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RESUMEN

Se han obtenido algunas soluciones numéricas para describir flujos multidimensio-
nales por medio de la aproximacién local por campos caracteristicos. Estas soluciones han sido
utilizadas para poner a prueba un cédigo bidimensional que extiende algunos métodos de
alta resolucion de captura de ondas de choque, disefiados recientemente para resolver sistemas
hiperbdlicos no lineales de leyes de conservacién.

ABSTRACT

Some numerical solutions via local characteristic approach have been obtained
describing multidimensional flows. These solutions have been used as tests of a two-
dimensional code which extends some high-resolution shock-capturing methods, designed
recently to solve nonlinear hyperbolic systems of conservation laws.
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1. INTRODUCTION

n the present paper we are reporting recent preliminary results in our project of developing a fully
tivistic and multidimensional hydrod ynamical code. Our main interest is to correctly model the formation
propagation of strong shocks. The possible existence of a strong gravitational field, as a background in
ch these shocks evolve, complicates the problem, and a fully general-relativistic description is necessary.
trong shocks are present in several astrophysical scenarios: e.g., supernovae, accretion onto compact
cts, jets (associated with either star formation or active galactic nuclei). A multidimensional description
ecessary in order to understand the complex structures of these shocks when interacting with matter of
interstellar or intergalactic medium or even more interestingly when dynamical instabilities of different
1s are developed (for example Rayleigh-Taylor or Kelvin-Helmholtz) at the interfaces between two fluids.
ally, a multidimensional analysis is necessary if we are interested in describing the release —even in a quasi-
vtonian description— of gravitational radiation coming from the gravitational collapse of cores in evolved
ssive stars or during the collision of two compact objects.
Nith this aim we have proposed, recently, an extension of the so-called modern high-resolution shock-capturing
1ds designed to solve nonlinear hyperbolic systems of conservation laws, which avoid the use of artificial
»sity to handle strong discontinuities. This has been applied to the relativistic hydrodynamics system of
ations (Marti, Ibanez, & Miralles 1991).
\ one dimensional kyperbolic system of conservation laws is:

ou of(u)
Bt + ax s(u) , (1)

ere u is the N-dimensional vector of unknowns and f(u) are N-vector-valued functions called fluxes. Strictly

aking a conservation law implies that the source term s(u) is zero. The above system (1) is hyperbolic if
Jacobian matrix
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£ has real and distinct eigenvalues {Aa(v)}a=1,.N-
Our calculations have been classified in two sets:

1. Those involving a hyperbolic system of linear conservation laws in presence of strong gravitational fiel
(wave equation in a curved space-time).

In a series of papers (Petrich, Shapiro, & Teukolsky 1988 and Abrahams & Shapiro 1990) the relativis
Euler and continuity equations have been formulated as a potential problem for some particular flo
(irrotational, isentropic and perfect-fluid). The main advantage of this formulation has been the discovery
analytic solutions simulating the steady-state accretion onto a Schwarzschild or Kerr gravitational field due
a compact object. These solutions have, in our opinion, to be included in the list of tests to be considered
builders of multidimensional relativistic codes. Although the potential flow prescription described in Petri
etal. (1988) does not allow the presence of shock waves, for which the shock-capturing methods are particula
indicated, we have considered that it would be interesting to apply these techniques to the problem at hai
From the numerical point of view the interest of this application relies on the presence of non-linearit
induced by the geometrical terms related to strong gravitational fields. From the astrophysical point of vi¢
several authors have indicated that it would be worthwhile to apply these methods to the relativistic regi
(see, for example Marti et al. (1991) and references therein).

2. Those involving a hyperbolic system of nonlinear conservation laws (Newtonian hydrodynamics).

In Marti (1991) a 1D code has been built which makes use of a Roe€’s linearization (see below for a revi
of the Roe construction) for solving local Riemann problems at each interface of a given numerical grid.

A Riemann problem is an énitial value problem for (1) with initial data:

-

a(x,0) = {uL if 2 < Zsheu
ur tf T > Zshell
where uy, g are, respectively, the left and right constant states of a given discontinuity at £ = Zgpep-
general, the solution of that Riemann problem depends only on the states uy,, ug and the ratio z/t.

