MK SPECTRAL TYPES FOR OB ${ }^{+}$STARS IN THE SOUTHERN MILKY WAY ${ }^{1}$

Jyotsna Vijapurkar and John S. Drilling ${ }^{2}$
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001
Received 1993 March 11; accepted 1993 June 9

Abstract

MK spectral types are presented for 291 stars selected from the Case-Hamburg Luminous Star survey. Subject headings: stars: early-type - stars: fundamental parameters

1. INTRODUCTION

MK spectral types are given in Table 2 (below) for 291 stars classified as OB^{+}in the Case-Hamburg Luminous Star survey. This survey is complete to 12 th magnitude and covers the entire Milky Way between Galactic latitudes $\pm 10^{\circ}$. Most of the stars are from the Southern survey (Stephenson \& Sanduleak 1971), but a few are from the Northern survey (Stock, Nassau, \& Stephenson 1960; Nassau \& Stephenson 1963; Nassau, Stephenson, \& MacConnell 1965). The observations reported here are part of a program to obtain classification spectrograms of all OB^{+}stars in the Case-Hamburg survey that did not have published spectral types. The instrumental set-up used to take these spectrograms is no longer in service, and it would seem appropriate to publish at this time all of the existing observations. Nearly all nonemission OB^{+}stars brighter than $B=12.0$ that were observable from Cerro Tololo Inter-American Observatory and which did not have published MK spectral types at the time of observation are included in Table 2 below; some fainter stars, and a few emission-line stars are also included.

2. OBSERVATIONS

Classification spectrograms were obtained with the 1 meter image-tube spectrograph at CTIO during 1978-1979, using grating No. 35 in second order (this grating has 600 lines mm^{-1} and a first-order blaze wavelength of $7500 \AA$). A BG38 filter was used to block the overlapping first order spectrum. The spectra were recorded on IIIa-J photographic plates baked in nitrogen. The dispersion of the spectrograms is $62.5 \AA \mathrm{~mm}^{-1}$ with a resolution of $2 \AA$. The spectra are well widened, to 1.0 mm in most cases, to increase the signal-to-noise. Spectra of some standards were widened even more than this, and several spectra with different exposure times were taken of each of the standards. Typically for the standards, which are bright, neutral density filters of 0.5 up to 7.5 magnitudes were used to increase the exposure time.

3. SPECTRAL CLASSIFICATION

The standards are listed in Table 1, with references. The types listed by Morgan \& Keenan (1973) (table footnote b) were used as primary standards. The MK system does not have

[^0]standards earlier than O 4 or luminosity classes for spectral classes earlier than O9. For these stars, standards listed by Walborn (1973) were used as primary standards; all of Walborn's classification criteria for these spectral types were visible at our lower resolution. Standards taken from Garrison, Hiltner, \& Schild (1977), Johnson \& Morgan (1953) and Walborn (1971, 1972) and spectral types from Hiltner, Garrison, \& Schild (1969) were used for interpolation between the primary standards.

The following spectral atlases were used to identify the lines, and to help determine which lines or line ratios could be used as temperature or luminosity criteria: "Revised MK Spectral Atlas for Stars Earlier than the Sun" (Morgan, Abt, \& Tapscott 1978) which covers the region from 3470 to $4690 \AA$ and "An Atlas of Representative Stellar Spectra" (Yamashita, Nariai, \& Norimoto 1978) which covers the wavelength range from 3780 to $4920 \AA$. Our spectra, which have approximately the same resolution, range from about $3750 \AA$ to a little beyond $\mathrm{H} \beta(4861 \AA)$.

3.1. The O3-O8 Stars

For the stars of spectral classes O 3 to O 8 , the temperature and luminosity criteria are nearly independent. Therefore all the stars that were determined to be earlier than O 9 in a preliminary classification were first arranged in a sequence of decreasing temperature (independent of the luminosity) using mainly the relative strengths of the $\mathrm{He}_{\text {I }} \lambda 4471$ and $\mathrm{He}_{\text {II }} \lambda 4542$ lines. The Не i $\lambda 3820 /$ Не iI $\lambda 3923$ ratio was also used in determining the spectral class. The $\mathrm{He}_{\text {II }} \lambda 4200 / \mathrm{He}_{\text {I }}+\mathrm{He}_{\text {II }} \lambda 4026$ ratio was not found to be useful as a primary criterion.

