition
some of the assumptions of these models for the Stream may be
incorrect: (1) halos are likely to be strongly triaxial, not spher-
ical; (2) the Stream may be influenced by nongravitational
forces; (3) there may be alternative models for the Stream
dynamics, for example ones in which the Clouds have just
completed their first pericenter passage (Shuter 1992).

The velocity of the LSR is reflected in the motions of globu-
lar clusters, halo stars, and satellite galaxies. Determination of
v sr from these tracer populations is complicated by several
problems. (1) In some cases (e.g., globular clusters) the tracer
population has its own rotation velocity, which is highest for
metal-rich tracers but may not vanish even for the most metal-
poor subset of the population. (2) The heliocentric line-of-sight
velocities of tracers near the Galactic center depend strongly
on the systematic rotation of the tracers but are insensitive to
visr, While the velocities of tracers at distances >R, are
affected by v;gg but not by rotation. Unfortunately, there are
few objects with known velocities at large distances, and such
objects may not yet be in a steady state. (3) The halo popu-
lation may have originated in a few large fragments that have
been tidally disrupted but are not yet well-mixed, even in the
solar neighborhood. This possibility is supported by the obser-
vation that the velocity distribution of metal-weak stars is
skewed, both in the wings and near its center (Norris & Ryan
1989). (4) Many samples of halo stars are kinematically biased
(e.g., by looking for stars with large proper motion). Such bias
discriminates against stars with velocities similar to that of the
Sun and hence leads to an overestimate of vy gg.

We have collected velocities of 18 objects (globular clusters,
dwarf spheroidal galaxies, and the Magellanic Clouds
barycenter) at distances between 25 and 230 kpc from the
Galactic center (Little & Tremaine 1987; Zaritsky et al. 1989).
Assuming that the distribution of Galactocentric velocities of
these objects is isotropic (with zero mean) and Gaussian, we

8 The number comes from a slight generalization of Lin & Lynden-Bell’s
(1982, § 5) discussion to the case where v, # v, gz, Which yields the formula 636
kms™! — 1.55v,¢¢ = 1.050,.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...421..178K

[TO02ARY: - 74217 TI78K,

1992

No. 1, 1994

find that the maximum-likelihood estimate of v, g is 234 km
s~1, with 1 ¢ limits from 187 to 281 km s~ !; our preferred
value of 180 km s~ ! is 1.2 ¢ away from the most likely value.
This result is quite sensitive to the selection of satellites; for
example, if the galaxies are removed, the remaining 10 globular
clusters yield vy gg = 146 km s~ ! with a 1 ¢ upper limit of
221 kms~ 1.

We have also estimated v ¢ from 25 globular clusters with
Galactocentric distances between 10 and 25 kpc (data from
Thomas 1989). All but one of these clusters is metal-weak,
[Fe/H] < —1. Assuming that the distribution of Galactocen-
tric velocities of these objects is isotropic and Gaussian, we find
that the maximum likelihood estimate of v g is 188 km s~ 1,
with 1 ¢ limits of 142 to 235km s ™1,

Many authors have estimated vy g from samples of halo
stars (see reviews by Freeman 1987 and Majewski 1992). The
results vary widely and do not provide a strong constraint on
ULsR:

Carlberg & Innanen (1987) have argued that samples of
high-velocity dispersion disk stars should be depleted near zero
angular momentum, because orbits with low angular momen-
tum are chaotic if the Galaxy has a centrally concentrated
mass distribution, and hence cannot be confined to a disk. The
available data on high-velocity disk stars show a depletion that
implies v gg = 235 + 10 km s, but the statistical significance
of the depletion is not very high.

To summarize, we feel that there is no strong evidence from
the tests presented in this section that distinguishes between
the traditional IAU value for the velocity of the local standard
of rest, v gg =220 km s~!, and the value proposed in this
paper, v gz = 180km s~ 1.

9. SUMMARY

Modern theories of galaxy formation and observations of
other galaxies both suggest that many galaxy disks are likely to
be elliptical, with an axis ratio ¢ < 1 that may be as small as
0.9.