This is what we call our MUSCL code (monotonic upstream schemes for conservation laws, Van Le
(1979)).

The present paper is organized as follows: Section 2 is devoted to study some particular gener
relativistic flows which can be described by a wave equation in a curved space-time. In § 3 we display t
2D Newtonian Euler equations of hydrodynamics and comment several aspects of interest concerning t
numerical methods we are going to apply. The corner-stones of our numerical procedure are shown in §
Particular attention has been paid to the Riemann solver derived by Roe in § 5. In § 6 we discuss the te
underwent by our code. Finally, the main conclusions of our work are summarized in § 7.

2. GENERAL-RELATIVISTIC EQUATIONS FOR POTENTIAL FLOWS

For the sake of clarity, let us summarize the main steps in the derivation of the analytical solution for t
steady-state, subsonic accretion of a gas onto a Schwarzschild black hole.

The key assumptions are: i) The gas obeys the equation of state p = p x n2, where p is the mass-enei
density, p the pressure and n the baryonic number density (we are using geometrized units: ¢ = G = 1).
The flow is made of a perfect fluid of null vorticity.

As a consequence of ii), a potential ¢ exists such that the velocity field can be derived from it:

Y

hu”=’—‘-

where h = (p+ p)/n is the specific enthalpy and u# = (u®,u) the four-velocity of the fluid. The equation
continuity and assumption i) lead, finally, to a wave equation for the potential ¢ in a curved space-time:

‘l/l:;t=0 )
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LN}
ﬁ: re ; stands for the usual covariant derivative.

10 the Schwarzschild gravitational field generated by a source of mass M this equation reads
o

(=]
&
L -1 2
9 M\ 2 09)  A[ 1 8 (. 0¥ 1 9% aM\ 7! 82y
Par|\' ™ |55 30 Tl o E-(1-=) =0 .
! or [(1 r )r ar] T [sin@ EY) (smﬂ 60) * win2o EPY 1 ; EYY (%)

stationary solution of this equation which verifies the appropriate boundary conditions: i) finiteness of
id k at the horizon of the black hole, ii) stationary flow into the source of the gravitational field, and iii)
ymmetry, is

¥ = —ulit — 2Mulin(1 — 2M/r) 4 ueo(r — M)cosh 6)

g u3 and ue the asymptotic values of, respectively, the temporal component of the four-velocity and
modulus of the three-vector u. Let us notice the following relations between uh and the three-velocity
Or Vo

ub, = (“go’uoo) = (1—”30)_1/2(11"00) ) (7)

re veo is the magnitude of the asymptotic fluid three-velocity. From the above solution for ¥ the behavior
1e velocity field is derived in a simple way (see equation (3)).

/e have solved the above wave equation (5) in the two-dimensional Schwarzschild’s background by
ting it into a system of three equations of first order. With this aim let us introduce the following
rmediate functions

99 _ 9 _ 9
% " T % T ®)

he first order system equivalent to (5) can be written as a hyperbolic system of conservation laws like the
>m (1) but in the two-dimensional space spanned by the independent variables r and

ou | offw) . dglu) _

at ar a0 s(w) ©)
re
u = (a, b, c) ) (10)

e 3-dimensional vector of unknowns, and

fw) = (- - 24y, a,0) |

gw) = (-t - 2y 30, -0)
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are the 3-vector-valued functions defining the fluxes in the r and 8 directions, respectively. Finally

r r’ r r / rZsin@

s(u) = ((1 - =) - =) 3b + (1 - -2—]\1) —ios—g—-c,o,0>

are the source terms.
In section § 4 we will analyse the properties of the above system (9) in the light of our numerical proce:
for solving it.

3. 2D NEWTONIAN HYDRODYNAMICS

As a first step in our aim to design a multidimensional numerical code to deal with the equatio
relativistic hydrodynamics we will focus, in this section, on the Newtonian case. Just having avai
a multidimensional code which solves the Euler equations of Newtonian hydrodynamics and which
overcome severe numerical experiments is, in itself a very important task. Indeed, there are a lot of prob
in astrophysics relying on a correct numerical treatment of these equations (e.g., stellar winds, accre
flows, jets, stellar collapse). As we have pointed out at the introduction, the correct modelling of st
shocks and instabilities in multidimensional flows are the corner-stones of research in several areas of mo«
astrophysics.