The stars of each temperature class were then arranged in a sequence of decreasing luminosity using the criteria established by Walborn (1971) for spectral classes O4 to O8: the strengths of the N III $\lambda \lambda 4634-4642$ emission and the He II $\lambda 4686$ emission/absorption. The absorption strengths of Si IV $\lambda 4089$ and $\mathrm{N}_{\text {III }} \lambda 4097$ in O 7 and O8 spectra and C iII $\lambda \lambda 4068-$ 4070 in the O8 spectra were also used as luminosity indicators. These lines were particularly useful when the spectra were not exposed well enough in the $4600 \AA$ A region to rely entirely on the 4686 and 4634-4642 \AA lines. For the O3 stars the following lines (Walborn 1982) were used: He ii $\lambda 4686$, N v $\lambda 4604$ and $\lambda 4620$ absorption and N iv $\lambda 4058$ emission.

3.2. O9 and Later Classes

For the stars of these classes the luminosity and temperature criteria are no longer independent and spectral classification is

TABLE 1
Standard STARS

Ia	Ib	II/III	IV/V	Ia	Ib	II/III	IV/V
$\begin{gathered} \text { HD 93129A } \\ \text { O3 If* } \end{gathered}$			$\begin{gathered} \text { HDE } 303308 \\ \text { O3 V((f))ª} \end{gathered}$		$\begin{gathered} \zeta \operatorname{Per} \\ \mathbf{B} 1 \mathbf{I b}^{\mathbf{b}} \end{gathered}$	$\begin{gathered} o \text { Per } \\ \text { B1 III } \end{gathered}$	$\begin{aligned} & \omega \text { Sco } \\ & \text { B1 V } \end{aligned}$
$\begin{gathered} \text { HD 190429A } \\ \text { O4 } \mathrm{If}^{+\mathrm{a}} \end{gathered}$			$\begin{gathered} \text { HD } 46223 \\ \mathrm{O} 4 \mathrm{~V}((\mathrm{f})),{ }^{\text {a }} \mathrm{O}^{\mathrm{b}} \end{gathered}$		HD 109867 B0.7 Ib ${ }^{\text {e }}$	$\begin{gathered} \sigma \text { Sco } \\ \text { B1 IIIf } \end{gathered}$	
		$\begin{gathered} \text { HD } 150136 \\ \text { O5 III }{ }^{\text {c }} \end{gathered}$	$\begin{gathered} \text { HD } 46150 \\ \text { O5, } \left.{ }^{\text {O } 5 ~ V(f) ~}\right)^{\text {a }} \end{gathered}$	$\begin{aligned} & \chi^{2} \text { Ori } \\ & \text { B2 } \mathbf{I a}^{\mathbf{b}} \end{aligned}$	HR 6743 B2 Ib^{8}	$\begin{gathered} \gamma \text { Ori } \\ \text { B2 } \text { III }^{\text {b, } \mathbf{f}} \end{gathered}$	$\begin{aligned} & 22 \mathrm{Sco} \\ & \text { B2 V } \end{aligned}$
	$\begin{aligned} & \text { HD } 69464 \\ & \text { O6.5 } \mathrm{Ib}(\mathrm{f})^{\mathrm{a}} \end{aligned}$				$\begin{gathered} 3 \mathrm{Gem} \\ \mathrm{~B} 2.5 \mathrm{Ib}, \mathrm{~d}, \end{gathered}$		
$\begin{gathered} 29 \mathrm{CMa} \\ \text { O7 } \mathrm{Ia}^{\mathrm{c}} \end{gathered}$		$\begin{gathered} \xi \mathrm{Per} \\ 07.5 \mathrm{III}(\mathrm{n})((\mathrm{f})),{ }^{\mathrm{a}} \mathrm{O} 7 \mathrm{III}^{\mathrm{c}} \end{gathered}$	$\begin{gathered} 15 \text { Mon } \\ \text { O7, }{ }^{\text {O } 7 \mathrm{~V}((\mathrm{f}))^{\mathrm{a}}} \end{gathered}$	$\begin{gathered} o^{2} \mathrm{CMa} \\ \text { B3 Ia } \end{gathered}$		$\begin{gathered} \text { HR } 4074 \\ \text { B3 III } \end{gathered}$	
