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ABSTRACT

A new numerical technique for following the evolution of collisionless matter under the influence of gravity
is proposed. Matter is modeled as a Schrodinger field obeying the coupled Schrodinger and Poisson equa-
tions. The de Broglie wavelength, 1,5, associated with this field enters as a free parameter and is tuned
according to the specifications of the simulation one is doing. In the limit 45— 0 (a limit which would
require infinite computing power) the equations reduce to the coupled Vlasov and Poisson equations as they
should. Our method can handle multiple streams in phase space and is competitive in terms of computation
time with particle-mesh N-body simulations. Results from a simple one-dimensional collapse of a self-
gravitating object as well as a two-dimensional simulation of a cold dark matter universe are used to illustrate

the viability of the technique.

Subject headings: dark matter — galaxies: kinematics and dynamics — methods: numerical

1. INTRODUCTION

The successful theory of large-scale structure will involve
knowledge of both the initial conditions at the time structure
formation begins and the set of physical laws that evolves this
initial data forward in time. In practice, the numerical tech-
niques used to follow the evolution of a model universe can be
just as important as the physics that goes into the model.
Indeed, for many theories the physics is extremely simple. Con-
sider, for example, the cold dark matter and hot dark matter
scenarios. In either case, one assumes an Einstein-de Sitter
universe with the bulk of the mass density (90%-99%) in a
collisionless dark component. One also specifies the initial
spectrum of density fluctuations: essentially the positions and
velocities of the particles. The problem is in finding a scheme
for evolving the initial conditions forward in time. Clearly it
would be ridiculous to follow individual particles: if dark
matter is some elementary particle of mass m, then there will be
~10%8 (m GeV ~!) particles in a single galaxy. Even if the dark
matter “particles” are brown dwarfs, they will still be far too
numerous to follow individually.

The problem simplifies if one models dark matter as a con-
tinuous fluid in phase space where the graininess of the particle
distribution is smoothed out. This description is valid so long
as the structures of interest are larger than the interparticle
spacing and the timescales of interest are short compared with
the two body relaxation time. Fortunately, both of these condi-
tions are satisfied for nearly all forms of dark matter con-
sidered to date.

A collisionless fluid obeys the Vlasov equation or collision-
less Boltzmann equation:
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(Binney & Tremaine 1987). f(x,v)d>xd>v is the number of par-
ticles in the six-dimensional phase-space volume element
d3xd?v centered on the point (x, v), and V = V(x) is the gravi-
tational potential. Three approaches exist for solving this
equation: “phase-space methods” which evolve the (smooth)
distribution function directly in phase space (White 1981; Fuji-
wara 1981); N-body (or particle) simulations in which N ficti-
tious superparticles are used to provide a statistical description
of the distribution function (Hockney & Eastwood 1988); and
fluid methods in which the first few moments of the collision-
less Boltzmann equation (typically mass conservation and
Euler equations) are solved using standard techniques for
numerical hydrodynamics (Peebles 1987).

Each of these techniques has advantages and disadvantages.
In N-body techniques, which are by far the most popular in
astrophysics and cosmology, N “superparticles” are chosen
with random positions and velocities taken from the initial
distribution function, thereby providing a statistical coverage
of the distribution function. The particles are then evolved
according to Newton’s Law, and their final positions and velo-
cities are used to approximate the final distribution function.

Phase-space methods work directly with the distribution
function f(x, v). In addition, by describing dark matter as a
continuous field (which for all intents and purposes it is!) they
avoid two-body relaxation effects which can limit N-body
simulations. Phase-space methods have seen very limited
success, in part because of the large number of dimensions in
phase space and in part because distribution functions in
general develop fine-grained structures which are difficult to
follow numerically. (See Rasio, Shapiro, & Teukolsky 1989 for
a discussion of phase-space methods and their limitations.)

Peebles (1987) has used a pressureless fluid model to study
the growth of nonlinear density perturbations in an expanding
universe. The mass conservation and Euler equations for the
density and velocity fields are evolved numerically and com-
pared with analytic and numerical N-body results. As with
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phase-space methods, matter is treated as a continuous field.
The model can describe cold collisionless matter where the
velocity dispersion of the particles is negligible and where there
are only single streams in phase space. However, since the
velocity field is single-valued, the model is unable to handle
“hot” systems where there is a nonnegligible velocity disper-
sion. In addition, the method fails as soon as orbit crossing
(multistreaming) occurs.