The governing equations of mass, momentum and energy for inviscid, plane, two-dimensional flow:
as follows

gu  Of(w) . 9g(uw) _

ot dz dy o

where
u = (p,m,n,e)

is a 4-dimensional vector of unknowns,

f@ = (m ™+ 5 2 R ern)

P

and

2
mn n n
g(u) = (n,—,— + p,—(e+p)> ;
p’p P

with m = pu, n = pv, e = p (e+ (1/2) (u? + v?)) where u and v are the x-component and y-component o
velocity field, and p and e the density and internal energy, respectively. In addition, we assume that the
an equation of state of the form:

p = plpe

The above equations represent the conservation of mass, momentum and energy, respectively.
equation of state closes the system.

In the next section we will review the properties of the above systems in the light of our nume
procedure to solve them.
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4. NUMERICAL APPROACH

We have treated, from the numerical point of view, the above systems of equations (9) and (11) as hyperbolic
ystems of conservation laws and we have applied to them specific methods designed for such kind of problems
L:Marti et al. 1991).

TOD3RNKAA. 25 0 3F

4.1. Our 1D algorithm

For the sake of conciseness let us focus on the 1-D case. The basic ingredients of our algorithm are the
ollowing:

4.1.1. Advancing in Time

Let u? be the cell-average of u over the cell 1, having interfaces z;_1/2 and z;11/2 and evaluated at time
n_ At the next time level, t*11, we have:

W = uf - [f, wigr) ~ T w)| + ABi(w) (16)

vhere A = At/Az;, At = t"tl _ ¢ and Az; = Tit1/2 — Ti-1/2-

Let us notice that our numerical scheme has been written in conservation form. Lax & Wendroff (1960)
showed that the limiting solution of any finite-difference scheme in conservation form is a weak solution.
Harten, Lax, & Van Leer (1983) showed that, in the scalar case, monotonic schemes in conservation form always
‘onverge to the physically relevantsolution. Finally, a practical advantage of writing a finite-difference scheme
1 conservation form is that the quantities that ought to be conserved, according to the differential equation,
are exactly conserved in the difference form.

In order to gain accuracy in the temporal evolution, Runge-Kutta standard methods may be applied. To
a system in two dimensions of the form

du + of(u) + dg(u)

=0 17
ot ax dy {1
~ould correspond a method of lines as
dug;(t) Ty hors Biel 8t 18)
dt Az Ay ’
where
f}+.;_,,- = F(Wi_k,js Wi k41,55 - Witk,5) (19)
and
81 = Wik Wi ikt s s Wiy k) (20)

are the numerical fluxes (see below).
4.1.2. Cell Reconstruction

To obtain interface values from the cell-averaged quantities, «? 1, different interpolation techniques have
been used (Colella & Woodward 1984; Van Leer 1977, 1979). The order of the interpolation depends on the

degree of spatial accuracy one wants to achieve. Usually a linear reconstruction has been used in most of our
applications.
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4.1.3. Numerical Fluxes

The numerical fluxes, f, are evaluated by extending the numerical fluxes of Roe’s first order upwind
method (Roe 1981) for nonlinear scalar hyperbolic conservation laws to systems, via a local characteristic
approach (Yee 1986). Roe’s prescription can be applied to each one of the scalar uncoupled equations. In
this way, the numerical fluxes can be written in terms of the original variables as

FTOO3RWKAA-. 257 "2 3F

3
T 1 N ~ A~
f(uy,ug) = E(fL +R =) || A¥Ea) (21)

a=1

where L and R stand for the left and right states of a given interface. Xa and &, (a = 1,2,3) are the eigenvalues
(characteristic speeds) and the eigenvectors of the Jacobian A, respectively, and the quantities A&, —the jumps
of the local variables across each characteristic- are obtained from:

3
ug —up = Z AGo€s ; (22)

a=1

Xa, € and Ad, as functions of u are evaluated at each interface and, therefore, they depend on the particular
values uz, and up. The tilde ~, stands for a particular average of the data of the problem.