		$\begin{aligned} & \text { HD } 93222 \\ & \text { O7 III((f)) } \end{aligned}$		$\eta \mathrm{CMa}$ $\text { B5 } \mathrm{Ia}^{\mathrm{b}}$	67 Oph B5 Ib ${ }^{\text {d }}$	$\begin{gathered} \tau \text { Ori } \\ \text { B5 III } \end{gathered}$	$\begin{aligned} & \kappa \text { Hya } \\ & \text { B5 } \mathrm{V}^{\mathrm{c}} \end{aligned}$
$\begin{gathered} \text { HD } 151804 \\ \text { O8 } \text { Iaf }^{\text {a }} \end{gathered}$		$\begin{gathered} \lambda \text { Ori } \\ \text { O8 } \operatorname{III}((\mathrm{f}))^{a} \end{gathered}$					$\begin{aligned} & 19 \mathrm{Tau} \\ & \text { B6 IV } \end{aligned}$
$\begin{gathered} \text { HD } 148546 \\ \text { O9 } \mathrm{Ia}^{\mathrm{c}} \end{gathered}$	$\begin{aligned} & \tau \mathrm{CMa} \\ & \mathrm{O} 9 \mathrm{Ib}^{\mathrm{b}} \end{aligned}$	$\begin{gathered} \iota \text { Ori } \\ \text { O9 III } \end{gathered}$	$\begin{aligned} & 10 \mathrm{Lac} \\ & \mathrm{O} 9 \mathrm{~V}^{\mathrm{b}} \end{aligned}$			η Tau B7 III ${ }^{\text {b }}$	
			$\begin{gathered} \text { HR } 2806 \\ \text { O9 V, }{ }^{\text {d O9 IV }} \end{gathered}$	$\begin{gathered} \beta \text { Ori } \\ \text { B8 Ia }{ }^{\mathbf{b}} \end{gathered}$		27 Tau B8 III ${ }^{\text {b }}$	$18 \text { Tau }$ $\mathrm{B} 8 \mathrm{~V}^{\mathrm{b}}$
		$\begin{gathered} \text { HD } 189957 \\ \text { O9.5 } \mathrm{III}^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \sigma \text { Ori } \\ \text { O9.5 V } \end{gathered}$				$\begin{gathered} \alpha \text { Del } \\ \text { B9 IV } \end{gathered}$
$\begin{gathered} \epsilon \text { Ori } \\ \text { B0 Ia }{ }^{\text {b }} \end{gathered}$		HD 48434 B0 III ${ }^{\text {d,f }}$	$\begin{gathered} v \text { Ori } \\ \text { B0 } \mathrm{V}^{\mathrm{b}} \end{gathered}$				$\begin{gathered} \alpha \text { Lyr } \\ \mathrm{A} 0 \mathrm{~V}^{\mathrm{b}} \end{gathered}$
		HD 108639 B0. $\mathrm{III}^{\text {e }}$	$\begin{gathered} \tau \text { Sco } \\ \text { B0 V } \end{gathered}$	$\begin{gathered} \alpha \text { Cyg } \\ \text { A2 } \mathrm{Ia}^{\mathrm{b}} \end{gathered}$			
$\begin{gathered} \kappa \text { Ori } \\ \text { B0.5 } \mathrm{Ia}^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \text { HR } 3090 \\ \text { B0.5 } \mathrm{Ib}^{\mathrm{B}} \end{gathered}$	$\begin{gathered} \epsilon \text { Per } \\ \text { B0.5 } \text { III }^{\text {b }} \end{gathered}$	HD 36960 B0.5 V ${ }^{\text {f }}$			$\begin{gathered} \text { o Sco } \\ \text { A5 II } \end{gathered}$	
		$\begin{gathered} \kappa \mathrm{Aql} \\ \mathrm{~B} 0.5 \mathrm{III}^{\mathrm{c}, \mathrm{~d}} \end{gathered}$				$\theta^{2} \mathrm{Tau}$ A7 III ${ }^{\text {b }}$	

