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ABSTRACT

Models of the thermal structure of protoplanetary disks are required for understanding the physics and
chemistry of the earliest phases of planet formation. Numerical hydrodynamical models of the protostellar
collapse phase have not been evolved far enough in time to be relevant to planet formation, i.., to a relatively
low-mass disk surrounding a protostar. One simplification is to assume a pre-existing solar-mass protostar,
and calculate the structure of just the disk as it forms from the highest angular momentum vestiges of the
placental cloud core. A spatially second-order accurate, axisymmetric (two-dimensional), radiative hydrody-
namics code has been used to construct three sets of protoplanetary disk models under this assumption.
Because compressional heating has been included, but not viscous or other heating sources, the model tem-
peratures obtained should be considered lower bounds. The first set started from a spherically symmetric con-
figuration appropriate for freely falling gas: p oc r~%2, v, oc r~ /2, but with rotation (Q oc #~*, where r is the
spherical coordinate radius). These first models turned out to be unsatisfactory because in order to achieve an
acceptable mass accretion rate onto the protostar (M, < 1075 Mg yr~* for low-mass star formation), the disk
mass became much too small (~0.0002 M). The second set improved on the first set by ensuring that the
late-arriving, high angular momentum gas did not accrete directly onto the protosun. By starting from a disk-
like cloud flattened about the equatorial plane and flowing vertically toward the midplane, these models led to
M, — 0, as desired. However, because the initial cloud was not chosen to be close to equilibrium, the disk
rapidly contracted vertically, producing an effective disk mass accretion rate M, ~ 1072 M yr™!, again too
high. Hence, the third (and most realistic) set started from an approximate equilibrium state for an adiabatic,
self-gravitating “fat” Keplerian disk, with surface density o oc r~ /2, surrounded by a much lower density
“halo” infalling onto the disk. This initial condition produced M;—0 and M, ~ 1076 to 107° Mg yr™*, as
desired. The resulting nebula temperature distributions show that midplane temperatures of at least 1000 K
inside 2.5 AU, falling to around 100 K outside 5 AU, are to be expected during the formation phase of a
minimum mass nebula containing ~0.02 M, within 10 AU. This steady state temperature distribution
appears to be consistent with cosmochemical evidence which has been interpreted as implying a phase of rela-
tively high temperatures in the inner nebula. The temperature distribution also implies that the nebula would
be cool enough outside 5 AU to allow ices to accumulate into planetesimals even at this relatively early phase

of nebula evolution.

Subject headings: accretion, accretion disks — hydrodynamics — solar system: formation

1. INTRODUCTION

One perplexing discrepancy in our understanding of solar
system formation has been between meteoritical evidence for
high temperature processing of pre-asteroidal materials on the
one hand, and standard viscous accretion disk models of pro-
toplanetary disks with much lower (~ 150 K) midplane tem-
peratures at 2 to 3 AU (Wood & Morfill 1988). The low volatile
metal contents measured for chondritic meteorites and inferred
for the terrestrial planets have been interpreted as requiring a
prolonged period of chemical fractionation caused by deple-
tion of volatile metal-rich nebular gas at temperatures in the
range 1200 to 1400 K (Palme & Boynton 1992). Widespread
variations in Mg and Si abundances among chondrites have
been interpreted as implying similar temperatures in order to
evaporate portions of olivine grains (Larimer & Wasson 1988;
Palme & Boynton 1992). Both of these compositional trends
may be explained by a nebular phase with midplane tem-
peratures around 1300 K. In addition, chondrules and certain
refractory inclusions evidently experienced even higher
(~1500 to ~2000 K) temperatures, but because chondrule
textures and compositions also require rapid ( ~hours) heating
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and cooling (Hewins 1988), the formation of chondrules
appears to require a series of localized heating events largely
unrelated to the midplane temperature profile (Wood 1988;
Hood & Horanyi 1991; Boss & Graham 1993). Localized
heating events might also be capable of explaining the volatile
metal abundances in regions of the nebula with considerably
lower temperatures than 1300 K (e.g., well above the nebula
midplane). In order to advance our incomplete understanding
of meteorite parent body and planetesimal formation, detailed
models of the radial and vertical temperature distribution in
the solar nebula are required.

Nebula temperatures are also important for determining the
location of the ice condensation point, outside of which the
surface density of solids will increase significantly. The surface
density of solid matter is a key determinant of how rapidly the
planetary formation process proceeds through the collisional
accumulation of planetesimals (Wetherill 1990). The location
of the ice condensation point is also crucial to the Stevenson &
Lunine (1988) suggestion that giant planet formation might
result from an enhancement of icy matter produced by turbu-
lent transport of water vapor from the inner nebula outward to
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the condensation point. Temperatures in the outer nebula
must also be reconciled with the observed volatile abundances
in comets, which require that comets formed at about 60 K or
even lower temperatures (Mumma, Weissman, & Stern 1992).

Standard viscous accretion disk theory (e.g., Pringle 1981)
assumes the existence of a low-mass (non-self-gravitating), thin
disk in Keplerian rotation about a mass point, approximations
that are commonly used in modeling the solar nebula. Disk
evolution is further assumed to be dominated by viscous shear,
with the viscosity being characterized by a free parameter «,
and with viscous dissipation being the primary source of disk
heating. The vertical thermal profile can then be approximated
once the vertical optical depth of the disk is specified.

Ruden & Lin (1986) presented time-evolving models of
viscous accretion disks, starting with midplane temperatures of
about 1000 K out to 10 AU, but dropping to values around
300 K at 2 AU within about 4 x 10° yr. Cabot et al. (1987)
found midplane temperatures to be on the order of 300 K at 2
AU in their steady state, viscous accretion disk models. Ruden
& Pollack (1991) found midplane temperatures of ~ 1000 K at
2 AU to 3 AU, but only during the initial, dynamic phase of
their calculations, when the disk mass was greater than ~0.1
M and mass was being transported inward to the protosun;
their final, steady state temperatures at 2 AU to 3 AU were
~10K.

If a viscous accretion disk is to have a midplane temperature
of 1500 K at 3 AU and a mass accretion rate M ~ 107° M
yr~ !, then the viscosity parameter o ~ 1075 (Morfill 1988),
and so the disk mass (out to 50 AU) must be ~0.5 M, using
the disk mass relation of Wood & Morfill (1988). Such a
massive disk around a solar-mass protostar would violate the
basic assumption of a low-mass disk, and would not be applic-
able to planetary formation processes because most of this disk
mass presumably would end up in the protostar. Estimates of
the “minimum mass” needed to account for formation of the
solar system’s planets are about a factor of 10 lower —0.01 to
0.07 M o (Weidenschilling 1977).

Viscous accretion disk models generally derive their lumi-
nosity solely from viscous dissipation associated with the
transport of nebula mass inward to the central protostar, and
so neglect any energy derived from matter infalling onto the
nebula from the parent molecular cloud core. Cassen &
Moosman (1981) and Cassen & Summers (1983), however, did
include the effects of infalling gas on ballistic trajectories in
their viscous accretion disk models, finding surface tem-
peratures of ~100 K at a few AU in minimum mass disks
(midplane temperatures were not calculated but “might be
several times hotter,” Cassen & Summers 1983). Ruzmaikina &
Maeva (1986) also included accretion of gas onto the disk, and
found midplane temperatures of ~300 K at 2to 4 AU in a
viscous accretion disk with a final mass of 0.1 M. Lin &
Pringle (1990) calculated viscous accretion disks forming
through infall, assuming that all of the available kinetic energy
of the infalling matter went into heating the disk, but limited
their models to radii greater than 13 AU.

