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ABSTRACT

Using a full nonlinear numerical gravitational clustering simulation with Q =1 cold dark matter and
Zel’dovich initial conditions, we show that the gravitational potential evolves very little up to the present on
length scales >1.25 h~! Mpc. We present a new approximation for the nonlinear evolution of large-scale
structure, in which the gravitational potential field is assumed to remain constant up to the present, but
the matter obeys the usual nonlinear equations of motion in this potential field. We calculate evolved
density fields using this approximation and compare them to the Zel’dovich approximation and a full non-
linear evolution. At late times, the accuracy of our results lies between the Zel’dovich approximation and a full

nonlinear evolution.

Subject headings: galaxies: clustering — large-scale structure of universe — methods: numerical

1. INTRODUCTION

In principle, the problem of calculating the evolution of the
large-scale structure of the universe is a simple exercise in New-
tonian dynamics. In practice, of course, the nonlinear evolution
of the density field requires a numerical gravitational clustering
simulation. Although a full numerical simulation is the most
accurate and useful technique for calculating large-scale struc-
ture, there are several reasons for exploring analytic approx-
imations for the nonlinear evolution of the density field. First
of all, such techniques may provide insight into the nature of
the evolution which cannot be gleaned from endless computer
simulations. For example, the Zel’dovich approximation
(Ze'dovich 1970) demonstrates analytically the formation of
walls and filaments in gravitational clustering. Second, such
techniques may provide a faster and easier-to-use method for
calculating the evolution of large-scale structure.

A number of such techniques have already been developed.
The application of perturbation theory leads to the well-
known linear evolution equations; this technique can also be
extended to second-order to provide an equation for the evolu-
tion of skewness (Peebles 1980); of course, these approx-
imations fail when dp/p > 1. Other approximations include the
Zel’dovich approximation (Zel’dovich 1970), in which the
motion of each particle is determined entirely by its initial
(Lagrangian) potential, the second-order extension of the
Zel’'dovich approximation (Gramann 1993), the frozen-flow
approximation (Matarrese et al. 1992), in which the velocity of
each particle is given by its local linear value, the lognormal
approximation (Coles & Jones 1991), which involves a local
mapping of the density field via an exponential transformation,
and the adhesion model (Gurbatov, Saichev, & Shandarin
1989) in which the particles move according to the Zel’dovich
equations of motion, but with the addition of viscosity to allow
the particles to stick together and form pancakes. A somewhat
different problem has been addressed by Nusser & Deckel
(1992) and Weinberg (1992), who have developed approx-
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imations to extrapolate the current density field backwards to
obtain the initial conditions.

Here we introduce a new semianalytical approximation,
which we shall call linear evolution of the potential (LEP). In
this approximation, we assume that the potential field obeys
the linear evolution equations (i.e., it is constant for Q = 1),
and the particles obey the standard equations of motion in this
potential. In a sense, this approximation is an extension of the
Zel'dovich approximation. In the Zel'dovich approximation,
the Lagrangian potential is taken to be constant, while in our
approximation, the Eulerian potential is constant. In § 2, we
provide a complete description of our approximation and also
demonstrate, using a full nonlinear gravitational clustering
simulation, that the gravitational potential is indeed nearly
constant up to the present on length scales ~1.25 h~! Mpc.
Also in § 2 we compare the results of our LEP approximation
to the predictions of the Zel’dovich approximation and to a full
nonlinear simulation and derive several analytic results. Our
conclusions are presented in § 3. Our approximation resembles
the frozen-flow approximation, and indeed some of our results
in § 2 can be taken as a justification for this approximation as
well. We explain briefly in § 2 the similarities and differences
between these two approaches.

2. LINEAR EVOLUTION OF THE POTENTIAL

The equations of motion for the matter in the universe are
conventionally written in terms of the dimensionless density
contrast §(x), defined as

o(x) = [p(x) — p1/p , 2.1

where p(x) is the matter density at the comoving point x, and p
is the mean matter density. Neglecting pressure, the equations
governing the evolution of the density are the continuity equa-
tion:

dp

a 1
— - -V =0 22
o T3PtV (=0, 22
the Euler equation:
dv a —Vo
—+p=—r 2.3
dt a v a @3
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and the Poisson equation: 80 h~! Mpc (comoving) on a side; 1283 particles and 256° grid
V24 = 47Ga?ps (2.4) qells were used. We characterize various epochs in the simula-
) ) tion by the linear bias factor b, which we define as the inverse
In these equations, a is the scale factor, ¢ is the peculiar gravi- of the rms mass fluctuation in a spherical top hat of radius 8
tational potential, v = a(dx/dt) is the proper peculiar velocity, h~! Mpc in the linear regime,
and d/dt is the convective derivative, i.e., the derivative mea- 1 SM\2\ 172
sured at a point moving with the flow; it is related to the = <<_> > . (2.6)
derivative 0/t measured at a fixed Eulerian point by d/dt = b M (8 h—1 Mpc)