Crucial to this local analysis is, then, the knowledge of the spectral decomposition of the Jacobian matrix
of the system. For a more detailed description of the Roe construction see below.

4.1.4. Source Terms

The source terms 3; are obtained, to linear accuracy, from the values of the variables at the zone centers
and at the previous time step.

Nevertheless, particular attention must be taken with the source terms, either in the case of stiff problems
or in multidimensional applications. Several time-splitting algorithms allow to gain the accuracy required.
An exact second order algorithm is the Strang splitting which can be written in an compact way

un+1 — EsAt/ZﬁfAt‘c’At/Zun X (23)

In(23) L 7 is the operator in finite differences which solves the homogeneous part of system (1). On the other
hand, £, is the one that solves a system of ordinary differential equations of the form

4.2. Extension to 2D problems

The multidimensional character of the systems (9) and (14) has been taken into account by considering

standard operator splitting techniques. They are similar to the ones, explained before, used for treating the
source terms.

The splitting proceeds in two steps and the algorithm can be written

utl = pRp 8 (24)
where Ly and Ly stand for the operators in finite differences associated, respectively, to the 1D systems

du Af(u)
5t_+ ax =0
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at dy

4.3. Jacobian Matrices and Spectral Decomposition

As we have emphasized before, crucial in our procedure is the knowledge of the spectral decomposition

the Jacobian matrix of our system of partial differential equations.
4.3.1. Wave Equation in Schwarzschild Space-time

In this case the Jacobian matrices are, trivially, the identity matrix exception made of geometrical factors.

1. r-direction. The eigenvalues of the Jacobian matrix associated to the flux in the r-direction are

r

A0 =, ,\i=:i:(1—?-—l\—l-) ,

d the corresponding eigenvectors, e4(A = 0,%), have the components

€ = (0’ 0, 1) ’

e o2

2. @-direction. The eigenvalues of the Jacobian matrix associated to the flux in the #-direction are

)

=0, A= :t%(l— grﬂ)l/2

th the corresponding eigenvectors

€ = (0, 1, 0) ’

1/2
(o))
r r

4.3.2. 2D Newtonian Hydrodynamics (planar symmetry)

(25)

(26)

27)

(28)

(29)

(30)

1. Jacobian matrices. Two Jacobian matrices (2) can be associated to each one of the fluxes appearing in

1).

It is worthwhile to introduce the following quantities

H_p+e ’
P
e fluid speed
LI S
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and the sound speed

33
& =x+(p/o)s ®3)
where we have used the shorthand notation:
9p dp
X = 5; y K= 5; ’
and being the total energy density
1 2. .2
e=pe+§p(u +v4) . (35)
x-direction. — The jacobian matrix, A, associated to the flux fin the x-direction is
0 1 0 0
A= | S-wP-x/p(H-q%)  ul2-x/p) —v&/p x/p
—uv v u 0
~uH +uc? —ux/p(H — ¢¥) H—ulx/p —uvx/p u(l+x/p)
y-direction. — The jacobian matrix, B, associated to the flux g in the y-direction is
0 0 1 0
B=— —uv v u 0
¢2—v?—k/p(H - %) ~ux/p v(2-—x/p) k/p
~vH +vel —ve/p(H — %) —uwox/p H—vZx/p v(1+ x/p)
2. Eigenvalues and Eigenvectors
x-direction.— The eigenvalues which diagonalize the matrix A are:
AN=u | (36)
which has multiplicity two, and
Ai =ut Cs
The corresponding eigenvectors, esa(d = 1,2,4), have the components
pcl
e} = (1, u,v, H - T’> ’ (37)
ez = (0,0,v,v%) (38)
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and
e+ = (Lutecs,v,HEuc,) . (39)

y-direction.— The eigenvalues which diagonalize the matrix B are:

A=y | (40)
which, as before, has multiplicity two, and
Ai =vx Cs
The corresponding eigenvectors, e4(A = 1,2,%), have the components
2
€1 = (l)u)v) - &) ) (41)
K
ez = (0,%,0, uz) , (42)
and
e+ = (Lu,vtcs, H vey) . (43)

Let us note the fact that although the eigenvalue A° has a degeneracy, the set of eigenvectors is complete
and preserves the strictly hyperbolic character of the system.