A parallel effort to the work on viscous accretion disks over
the last two decades has been the development of fully numeri-
cal solutions of the multidimensional equations of hydrody-
namics. Numerical solutions can be attempted without having
to employ the approximations often necessary for an analytical
or semi-analytical solution (e.g., idealized symmetry, simplified
thermodynamics, vertically thin disks, no self-gravitation).
Numerical models of solar nebula formation may either ignore
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the effects of turbulence and viscous dissipation (e.g., Boss
1989; Bodenheimer et al. 1990) or include the effects of an
a-viscosity (e.g., Tscharnuter 1987), but all include compres-
sional heating from the collapsing gas and radiative transfer in
either the diffusion or Eddington approximation.

Numerical three-dimensional hydrodynamical models of
nebula formation produced high (~ 1500 K) midplane tem-
peratures at 2 to 3 AU (Boss 1988, 1989) even in a minimum
mass nebula, but the models effectively had high mass accre-
tion rates (M ~ 1073 to 1072 Mg yr 1), well above the gener-
ally accepted range of M ~107° to 10™* My yr~! for
low-mass protostars. Numerical two-dimensional hydrody-
namical models found similarly high temperatures in the inner
nebula for comparable or slightly smaller mass accretion rates
(Tscharnuter 1987; Bodenheimer et al. 1990), but in these
models the final nebula masses (>0.4 M) were considerably
higher than the minimum mass nebula, so these models cannot
be applied to later phases when planetary accumulation was
beginning. Tomley, Cassen, & Steiman-Cameron (1991) used a
two-dimensional planar N-body code to model the interaction
between gravitational instabilities and an imposed disk cooling
law, but their disk models were restricted to radii within 41
stellar radii (< 1 AU).

Other calculations of nebula properties do not fit as easily
into the viscous accretion disk or numerical hydrodynamics
framework. Terebey, Shu, & Cassen (1984) and Stemwedel,
Yuan, & Cassen (1990) used semi-analytical techniques to
study the collapse of rotating clouds, assuming isothermality
and zero gas pressure, respectively, and so neither study
addressed the question of nebula temperatures. Note that the
zero pressure assumption used by Stemwedel et al. (1990)
means that their disks retain no internal energy from the col-
lapsing gas, which is the opposite of the assumption made by
Lin & Pringle (1990). Wood (1984) calculated the shock
heating expected at the nebula accretion shock, based on a
simple model of cloud infall and an estimate of the nebula
photospheric temperature, but did not attempt to calculate
midplane temperatures. Watanabe, Nakagawa, & Nakazawa
(1990) studied the question of convective stability during the
quasi-static contraction of a vertical segment of a minimum
mass nebula at 1 AU. Watanabe et al. (1990) found that con-
vection was rapidly stabilized by solar heating at the nebula
surface. Their models started with midplane temperatures of
1000 K and quickly cooled to ~500 K at 1 AU. Cassen (1992)
used observations of the radial variation of the photospheric
temperature inferred for T Tauri disks to construct theoretical
models of the temperature distribution in optically thick disks.
Cassen (1992) found midplane temperatures of ~ 1500 K out to
about 3 AU, falling to values of ~ 100 K around 30 AU.

Given these prior results, a few preliminary conclusions may
be drawn. Viscous accretion disk models apparently lead to
temperatures of only ~300 K at 2 AU to 3 AU in a minimum
mass nebula; the higher temperatures seemingly required by
the cosmochemical evidence only occur in more massive
viscous accretion disks. The assumptions that are usually
necessary for making viscous accretion disk models tractable
(e.g., neglect of compressional heating and self-gravity, and the
approximate treatment of vertical radiative losses) are such as
to suggest that different results might be obtained if some of
these important assumptions could be relaxed. In principle,
definitive calculations could be performed with numerical
hydrodynamics codes, but the models constructed to date
either have had mass accretion rates that are probably too high
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for low-mass protostar formation, were not evolved far enough
in time to be applicable to planetary formation, or both.

The purpose of this paper is to attempt to overcome both of
these major problems through a new sequence of numerical
hydrodynamical calculations. Assuming the prior existence of
a solar-mass protostar, these models follow the collapse of the
remaining molecular cloud core material onto the protoplane-
tary disk. Three different sets of numerical models have been
investigated, with increasing degrees of refinement, and these
are described in sequence in the following sections. We shall
see that through a suitable choice of initial conditions, solar
nebula models can be constructed that meet the twin criteria of
having low mass accretion rates and low disk masses appropri-
ate for a minimum mass nebula. The extent to which the
resulting disk temperature distributions agree with the cosmo-
chemical evidence is discussed in the final section.

It is important to note that the present modeling effort
results in a prediction for nebula temperatures that depends
solely on a small number of widely accepted parameters: a
low-mass nebula, a solar-mass protosun, and mass accretion
by the nebula at an astronomically inferred rate. The extent to
which the results then agree with any particular meteoritical
interpretation is of great interest, but it must be emphasized
that the meteoritical interpretations have not been used to
constrain or construct the models in any way.

NUMERICAL METHODS

2.1. Equations and Numerical Grid

An improved multidimensional radiative hydrodynamics
code has been used to calculate the three sets of models pre-
sented in this paper. The code is described in detail elsewhere
(Boss & Myhill 1992) and so only a brief description is given
here. The explicit, Eulerian numerical code has been shown by
convergence testing to be spatially second-order accurate.
Advective fluxes are based on van Leer monotonic inter-
polation and consistent advection, as generalized to a spherical
coordinate grid. The radial advective terms have been cor-
rected for the volume-centering effect in spherical geometry. A
tensor artificial viscosity is included, designed to vanish during
homologous collapse (Tscharnuter & Winkler 1979). Self-
gravity is included through a spherical harmonic expansion of
the Poisson equation. Radiative transfer is included through
an alternating directions implicit solution of the mean intensity
equation in the Eddington approximation. Global conserva-
tion of mass, angular momentum, and internal energy are
achieved through solving the hydrodynamical equations in
conservation law form. Local conservation of angular momen-
tum has been optimized by choosing a method for advecting
angular momentum that best preserves the specific angular
momentum spectrum during axisymmetric collapse.

Compressional heating associated with collapsing or con-
tracting gas is the primary source of energy in the models—
viscous and magnetic heating are neglected, and heating due to
artificial viscosity is not important in most models. Hence the
models should yield a lower bound on nebula temperatures,
given that turbulence or ohmic dissipation could be occurring
in portions of the nebula. The models are tested for convective
instability (Schwarzschild 1965) in the r and 0 directions, in
order to learn if convectively driven turbulence should be
occurring.

In order to minimize the computational burden while focus-
ing on thermodynamics, all of the new models assume sym-
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metry about the rotation axis (and about the midplane) and so
are two-dimensional in space. The calculational grid extends
from about 1 AU outward to either 10, 25, or 50 AU, with
uniform radial grid spacings Ar = 0.18, 0.5, or 1 AU, respec-
tively (N, = 51). The 6 grid is nonuniform (Af; = 1.2A68;_,) in
order to enhance the vertical spatial resolution in the disk
(Np = 23 grid points for /2 > 6 > 0); the minimum 6 spacing
of A@ = 0°3 occurs at the midplane. Constant volume bound-
ary conditions are imposed at the spherical outer boundary.

2.2. Sink Cell

In order to try to simulate solar nebula formation without
including all of the details of protosun evolution, the calcu-
lations use a central “sink cell” (Boss & Black 1982) with an
initial mass of 1 M to represent the protosun’s gravity and
luminosity. The central protostar luminosity L is calculated
from

L= — > (1)

where G is the gravitational constant, M is the protostar mass,
M, is the protostar mass accretion rate, and R, is the protostar
radius. This equation was used previously by Bodenheimer et
al. (1990), and is known from radiative hydrodynamical calcu-
lations to be an accurate approximation (e.g., Winkler &
Newman 1980). The protostellar radius was taken to be 3.5
R, as is appropriate for young protostellar cores (Stahler,
Shu, & Taam 1980b).