0/0t + (v/a) - V. For Q = 1 in the linear regime in the matter-
dominated era, § oc a and p oc a3, so equation (2.4) indicates
that ¢ is constant.

Note that we can rewrite equation (2.4) in terms of the
Fourier components §(k) and ¢(k):

(See, for example, Bardeen et al. 1986). In the nonlinear regime,
we take 1/b oc a, so equation (2.6) is no longer valid. The simu-
lation began at b = 30, which we define to be an expansion
factor, a, of 1. The simulation was evolved through 30 expan-
sion factors and ended at b = 1.0, corresponding to-an expan-
5(k) sion factor, a, of 30. If we define b = 1.0 to be “today” (i.e.,
e (2.5) redshift of z = 0), then the beginning of the simulation corre-
sponds to a redshift of z = 29. Using cloud-in-cell (CIC) inter-
Because of the k™2 factor on the right-hand side, the potential polation (see, for example, Efstathiou et al. 1985) the potential

d(k) = —4nGa®p

weights the long-wavelength modes more strongly than does and density fields at various epochs in the simulation were
the density field. In the standard cold dark matter model with a determined on a 64° grid (i.e., a coarse grid whose grid cells are
Zel’dovich power spectrum, the longer wavelength modes go 4 times the length of the grid cells used in the simulation). The
nonlinear at a later time than the shorter wavelength modes, so length of a grid cell on this coarse grid is 1.25 h~! Mpc. The
we might expect the potential on a given length scale to be initial density contrast J; and initial potential field ¢; were
described by linear perturbation theory long after the density randomly sampled on the 643 grid (1% of the grid cells were
field is strongly nonlinear on that length scale. As noted above, used) and then compared with the values of 6 and ¢ in the
this implies that ¢ remains nearly constant well into the non- same grid cells at later epochs of the simulation. The results are
linear regime. displayed in Figures 1 and 2.

To test this hypothesis, we have run a gravitational clus- While there is still some obvious correlation between the
tering simulation of a standard cold dark matter universe initial and final values of 6 at b = 10 (a = 3), this correlation
(Q =1, A =0, h = %) using a particle mesh (PM) gravitational has dissolved by b = 1.0 (a = 30). (The lower cutoff on d/a
clustering code (Villumsen 1989). The simulation volume was corresponds to empty cells in the simulation.) The potential, on
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FIG. 1.—The initial density contrast, d,, at a grid point in an Q = 1 adiabatic Harrison-ZeI'dovich CDM gravitational clustering simulation compared to the
density contrast divided by the expansion factor, /a, at later epochs in the simulation, at the same grid point. Densities are sampled on a 642 grid (length of a grid cell

=1.25 h~* Mpc), and the results from a random 1% of the grid cells are shown. Panels (a)—(h) represent expansion factors a = 1.5, 2.0, 3.0, 5.0, 7.0, 12.0, 20.0, and 30.0
(corresponding to linear bias factors, b = 20.0, 15.0, 10.0, 6.0, 4.3, 2.5, 1.5, and 1.0). Grid points for which 6 = 9, a fall along the straight line shown in the figures.
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F1G. 2—The initial peculiar gravitational potential field, ¢,, at a grid point in an Q = 1 adiabatic Harrison-Zel’dovich CDM gravitational clustering simulation
compared to the peculiar gravitational potential field, ¢, at later epochs in the simulation at the same grid point. Potentials are sampled on a 643 grid (length of a grid
cell =1.25h™! Mpc), and the results from a random 1% of the grid cells are shown. Panels (a)—(h) represent expansion factors a = 3.0, 5.0, 7.0, 9.0, 12.0, 15.0, 20.0, and
30.0 (corresponding to linear bias factors, b, of 10.0, 6.0, 4.3, 3.3,2.5,2.0, 1.5, and 1.0). Grid points for which ¢ = ¢, fall along the straight line shown in the figures.

