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Abstract. We have derived the spectral decomposition of
the Jacobian matrices associated to the fluxes of the three-
dimensional special relativistic hydrodynamics system of
equations. The interest of this analysis, both from the theo-
retical and from the numerical point of view, is discussed.
We have extended modern high-resolution shock-capturing
methods to the multidimensional relativistic hydrodynamics
as the natural prolongation of our previous work in the one-
dimensional case. Two severe tests show the performance
of our numerical proposal.
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1. Introduction

Simulations of relativistic flows are currently a topic of in-
creasing interest in several areas of physics such as astro-
physics, nuclear physics or plasma physics.

Several astrophysical scenarios involving relativistic
flows are, for example, the following: (i) the high-velocity
outflows which can be found in galactic jets (Begelman
et al. 1984), (ii) the collapse of iron cores of massive stars
which activates the Supernovae II explosions and where ve-
locities higher than 0.2 times the speed of light are reached
(Brown et al. 1982), or (iii) accretion onto compact objects
(Shapiro & Teukolsky 1983). In galactic jets the fluid flow
reaches the ultrarelativistic regime (i.e. bulk Lorentz factors
greater than 2). The existence of strong gravitational fields
in some of the above astrophysical scenarios complicates
the problem making a fully general-relativistic description
necessary.

A common feature connected with the above astrophysi-
cal scenarios is the presence of strong shocks. Relativis-
tic shocks are, from the physical point of view, very im-
portant in several problems which also arise in other ar-
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eas of Physics: (i) Several theories of galaxy formation in
Cosmology call for the presence of strong shocks (Miller
& Pantano 1989). (ii) Magnetoacoustic shock waves with
speeds of up to 4108 cm s~! have been achieved in exper-
iments in Plasma Physics (Taussig 1973). (iii) To look for
constraints on the nuclear equation of state (EOS) is one of
the lines of research followed by experimentalists working
with heavy ion reactions. The existence and implications of
relativistic shock waves have been considered by theorists
in this field of Nuclear Physics (Strottman 1989).

From the numerical point of view the correct modelling
of shocks has attracted the attention of many
researchers in Astrophysics and in Computational Fluid Dy-
namics. A numerical scheme in conservation form allows
for shock-capturing, i.e. it guarantees the correct jump con-
ditions across discontinuities. Traditionally, shock-capturing
methods introduced artificial viscosity terms in the scheme
in order to damp the oscillations and instabilities associ-
ated with the numerical computation of discontinuities. His-
torically, researchers working in relativistic — both special
and general — hydrodynamics (see, for example, Nakamura
et al. 1980; Piran 1980; Nakamura 1981; Nakamura & Sato
1982; Hawley et al. 1984; Centrella & Wilson 1984; Evans
1986; Stark & Piran 1987), following Wilson’s pioneering
work (Wilson 1972; Wilson 1979), have used a combina-
tion of artificial viscosity and upwind techniques in order
to get numerical solutions of the relativistic hydrodynamic
equations.

Wilson wrote the system as a set of advection equations.
In order to do this, he had to treat terms containing deriva-
tives (in space or time) of the pressure as source terms. This
procedure breaks — physically and numerically — an impor-
tant property of the relativistic hydrodynamics system of
equations: its conservative character (see below). Wilson’s
procedure has been extensively applied to the study of many
astrophysical scenarios (axisymmetric stellar collapse, nu-
merical cosmology, accretion onto compact objects,...) and
proved to be appropriate to describe flows with Lorentz
factors up to 2 but, unfortunately, it cannot overcome the
ultrarelativistic limit.
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In recent years, the interest in improving the perfor-
mance reached in relativistic calculations has triggered the
development of codes based on other techniques. In this
way, Mann (1991) has written a multidimensional general-
relativistic hydrodynamical code based on the smooth parti-
cle hydrodynamics (SPH) method. However, Mann’s
results draw us to the conclusion that the SPH method is
still far from being able to model ultrarelativistic flows.
Analogously, Dubal (1991) has developed a two-dimen-
sional magnetohydrodynamics code using an explicit
second-order Lax-Wendroff scheme incorporating a flux-
corrected-transport algorithm. When tested against one-
dimensional shock tubes the code has shown a performance
similar to that of Wilson’s code.