5. ROE’S RIEMANN SOLVER

Given the importance of this seminal technique we are going to point out the main steps leading to the
so-called Roe’s numerical flux.

In 1D, for clarity, let z; = {Az and t,, = nAt be a discretization of space and time, and let us denote by v?
a piecewise linear approximation to the exact solution of the following nonlinear system of conservation laws

ég_}_ of (u) _

e 32 0o . (44)

The difference approximation to (44) can be written in conservation form as

vitl o Ll —fioys
At Az

(U (45)

where f}+1 /2 is the numerical flux. A numerical scheme in conservation form is called an upwind scheme if
it reduces to the method of characteristics when applied to a linear system and also satisfies the entropy
condition.

Roe’s method consists, basically, in solving a Riemann problem for the linear system which comes from the
above nonlinear system (44) according to the following prescriptions:

In the first step of the Roe construction, the exact system (44) is approximated in each computational cell
(%i, Zi+1) X (tn,tnt+1) by a linear system
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du 4 8G(u) _ 0

el 46
at oz ’ (46)

TO03RVKAA . 25 .7 3F

-+ where
G(u) =f; + Aipy/a(u—vy) , fi=1(w) . (47)

Here the Roe matrix A;;1/2 is such that:

1. fiy1— fi = Aiy1/2(ui+1 — w;) for any u; and u;y ;. This property together with the Rankine-Hugoniot
jump relations, implies that the speed of the discontinuity and the jump through it are, respectively, some
eigenvalue and eigenvector of the matrix A;y1/;. This implies that stationary discontinuities are steady
solutions of the numerical scheme.

2. A /2 has real eigenvalues and a complete set of right eigenvectors.

3. In the limit as u;; and u; — ug is

of
Aiy1/2(0ip1,95) = Aao) = (;ﬁ;) L (48)

In the second step of the construction, we solve the linear Riemann problem for the system (46) with the
initial data defined as o} for z < z;41/ and v}, | for > z;41/5. It can be easily solved by decomposing the
system (46) into a set of uncoupled scalar linear equations. With this aim let us multiply the system (46) by
the left eigenvectors of the matrix A;41/2 and solve each scalar linear equation exactly.

The solution v; 1/ of the above Riemann problem at z = z;, /3 is given by

i+1/2,1+1/2
visz=vi+ . GRS (49)
kAT %<0

] i . . . i+1/2 .
where /\;‘H/ % and R;C'H/ 2 represent the eigenvalue and the corresponding eigenvector of A;; /3. C’;:' / is

the decomposition coefficient of (v;4+1 — v;) in the right eigenvector space as defined by the following relation

t+1/2,¢+1/2
Vs —vi= S LRI (50)
k

The numerical flux f,-+1 /2 = G(viy1/2) is given by

3 i+1/2 ~i+1/251+1/2
Bppp=6+ Y. AR 1)
kA2 <0

after substituting the value of v;,1/; given by (49). By property (1), it is equivalent to

3 i+1/2 4i+1/25i+1/2
fiviy2=%i1— Z «\;f / C;:' / R;:r o (52)
kA2 <0

or, finally, to this more familiar expression

2 1 i+1/2 | Ai+1/25i+1/2
fiv172= §(f¢ +fi1— ) | /\:H/ |y’ / R, / > . (53)
k
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Some comments are in order:

3RWKAA-. 257 "D 3F

' 1. Since the scheme is based on a linear decomposition-of the characteristic fields, one can apply different
gnumerical schemes for each field.
i 2. The scheme is non-oscillatory in the sense that no new extrema are created for the linear systems or a
ingle nonlinear conservation law. No numerical spurious oscillations contaminate the calculations.