the other hand, is well described by linear evolution
(¢ = constant) up to b = 1.0. While there is some artificial
softening of the potential (because we are using a PM code), we
sample on scales a factor of 4 larger than the grid cutoff. The
potential deviates from the constant value predicted by linear
evolution at both ends of the graph, i.e., for both the largest
negative and largest positive values of the initial potential ¢;.
The deviation from linear behavior for large negative ¢; occurs
because linear theory breaks down in the deepest potential
wells; these deep potential wells produce a larger negative
potential than can be produced by naively applying linear
theory. The deviation from linear behavior at large positive ¢;
arises from the fact that our density field is nonnegative, so that
6 > —1. This physical lower bound on J causes linear theory
to break down in the lowest-density regions, which correspond
to the largest positive values of ¢.

Of course, it is not ¢, but V¢ which enters into the equations
of motion (eq. [2.3]). Therefore, we have also examined the
correlation between the initial and evolved values of V¢ in our
simulation. We examined a single component of V¢ (d¢/dx),
calculated on a cell by taking the difference between the poten-
tial on the two cells on opposite sides of the given cell. The
value of d¢/dx at later epochs as a function of the initial linear
value of d¢/dx is shown in Figure 3. The correlation is not as
strong as it is for ¢; this is to be expected because the Fourier
components of V¢ scale as one higher power of k than does
@(k), and V¢ is therefore more sensitive than ¢ to nonlinear
modes. However, there is still an obvious correlation between
the initial value of d¢/dx and its value at later epochs, much
stronger than the correlation between the initial and final
density fields.

The fact that the potential and its gradient are roughly
described by linear evolution down to the present suggests an
obvious approximation for the evolution of large-scale struc-
ture: we take ¢ to be constant, and evolve the density field in
this constant potential field using the full nonlinear equations
of motion. In essence, we retain equations (2.2) and (2.3), but
modify equation (2.4), simply retaining the initial potential field
as the potential field at all later times. This approximation is in
some sense a generalization of the Zel’dovich approximation.
In the Zel’dovich approximation, the Lagrangian potential
field is constant: each particle sees the potential appropriate to
its initial position. In our approximation, the Eulerian poten-
tial is constant; each particle experiences a changing potential
as it moves through space, but the potential at a fixed Eulerian
coordinate is constant.

Our approach is also somewhat similar to the frozen-flow
approximation of Matarrese et al. (1992). In that approx-
imation, the Eulerian potential is held constant, and each par-
ticle takes the instantaneous velocity appropriate for its local
potential in linear theory; the particle has no memory of its
previous velocity. In our approximation, the velocity is deter-
mined by Newtonian dynamics. In order from the simplest
approximation to the most complex (and closest to a full gravi-
tational clustering simulation), we have the Zel’'dovich approx-
imation, the frozen-flow approximation, and our linear
evolution of the potential.

We have evolved a CDM simulation of length 80 h~! Mpc
on a side consisting of 323 particles in a 64> grid using a full
numerical (PM) simulation, the Zel’dovich approximation, and
our linear evolution of the potential (LEP) approximation. All
three simulations were begun at b = 23 with identical initial
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FI1G. 3.—A single component of the gradient of the initial peculiar gravitational potential field, d$,/dx, at a grid point in an Q = 1 adiabatic Harrison-Zel’dovich
CDM gravitational clustering simulation compared to d¢/dx at later epochs in the simulation at the same grid point. Potential gradients are sampled on a 64 grid
(length of a grid cell =1.25 h™! Mpc), and the results from a random 1% of the grid cells are shown. Panels (a)-(h) represent expansion factors a = 3.0, 5.0, 7.0, 9.0,
12.0, 15.0, 20.0, and 30.0 (corresponding to linear bias factors, b, of 10.0, 6.0, 4.3, 3.3, 2.5, 2.0, 1.5, and 1.0). Grid points for which d¢/dx = d¢,/dx fall along the straight

line shown in the figures.

conditions. In Figure 4, we present slices of these simulations
evolved down to b = 1. Figure 4a is the full numerical simula-
tion, Figure 4b is the Zel’dovich approximation, and Figure 4c
is the linear evolution of the potential. Visually, our LEP
approximation gives much better results than the Zel’dovich
approximation. The Zel'dovich approximation gives poor
results when evolved to the present because shell crossing has
already occurred, and the particles are streaming out of the
caustics. Our approximation reproduces the formation of
knots and filaments in roughly the same locations as in the full
numerical simulation. The main defect of our LEP approx-
imation is the failure to reproduce the highest-density peaks in
the full numerical simulation. This is to be expected, since the
high-density peaks can produce potentials larger than the
result obtained from simple linear evolution, allowing much
denser structures to form.