${ }^{\text {a }}$ Walborn 1973.
${ }^{\text {b }}$ Morgan \& Keenan 1973.
${ }^{\text {c }}$ Garrison et al. 1977.
d Johnson \& Morgan 1953.
e Walborn 1972.
${ }^{\mathrm{f}}$ Walborn 1971.
${ }^{8}$ Hiltner et al. 1969.
an iterative process: the spectrum of each star was compared with the standards, and assigned the spectral type of the standard it most closely resembled. Then, assuming the luminosity class to be correct, the spectrum was compared with standards of different temperature classes, revising the temperature class if necessary. Now taking that temperature class to be correct, the spectrum was compared with standards of different luminosity classes and the process was repeated. For most stars, one or at most two iterations were needed to get accurate spectral types.

To check the consistency of the classification, the stars of each luminosity class were arranged in a temperature sequence such that the temperature criteria varied smoothly over the sequence. The O8 stars were also included in the sequence. The main temperature criteria are the ratio of $\mathrm{He}_{\mathrm{I}} \lambda 4471$ / He iI $\lambda 4542$ for O 9 and Si III $\lambda 4553 / \mathrm{Si}$ iv 4089 in B 0 and later types in which $\mathrm{He} I$ is no longer present. The absolute strength of O III $\lambda \lambda 3755-3760$ is also useful, but it has to be used with care since it is also sensitive to luminosity. The same is true of the ratio Si IV $\lambda 4116 / \mathrm{He}_{\text {I }} \lambda 4121$, which is just resolved on
these plates. The ratio of $\mathrm{O}_{\text {II }} \lambda 4642 / \mathrm{C}_{\text {III }}+\mathrm{O}_{\text {II }} \lambda \lambda 4647-4651$ was useful in separating B0, B0.5, and B1. As a final check on the consistency of the classification, the stars of each temperature class were then arranged in a luminosity sequence. During these consistency checks, it was found necessary to revise the spectral types of a few stars.

The luminosity classification was much more difficult than the temperature classification and this was particularly true of the O 9 stars. The lines of $\mathrm{Si}, \mathrm{C}, \mathrm{N}$, and O are all sensitive to temperature. The strength of Si iv $\lambda 4089$, which increases with luminosity in O 8 and classes later than O9, did not show this behavior in the O 9 standards, possibly because it has a sharp maximum at this temperature class. $\tau \mathrm{CMa}(\mathrm{O} 9 \mathrm{Ib}$ std) has weaker Si 4089 than ι Ori (O9 III std) while the He II 4686 and C III lines are consistent with the luminosity classification. (The He II 4542 is weaker in $\tau \mathrm{CMa}$, so it may be cooler than the O9 III standard). It must also be kept in mind that τ CMa has been classified O9 II by Walborn and that it was replaced by 19 Cep in the Morgan et al. atlas of 1978. Both τ CMa and ι Ori are known to be spectroscopic binaries, and some moder-