The protostellar luminosity heats the central cell, and hence
affects the disk temperature through the central temperature.
For models where the instantaneous mass accretion rate is
higher than generally accepted, the protostellar luminosity
would be proportionately higher than is reasonable, leading to
overly high central temperatures. Hence, the central tem-
perature was not allowed to exceed either 1500 or 1700 K, so
that even in cases where M, is apparently too high, the disk
temperatures would not necessarily also be unrealistically high.
A temperature of ~1700 K at or inside about 1 AU is consis-
tent with the results of spherically symmetrical (one-dimen-
sional) models of the formation of a solar-mass protostar
(Tscharnuter & Winkler 1979, see their Figs. 1 and 2), and with
the spectral energy distribution models of Adams & Shu (1985)
for solar-mass protostars accreting at 105 Mg yr 1.

The hydrodynamical fluxes between the central sink cell and
the first radial shell of cells are altered to allow flow into, but
not out of, the central cell. The gravitational potential due to
the mass in the spherical central cell is added separately into
the potential obtained from the solution of the Poisson equa-
tion for the disk material. In the last set of models, infall velo-
cities are limited to being less than 42 km s~ ! (the free fall
velocity at 1 AU for My = 1 M), in order to enhance numeri-
cal stability, and v,y is required to be positive (ie., directed
toward the disk midplane).

2.3. Radiative Transfer

The Eddington approximation f factor, which enters into the
mean intensity equation, was chosen to be either 3 or 1. The
former value is appropriate for early phases of collapse, when
the radiation field is fairly isotropic, while the latter value is
appropriate at later phases when the presence of a solar-mass
protostar results in a radiation field that is mostly directed
outward (Tscharnuter & Winkler 1979). In practice, though,
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the choice of f was found to have little effect on the nebula
temperature distributions.

The critical optical depth 7., used to decide which form for
the radiative flux should be used (see eq. [S] of Boss & Myhill
1992), was set equal to 10 for most models. For comparison,
the optical depth along a ray through the disk midplane to the
central cell was over 10* for the third set of models, whereas
the optical depth along the rotational axis (where very low
densities occur) was ~ 1071,

The boundary condition on the mean intensity J was varied
to discern its effects on the temperature distributions. This
boundary condition was found to have little or no effect on the
temperatures in the inner nebula, but to have an effect on the
temperatures near the calculational boundary. In previous col-
lapse calculations, the choice of this boundary condition has
not been a problem, because the outer boundary is well-
removed from the region of interest, and as long as the bound-
ary conditions lead to T = 10 K, the temperature distribution
is reasonably accurate. However, in order to have high spatial
resolution in the radial direction, the outer boundary in the
present models is uncomfortably close (i.e., at 10 or 25 AU) to
the regions of most interest, e.g., 5 AU. Hence there is a need
for a well-chosen boundary condition on J.

The boundary condition employed by Boss (1984) was

L
=B — 2
JR R+47ER§, ()

where B is the Planck function, L is the total luminosity, and
Ry is the radius of the spherical boundary. Equation (2) is
appropriate for a cloud with roughly spherically symmetric
emission and with a radius Ry well outside the emitting
regions, and this boundary condition was used in some of the
models. However, equation (2) is not necessarily appropriate
for the present models, because protoplanetary disks can be
expected to emit with different intensities when viewed edge-on
or pole-on, and Ry = 10 or 25 AU is still within the emitting
region of the disk. Adams & Shu (1986) used a “radiative zero ”
boundary condition, i.e., J = 0 as r — oo, which is not useful
here either. Setting Jg = B = 6Tg/n with T = 10 K would
simply lead to a lower bound on temperatures in the outer
nebula. Tscharnuter (1987), following Yorke (1980), used a
variant of the following boundary condition

1 oJ
JR=BR+%(—E>, (3)

where «k is the opacity and p is the density. Equation (3) is
similar to equation (2), but has the advantage of being a local
criterion which is not dependent on the total luminosity. With
equation (3), Jg can vary from the pole to the equator, and
thereby allow the outer regions of the disk to be cooler than
the rarefied gas along the rotational axis, which is unshielded
from the central protostar luminosity. Hence equation (3) was
used in most of the models, but implemented in the form sug-
gested by Tscharnuter (1987)

oJ

o 4
o h @

JR=BR+

where 6J =Jy _y —Jy, and Ar=ry —ry_,, in order to
maintain stability for the small optical depths that occur near
the rotation axis.
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2.4. Time Step

Because of the explicit solution of the hydrodynamical equa-
tions (specifically the energy equation), numerical stability
places the following constraint on the time step At

T’E (N T O\
At < (KUT“) ~10 s(l) (1000 K) ’ ©)

where 7 is the (gray) optical depth, E is the specific internal
energy, o is the Stefan-Boltzmann constant, and T is the tem-
perature. Because of the occurrence of low optical depths and
relatively high temperatures in the models, the resulting small
size of the time step restricts the amount of elapsed time in the
calculations to the order of years, even for calculations lasting
~10°-10° time steps and using over a week of CPU time on an
HP/Apollo DN-10040 workstation. Clearly this explicit time
step constraint must be lifted before three-dimensional models
become practical, which will require development of an
implicit solution scheme for the three-dimensional energy
equation. Bodenheimer et al. 1990 used an implicit solution for
a portion of the two-dimensional energy equation in order to
avoid this time step restraint.

This limitation to time evolutions on the order of years
means that the present numerical models will not be able to
follow the entire process of formation of the nebula, even in the
restricted problem we have defined here, ie., assuming the
prior formation of a solar-mass protostar. If a low-mass disk
(~1072 My,) is to build up through accretion at M ~ 10~ %
Mg yr~ !, then ~ 103 yr of evolution would be required. Hence
most of the models will only be able to accomplish a task more
limited than that which hydrodynamical codes usually
perform, namely, searching for a steady state temperature dis-
tribution that applies to an initial assumed density and velocity
distribution for the disk. To the extent that the initial density
and velocity distribution changes during the course of the cal-
culation, of course, a fully self-consistent solution for the
problem will result, given that the usual equations of hydrody-
namics are still being solved. In this situation, the choice of the
initial density and velocity distribution becomes of paramount
importance for constructing a plausible nebula model. The
folowing three sections describe the progressive refinement of
the initial conditions used to model the solar nebula.

3. FIRST SET OF MODELS

3.1. Initial Conditions

In the first set of models, the initial cloud is spherically
symmetric, and has power-law density and radial velocity pro-
files appropriate for gas in free-fall onto a protostellar core
(Shu 1977)

p(r) = pr(Re/r)*'? (6)
0(r) = — v, (Ry/1)'2, ™

where r is the spherical coordinate radius, Ry is the cloud
boundary, and R, = 1 AU. That is, we are assuming that the
central protostar has already formed, and that we can follow
just the collapse of the remaining molecular cloud material. In
order to form a disk, of course, the cloud must be rotating as
well. The initial angular velocity has a profile

Q(r) = Qg(Rg/r) )

chosen to resemble that in collapsing clouds (Tscharnuter
1987). Note that the initial angular velocity is not constant on
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cylinders, nor need it be, because the initial cloud is not
intended to represent an equilibrium configuration.

The initial temperature is defined by a power law profile
T oc r~* chosen so that the cloud is neither heating or cooling
initially, i.e., J = B. This ensures a stable initial solution for the
radiative transfer equation. From the mean intensity equation,

1 1
rhv.(L
Kp Kp
so J = B requires that (in spherical symmetry)

4 (rdn _
dr \kp dr)
With p oc r~ 32 and k oc T? (Lin & Papaloizou 1980; Pollack,
McKay, & Christofferson 1985), this leads to J oc r~(22*5/2),

Since J = B = 6 T*/n, we obtain o = 5/4, and the desired initial
temperature profile is then

T(r) = T1(R1/")5/4 .