Although the visual similarity between our approximation
and the nonlinear evolution is obvious, we have also used
several statistical measures to compare these two approaches.
We first examined the cross-correlation, defined (for two
density fields X and Y) to be

S =X;— XXY, - D)/o,0,, @7
where X; and Y, are the densities in the ith pixels of the two
density fields, o, and o, are the rms fluctuations in the two
fields, and we average over all pixels in the two density fields.
This statistic was used by Coles, Melott, & Shandarin (1992) to
compare a number of analytic approximations for nonlinear
evolution. (Note that we compare only the unsmoothed

density fields. while Coles et al. examined both smoothed and
unsmoothed fields.) Using this statistic, we find, paradoxically,
that our LEP approximation gives worse agreement with the
full numerical simulation than does the Zel’dovich approx-
imation. A similar effect is seen by Matarrese et al. (1992);
despite the fact that their frozen-flow approximation is visually
more similar to the full numerical simulation than is the
Zel'dovich approximation, the correlation between the evolved
densities in the numerical simulation and these two approx-
imations shows greater scatter for the frozen-flow approx-
imation than for the Zel’dovich approximation. The reason for
these results is obvious. Our LEP approximation and the full
gravitational simulation both produce high-density knots and
filaments in the same general region of space. However, if the
knots in one simulation are slightly displaced from the knots in
the other simulation (as they are in these simulations), the
result is that a high-density region in one simulation will lie on
top of a low-density region in the other simulation, and vice
versa, leading to a relatively low cross-correlation. On the
other hand, the Zel’dovich approximation at late times pro-
duces a relatively diffuse distribution of matter in the high-
density regions, so that the high-density regions in the
gravitational clustering simulation are always correlated with
a moderately high-density region in the Zel’dovich simulation.
Our results and those of Matarrese et al. (1992), therefore,
suggest that the cross-correlation, at least for unsmoothed
density fields, is a questionable tool for comparing nonlinear
evolution at late times; it is too sensitive to slight displace-
ments in the high-density regions between two simulations.
Whether such displacements represent a significant difference
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F1G. 4—A slice of the universe 80 h~* Mpc x 80 h~* Mpc x 20 h~* Mpc, evolved to the present (b = 1) using Q = 1 Harrison-Zel’dovich adiabatic CDM initial
conditions and (a) a full numerical (PM) simulation, (b) the Zel’dovich approximation, and (c) the linear evolution of the potential approximation.
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between density fields is obviously a matter of interpretation.
This problem was noted by Coles et al. (1992).

Although the two-point correlation function uses only a
small fraction of the total information in the density field, it
confirms what is obvious visually. In Figure 5, we give the
two-point correlation function &(r) for our LEP approx-
imation, the Zel'dovich approximation, and the full gravita-
tional clustering simulation at various epochs. At late times
(b = 1.3-1), the LEP approximation gives a two-point function
which is much closer to the two-point function in the full gravi-
tational clustering simulation than is the Zel’dovich two-point
function. The LEP approximation and the gravitational clus-
tering simulation produce two-point functions with similar
slopes, although the LEP approximation gives a lower ampli-
tude for . The two-point function in the Zel’dovich approx-
imation deviates strongly from the gravitational clustering
two-point function at small scales.

We can also derive a number of interesting analytic results
using the LEP approximation. Following Kofman (1991) and
Matarrese et al. (1992), we note that equations (2.2)—(2.4) can
be rewritten (for an Q = 1 matter-dominated universe) in terms
of the variables 7 = 1 + J, u = dx/da, and ¢ = (3/2)a 3t?¢:

du 3 3
e A 2.
da+2au 2% 238)
Mo u=0 2.9)
da_ ! T ’

o
Vip=-. .

¢ =" (2.10)

In both the frozen-flow approximation and our LEP approx-
imation, the potential field is constant and is given by its initial
linear value: @(x, a) = @q(x). The frozen-flow approximation
then takes the velocity u to be given by its linear value:
u(x, a) = —Vqq(x), while the LEP approximation uses equa-
tion (2.8) with ¢ = ¢, to determine u.