TABLE 2
Spectral Types of LSS Stars

Star (1)	Spectral Type （2）	Star （1）	Spectral Type （2）	Star （1）	Spectral Type （2）
LSII $+12^{\circ} 3$	09 III	LSS 1484	B1 III	LSS 2451A	B2 III
II $+14^{\circ} 8 \ldots \ldots$.	B1 Vne ${ }_{2+}$	1502	O7 IIIn	2451B．	B1 III
II $+15^{\circ} 1 \ldots \ldots$	B3 IIIne ${ }_{1}$	1520＊	B1 Ia	2481	White Dwarf
II $+16^{\circ} 8 \ldots \ldots$.	B1 III	1542	07 V	2513	B1 V
II $+17^{\circ} 10 \ldots$.	B1 III	1565＊	B0．5 Ia	2526	B0．5 V
II $+18^{\circ} 9^{*} \ldots \ldots$.	sdO	1595＊	09 Ia	2626	06 V
II $+20^{\circ} 13 \ldots$.	09.5 IV	1614	09.5 Ib	2645	B0．5 III
II $+20^{\circ} 14 \ldots \ldots$	A1 Ia：	1678	O9 III	2694	B1 V
II $+22^{\circ} 7 \ldots \ldots$ ．	F0 Ia？	1683＊	B1 Vn	2695	07 III
II $+33^{\circ} 5^{*} \ldots .$.	He Star	1704	B5 Ib	2699	B3 Vn
II $+39^{\circ} 53 \ldots$.	07 V ：	1706	07 III	2702	07 III
IV $+2^{\circ} 13^{*} \ldots$.	He Star	1740	B2．5 Ib	2723	B0．5 Vne ${ }_{1}$
IV＋ $10^{\circ} 9^{*} \ldots$.	sdO	1778	B1 Vn	2751	B0．5 Ia
IV－ $1^{\circ} 2^{*} \ldots \ldots$	He Star	1780A	B0 Ia	2778	B1 Ib
IV $-4^{\circ} 15 \ldots$.	$06 \mathrm{Ib}(\mathrm{f})$	1800	06 V	2800	B2 III
IV $-4^{\circ} 25 \ldots$.	09.5 Ia	1807＊	B0 V（n）	2804＊	Dwarf Nova？
IV $-8^{\circ} 11 \ldots \ldots$	B2 Ib（n）	1808	B1 Ia	2824	B1 III
IV $-8^{\circ} 28 \ldots$ ．	O9．5 III	1809＊	07 V	2826＊	07 III
IV－ $12^{\circ} 1^{*} \ldots \ldots$	sdO	1814＊	O6 V	2854	B1 III（n）
IV－ $12^{\circ} 110 \ldots$	B1 Vn	1819	O4 V	2863	B1 Ib
IV $-13^{\circ} 15 \ldots$	O4 V	1821	O9 V	2895	B1 III
IV－ $14^{\circ} 109^{*}$ ．	He Star	1847	O4 V	2915	$07 \mathrm{Ib}(\mathrm{f})$
$\mathrm{VI}+2^{\circ} 11 \ldots$.	B2 III	1853	B1 Ib	2983	B0．5 III
$\mathrm{VI}+6^{\circ} 12^{*} \ldots$.	B2 Vnne ${ }_{2+}$	1854＊	B1 V	3006	B2 Ib
VI $-1^{\circ} 5 \ldots .$.	B8 Ia：	1857	O9 III	3052	B1 Ia
LSS $0039 \ldots . .$.	B0 Ibe ${ }_{2}$	1860	O6 IIIn	3055＊	B0 Vn
0070 ．．．．．．．	B3 III	1864＊	B1 V	3058	B0 Ia＋
0107 ．．．．．．．	B1 III	1867	B0．5 V	3072	B2．5 Ia
0218＊	B1 III	1869	O5 V	3094＊	B2 Ia
0271	B2 IIIne ${ }_{2+}$	1870	O9 III	3135	O9 Ia
0424	07 Iaf	1871＊	O9．5 Vnne ${ }_{2}$	3139	B5 Ia
0453	B0 III	1872	O9 V	3140	09.5 Ib
0464	O9 III	1874	O5 V	3153	07 III
0477	B0 Ib	1878＊	09.5 V	3159	B1 Ib
0516	B0．5 III	1880	O6 V	3171	B1 Ib
0552	07 III	1886	04 V	3178	B0 III
0606	B0．5 V（n） e_{2}	1887	O7 V（n）	3181	O9 III（n）
0690	B1 III	1892	O5V	3183	09.5 III
0695	B0 II	1907	O5 II（f）	3198	O5 IIIn
0743	B1 II	1912	B1 V	3201	07 IIIn
0810	B9 Iab	1916＊	VV Cephi	3223	B0．5 Ia
0867	B0 V（n）e c_{1}	1922＊	He Star	3236	B8 Ia
0918＊	B1 IIInne ${ }_{2}$	1938	09 Ib	3252	B2 III
1029	O7 IIInn	1953	B3 III	3259	09.5 V
1046 ．．．．．．．	B3 Ib	1972	O8 IIIn	3307	B0 $\mathrm{Ia}+$
1096	B5 Iab	1976	B0．5 Ia	3332	07 V ：（n）
1106＊．．．．．	B0．5 Vn	1982	B1 Ib	3367＊	B1 Ia
1108	B5 Ia	1988	B0．5 Ib	3371＊	VV Cephi
$1131 . . .$.	07 V ：n	2007	B0 Ib	3378＊	He Star
1135 ．．．．．．．	O6 III	2018＊	sdO	3390＊	B0 Ia
1148 ．．．．．．	07 IIIn	2025	O9 III	3399	O9 Ia
1160＊．．．．．	B1 III：	2032	B3 Iab	3412＊	B1 Ia
1174 ．．．．．．	09 V	2049	B0．5 Ib：	3426	B1 Ia
1205	O6 Ib（f）（n）	2085	B5 Ia	3444A	07 III
1211 ．．．．．．	B0．5 Ib	2089	09 V	3507	B0．5 Ia
1215 ．．．．．．	06 V	2115	B0．5 Ia	3514	B2 V
1224 ．．．．．．	B3 III	2241	B1 Ia	3527	B0．5 Ia
1253 ．．．．．．	B0．5 Vnn	2315	B1 Ia	3528	B0 Ia
1280 ．．．．．．	O9 III	2316	B1 Ia	3533	B0．5 Ia
1288 ．．．．．．	B2 Ib	2318	B0．5 Ia	3639	B1．5 Ia
1332 ．．．．．．	09.5 Ib	2343	O7 III	3640	B3 III
1397 ．．．．．．．	B1 III：	2352	$07 \mathrm{Ib}(\mathrm{f})$	3672	O8 II（f）
1408 ．．．．．．．	B0．5 V	2383＊	B2 IIIne ${ }_{2+}$	3711	09.5 Ia ：
1449 ．．．．．．．	B2 III	2394＊	He Star	3730＊	B1 Ib：
1467 ．．．．．．．	B0．5 III	2402	B2 V	3740 ．	09.5 III
1476 ．．．．．．．	B2 III	2436	B0 III	3769	B0 Ia