On the other hand, during the last decade and after the
seminal papers by Godunov (1959) and Van Leer (1979),
a number of new shock-capturing finite difference approxi-
mations have been constructed and found to be very useful
in the numerical simulation of classical (Newtonian) fluid
dynamics (see, for example, surveys by Yee 1989 and Le-
Veque 1991 and references cited therein). In addition to
conservation form, these schemes are usually designed to
have the following properties: (a) Stable and sharp discrete
shock profiles. (b) High accuracy in smooth regions of the
flow.

Schemes with these characteristics are usually known
as high-resolution schemes. They avoid the use of artifi-
cial viscosity terms when treating discontinuities and, after
extensive experimentation, they appear to be a solid alter-
native to classical methods with artificial viscosity.

In a previous work, Marti et al. (1991, hereafter MIM)
have extended some recent high-resolution shock-capturing
(HRSC) methods to solve the relativistic hydrodynamics
system of equations in one spatial dimension. Our proce-
dure rested on two main points: (1) To write the equations
of relativistic hydrodynamics as a system of conservation
laws and identify the suitable vector of unknowns. (2) An
approximate Riemann solver built up from the spectral de-
composition of the Jacobian matrix of the system at the
boundaries of each numerical cell.

The results obtained in several tests including ultra-
relativistic flows and strong shock waves (see MIM and
Marquina et al. 1992) have encouraged us to develop a
multidimensional version of our previous one-dimensional
work. This paper sets out the theoretical and technical ingre-
dients which are necessary for a proper extension of HRSC
methods to multidimensional relativistic hydrodynamics. In
order to check our hydro-code we have chosen two severe
tests. For one of them, the steady relativistic oblique shock,
exact analytical solution exists (Konigl 1980). Preliminary
results on these tests can also be found in Ibafiez (1993).

Our analysis has been performed in Minkowski space-
time and using Cartesian coordinates, although it can
be easily generalized to other coordinates (in Minkowski
space-time) and general space-times described by a diago-
nal metric tensor. In these cases the spectral decomposition
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of the Jacobian matrices can be trivially extended as we
have shown in the one-dimensional case (see MIM).

Finally, when this work was written, we have been
aware of the work of Eulderink & Mellema (1993) in which
similar techniques have been applied to the study of the
confinement of astrophysical jets.

Present paper is organized as follows. Section 2 is de-
voted to the analysis of the relativistic hydrodynamics sys-
tem of equations as a system of conservation laws. In this
section, we write the multidimensional equations of rela-
tivistic hydrodynamics in conservation form and define the
appropriate set of unknowns. In Sect. 3 we derive the spec-
tral decomposition of the Jacobian matrices associated to
the fluxes in each spatial direction. Two severe tests of our
multidimensional code are displayed in Sect. 4. This section
also contains other comments related with our numerical
code. Finally, main conclusions are presented in Sect. 5.

2. Relativistic hydrodynamics as a system
of conservation laws

A one-dimensional hyperbolic system of conservation laws
is

u | Of(u) _

0, 1
ot Oz M
where u is the NN-dimensional vector of unknowns and
f(u) are N vector-valued functions called fluxes. The
above system (1) is hyperbolic if the Jacobian matrix

Of (u)
A=22"
ou
has real and distinct eigenvalues {A,(u)}n-1,.. v and the set
of eigenvectors is complete in RY. If some of the eigen-
values are equal the system is said to be non-strictly hy-
perbolic. The equation

dz/dt = A\ (uw)

@

3)

defines the nth characteristic field.

The equations describing the evolution of a relativistic
fluid are local conservation laws: the local conservation of
baryon number density

V,J*=0 (O]
and the local conservation of energy-momentum
V. TH =0 )

(throughout this paper, Greek indices run from 0 to 3 and
the Einstein summation convention is used), the current J#
and the energy-momentum tensor T#" being

JH = put,

Q)

Tyv = phuyuy + pguy - (N
In the above equations p is the rest-mass density, p is the
pressure and h is the specific enthalpy, defined by h =1+
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€+ p/p, where ¢ is the specific internal energy. u* is the
four-velocity of the fluid and g,,, defines the metric of the
space-time M where the fluid evolves. V, stands for the
covariant derivative.