Suppose that a particle has Lagrangian coordinate ¢, and its
Eulerian position at scale factor a is x(q, a). Then equation (2.8)
can be integrated to give the velocity # at Eulerian coordinate
x at scale factor a. Without any approximation, we get

3
u(x, a) = —Ea‘s/z j

where this integral (and the subsequent integrals in equations
[2.12]-[2.16]) are taken over the trajectory x(q, a’) of the parti-
cle between a, and a. The LEP approximation then gives

’ (@)*Vo[x(q, @), alda , (2.11)

‘=ao

u(x, a) = — %a—a/z f (@) ?Veo[x(q, a)]da . (2.12)

Equation (2.12) can be integrated by parts to show more
clearly the relation between our LEP approximation and
linear theory:

u(x, a) = —Volx) + f

la’ =ag
x {u[x(q, a)] - V}Voo[x(q, a)]da’, (2.13)
where we have taken a > a,. The first term in equation (2.13) is

the usual linear expression for the velocity, while the second
term gives the deviation from linear theory in our LEP approx-

a
’

(a'/a)*'?
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F1G. 5—The two-point correlation function &(r) for the CDM Harrison-Zel’dovich models of Fig. 4 using a full gravitational clustering simulation (solid curve),
the Zel’dovich approximation (dashed curve), and the linear evolution of the potential approximation (dotted curve), at the indicated bias parameters b.

imation. In the frozen-flow approximation, u tracks its linear
value —Vg,, and because ¢, is Gaussian, so is V@,, so the
volume-weighted velocity distribution in the frozen-flow
approximation is also Gaussian. Our LEP velocity distribu-
tion evolves away from a Gaussian because of the second term
in equation (2.13).

We can also derive a formal expression for the density field
in the LEP approximation by integrating equation (2.9) to
derive the density 7 at Eulerian coordinate x at scale factor a
(Matarrese et al. 1992):

n(x, a) = no(q) exp { - J

a=ao

a

V - ulx(q, d), &]d&} . (214)

Using the LEP expression for # from equation (2.12), and
changing the order of integration, we can perform the integral
over d to obtain:

n(x, a) = exp [Ja_ 3[1 — (@/a)"*16 .+ [x(g, a’)]da'] > (215)

where J.(x) is the (constant) value of d(x)/a in the linear
regime, and we have taken #¢(q) ~# 1. The corresponding
expression for the frozen-flow approximation is (Matarrese et
al. 1992)

n(x, a) = exp [Ja_ 0. [x(q, a’)]da’] . (2.16)

Both our LEP result and the frozen-flow result indicate that 5
can be approximated as the exponential of an integral of the
linear density field over the trajectory of the particle, but our
result contains the additional weighting factor 3[1 — (a'/a)*/*].
Thus, the LEP approximation gives more weight to the values
of 8, in the early part of the trajectory, and less weight to later
values. For points which represent local minima or maxima of
@0, the LEP approximation gives results identical to the
frozen-flow approximation for a > a,: u = 0, and é(x, a) = exp
[0 .(x)a] — 1. It is also easy to verify that for a > a,, equation
(2.15) produces a density contrast identical with the frozen-
flow result for particle trajectories which are confined to
regions in which ¢ , is nearly constant.

Now we will provide a simple example to compare the pre-
dictions of our LEP approximation with the Zel'dovich
approximation and the frozen-flow approximation. Consider
the collapse of a spherical top hat perturbation, given by 6 =
0, inside a radius R embedded in a flat background. This
problem was considered by Matarrese et al. (1992) for the
frozen-flow approximation; here we extend the discussion to
the LEP approximation. The potential is given by

@olr) = 504 1%, (2.17)

where r is the radial distance from the center of the potential
well. Then — V@, = —(6./3)r. In our LEP approximation, we
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can substitute equation (2.17) into equation (2.8) to obtain

oY S N
da® " 2ada 2T T

This equation is solved to yield:

r=[A cos (/28 a) + B sin (\/25, a)Ja" 2, (2.19)

where the constants A and B are chosen to give the correct
initial position and velocity. For the growing mode with r = r,
ata = a,, in the limit where a, — 0, we obtain:

sin ( /20, a)
V20, a .

This solution can be compared with both the exact solution
and the Zel'dovich and frozen-flow approximations. For
example, for the growing mode in the exact solution, turn-
around occurs at a, = 1.06/6, (where we take a,—0
throughout), compared with a, = 1.5/6, for the Zel’dovich
approximation and a, = 3/6, for the frozen-flow approx-
imation (Matarrese et al. 1992). The solution in equation (2.20)
gives a,, = 2.06/0 , for the LEP approximation.