3. The above construction gives a difference approximation of first-order accuracy and may admit entropy
riolating shocks. Transonic rarefactions may generate unphysical solutions; they are prevented by adding

ome artificial viscosity only at the sonic points (see, for example, Harten & Hyman 1983).
Let us summarize the main steps in Roe’s procedure:
1. Obtain matrix A;}1/; as defined in (47).
2. Compute the eigenvalues A:H/ % and R;;H/ 2 and the eigenvectors R;;H/ 2 of Atz

3. Calculate the decomposition coefficients C;;H/ 2 as defined by (50).
4. Finally, compute f;}, /2 and obtain v7**1 by (45).

6. TESTS OF THE CODE

We are going to comment on one test for each of the cases considered above. Let us point out that the
nain difference between systems (9) and (11) relies on the fact that system (9) does not allow the presence of
hocks while system (11) does.

6.1. Potential Flow Passing over a Black Hole
We have used a time-dependent simulation paying attention on the convergence to a steady state.

6.1.1. Computational Mesh

The angular coordinate # varies in the interval 0 < § < x. We have taken 30 equally spaced angular

'ones in the above interval. Other options are, for example, to take an angular uniform mesh in the interval
-1<cos 6L 1.

Due to the presence of the event horizon at r = 2M, one has to take care on the choice of the radial
-oordinate. As in Abrahams & Shapiro (1990) we have introduced the so-called tortoise coordinate

ro = r+2Min (2_’E _ 1) . (54)

Our discretization in r, spans the interval -8.0 M < r, < 711.71 M, thatis 2.0134 M < r < ’ZOO M We
1ave employed a geometrical grid — of ratio 1.026 — with 120 radial zones. Once the discretization in ry is
nade, a Newton-Raphson algorithm allows to obtain the corresponding discretization in r. In this way our
-adial mesh is fine enough near the horizon to minimize the numerical errors in this region.

6.1.2. Initial Conditions
We have evolved in time the following initial state

P = ugorcosd (53)
1/2
w=—{a- 2Ol o- Bz Sua) | (56)
Py = ugcosf (567)
and
g = —ugorsind . (58)
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6.1.3. Boundary Conditions

At the horizon (r = 2M), the inner boundary, the baryon number density must be regular. From the
normalization condition for the potential ¢

n=(-pup)/? ‘ (59)

itis simple to derive the following expression for the baryon number density

-1 1/2
n= [(1—31‘—4) y? - <1—3f—4)¢3—}2¢3] (60)

BLACK HOLE STEADY-STATE

10 10

0 > 0 = =
%
J
= — ——
ee—— N
—-10 0 10 —-10 0 10
X X
10 10

%/’
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e ==

Fig. 1a-1d. Evolution towards the steady-state accretion reached in a time t & 65 M for an asymptotic velocity vgo =0.7.
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| The regularity condition of n at the horizon requires that 3, diverges there in such a way as to cancel the
\agular term in ¥ in the above equation. If we make an expansion of ¥, about r = 2M:

"/’r. = (1" gu_)'/’r‘:
r

— gy + ar(t)(r — 2M) + az(t)(r — 2M)% + ... (61)

3RWKAA-. 257 "D 3F

o

{1903

Neglecting terms of order greater than two, we can, finally, write the following boundary condition at the
orizon

a ¢r."¢t _
or. [TIEH]‘O - ©2

At very long distances (r > 2M) a constant asymptotic flow has been assumed.

6.1.4. Results

In Figures la-1d we can see the evolution towards the steady-state accretion reached in a time t ~ 65
{ for an asymptotic velocity v, = 0.7. We have obtained a value of 3.42 < rq /M < 3.95 (this interval
constrained by the resolution of our grid) for the radius of the critical cylinder inside which material is
ltimately captured by the black hole (see last reference in Petrich et al. (1988) for an analytic expression),

eing the exact value 3.404 M for an asymptotic velocity v5, = 0.7. Our numerical result for the steady-state
article accretion rate agrees with the analytical one with an accuracy of 6%, when it is measured near the

.orizon.

The main conclusion from these figures is the following: we have succeeded in obtaining the stationary
slution by using a second order method. These results encourage us to extend these methods to full 2-D
eneral-relativistic hydrod ynamics allowing, then, the simulation of strong shocks.