TABLE 2-Continued

Star (1)	Spectral Type (2)	Star (1)	Spectral Type (2)	Star (1)	Spectral Type (2)
LSS 3780	B1 Ia+	LSS 4145	B0.5 V	LSS 4561	B1 Ib
3790	O9.5 Ia	4153	B0 III	4609	B0.5 V
3799	O8 III:n	4161	B0.5 Ib	4614	B1 Ia
3823	B0.5 III	4171	O6 Ib(f)	4625*	B0 Ia
3868	O6 III	4200	O5 III	4634	B9 Ia $+\mathrm{e}_{2+}$
3873	O5 III	4207	O4 III(f)	4665	O9 IIIn
3874	O9.5 IV	4239	B5 Ia	4800	O7 III
3894	B5 Ia:	4240	B1 Ia	4822	B1 V
3906	07 V	4255	B8 Ia	4867	O9 V
3915*	O7 II	4293*	B2 Ib	4872	B2 III
3958*	B0.5 III	4300*	He Star	4880	O5 V
3963	B3 Ia	4304	O9.5 III	4896	B0 V(n)
3968*	B1.5 Iab	4306N	O9.5 Ib	4910	O7 II(f)
3972	B1 Ib	4306S*	O9 V	4923*	O9.5 IIInn
3976F	B3 V	4309	O9 III	4925	O9 IV
3976P	B1 III n?	4320	B0.5 Ia	4936	B2.5 Ibne ${ }_{1}$
3978	B2 III	4342	O9 III	4939	B0.5 III
3988	B0 Ia	4348	B0 Ia	4955	B0.5 Ia
3997	B0 Ib	4351	B1 III	4957	B0 Ib
4009	B1 Ia	4376	O8 III	4967	B0.5 Ia
4011	B0.5 Ib (n?)	4379	B0.5 Ib(n)	4979	B1 Ia
4015	B1 II	4391	B1 II	4981	O9.5 V
4016	B1 Ib	4421	B1 III	5007*	B0.5 Ia(n)
4022	O9.5 III	4424	B2.5 IIIn	5019	O9 Ib
4032	B2 Ib	4425	B0 Ia: ${ }_{2+}$	5026	B1 Ia
4059	O5 V	4444	O8 III	5046	O7 II
4103*	B0 IIIne ${ }_{1}$	4482	B0.5 Ia	5048	B1 III
4106	B2 Ib	4511	O9 III	5083	O7 IIn
4121	B3 Iane $_{2+}$	4537	B0.5 Ib	5095	O9.5 III
4129	B2.5 Ia	4542	B0.5 Ia	5099	B0.5 Ib
4142	O3 III	4551	O9 Ib	5128	B0.5 Ia