The expression chosen for the energy-momentum tensor
restricts it to a perfect fluid and, therefore, we do not take
heat conduction, viscous interactions or magnetic fields into
account.

In Minkowski space-time and using Cartesian coordi-
nates (z = {t, z, y, z}), the above system of Egs. (4) and
(5), can be written in a more compact way as:

OF*(w)
=0, 8
gy ®
where the five-vector of unknowns is
w= (p7 ’Uxa 'Uya ,Uz’ 5) (9)

and the quantities F'“ are

FO(w) = (oW, phW*u®, ph WY, phW2v?, phW'?
—p—pW),
Fi(w) = (0Wo', phW20'0® + pb6*®, phW i oY
+ p6%, phW2v'v® 4 p6'% phW2vt — pWot) (11)

(10

(G=z,y,2).

In the above expressions, the components of the three-
velocity, v?, are defined according to v¢ = u’/u® and the
Lorentz factor, defined by W = u°, satisfies the familiar
relation W = (1 — v?)~'/2(v? = (v®)? + (v¥)? + (v%)?). The
components of F°(w) are, respectively, the relativistic rest-
mass density, the three components of the relativistic mo-
mentum density and the total energy density.

An equation of state p = p(p, €) closes, as usual, the sys-
tem. A very important quantity derived from the equation
of state is the local sound velocity cs:

he; = x + ®/p))x,

with x = 9p/0p and k = Op/Jke.
Introducing the Jacobian matrices A*(w) associated to
the five-vectors F'*(w)

_ OF*(w)
- 6'(,0 ) (13)

system (8) can be written as a quasi-linear system of first
order partial differential equations for the unknown field w

(12)

AOL

(14)

The explicit expressions of matrices A% have been dis-
played in Appendix A. Finally, we introduce the vectors

u= Fo(w) (15)

(the three-dimensional counterpart of the unknown field
vector in MIM; see expression (12) of that paper) and

fi — F’l o (FO)—I

A"(w)g—;l;— =0.

(16)
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(i=1, 2, 3) where o means composition of functions and
()7! stands for the inverse function.

With the above definitions, system (8) reads as a system
of conservation laws, in the sense of Lax (1973), for the
new vector of unknowns u

du  Of'(u) _

By ox’

0. 1
520 a7)

In the above system (17) we can define three 5 x 5-
Jacobian matrices B'(u), the Jacobian matrices associated
to the vector f*(u), the flux in the i-direction of the system
(17) as:

i _ of z'(u)
B S (18)
A routine calculation shows that
B = AYAYH!. 19)

In order to apply HRSC methods to solve the equations
of relativistic hydrodynamics as written in (17), the knowl-
edge of the spectral decomposition of the Jacobian matrices
Bt is crucial. The next section is devoted to this purpose.

3. Characteristic fields

The hyperbolic character of relativistic hydrodynamics has
been exhaustively studied by Anile and collaborators (see
Anile 1989, and references cited therein) by applying the
Friedrichs’ definition of hyperbolicity (Friedrichs 1974) to
the system of equations in the form of a quasi-linear system
[expression (14)]. According to this definition, system (14)
will be hyperbolic in the time-direction defined by the vec-
tor field £ with £,£* = —1, if the following two conditions
hold:

(i) det (A*&) #0,

(i1) for any ¢ such that (,£* =0, (,(* =1, the eigen-
value problem

A%a = Aa)r=0 (20)

has only real eigenvalues {\,}n-1,.s and a complete set
of eigenvectors {7, }n=1,. 5.

Besides verifying the hyperbolic character of the rel-
ativistic hydrodynamics, Anile and collaborators have ob-
tained the explicit expressions for the eigenvalues and
eigenvectors of problem (20) in the local rest frame, char-
acterized by

B g
ut =6y .