VJ)=J—B, )

(10)

(11)

3.2. Results

Over 50 models were computed starting from these initial
conditions. The detailed results for one representative model
will be presented here. Model I-e had pr =27 x 107'* ¢
em™3, 0, =10x10°cms 1, Qr=12x10"°rads ', T} =
1500 K, 7, = 10, J, given by equation (4), f = %, and Rg = 50
AU. With these parameters, model I-e had a cloud mass
of 0.048 M, and an average specific angular momentum
(JIMD> =27 x 102° cm? s ™!, as is appropriate for a minimum
mass solar nebula (Safronov & Ruzmaikina 1985). The mass
accretion rate onto the central protostar was M, ~ 6 x 107*
M yr~!, which is still much too high for low-mass protostars
beginning their collapse from a molecular cloud core with a
peak density of ~107!° g cm ™3, for which the free fall time of
~2 x 10° yr implies that M, ~ 5% 10°° Mg yr~'. However,
the central temperature was limited in this as well as all the
models to being less than or equal to 1700 K, so the disk did
not experience as much heating from the central star as would
be expected for this high M.

The results for model I-¢ after about a year of evolution are
shown in Figure 1. A rotationally flattened, optically thick
nebula begins to form, extending out to distances of about 3
AU (Fig. 1a). The initial temperature profile quickly relaxes to
a quasi-steady state determined by the heating and cooling
processes in the nebula. Because of the importance of the
central luminosity and the chosen initial conditions, the nebula
temperature distribution (Fig. 1b) remains nearly spherically
symmetrical (as in Tscharnuter 1987 and Bodenheimer et al.
1990) as compared to the strong vertical temperature gradients
encountered in previous three-dimensional nebula models
(Boss 1988, 1989) that did not include these effects. Hence there
is no particular concern for these models with regard to resolv-
ing the vertical thermal structure of the nebula; a sharp jump
in temperature does not yet exist (see § 5.4).

The initial and final midplane temperature proﬁles for model
I-e are displayed in Figures 1c and 1d, respectively. Relatively
high temperatures (T,, ~ 1500 K inside 3 AU) are evident,
while the midplane temperatures drop below 150 K outside
about 5 AU.

The other models in the first set had variations in a large
number of parameters: strength of artificial viscosity (Co =0
or 1), J boundary condition (see § 2.3), outer radius (Rg = 25
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or 50 AU) and hence (J/My =68 x 10*° c¢cm? s~! or
2.7 x 10?° cm? , density (pg=10x 1075 g em™3 to
27 x107* g cm 3) velocity (v,; = 1.0 x 10 cm s~ ! or
42 x 10° cm s~ 1), Eddington factor (f = § or 1), and critical
optical depth (z, = 10, 5, or 1). Variations in the initial density
lead to initial cloud masses (within 25 AU) ranging from
~0.0002 to 0.02 M and to central mass accretion rates from
M,~1075t06 x 107 * M, yr‘l.

The models with M, ~ 10 M yr~ ! are of the most inter-
est and produced the greatest change in temperatures. Tem-
perature profiles in these models were significantly lower than
in model I-e (e.g., T ~ 850 K at 1 AU, and ~500 K at 2 AU),
as might be expected. However, the disk masses in these
models were quite low—0.0002 My, and had a maximum
(midplane) optical depth of only ~5 (vs. ~300 for model I-e),
so these models cannot be expected to retain compressional
heat to the same extent as a more optically thick disk with a
mass closer to the minimum mass nebula. Furthermore,
because of the low optical depths, the time step restraint (eq.
[5]) prevented the models from being calculated even as far in
time as model I-e in the sense of producing a rotationally
flattened disk. These shortcomings can be traced to the
assumption of initially spherically symmetric, infalling
clouds—with that assumption, and even with rapid rotation,
much of the mass continues to fall onto the central protostar,
producing a high M, rather than into the midplane to form the
desired disk.

4. SECOND SET OF MODELS

4.1. Initial Conditions

The second set seeks to improve on the first set by realizing
that most of the late-arriving, high angular momentum gas
should not be able to accrete directly onto the protosun. This is
especially true if the protosun had an energetic stellar wind
(most likely a bipolar flow) that swept out large regions of
circumstellar space, e.g., near the rotation axis. Hence the
second set started from a nonspherical, disklike cloud already
flattened about the midplane, and with the initial flow being
toward the midplane.

Cassen & Moosman (1981) derived ballistic trajectories for
infalling matter that are appropriate for hypersonic flow onto a
point mass. The trajectories are dependent on the angular
momentum distribution in the infalling cloud, which is difficult
to specify precisely given our poor knowledge of differential
rotation in molecular cloud cores. Here we will take a slightly
different approach, and approximate the streamlines onto the
disk through a simple prescription based on total energy con-
servation. A parcel of gas infalling from rest at infinity on a
ballistic trajectory toward a protostar of mass M, will have a
velocity v given by

2GM
r

v? =

S =02+ v} +v]. (12)
We will assume that the angular velocity of the infalling gas is
such as to lead to Keplerian rotation at the disk midplane, an
assumption that will then minimize any heating due to rota-
tional shear between the infalling gas and the near-Keplerian
disk. This assumption is consistent with trying to find a lower
bound on nebula temperatures. Choosing the angular velocity

to be such that
GM\'7?
()"

(13)
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the same time (d) as (a) and (b). For (a) and (b), the region shown is 5 AU in radius. The rotation axis falls at the left border, and the midplane at the bottom. Contour
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quickly relaxes to quasi-steady state values (d). The horizontal line is 1500 K, which approximates temperatures produced by the thermostatic buffering effect of the

dust grain opacity.

conservation of energy is assured if we further choose

12
v, = —<GMS> cos 0, (14)
r

GM,\ "2
ve=< r‘) sin 6 . 15)

With these choices, the translational (v,, vg) velocity field is
simply one of vertical infall toward the disk midplane (see Fig.
2a), with half of the kinetic energy being in rotational motion
and half in translational motion. For a disk with a total radius
much larger than the region (10 AU) under consideration in
the second set of models, the Cassen & Moosman (1981) ballis-
tic trajectories predict that the innermost streamlines are

approximately vertical but with a small deflection toward the
central protostar.

The initial density was chosen to yield a disklike configu-
ration with a maximum density at the midplane

p(r, 0) = py(Ry/r)**[0 sin 61", (16)

with m = 2 to 10 being varied in order to minimize M,. The
initial temperature profile was the same as in the first set of
models (eq. [11]).

4.2. Results

Ten models were computed using initial conditions of this
form. It was found that m had to be quite large in order to
deplete the gas from the region of the rotational axis enough to
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produce a low M,. Results from a model with high m are
shown here. Model II-e had m =10, p; =1 x 107 gcm ™3
(with a minimum density of 107! g cm™3, where eq. [16]
would lead to a lower density), M; = 1 M (which also defines
the initial velocity field through eqs. [13]-[15]), J is given by
equation (4), Co =0, T; = 1500 K, Rz = 10 AU 1 = 10, and
f=1. This model had (J/M> = 1.1 x 10*°cm? s}, an 1n1t1a1
disk mass of 0.0055 M, and M, = 2.5 x 10~° Mo yr~! ini-
tially. Partway through the evolutlon all available matter was
accreted by the protosun, and M, = 0 for the rest of the evolu-
tion. By contrast, identical models except for having m = 2
initially had M, =4 x 10™* M yr™, a value that did not
decrease significantly for the duration of the calculation—so
the models with low m are not of interest for low-mass star
formation.

The results for model II-e are shown in Figures 2 and 3.
Figure 2 shows that the initial density configuration undergoes
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significant flattening toward the midplane even during the rela-
tively short (~0.1 yr) duration of the calculation. Figure 3
shows that the temperature field rapidly adjusts to the asym-
metric disk configuration, and produces a mushroom-shaped
distribution with highest temperatures in the disk midplane.
Quite high midplane temperatures (>2000 K) are produced,
and the region with these high temperatures moves contin-
uously outward during the evolution—i.e., it does not appear
to reach a quasi-steady state, because the disk continues to
compress toward the midplane (note the large vertical velo-
cities within the disk in Fig. 2¢). The model II-e disk as well as
the other models of this type appeared to be convectively
stable except for a few isolated locations.