Our goal here is to find a model for collisionless matter that
(1) describes matter as a field rather than particles, (2) is a
function only of the three spatial coordinates and time, (3) can
follow multiple streams in phase space as well as hot collision-
less matter, and (4) is competitive with N-body techniques in
terms of computation time.

Our approach is to describe collisionless matter as a Schro-
dinger field yY(x, t) obeying the coupled Schrodinger and
Poisson equations:
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where  has units of (density)'/? and should be thought of as a
classical field rather than the wavefunction for a single particle
as in quantum mechanics. (We set ¢ = 1 but keep factors of 4.)

The validity of this approach, which will be established in
detail below, follows from the equivalence between the classical
mechanics of point particles and wave mechanics in the geo-
metric optics limit, with the squared modulus of y correspond-
ing to the density of matter. An interesting difference between
this and the more standard approaches is that here y(x, t)
encodes both position and momentum information in a single
position-space function. Phase-space information can be
extracted from y(x, t) by constructing a “Schrodinger ™ dis-
tribution function, #(x, p, t). To compute Z(x, p, t) we multi-
ply ¥ by a window function of width # centered on x, take the
Fourier transform, and then square the result. Below we show
that the Schrédinger distribution function obeys an equation
approximately equal to the Vlasov equation provided that
Aaes € 1 < L, where L is the typical spatial scale of interest,
A4.8 = B/mo is the “de Broglie wavelength,” and the typical
“velocity ” of the field is v ~ | Vi//(0y//0t)|. Finally, we require
Z4en = d, where d is the grid spacing for the simulation.

A limit on the accuracy with which one can follow the evolu-
tion of collisionless matter is given by the resolution in phase
space, (Ax Av)®. Consider a virialized system of size L with
velocity dispersion o. In a Schrédinger code, the spatial
resolution is Ax ~ 7, while the resolution in velocity space is
Av ~ od/n. The resolution in phase space is then (Ax Av)® ~
0>’/Ng, where Ng = (L/d)* is the number of grid points in the
simulation.

For a phase-space code the resolution in position space is
Ax ~ L/N,, where N, is the number of grid points for a given
direction in position space. Likewise, Av ~ 6/N,, where N, is
the number of grid points for a given direction in velocity
space. Ng = N, N7, and we see that phase-space methods will
have roughly the same accuracy for a fixed number of total
grid points. Similarly, in an N-body simulation, the expected
resolution in phase space is (Ax Av)> ~ ¢2I3/N, where N is the
number of particles used in the simulation. In particle-mesh
(PM) codes, the lattice used to calculate forces has N grid-
points, and again (Ax Av)® ~ ¢*I?/N. Thus, in each case, the
resolution for a given number of particles or grid points is the
same.
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Another important consideration is the timestep required
for accurate integration of the equations of motion. In the
Schrodinger method, the timestep will be At~ Y/ ~
mh/p* ~ J4.p/v, which is just the time for a particle of velocity v
to cross a spatial resolution element, so again we would expect
the necessary timestep to be similar for PM and Schrédinger
methods. Though PM and Schrédinger methods provide
roughly the same resolution in phase space for a fixed amount
of computer power, the two methods are based on entirely
different assumptions and are therefore subject to different
systematic errors.

2. MOTIVATION AND JUSTIFICATION

There are a number of ways to motivate the Schrodinger
model, the most concrete of which will be discussed below. A
more heuristic approach though comes from first considering a
coherent scalar field, such as axion, as a potential dark matter
candidate. Axions provide a curious example of dark matter.
They are extremely light (the favored axion has a mass of
m, ~ 1073 eV) yet nonrelativistic, essentially because they are
born in a zero-momentum Bose condensate. Nevertheless,
axions should behave like any other dark matter candidate.
However, the favored axions moving in the gravitational field
of a galaxy or cluster would have a de Broglie wavelength of
~ 10 m, making it unreasonable to follow them if we are inter-
ested in galaxies and clusters. Instead, we can follow a fictitious
superlight particle whose de Broglie wavelength is smaller than
the scales of interest but not so small that it becomes prohibi-
tively expensive in terms of computer time. To put things in
perspective, with N-body simulations, we use too few super-
heavy particles, whereas here we are using too many superlight
particles.