Notes.-LSII $+18^{\circ} 9$: Drilling 1987. LSII $+20^{\circ} 14$: A0 Ia? LSII $+33^{\circ} 5$: Drilling \& Hill 1986. LSIV $+2^{\circ} 13$: Drilling \& Hill 1986. LSIV $+10^{\circ} 9$: Drilling and Hill 1986. LSIV- $1^{\circ} 2$: Drilling \& Hill 1986. LSIV- $1^{\circ}{ }^{\circ}$: Drilling 1987. LSIV-14 ${ }^{\circ} 109$: Drilling \& Hill 1986. LSVI $+6^{\circ} 12$: H-poor? 0218: Sharp lines, O lines weak. 0918: H-poor? 1106: C iII $\lambda 4651$ strong. 1160: B1 III + B0 V binary? 1520: O II strong? 1565 : Si III $\lambda 4553$ strong but not the other lines in multiplet. 1595: N III $\lambda 4097$ strong. 1683: H γ core looks filled in; no emission in $\mathrm{H} \beta$. 1807: Nebular emission lines of [O III], and in $\mathrm{H} \beta$ core. 1809: Nebular emission lines of [O II], [O III], and in $\mathrm{H} \beta, \mathrm{H} \gamma$ cores. 1814: Nebular emission lines of [O III]. 1854: Nebular emission lines of [O II], [O III], and in $\mathrm{H} \beta$, $\mathrm{H} \gamma$ cores. 1864: Nebular emission lines of [O II], [O III], and in $\mathrm{H} \beta$, $\mathrm{H} \gamma$ cores. 1871: Nebular emission lines of [O III], and in $\mathrm{H} \beta, \mathrm{H} \gamma$ cores. 1878: Nebular emission lines of [O II], [O III], and in $\mathrm{H} \beta$ core. 1916: Drilling 1979. 1922: Drilling \& Hill 1986. 2018: Drilling 1987. 2383: H-poor? 2394: Drilling \& Hill 1986. 2804: Balmer lines have strong emission cores and broad, weak absorption wings. He i $\lambda 4471$ and $\lambda 4713$ in emission. Emission line at $\approx 5016 \AA$. Very faint emission in O if $\lambda 4415$? 2826: Strong $\mathrm{N}_{\text {III }}$ 4097? 3055: With strong C III $\lambda 4647$ and $\mathrm{O}_{\text {II }}$ 入4642. 3094: B2Ia+? 3367: O II strong. 3371: Drilling 1979. 3378: Drilling \& Hill 1986. 3390: Strong N iII? 3412: C iII strong. 3730: Binary? 3915: Strong N iII $\lambda 4097$. 3958: Strong C iII. 3968: C iII strong?? 4103: Very strong N lines, N iII $\lambda \lambda 4511-4515$ present, and C lines absent. 4293: C iII strong? 4300: Drilling \& Hill 1986. 4306S: N iII strong; C weak?? 4625: Very strong N lines, with C lines very weak. 4923: Strong IS 4430. 5007: ADS 11310. A second spectrum taken the following night, shows emission lines, and was classified as B2Iane $2_{2+} ; \mathrm{H} \beta$ is in emission; $\mathrm{H} \gamma$ has strong emission core; $\mathrm{H} \delta$ absent; higher Balmer lines very weak.
ate spectral variability may also cause these discrepancies. However, there are similar problems with this line in the O 9 III, IV, and V standards. Si Iv $\lambda 4089$ has about the same strength in the O9 III, O9 IV, and O9 V standards but the He II $\lambda 4686$ and C III $\lambda \lambda 4068-4070$ are consistent with the luminosity classification, as are $\mathrm{He}_{\mathrm{I}} 4144$ and O III $\lambda \lambda 3755-3760$. Of the other luminosity criteria, He II $4686 / \mathrm{He}$ I $\lambda 4713$ and Si IV $\lambda 4116 / \mathrm{He}_{\text {I }} \lambda 4121$, the first can be difficult because $\lambda 4686$ is very weak except at class V. Si iv $\lambda 4116$ and He I $\lambda 4121$ are just resolved on our plates and can only be used to differentiate class I from classes III and V. All this makes it necessary to depend on C III $\lambda \lambda 4068-4070$ in some cases but this can be complicated by, for instance, abundance effects. The lines of He $_{\text {I }} \lambda \lambda 4388,4144$ and $\mathrm{O}_{\text {iII }} \lambda \lambda 3755-3760$ are also useful, but again, are weak and temperature-sensitive.