In analyzing the evidence for ellipticity in our Galaxy, it
is useful to work with parameters cy = €y COS 2¢b,, Sy =
€y sin 2¢, (eq. [14]), where ¢, is the azimuthal angle between
the Sun and the minor axis of the equipotential surfaces and
1 — €y is their axis ratio.

A nonzero value of sy is manifested by asymmetries in the
spatial distribution and kinematics between tracers at longi-
tudes / and —1, and by nonzero values of the vertex deviation
and the radial velocity of the local standard of rest relative to
the Galactic center. We find no consistent evidence for a distor-
tion of this kind (§§ 3.1-3.3), implying either that the disk is
axisymmetric (ey =~ 0) or the Sun is near a symmetry axis
(sin 2¢p, ~ 0). Nevertheless, there are some indications of non-
axisymmetry with odd symmetry (discussed in § 4): these
include an outward motion of stars toward longitude 180° and
an asymmetry in the integrated H 1 flux between positive and
negative longitudes. We suspect that these anomalies are not
the result of large-scale perturbations to the Galactic potential,
but their interpretation remains unclear.

Detection of the component ¢y, is more difficult. In particu-
lar, this perturbation maintains the Galactic symmetry about
the | = 0, 180° line. Existing velocity surveys of tracers, which
extend to distances of order R,, can be fit equally well by
axisymmetric models and by elliptical models with cy as large
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as 0.2. However, the rotation curves derived from these surveys
are sensitive to cy: if ¢y is 0.1, the rotation curves can be in
error by 20% or more (§ 4.4).

We have analyzed a specific model of an elliptical disk, in
which the rotation curve is flat and the ellipticity is indepen-
dent of radius. We focus on two significant anomalies in fitting
observations to axisymmetric disk models: (1) The squared
axis ratio of the velocity ellipsoid in the solar neighborhood is
0.42 + 0.06 compared to a predicted value of 0.66 + 0.06
(§ 3.4); (2) the rotation speed in the range R = R, to 2R,
obtained from the kinematics of Cepheids and carbon stars is
roughly 20% higher than the rotation speed derived from the
vertical distribution and kinematics of distant H 1. Both of
these anomalies are removed in elliptical disk models with
cy >~ 0.08; the corresponding rotation speed is roughly con-
stant at 200 km s~ ! out to 2R, or more (§ 5). From local
kinematics sensitive to sy, we deduce that in such a model the
Sun would lie near the minor axis of the potential
(equivalently, the major axis of the disk). The velocity of the
local standard of rest would be 180 km s~ ! (§ 8). Our best-fit
model is described by equations (55). We have also investigated
more general models, in which the rotation curve and the
amplitude of the elliptical distortion are power laws in radius,
but these do not offer significantly improved fits to the data
(§ 6). Generalizations that we have not examined include dis-
tortions with other azimuthal wavenumbers or nonzero
pattern speeds.

A possible concern with our model is that the kinematics of
the outermost H 1 gas (R 2 2R,) show no direct evidence of an
elliptical distortion of the kind we advocate; however, the
interpretation of the behavior of this gas is difficult because it is
probably not in a steady state (§ 7).

The alignment of the Sun with the symmetry axis of the
elliptical disk is not ad hoc or improbable. The Sun can be as
much as +10° off the symmetry axis (§ 3.5) so the a priori
probability of the alignment is 20°/90° ~ 0.2. Moreover, the
Sun-Galactic center line is roughly perpendicular to the line of
nodes of the Galactic warp, and if the warp is due to a tilt
between the halo and the inner disk then it is plausible that the
minor axis of the halo potential in the disk plane should lie
along the Sun-center line. In any case, because the effects of the
¢y and sy terms are independent, our conclusions concerning
¢y do not rely on the smallness of sy.

The evidence for the specific values of rotation speed and
ellipticity that we advocate here is suggestive but not com-
pelling. Thus our most robust conclusion is that plausible
models of the Galaxy, in which the disk is elliptical and the Sun
is near a symmetry axis, allow a remarkably wide range of
velocities for the Local Standard of Rest. In addition, we have
shown that simple elliptical disk models have the capacity to
resolve several puzzling features seen in the kinematics of the
Galaxy. This success suggests that more sophisticated elliptical
models may provide an important tool for interpreting obser-
vations of Galactic structure.
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