While these models produced quite hot inner disks, the fact
that a steady state temperature distribution was not reached
and that the disk continued to contract vertically means that
these models are still not appropriate for the solar nebula. The
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Fi1G. 2—Initial velocity field (a) and log density contours (b) for model II-e and at the end of the calculation [(c) and (d), respectively]. Velocities are plotted at

every fifth grid point in radius. Region shown is 10 AU in radius. Density contour levels correspond to factors of 2.5 change; maximum velocities in cm s ™!

at the top. Considerable vertical contraction of the initial disk is evident.

are noted
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symmetric temperature profile quickly produces a distribution (c) composed of a thin disk component centered on the midplane (bottom border) and a mushroom
cap of radiatively heated gas above the disk. Relatively high midplane temperatures (d) are produced out to 4 AU because of the rapid vertical compression of the

disk.

problem is simply that because of the ad hoc choice of the
initial density, designed primarily to minimize M, the resulting
disks undergo a very rapid contraction and hence vigorous
compressional heating. In effect, the disks are being formed too
rapidly in these models, based on our understanding of low-
mass star formation. This can be quantified by calculating the
mass flux into a control volume drawn around the disk and so
defining the disk mass accretion rate

R 2
Y -2 -1 Uz R
My 2x 1077 Mo yr (10 km s—1><10 AU>

Ph
% (10_11 g cm“3> > (17)

where v, is the vertical infall velocity just above the disk surface
and p, is the “halo” density of the matter infalling onto the
disk. For the nominal values in equation (17), M, ~ 1072 M
yr ™1, a rate that is still too high for low-mass star formation,
because we expect that for a steady state accretion process
where molecular cloud infall is feeding the disk and the disk is
accreting onto the protostar, M, ~ M, ~ 107%-10"° Mg
yr~ 1. This deficiency is remedied in the third and final set of
models.

5. THIRD SET OF MODELS

5.1. Initial Conditions

In order to avoid having the disk form too rapidly, the third
set of models starts from an approximate equilibrium state for
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an adiabatic, self-gravitating, “fat” (nonthin) disk in near-
Keplerian rotation about a protosun. The Appendix derives
the following approximate vertical density distribution for
such a configuration

PR, Zy 1 = po(Ry !

: (y - 1) {[2nGa(R)]Z N GM, [ 1 1 ]}
y K K |R (R*+2zH)"])°
(18)

where R and Z are cylindrical coordinates, po(R) is the mid-
plane density, and o(R) is the disk surface (mass) density. The
adiabatic pressure is defined by p = Kp?, where K is the adia-
batic constant and y is the adiabatic exponent. Note that the
adiabatic pressure relation is used solely to define the initial
disk model; the actual calculation still solves the radiative
transfer equation.

The Appendix points out that a natural choice for the radial
density dependence results from the condition that the contri-
bution of the gas pressure to non-Keplerian rotation be small
everywhere in the disk. For a power-law midplane density,
Po(R) oc R4, the Appendix shows that this choice leads to
a = 1/(y — 1). For temperatures of 100 K or less, para hydro-
gen is expected to dominate, so that the rotational levels of
molecular hydrogen do not contribute to the internal energy
(e.g., Boss 1984), and as a result the effective value of y is 5/3
rather than the value of 7/5 normally expected for a diatomic
molecule. The choice y = 5/3 leads to a = 3/2, and so the mid-
plane density is defined by

R, 32
R) = —
Po(R) Po1<R> s

where po; = 4.0 x 1071° g cm™3. For a disk whose vertical
height increases linearly with radius, as is approximately true
for equation (18), the surfdce density of the disk then varies as

G(R) = 01<%)1/2 s

2

(19)

(20)

where ¢, = 2.0 x 10* g cm~? is determined by numerically
integrating equation (19). The adiabatic constant was given the
value K = 1.7 x 107 (cgs units), based on y = 5/3 and the fact
that protostellar gas first begins heating above the cold molec-
ular cloud value of 10 K for densities greater than about 10713
g cm 3. With these choices, the disk surface lies at an angle of
=~ 13° above the midplane.

In addition to the disk density structure defined by equation
(19), a low-density halo is introduced into the region above the
disk surface, in order to simulate the remaining infalling molec-
ular cloud material, of the form

R,\*?
Pn = Ph1<_> s
r

where p,; = 1.0 x 10" ¥ gcm ™3, ,

The outer radius for these models was 10 AU, leading to a
disk mass of 0.020 M. For comparison, the minimum mass
nebula (Weidenschilling 1977) has about 0.005 to 0.035 Mg
contained within 10 AU, about % the total nebula mass. The
initial conditions result in M, — 0 rather early in the calcu-
lations, and using equation (17) with an effective p, ~ 1075 g
cm 3, these models have M, ~ 107° to 1075 My yr™!, as
desired.

@1
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The initial velocity field is specified as in the second set
of models by equations (13) through (15), with M, =1 M.
The initial velocity field vanishes inside the disk, as before.
The average specific angular momentum of the disk was
{J/M) =10 x 102° cm? s~ !. The models also had 7, = 10,
Co =1 (except for III-1), J; determined by equation (4), and

f=1

The initial temperature profile was taken to be spherically
symmetrical with a power-law dependence

T(r) = Ty(Ryr), TN<Ty, 22)

where the exponent «, normalizing factor T, and temperature
upper limit T; were varied from model to model. The tem-
perature upper limit was used in order to produce initial pro-
files resembling those resulting from the thermostatic effect of
the dust grain opacities (Morfill 1988; Boss 1990).

As discussed in § 2.4, limitations on the time step mean that
these models are primarily intended to search for a steady state
thermal distribution. That is, a variety of initial temperature
distributions are investigated, and the calculation is then
evolved far enough that a quasi-steady state thermal distribu-
tion is reached. If this distribution is hotter than the initial
guess, then the initial guess is assumed to be too low. In order
to map out the possible temperature profiles in the inner
nebula, 13 models of the third type were calculated—the varia-
tions explored are listed in Table 1. Another nine models were
calculated to determine the sensitivity of the results to changes
in other parameters.

5.2. Results

Figure 4 shows the results for a model (III-t) that has an
initial temperature profile that is close to that derived from the
whole set of models for the steady state midplane distribution.
The low-density halo begins to accrete onto the disk, with the
low angular momentum gas along the rotational axis being
accreted first. The disk itself contracts slightly during the evo-
lution. The temperature field rapidly readjusts to a quasi-
equilibrium value; by the end of the calculation (~3 yr), the
temperature has essentially stopped evolving. (The final tem-
perature contour plots in Figs. 4 and 6 were smoothed near the
rotational axis to remove numerical artifacts associated with
the symmetry axis.) The lowest temperatures are obtained
along the rotational axis (t ~ 1072), with the highest tem-
peratures occurring inside the disk (t ~ 10%). The midplane

TABLE 1

INITIAL CONDITIONS FOR THE THIRD SET OF
NEBULA MODELS

Model «  T,(K) T,(K)
5/4 5000 1500
5/4 3000 1500
5/4 2000 1500
5/4 1500 1500
5/4 1000 1500
5/4 5000 1400
5/4 4000 1400
5/4 3000 1400
5/4 2000 1400
/4 5000 1500
74 4000 1500
74 3000 1500
74 2000 1500
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temperature changes only slightly, rising above 1400 K around
1 AU and dropping below 1400 K around 2 AU.