4. RESULTS

The spectral types are presented in Table 2. The f-parameter is given for the early-type stars, indicating N III emission; however, weak N III emission designated by ((f)) (Walborn 1971) cannot be seen on our image-tube spectra. The star's LS catalog number is given in column (1) and the spectral type in column (2); an asterisk (*) next to the star number indicates that it is commented on in the notes. A colon next to the spectral type indicates that it is somewhat uncertain; n indicates line broadening, (n) that they are broadened slightly, nn that they are very broad. Stars with emission in the Balmer lines have been given emission types on the system of Lesh (1968).

We wish to thank the referee for his very helpful comments and suggestions. Use of the facilities of Cerro Tololo InterAmerican Observatory is gratefully acknowledged. This re-
search was supported in part by grants AST-8018766 and AST-8514574 from the National Science Foundation.

REFERENCES

Drilling, J. S. 1979, A\&A, 71, 214
——. 1987, in IAU Colloq. 95, The Second Conference on Faint Blue Stars, ed. A. G. Davis Philip, D. S. Hayes, \& J. W. Liebert (Schenectady: Davis), 489
Drilling, J. S., \& Hill, P. W. 1986, in IAU Colloq. 87, Hydrogen Deficient Stars and Related Objects, ed. K. Hunger, D. Schon̈berner, \& K. Rao (Dordrecht: Reidel), 499
Garrison, R. F., Hiltner, W. A., \& Schild, R. E. 1977, ApJS, 35, 111
Hiltner, W. A., Garrison, R. F., \& Schild, R. E. 1969, ApJ, 157, 313
Johnson, H. L., \& Morgan, W. W. 1953, ApJ, 117, 313
Lesh, J. R. 1968, ApJS, 16, 371
Morgan, W. W., Abt, H. A., \& Tapscott, J. W. 1978, Revised MK Spectral Atlas for Stars Earlier than the Sun (Williams Bay: Yerkes Obs.)
Morgan, W. W., \& Keenan, P. C. 1973, ARA\&A, 11, 29
Nassau, J. J., \& Stephenson, C. B. 1963, Luminous Stars in the Northern Milky Way, Vol. 4 (Hamburg-Bergedorf: Hamburger-Sternwarte and Warner \& Swasey Obs.)

Nassau, J. J., Stephenson, C. B., \& MacConnell, D. J. 1965, Luminous Stars in the Northern Milky Way, Vol. 6 (Hamburg-Bergedorf: Ham-burger-Sternwarte and Warner \& Swasey Obs.)
Stephenson, C. B., \& Sanduleak, J. 1971, Publ. Warner \& Swasey Obs., 1, 1
Stock, J., Nassau, J. J., \& Stephenson, C. B. 1960, Luminous Stars in the Northern Milky Way, Vol. 2 (Hamburg-Bergedorf: Hamburger-Sternwarte and Warner \& Swasey Obs.)
Walborn, N. R. 1971, ApJS, 23, 257
-_. 1972, AJ, 77, 312
——. 1973, AJ, 78, 1067
——. 1982, ApJ, 254, L15
Yamashita, Y., Nariai, K., \& Norimoto, Y. 1978, An Atlas of Representative Stellar Spectra (Tokyo: Univ. Tokyo Press)

Note added in proof.-LSS 4634 ($b=-6.3$ degrees) coincides in position with IRAS Point Source 18023-3409, which has been listed as a possible new planetary nebula by A. Preite-Martinez (A\&AS, 76, 317 [1988]). It may therefore be similar to the low-mass post-asymptotic giant branch B supergiant discussed by S. Parthasarthy (ApJ, 414, L109 [1993]).

[^0]: ${ }^{1}$ Contributions of the Louisiana State University Observatory, No. 233.
 ${ }^{2}$ Visiting Astronomer, Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