6.2. Emery’s Step

A severe test for two-dimensional flows in the presence of shocks is the flat-faced step originally introduced

»y Emery (1968): a Mach 3 flow is injected into a tunnel containing a step. The tunnel is 3 units long and
Cunit wide. The step is 0.2 units high and is located 0.6 units from the left-hand end of the tunnel. Slab

ymmetry is assumed.
The boundary conditions are: 1) Reflecting boundary conditions along the walls of the tunnel and at the

eft face and the bottom of the step. 2) At the right and the left sides of the tunnel, respectively, outflow and
nflow boundary conditions are applied.
The initial condition for the gas in the tunnel are given by

p(z,y,0) =po =14 ,
u(z,y,0) = =3 ,
v(z,y,0) =v =0 ,
and
p(z,4,0) =po =1

for all z, y.
The equation of state considered is the one of an ideal gas with v = 7/5. Gas is continually fed in at the left-

hand boundary with the flow variables given by (p,u,v,p) = (po, w0, vo, P0)- A rectangular grid of 120 x 40
has been used.
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Fig. 2. Emerys step: Isodensity contours at a time ¢ = 2.0.
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Fig. 3. Wind tunnel with a step. Same boundary conditions as in the Emery'’s step. Initial conditions are modified in
order to have an inflow Mach number of 10. Isodensity contours at a time t = 0.75.
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1
Rn operator splitting technique in each spatial direction in the sense of Strang (Yee 1989) has been
%: formed. We have also experimented with methods which avoid the splitting in spatial directions and
orw advancing in time with a Runge-Kutta method (of third order in our case) such as we have explained
@ore. In this last line of experimentation we have observed an important reduction of numerical noise and
“"best results have been obtained.
it the transonic rarefactions, where entropy violation may appear (and, in fact, it does), a local artificial
osity according to the prescription of Harten & Hymann (1983) was incorporated.
"he main features of the solution are the Mach reflection of a bow shock on the upper wall, making the
sity distribution the most difficult to compute, and a rarefaction fan centred at the corner of the step (see
ire 2).
“he severity of this test makes us confident of the feasibility of astrophysical applications as complex as the
s mentioned in the introduction of this paper.
‘oncerning this point let us make some comments: i) Obviously, the boundary conditions of this test are
cult to find in astrophysical scenarios. Nevertheless, the complex structure of the flow (e.g., bow shock,
sction shock, rarefaction fan) makes this numerical experiment a challenging one in such a way that every
tidimensional hydrodynamical code should, in our opinion, overcome it. ii) In realistic flows we can
ect Mach numbers higher than three. There is no problem for simulating them with the present version
ur code. Figures 3 and 4 show the same experiment with increasing Mach numbers (10 and 100). We
at present, analyzing these results, in particular those related with Figure 4, in order to be sure that the
1t breaking of the bow shock ~roughly at the same altitude of the corner’s step—is due to the high inflow
city, to numerical diffusion or both. iii) Finally, we would like to point out —and we acknowledge some
iments of the referee- the fact that due to the symmetry of the problem, the same numerical experiment
wout the solid boundary walls at the top and bottom of the wind tunnel, might simulate a very dense jet
pagating into a tenuous medium. The complex inner structure of the jetitself is, in this case, avoided.

QU

0.0 240.0
X - AXIS

4. Wind tunnel with a step. Same boundary conditions as in the Emery’s step. Initial conditions are modified in
r to have an inflow Mach number of 100. Isodensity contours at a time ¢ = 0.1.
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7. CONCLUSIONS
The main conclusions from our applications are the following:

1. We have succeeded in obtaining stationary solutions of potential flows in a Schwarzschild backgrou
That means that our 2D specific techniques together with the key algorithm which underlies our MU
code are robust enough to envisage other applications.

2. Minor modifications on the previous code have allowed us to deal with a very severe testin 2D N
tonian hydrodynamics. Emery’s step is a challenging test that every hydrodynamical code must overcomn

The above conclusions will allow us to consider, with a dose of optimism, some of the astrophys
applications already described. The basic ingredients for describing relativistic flows with or without sho
with or without relativistic velocities and with or without strong gravitational fields, have been set up.
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