The final model for ITI-t is convectively stable except at a few
isolated grid points. While nebula models are generally
expected to be convectively unstable in the vertical direction
(Lin & Papaloizou 1980), the apparent stability of these models
may be partially due to the initial temperature profile being
approximately isothermal in the vertical direction, and to the
final models not necessarily being completely relaxed to the
true equilibrium distribution. A vertically isothermal nebula
has a temperature gradient (zero) less than the adiabatic value
and so is convectively stable.

The sources of compressional heating for these models are (i)
infall of the halo onto the disk, (ii) vertical contraction of the
disk, (iii) accretion onto the protosun that leads to the inner
boundary temperature of 1700 K, and (iv) heating due to artifi-
cial viscosity. Thermal energy is lost primarily through (v) radi-
ation from the disk (a small component goes into internal
energy of the gas). It is important to understand the role played
by each of these five factors, in order to assess the physical
reality of the results. Nine models were calculated with varia-
tions intended to test each of these factors.

(i)—Models III-ad and III-ae had p, increased or decreased
by a factor of 3, respectively. Both final models had midplane
temperatures that were nearly identical to model III-t, but at 2
AU III-ad had a temperature of 256 K just above the disk
surface, versus 218 K for III-ae and 226 K for III-t, as expected.
Thus the interior disk temperatures are not strongly dependent
on the precise choice of the halo density. This is presumably
due to the fact that much of the accretional energy produced at
the disk surface by halo infall is immediately lost through radi-
ation [see also (v) below]. The main thermal effect of the mass
added by the halo may be through its addition to the mass
inside the disk and the consequent vertical contraction within
the disk, where the compressional energy produced can be
more readily retained than at the disk surface.

(ii).—Models III-w, ITI-x, III-aa, and III-ac had translational
velocities within the disk arbitrarily decreased (without
resulting in disk heating) by factors of 0.99, 0.999, 0.9999, and
0.99999 each time step, respectively. The intent was to slow
down the rate at which the disk contracts without contributing
to disk heating. The disk contracts (primarily in the vertical
direction) because of mass added to the top surface by accre-
tion from the halo, and because the initial temperature profile
defined by equation (22) differs in general from that implicitly
used to generate the density distribution through equations
(18) and (19), i.e., the initial disk is not quite in equilibrium for
an arbitrary temperature profile, and may expand or contract.
At 2 AU, the average vertical contraction velocities in the final
disks were: 760 cm s~ ! for model ITI-t, 78 cm s~ ! for model
IlI-ac, 4.5 cm s~ ! for model III-aa, 1.0 cm s~ ! for model ITI-x,
and 0.22 cm s~! for model III-w. Models III-w and III-x
cooled from 1400 to 1390 K and 1398 K at 1 AU, respectively,
while models III-aa, IIl-ac, and III-t heated from 1400 K to
1407, 1447, and 1454 K at 1 AU, respectively, indicating that
disk contraction is an important heating effect. For a disk
gaining mass at a rate of 107> My yr !, an equation similar to

equation (17) shows that vertical contraction of the disk caused
by the added mass should lead to v, ~ 150 cm s~ !, a value
intermediate between the average values for models III-t and
III-ac. Considering the small difference in final temperature
between these two models, it would appear that the heating
due to disk contraction in the standard models is approx-
imately correct.

(ili)—Model III-y had an inner temperature of 1500 K
instead of the standard choice of 1700 K. The final midplane
temperature for III-y was nearly identical to that of III-t, indi-
cating that small changes in the central temperature do not
greatly affect the disk temperature.

(iv).—Model III-] had C, = 0 but was otherwise the same as
model III-m, and produced midplane temperatures only slight-
ly smaller (e.g., 795 K vs. 799 K at 2 AU) than model III-m.
Evidently heating due to artificial viscosity also has only a
small effect.

(v)—Model III-v had the radiative fluxes throughout the
grid multiplied by an arbitrary factor of 3, in order to assess the
importance of the accuracy of the radiative fluxes (see also
§ 5.4). The luminosity of model III-v was about 1.2 times
higher than in III-t, and the midplane temperatures were again
slightly lower (e.g., 1181 K vs. 1186 K at 2 AU) than in III-t.
Just below the disk surface, somewhat larger differences were
found: 804 K in III-v versus 830 K in III-t at 2 AU. This model
implies that the midplane temperatures are not strongly depen-
dent on the radiative fluxes, because the radiative losses occur
largely at the nebula surface, and not at the optically thick
midplane [see (i) above] where the radiative flux is small.

5.3. Composite Model

In order to avoid any problems associated with the final
temperature distributions not being exact equilibrium solu-
tions, the standard models in Table 1 were used to determine a
“composite ” midplane temperature. The assumption is that if
the final midplane temperature for the model was greater than
the initial temperature at a certain radius, then the initial guess
was probably too low. Figure 5a shows the results for all 13
models in Table 1. There is a clear demarcation inside 5 AU
between initial profiles that appeared to be too low and those
that were too high, and this demarcation defines the composite
profile shown in Figure 5b. Note that temperatures barely
changed in the midplane outside 5 AU, so the midplane tem-
perature profile is not well-constrained in this region and has
been arbitrarily chosen to approach 100 K at 10 AU. The
structure in the composite profile is apparently caused by ther-
mostatic behavior associated with the evaporation of three
dominant contributors to the opacity (Pollack et al. 1985): (i)
high-temperature silicates and Fe around 1300 K; (ii) low-
temperature Fe-bearing silicates around 350 K ; and (iii) water
ice around 150 K.

A final model (I1I-ab) was evolved starting with a spherically
symmetric version of the temperature profile given by Figure
Sb, in order to produce a composite nebula model, ie., the
“best guess ” of all the models presented here. Figure 6 displays
the final configuration for this model. The fact that the tem-
perature contours still show evidence of heating at the disk

F1G. 4.—Initial log density contours (a), log temperature contours (c), and log midplane temperature (¢) for model III-t and at the end of the calculation [(b), (d),
and (f), respectively]. Region shown is 10 AU in radius. Density contour levels correspond to factors of 10 change, and temperature contours to factors of 1.6 change.
Jagged contours are artifacts of the plot routine. Horizontal line in (e) and (f) is T = 1500 K. The density distribution of the quasi-equilibrium disk does not change
greatly, but the temperature distribution rapidly relaxes to a quasi-steady state with the highest temperatures within the disk. The midplane temperature changes

only slightly in the inner regions.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...417..351B

362 BOSS Vol. 417
4 4
:a\1||{|||u||||,;|l|u ¥IbIIITII’ll_F|III|II}'IM
—~ I - —~ } _|
) - i X - i
O] 3—o.=:=.c — (] 3_ —
s T[T ] s L i
- o ° - v
© B o S200e% © i © L _
~ ’o.o.'o &
) L %2, ", _ () | B
Q. "'-i‘: Q.
E F o) - E r g n
S 2 — 3 e —
0 = — a0 - ~
(@] (@]
— — — — — —
1T1111|||||1|‘[!1111||1 1|1||IIIIL1I|III|IJ_IIL

0 2 4 6 8 10
radius (AU)

0 2 4 6 8 10
radius (AU)

F1G. 5.—Determination of the composite temperature profile from the results of the models in Table 1. For each grid point for each model, a solid circle is plotted
in (a) if the final temperature increased over the initial temperature, and an open circle if it decreased. No symbol is plotted if the increase in temperature was by less
than a factor of 1.001 or the decrease was by less than a factor of 0.999. The intersection between the solid and open symbols defined the composite temperature,
shown for clarity in (b), including an arbitrary extrapolation to 100 K in the outer nebula.

surface beyond about 6 AU to values above those at the mid-
plane (Fig. 6b) indicates that T ~ 160 K might be a better
value for this portion of the nebula than T ~ 100 K.