@n

We have redone the calculations in an arbitrary reference
frame in which the motion of the fluid is described by the

four-velocity
ut =W(,vY). 22)

Let us focus on one spatial direction ! =z and make
the following choice for the vectors £¢ = (1, 0, 0, 0) and
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¢“ = (0, 1, 0, 0) (the analysis in the other two spatial direc-
tions can be performed in the same way). Now, the above
condition (ii) becomes

A = 2A%r =0

and leads, after straightforward computations, to the fol-
lowing eigenvalues associated with the so-called acoustic
waves

23

1 X
Ay = 1——'0203{1} 1- Cg)
to \/ (1 = o)1~ (*)? — (W) + (vz)2)63]} 24
and

Ao = v*(triple),

for the material waves.
A complete set of right-eigenvectors of the problem (23)

is

25

(_"{', 07 Oa 07 X)

To= { (_K'a Oa 1,0, X) } ) (26)
(_"{'7 Oa 07 1) X)
1
(% = AL)(1 = Axv®)/pAs

Ty = [ =ALv¥(v® — A1)/pAs 7
—/\iv’('v“” - /\:t)/pA:I:
—x/K — hv® — ALPW?/kAL

with

Ap = —*W2AAL + 20" WAy — [1 4+ (%) W2, (28)

which is always different from zero for real values of ..
Several comments should be made:
(i) In the case (v*=wv, v¥=20v*=0), expression (24)
gives the corresponding one-dimensional eigenvalues (see
MIM):

v+
1 +ve

Ag = 29

(ii) In the limit | v* |— 1, the genuinely nonlinear char-
acteristic fields AL become linearly degenerate.

The previous analysis is interesting for our purpose
of obtaining the spectral decomposition of matrices B
bearing in mind that, if {\,,7r,},-1, s are, respectively,
the eigenvalues and eigenvectors of problem (23), then
the corresponding eigenvalues and eigenvectors of B¢,
{5 mhtnmn, s, are

{)\;‘;, "';}n=1,...5 = {)‘naAO"'n}n=l,...5 . (30)
The proof of this statement is shown in Appendix B.

4. Multidimensional relativistic tests

In this section we present numerical results obtained in two
severe tests which are standard in multidimensional Newto-
nian fluid dynamics: (1) the relativistic oblique shock, and
(2) the relativistic Emery’s step.
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Our code is based on a finite discretization of the equa-
tions of relativistic hydrodynamics in conservation form
(17). Using a method of lines, this discretization reads:

a

duijn(®) _ Firtok ~Fictik Gijeik —Gij-ik
dt Az Ay
iy = Pije—y
- e ; €3]

where subscripts 4, j, k are related, respectively, with z, y
and z-discretizations, and refer to cell-centered quantities.
Az, Ay and Az represent the cell width in the three co-
ordinate directions.

Quantities ﬁ+%’j’k, 9;j+1 % and fzi’j’,ﬂ_% are the numer-
ical fluxes at the cell interfaces, calculated with an approxi-
mate Riemann solver based on the spectral decomposition
of the corresponding Jacobian matrix. For the numerical
fluxes in the z-direction we have:

A

1
firign = E(f(u%,j,k) + Fli g0

5
=15 | A7), (32)
n=1

where ], and u}, ;& stand for the left and right states

of the interface i + % and have been obtained by using a
monotonic linear reconstruction of the cell-centered values
(Van Leer, 1979) in order to achieve second-order spatial
accuracy. {5\", 77 }n=1,...5 are, respectively, the eigenvalues
and eigenvectors of the Jacobian matrix B! calculated at the
interface i + 3 through some average of uf; , and uf,, .
Finally, the quantities {A&p, }n-1,...5, the jumps of the local
characteristic variables across each characteristic field, are
obtained from:

5
U1k — U R = D AT (33)
n=1

The advance in time has been performed by means of a
third-order Runge-Kutta method that preserves the conser-
vation form of the scheme and does not increase the total
variation of the solution at each time substep (Shu & Osher
1989). Note that we do not perform any spatial splitting. At
each time step, an implicit equation for pressure must be
solved in order to get the new value of w. '

The time step is constrained by the CFL (Courant—
Friedrichs—Lewy) condition. The CFL condition, necessary
for stability, states that the numerical signal speed must be
at least as fast as the maximum signal speed (see, for ex-
ample, Sod 1987). A 2D formulation of this condition is

Az

At =CFL x min<

1 3D ) ’
E(l A+,;_|/2,j | - | A"H-I/ZYJ‘ |
Ay )
34)
1,1 4@ @ ’ (
f(l A-l-i,j_]/z | - | )\_i,j+l/2 |

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994A%26A...282..304F

AF ]

FTOOAAECA: 7 77827 .