(2.18)

(2.20)

=To

3. DISCUSSION

Our results from the full gravitational clustering code
strongly support the hypothesis that the peculiar gravitational
potential smoothed on 1.25 h~! Mpc scales is roughly constant
down to the present (Fig. 2). Although we have examined only
the Q = 1 Zel’dovich CDM model, any other model with a
similar power spectrum should give a similar result. Hence, it is
not surprising that our LEP (linear evolution of the potential)
approximation, in which the potential is held constant and the
matter evolves according to the standard equations of motion
in this potential, produces results in good agreement with an
exact numerical simulation. Our result for the evolution of the
potential also provides support for the frozen-flow approx-
imation (Matarrese et al. 1992), in which both the peculiar
potential and peculiar velocity are given by their linear values.
Our LEP approximation is more exact than the frozen-flow
approximation, but at the expense of greater computational
complexity. Both the LEP and frozen-flow approximations
give much better results far into the nonlinear regime than
does the Zel'dovich approximation. The frozen-flow and LEP
approximations are both natural generalizations of the
Zel'dovich approximation, in which the Eulerian potential,
rather than the Lagrangian potential, is held constant. With
respect to accuracy and computational complexity, the LEP
approximation lies between the frozen-flow approximation
and a full gravitational clustering simulation.

The peculiar gravitational potential is constant only for
Q = 1 models, and our results are valid only for such models.
However, it would be easy to extend the LEP approximation
to Q < 1 models by simply scaling the initial potential at every
time step by the appropriate amount. From equation (2.4), ¢ is
proportional to d/a in the linear regime. Thus, linear evolution
of the potential simply involves multiplying the initial value of
¢ by D/a at any later time, where D is the growth factor in
linear perturbation theory. For z > Q™! this factor is unity,
while for z < Q™! it decreasesasa”!.

Our numerical gravitational clustering results indicate no
obvious correlation between the initial and final values of the
density field measured at a fixed point (Fig. 1). This argues
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against the usefulness of any local models for the density evolu-
tion, in which the final density field is expressed as a function of
the initial density field (e.g., the lognormal model of Coles &
Jones 1991). The correlation between the initial and final
density fields on 1.25 h~! Mpc scales appears to break down
near b = 6. Weinberg (1992) has argued that weakly nonlinear
evolution should preserve the rank ordering of the density field
(smoothed on an appropriate scale), i.e., if d(x;) > (x,) in the
linear regime, then we expect d(x;) > d(x,) in the weakly non-
linear regime. Our results in Figure 1 indicate that this argu-
ment is roughly valid on 1.25 h~! Mpc scales down to b = 10,
but it begins to fail near b = 6. These results are not directly
applicable to Weinberg’s work, since he examined density
fields smoothed on somewhat larger length scales. Our analytic
results in the LEP approximation indicate that the evolved
density field can be expressed as an integral of the linear
density field over the path of the particle, similar to the result
obtained in the frozen-flow approximation.

Our LEP approximation reduces the computational time
needed to evolve a density field. We find that the LEP approx-
imation requires one-fifth the CPU time of a full PM code for
the parameters used here. This improvement was obtained by
simply overriding the calculation of the potential in the PM
code of Villumsen (1989); a dedicated LEP code might be even
faster. If N is the number of particles and the number of grid
cells in the simulation, then the calculation of the potential is
roughly an N log N operation (in the limit of large N), while
the LEP algorithm simply goes as N. Thus, we expect an even
larger speed-up factor for larger simulations. The LEP approx-
imation has several other potential advantages. If the initial
potential can be specified analytically, then the LEP approx-
imation can be made gridless, and such a simulation might be
useful for hydrodynamic simulations prior to the formation of
shocks. In principle, an arbitrarily large number of particles
can be used in the LEP approximation, since there is no need
to calculate their evolution simultaneously. The LEP approx-
imation can also be used for studying the fate of a small frac-
tion of the matter in the simulation without evolving the full
matter field; in this case a large number of particles could be
evolved in a small region of space to get better resolution.

In addition to these numerical advantages, the LEP approx-
imation can provide a better analytic understanding of gravita-
tional clustering. We have derived a number of analytic results
and in particular have obtained an expression for the deviation
of the velocity field from its linear value. Further analytic
results should be obtainable.

After this paper was submitted, we learned of very similar
work done independently by Bagla & Padmanabhan (1993).
They performed a number of two-dimensional simulations
comparing the LEP approximation with both the frozen-flow
and Zel’'dovich approximation and argued that it is superior to
both.
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