Figure 7 shows the midplane density and surface density
profiles for model III-ab. The models are stable to axisym-
metric gravitational perturbations, because according to the
Toomre (1964) Q stability criterion, gravitational instability
(@ < 1) occurs only when o > 64, where o, is defined by

c,Q

G’
where ¢, is the sound speed. Figure 7b shows that the nebula
surface densities are at least an order of magnitude too low for
gravitational instability, consistent with the low nebula mass of
0.02 M and the relatively high nebula temperatures. The
surface densities are consistent however with the densities
thought to be necessary for Earth formation (Goldreich &
Ward 1973) and the rapid formation of Jupiter (Lissauer 1987).

Figure 8 shows the dependence of the pressure on the tem-
perature in model III-ab, a relationship of interest for deter-
mining the phase stability of various meteoritical components.
It can be seen that the pressure-temperature relation for the
composite disk model is intermediate between the adiabatic
relation used to define the initial models (with y = 5/3) and a
typical viscous accretion disk profile (Wood & Morfill 1988).
Gas pressures in the inner nebula are on the order of 10~ 6-
1075 atm.

As in the other models, the nebula gas in model III-ab is very
nearly in Keplerian rotation. The degree of deviation from
Keplerian rotation can be quantified by

Q, — O
Q¢

where Q, is the angular velocity of the gas and Qg is the
Keplerian value. For model III-ab, values of 4Q range from

O’Q = 0.936

23)

0Q =

; 24

~1073 to ~ 1072 These values are quite similar to those pre-
viously inferred for solar nebula models (Adachi, Hayashi, &
Nakazawa 1976).

5.4. Radiative Transfer Accuracy

Stemwedel et al. (1990) have shown the possible importance
of an accurate energy budget for determining the dynamical
outcome of cloud collapse, i.e., whether rings or disks result.
They then worry that in numerical models of collapse, where
postshock cooling regions generally cannot be resolved and
where the collapsed configuration may span only a few grid
cells, shock radiation losses may be underestimated and errors
may occur in the properties of the collapsed configurations.
The present numerical models were constructed with grids
strongly compressed in the 6 direction, which should remove
the latter concern—e.g., the solar nebula models in this section
have fairly well-resolved vertical density structures, containing
~14 grid cells from the midplane to the nebula surface.
However, even the present models do not resolve the thin post-
shock cooling (thermal) layer (~10'° cm thick, Cassen &
Moosman 1981). Here we consider the question of accuracy in
the radiative transfer solutions for the present models as well
as for previous models of the solar nebula.

All viscous accretion disk models to date employ simple
relations based on radiative transfer in optically thick regions
to link temperatures at the midplane (T;,,) and surface (T) of the
disk. Pringle (1981) used T4 = 1,, T#/4, where 1,, is the optical
depth to the midplane. Cabot et al. (1987) used T2 =
(3 + 31,/ T¢, Morfill (1988) used T% = (1 + 37,/4)T?, while
Ruden & Lin (1986) and Ruden & Pollack (1991) used T4 =
3t,, T4/4 for optically thick regions, and T#% = 312, T*/(41,,) for
optically thin regions (z,, < t.,,), With 7_;, = 1.78 for Ruden &
Pollack (1991). For large optical depths (z,, = ), nearly all of
these T(z) relations yield T% — 3t,, T4/4. Evidently these rela-
tions are all based on the equation

T* = 3T + 1), (2%)
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F16. 6.—Final log density contours (a), log temperature contours (b), log midplane temperature (c), and velocity vectors (d) for the composite temperature model
III-ab. Region shown is 10 AU in radius. Density contour levels correspond to factors of 10 change, and temperature contours to factors of 1.6 change. Jagged

contours are artifacts of the plot routine. Velocity vectors are plotted at every fifth radial grid point. Horizontal line in (c)is T =

where 1, is a constant ~% (e.g., Miinch 1960; Shu 1991, p. 32).
This relation is derived for steady state, plane-parallel atmo-
spheres with gray opacities and in radiative and local ther-
modynamic equilibrium. With these assumptions, the
temperature-optical depth relation can be specified indepen-
dently of the 1tmospheric structure (Shu 1991), but this is not
generally the case. Depending on the precise value chosen for
7o, boundary temperatures derived from this relation can vary
by factors of ~1.04 (fluxes by factors of ~ 1.2) compared to the
exact solution (Shu 1991). The variations in the T(t) relation
used in the viscous accretion disk models can lead to radiative
fluxes (oc T%) that vary by factors of, e.g, 1.5 between the
Morfill (1988) and Cabot et al. (1987) relations at t =  for the
same T;.

Considering that equation (25) was derived for radiative

1500 K.

equilibrium, whereas viscous accretion disk models generally
invoke the presence of convection to generate turbulence and
hence appreciable viscosity, the use of equation (25) is not
strictly correct for a turbulent nebula where the vertical struc-
ture is affected by convective energy transport (e.g., Schwarzs-
child 1965). In such a situation the adiabatic temperature
gradient generally is more appropriate. The amount of error
introduced by this inconsistency has not been quantified as yet.
The present nebula models are largely convectively stable, so
the use of radiative equilibrium equations (i.e., the Eddington
approximation) is justified a posteriori.

The mass and momentum equations of the Rankine-
Hugoniot shock jump conditions are automatically satisfied at
any shock front in a numerical code that solves the hydrody-
namical equations in conservation law form. However, because
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the Toomre (1964) Q axisymmetric stability criterion, calculated for the midplane temperature profile of model III-ab. The model values fall well below the Q curve,
implying stability (Q > 1). Solid triangles in (b) represent surface densities assumed for Earth formation by Goldreich & Ward (1973) and for Jupiter by Lissauer

(1987).

there is no such conservation equation for the total energy,
errors in the energy budget may occur in hydrodynamical cal-
culations.

Shu (1991) points out that erroneous radiative fluxes may
arise if shock fronts are numerically spread out over more than
a fraction of a photon mean free path. For the present models,
the IR photon mean free path A = 1/kp ~ 10'® cm at the disk
surface, whereas the vertical grid spacing is ~10!'% cm there,
suggesting that the radiative fluxes from the present models are

_4[¥_FII|IIIlTTIII’II[I|IIIIv{
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FiG. 8.—Dependence of gas pressure on temperature for the midplane of
the composite disk model (C), for the adiabatic relation (y = 5/3) used to
generate the initial models (A), and for a generic viscous accretion disk model
(M) from Wood & Morfill (1988).

adequately resolved. The radiative fluxes are dependent on the
mean intensity J, and J varies smoothly throughout the disk,
dropping to much lower values at the disk surface (similar to
the temperature contours).

Stahler, Shu, & Taam (1980a) describe the detailed thermal
structure expected for a protostellar accretion shock, and show
that optically thin preshock regions produce shocks that
radiate with an effective temperature T, &~ 1.07T;, where Tj is
the postshock gas temperature. Given that a multidimensional
numerical code may not have enough vertical spatial
resolution to be able to distinguish between T and T; at the
disk surface, errors in the surface radiative fluxes could be as
high as factors of 1.07* = 1.3. Section 5.2 showed that the mid-
plane temperatures in the present models are fairly insensitive
to changes in the global radiative flux by a factor of 1.3. The
energy generated at the disk surface is largely lost anyway, and
more important for midplane temperatures is the energy pro-
duced within the disk by disk contraction fueled by the addi-
tion of mass from the infalling halo.

In this context it is interesting to note that the effective
temperatures (where © = %) for model I1I-ab viewed along the
rotational axis are about 200 to 350 K, at 4 to 1 AU, respec-
tively (Boss & Yorke 1993). The effective temperatures inferred
for a large sample of circumstellar disks at distances of 1 AU
from their central young stellar objects range from about 100
to 400 K (Beckwith et al. 1990). The spectral appearance of the
composite model ITI-ab is considered by Boss & Yorke (1993).