308

where CFL < 1/v/2 (we have taken CFL =0.5) and A{)

and )\(i) are the corresponding eigenvalues associated to the
matrices B' and B2, respectively. The above relation (34)
expresses the dependence of the time step — and, a fortiori,
the CPU time — on the size of the grid. In the numerical
experiments shown in present work the computing time is
411pus per grid point and per time step on a IBM 30-9021
VF (only 30% vectorisation). Currently, we are working in a
‘new version of the code which must reduce this computing
time in a factor greater than ten.

Finally, given its interest in astrophysical applications,
let us make some comments concerning the numerical vis-
cosity of these high-resolution shock-capturing methods.
The last term in the numerical flux (32) gives information
about the numerical viscosity of the scheme. In the one-
dimensional scalar case — and a uniform grid — a general
3-point finite-difference scheme in conservation form has a
numerical flux of the form

For = 31 @) + flusn) = (1/WQE ) (wins = ui)],

where pu = At/Az, &= pa, a=09f/0u (except in discon-
tinuities) and Q(¢; +1) can be viewed as the viscosity of
the scheme (Harten 1983 Osher 1985). Some estimations
about the amount of numerical viscosity can be given fol-
lowing the work by Harten (1983). Harten (1983) has stud-
ied the influence of numerical viscosity in high-resolution
second order accurate TVNI (total variation nonincreasing)
schemes (see in this reference for definition and properties
of TVNI schemes) and established the following relations:

[€1< Q@) <1 |§|<CFL<1. (36)

The natural way of extending to systems the above def-
inition of numerical viscosity for scalar equations is by
using a local characteristic approach in order to decouple
the original system into a set of scalar equations in each
characteristic field (Harten 1983). Work in this direction is
in progress.

(35)

for

4.1. Relativistic oblique shock

The basic algebraic relations which connect the two states
at each side of a steady relativistic oblique shock have
been derived by Konigl (1980), for ideal gases with a con-
stant adiabatic index I', in the local rest-frame of the shock
front. A fundamental difference between the Newtonian and
relativistic descriptions is the fact that, in the relativistic
case, the jump in density, which increases with the up-
stream velocity, tends to infinity in the extreme-relativistic
regime. Konigl derives an algebraic equation which defines
implicitly the jump in the normal components of velocity
X = v;-/vit in terms of the known upstream state (the up-
stream and downstream regions of the front are denoted by
1 and 2, respectively). Once the quantity x is calculated the
remaining unknowns are easily obtained (see Konigl 1980).

We have generated a steady oblique shock throwing an
ideal gas with T" = 7/5 through a corner (an oblique plane)

J.A. Font et al.: Multidimensional relativistic hydrodynamics

with a wedge angle of tan~!(1/2). In the case of an infi-
nite oblique plane, this shock front is also infinite. More-
over, since it makes the same angle with the incoming flow
everywhere, its strength is constant and hence the state im-
mediately behind the shock is also constant, allowing us
to compare the jumps in the hydrodynamical quantities at
both sides of the shock front with the analytical expressions
derived by Konigl.

The initial density, in our experiments, is 1.4 and the
pressure the one resulting for a Mach 3 flow (Newtonian
definition). The initial velocity (in units of the speed of
light) runs from 0.01 (W =1.00) to 0.95 (W =3.21). A
rectangular grid of 120 x 40 has been used.

The solution looks like the Newtonian one. This can
be explained if we take into account that, as several
authors (see, for example, Konigl 1980; Wilson 1987) have
emphasized, the equations of steady special-relativistic gas
dynamics and steady non-relativistic gas dynamics have a
similar mathematical form, when expressed in suitable vari-
ables. This property has been used in order to find numeri-
cal solutions for relativistic steady flows.

Figure 1 shows the shock front formed in the case v; =
0.95. We have plotted nine isodensity curves at
regular intervals of width 0.005. In this way we get a re-
solution fine enough to solve the shock in the range p; €
(10.957,10.912). Figure 2 shows the profile of the proper
speed of the fluid u = Wv as a function of the z-coordinate
parametrized for different values of the y-coordinate. The
corner of the wedge is placed at =2 and the inflex-
ion points of these curves indicate asymptotically the jump
in proper speed which would correspond to an infinite
obstacle.

In Table 1 we compare our numerical results with the
exact solution of Konigl. For each value of the initial in-
flow velocity we have displayed two values of p,, associ-
ated to the numerical incertitude pointed above, and their
corresponding jumps Ap = p,/p;. The jump in the proper
speed Au=u,/u; and the numerical values of the angle
3 between the shock front and the direction of the inflow
velocity have been obtained from the analysis of the corre-
sponding figures such as Fig. 2 and Fig. 1, respectively (we
have included dispersion bar errors). In order to facilitate
the comparison, Table 1 includes two sets of theoretical
values spanning the dispersion bar of 3. As we can see
from this table the values of all variables involved in the
problem agree satisfactory with the analytical ones.

4.2. Relativistic Emery’s step

A severe test for two-dimensional flows in presence of
shocks is the flat-faced step originally introduced by Emery
(1968) to compare several difference schemes in classical
fluid dynamics: a Mach 3 flow (Newtonian definition) is
injected into a tunnel containing a step. The tunnel is 3
units long and 1 unit wide. The step is 0.2 units high and
is located 0.6 units from the left-hand end of the tunnel.
Slab symmetry is assumed.
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5 Density

y — axis

o
1.5 3
X — axis

Fig. 1. Steady relativistic oblique shock. Initial inflow velocity 0.95 (in units of the speed of light). Nine isodensity curves have been
plotted spanning, regularly, the interval between 10.957 and 10.912

2.5 — ]

1.5 — —

0 | l | | l 1 L | |

X — AXIS

Fig. 2. Flow velocity in the steady relativistic oblique shock problem. Initial inflow velocity 0.95 (in units of the speed of light). The
sample of curves is parametrized by the y-coordinate, being the corner placed at x = 2.

The boundary conditions are: (1) Reflecting boundary right and the left sides of the tunnel, respectively, outflow
conditions along the walls of the-tunnel and at the left face and inflow boundary conditions are applied.
and the top of the step. No additional boundary condition The initial conditions for the gas in the tunnel are:
near the corner of the step has been introduced. (2) On the p(z,y,0) = po = 1.4, v*(z,y,0) =v§ and v¥(z,y,0) = vy =
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Table 1. Steady relativistic oblique shock. See text for details about entries

vy Numerical results Analytical relations
B P2 Ap Ay B X Ap Ay
0.01 49.5+0.5 4.319 3.086 0.69 £+ 0.01 49 0.3292 3.038 0.702
4.309 3.078 50 0.3244 3.082 0.689
0.9 45.5+0.5 8.209 5.863 0.423 4+ 0.007 45 0.2945 5.829 0.429
8.184 5.848 ‘ 46 0.2942 5.902 0.418
0.95 47.5+0.5 10.957 7.826 0.301 £ 0.005 47 0.3034 7.726 0.306
10.912 7.794 : 48 0.3038 7.817 0.297
Q
S e S
NN NN O O O O A A A A A B
/ / / / ;] i /y i // / / /

Y — AXIS

/

i
)

X — AXIS

Fig. 3. Relativistic Emery’s step. Isodensity curves at ¢t =4, in units of the Courant time

0, for all z,y. The value of the initial pressure is de-
rived from the other variables. The initial value of the z-
component of the three-velocity v has been used as a free
parameter for different runs.

The EOS considered is the one of an ideal gas with
I'=7/5. Gas is continually fed in at the left-hand bound-
ary with the flow variables given by their initial values. A
rectangular grid of 120 x 40 has been used.

120.0

At the transonic rarefactions, where solutions violating
entropy may develop (and, in fact, it does), an entropy vis-
cosity term according to the prescription of Harten & Hy-
man (1983) was incorporated.