6. CONCLUSIONS

The sequence of three sets of solar nebula models shows that
increasingly realistic models of the formation phase of a proto-
planetary disk orbiting a solar-mass protostar can be con-
structed and used to determine the thermal structure and other
properties of the disk. The third and most realistic set of
models shows that a minimum mass (~0.02 M within 10 AU)
protoplanetary disk undergoing mass accretion at a rate of
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~107°-10"° Mg yr~! will have midplane temperatures
greater than ~ 1000 K inside 2.5 AU and over 1400 K at 1 AU,
while falling to ~ 100 K outside 5 AU. While completely inde-
pendently derived, the calculated model temperatures seem to
agree well with interpretations of cosmochemical evidence in
favor of moderately high maximum temperatures (~ 1300 K)
in the inner solar nebula (Larimer & Wasson 1988; Palme &
Boynton 1992), as well as with the lower temperatures (~ 100
K) required at 5 AU and beyond in order for the icy com-
ponent of the nebula to be able to participate in planetesimal
accumulation at an early phase of nebula evolution (Stevenson
& Lunine 1988; Wetherill 1990). Because of the strong depen-
dence of the temperatures in the outer nebula on the boundary
conditions, the models do not make a firm prediction of tem-
peratures at 10 AU and beyond and so cannot yet be com-
pared to the cometary evidence (Mumma et al. 1992).

The particular density profile chosen for the third set of
models leads to a surface density (¢ oc r~ 1/?) which is compat-
ible with the high nebula surface densities needed at 5 AU and
beyond in order for Lissauer’s (1987) runaway accretion sce-
nario to occur. In this scenario, giant planet formation occurs
through the rapid (~10° yr) formation of ice-rock cores that
subsequently accrete gaseous envelopes. How the nebula could
have reached this surface density profile has not been studied
here and remains as an important question for the future;
Ruden & Pollack (1991) show how a convectively driven accre-
tion disk may even lead to rising profiles (¢ oc r'/?).

The primary source of heating in these models is compres-
sional energy derived from the collapse of the residual molecu-
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condition on the temperature, mass accretion onto the proto-
star. To the extent that other sources of heating may exist (e.g.,
viscous or ohmic dissipation, or rotational shear), the tem-
peratures obtained should thus be lower bounds. Energy trans-
port associated with convection is not a significant contributor
to these models because of their general convective stability.
Thermal energy is lost primarily through radiative losses to the
cool surroundings of the nebula. Once mass accretion onto the
nebula is terminated, the nebula will cool significantly below
the calculated values. It is not yet known to what extent solids
derived from the mass-accreting nebula phase and those from
the following (cooler) phases contribute to the formation of
planetesimals and asteroids.

The composite midplane temperature profile (Fig. 5b) is
similar to that derived by Cassen (1992) using observations of
young stellar objects, except that model III-ab is somewhat
cooler throughout (e.g., in the Cassen 1992 model, T = 100 K
falls well outside 10 AU). A separate paper (Boss & Yorke
1993) demonstrates that model III-ab, when combined with a
disk model similar to that used by Adams, Emerson, & Fuller
(1990), yields a remarkably good fit for the entire spectrum of T
Tauri N and its protoplanetary disk.

I thank Pat Cassen, Herbert Palme, John Wasson, and
George Wetherill for stimulating discussions about nebula
properties. The referee provided valuable comments on the
meteoritical evidence. The calculations were performed on the
HP/Apollo DN-10040 workstation of the Carnegie Institution
of Washington. This research was partially supported by

lar cloud core onto the protoplanetary disk, leading to National Aeronautics and Space Administration grant
contraction of the disk itself, and, through the inner boundary NAGW-1410.
APPENDIX

We desire an analytical expression for the vertical hydrostatic equilibrium of an adiabatic (p = Kp”), self-gravitating disk with
arbitrary thickness, in near-Keplerian orbit about a central point mass (M,). An exact expression for such a configuration does not
exist, but in this Appendix we use a combination of two analytical expressions for similar configurations in order to approximate the
desired structure. We then suggest a particular choice for the radial variation of the disk.

Al. KEPLERIAN DISK

Here we find the vertical equilibrium structure for an arbitrary thickness, adiabatic, non-self-gravitating disk in Keplerian
rotation about a central point mass. The radial structure is assumed to be locally constant, because with the assumption of pure
Keplerian rotation there can be no radial pressure gradient at the midplane. The equation of hydrostatic equilibrium for the vertical

direction is then

1dp

GM,Z

where R and Z are cylindrical coordinates. Using the adiabatic relation to eliminate the pressure p, we obtain

yKp' " dp = —

With the substitution x = Z2, we can integrate this equation to obtain

ot = y—1\ GM;
y K

where C is an integration constant. We specify C by defining p(Z = 0) = p,, yielding

pdZ —  (R*+Z%7° A
GM,Z
(RZ + Z2)3/2 dZ : (A2)
1
(RZ + Z2)1/2 + C ’ (A3)
y—1\GM, [ 1 1
y K [R (RZ + ZZ)l/Z:I : (A4)

PR, Zy ' =pp ! — (
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A2. SELF-GRAVITATING THIN DISK

We now derive the approximate vertical equilibrium of a thin (Z < R), adiabatic disk subject to its own self-gravity as well as that
of a central point mass. In this case the equation of vertical hydrostatic equilibrium is
1dp GM,Z

pdZ R3

where ¢ is the disk surface density, and the term containing o represents the grav1tat10na1 attraction from an infinite sheet with
uniform surface mass density. Again eliminating the pressure p, we obtain

— 21Go , (A5)

GM,Z
Kp? %dp = —< R; + 2nGa)dZ . (A6)
This equation is easily integrable to yield

bR 2y = gyt — (L) 2R (B a7

where the mtegratlon constant has again been specified through the midplane value p(R, Z = 0) = po(R). The second term on the
right-hand side arises from the self-gravity of the disk, and the third term from the gravity of the central mass point.

A3. ANSATZ DISK

Comparing the above equations (A4) and (A7) suggests a simple form which combines the physics of both configurations. Noting
that the second and third terms on the right-hand side of equation (A4) reduce to the third term on the right-hand side of equation
(A7) in the limit of a thin disk, we make the Ansatz that the vertical equilibrium structure of a fat, adiabatic disk with self-gravity and
a central mass is given approximately by

p—1 _ -1 (7= 1 2nGo(R) GM,|1 1
o (Y[ ]

Note that in the limit of negligible disk mass (¢ — 0), equation (A4) is recovered, while in the limit of a thin disk (Z < R), equation
(A7) is recovered.

A4. RADIAL VARIATION

Spemﬁcatxon of the midplane density profile p,(R) is necessary in order to complete the description of the disk. For a disk which is
exactly in Keplerian rotation, there can be no radial variation, because the resulting radial pressure gradient will produce non-
Keplerian rotation. Clearly realistic disks cannot be exactly Keplerian. Here we examine the relation between a radial pressure
gradient and nearly Keplerian rotation.

The radial equation of hydrostatic equilibrium is

ldp =, GM,R

p dR ~ (R? + Z%32°
We expand the angular velocity Q in terms of the Keplerian value Qf = GM/R3, as Q = Qg + Q', with Q' < Q. Eliminating the
pressure, we obtain to first-order in Q

dp GM\'?  GM, Z*\ 32
Kyp?'~ ZdR_2R9<R3> + 22 [1—<1+F> ] (A10)

At the midplane (Z = 0), we have simply

(A9)

dR R?

If we now impose the restriction that Q' < Qg everywhere in the disk (i.e., that the radial pressure gradient does not dominate
centrifugal acceleration anywhere in the disk), then we find

Kyp' 2 dp

Kyp'~ 2 4p 2RQ(GM) . (A11)

RQZ . Al12
2 dR < (AL2)
If the density is expressed as a power law p oc R ™%, then equation (A12) can be satisfied everywhere provided that
a= L , (A13)
y—1

so that the choice of the adiabatic exponent y then determines the exponent for the radial density profile.
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