Figures 3-5 show the isodensity curves of the system
(inflow velocity v =0.9; W =2.29) at three points in its
evolution (¢ = 4-6, in units of the Courant time) before the
steady solution has been reached and when the flow ex-
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e
o
e < //,//./}l//"’ ! /{ /
L / Iy ! i
3 /]
1
=
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[=h
L
2
>
<<
|
>_
e
o
0.0 - X — AXIS 120.0

Fig. 4. Relativistic Emery’s step. Isodensity curves at ¢ =5, in units of the Courant time

40.0

Y — AXIS

0.0 X — AXIS 120.0

Fig. 5. Relativistic Emery’s step. Isodensity curves at t = 6, in units of the Courant time
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hibits the most complex structure. The main features of the
solution are the Mach reflection of a bow shock at the up-
per wall, making the density distribution the most difficult
to compute, and a rarefaction fan centered at the corner
of the step. These general characteristics of the solution are
similar to those found in the Newtonian case. Currently, we
are experimenting with higher inflow velocities.

5. Concluding remarks

In this paper, we have derived the spectral decomposition
of the Jacobian matrices associated to the fluxes of the
three-dimensional special relativistic hydrodynamics system
of equations and discussed the interest of this analysis, both
from the theoretical and from the numerical point of view.

In this way, we have set out the theoretical ingredients
which are necessary in order to use modern high-resolution
shock-capturing methods in multidimensional relativistic
hydrodynamics.

Our relativistic multidimensional hydro-code, which is
the natural extension of previous work in the one-
dimensional case, has overcome two severe tests: a steady
relativistic oblique shock and Emery’s problem. For the first
test there are analytical relations which allow us to com-
pare the numerical results with the theoretical ones. The
severe test of Emery’s step is a standard one (in its New-
tonian version) due to their richness in structures — shocks,
rarefactions,. .. — which are challenging for a multidimen-
sional relativistic hydro-code.

The results obtained in the above mentioned tests, give
us confidence in the feasibility of our procedure for extend-
ing modern high-resolution shock-capturing methods to the
multidimensional relativistic hydrodynamics.
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Appendix A: Jacobian matrices

The Jacobian matrices .A* introduced in (13) are displayed
in Table 2. Note that the above matrices verify:

(1) A*=P,[A'],

(2) A’ =Py A1,

() A% =Py [A] = Py [AY,
where operators Py; (g =2,3) act on their arguments as
defined by the following sequential operations:

(1) To permute the second and (g + 1)th arrows.

(2) To permute the second and (g + 1)th columns.

(3) To interchange the velocity components v and 9.
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Appendix B: mathematical details

Let us point out the connection between the spectral decom-
position of the eigenvalue problem (23) and the Jacobian
matrices B* associated to system (17).

Let D(A) and D*()\) be 5 x 5-matrices defined by

D) =A—-\A°, (37)

D*(N) = AAY)™' - AT, (38)

where A is one of the matrices A® introduced in (13).
Having in mind that A4° is nonsingular, it is easy to
check that

det[D(\)] = det[D*(\)]det(.A°). 39)
This relation establishes that the equations,

detD(A\) =0, (40)

detD*(\) =0, (41)

have the same solution for the eigenvalue A. Then, if
{An}n=1,..s and {A* }n=1,...5 are the sets of eigenvalues cor-
responding to the characteristic Egs. (40) and (41) we have
proved that

{An}n=1,...5 = {/\:;}n=1,...5 .

Now, let A, be one of this eigenvalues and let r, be
one vector satisfying D(\,)r,, = 0. Writing this expression
explicitly and taking .A° as common factor, we have

[AAYD™! = X, T1A4%, = 0.

(42)

(43)

On the other hand, the set of eigenvectors of A(A%) !,
{r}}n=1,..s, are, by definition, those verifying

[AAY ™ — X Tyrx = 0. (44)

Comparison of expressions (43) and (44), considering
that (42) holds, shows that

{r:}n=l,...5 = {Aorrn}n=1,...5

exception made of a normalization factor.

Let us note that this result guarantees that a state w is a
weak solution to (8) if and only if the corresponding vector
u, given by (15), is a weak solution of an.

(45)
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