A classical scalar field obeys the coupled Klein-Gordon
(K-G) and Einstein equations:

2
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For nonrelativistic fields (| Ay/i) | < 1) we can write
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where  is a slowly varying function of time in the sense that
|myr| > |hoy/ot |. (This is an excellent approximation for dark
matter axions.) For weak gravitational fields, only the New-
tonian potential enters into the metric. The Schrédinger and
Poisson_equations follow by direct substitution where we
neglect i terms.

The K-G equation was originally introduced to describe a
single relativistic quantum-mechanical spin-zero particle. To
describe a large number of ¢ particles we should really
“second-quantize ” the K-G equation, which then becomes an
equation for the evolution of field operators with appropriate
commutation rules. However, in the limit of very large
occupation numbers, the classical description of equations (3)—
(5) is adequate. Likewise, the Schrodinger approach can be
interpreted as a classical wave equation.

The Schrodinger approach is by no means limited to the
case of spin-zero bosons. To see the validity of the model in a
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more general context, consider a phase-space representation of
. In this work we use the coherent state or Husimi representa-
tion (Husimi 1940). Let

1 1/2 1 1/4
Y(p, x, t) = (ﬂ) (n_'72>

X Je—(x—x’)2/2y,2-ip(x’—x/Z)/hw(xr, t)dx’ , (6)

where # has units of length and roughly gives the resolution in
position space. (For now, we consider one coordinate or two
phase-space dimensions. The generalization to higher dimen-
sions is straightforward.) The quantity

Zp, x, )= ¥p, x, DI ™

gives the density of the Schrodinger field in phase space. By
direct calculation one finds that
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(Skodje, Rohrs & van Buskirk 1989), where again L is the
typical scale for spatial variations in the system and P is
the typical momentum. Therefore, # obeys the collisionless
Boltzmann equation so long as the last two terms on the right-
hand side are small, that is, A4.; < 7 < L, where 4.5 ~ h/P.
Note that the extra terms on the right-hand side vanish in the

limit # — 0 so long as the aforementioned conditions are satis-
fied.

3. DOING SIMULATIONS

We first describe how one constructs a wave function 1(x)
corresponding to a given distribution function f(x, p). (Again
we focus on one spatial dimension.) Consider the Ansatz

1 N? :
Ylxi) = ﬁ ”go V f(xip,)e™ "R, , ©)

where p, = 2nhn/NA and x, = kA are grid points in a discrete
phase-space lattice, N is the number of lattice points in posi-
tion or momentum space, and R, is a complex random number
with (| R|> = 1. We wish to show that

F(x, p) ~f(x, p), (10)
where # = |¥(p, x)|? and

1 1/2 l 1/4
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The key assumption is that f'is slowly varying in p and x in the
sense that | df/op| < n f/h and | df/0x| < f/n. These conditions
allow us to take f(p,, x,) = f(p, x). Doing the x-transform we
find
N-1
Z Rnel'zlr-x/he—(prp)zrlzllﬁ2
n=0

n
\/ nhN
The term in parentheses is a real random function of p and x
with correlation length 7 in x and #/5 in p and with average

Z(x, p)=<

>f(P, x). (12)
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value 1. Therefore, f and & are effectively equivalent when
averaged on scales greater than # in x and #/y in p. Figure 1
(Plate L3) gives the wave function y(x) and the corresponding
function Z(x, p) for the distribution function f(x, p)=
e~ X*x02 = p2/po?,

The situation is somewhat different with cold dark matter.
There, the velocity dispersion is negligible, and the distribution
function is a three-dimensional surface in six-dimensional
phase space. Suppose orbit crossing has not yet occurred. The
distribution function can then be described by the density and
momentum fields p(x) and p(x) and the Ansatz for the wave
function is

Y(x) = \/p(x) 7", (13)

where V6(x) = p(x). The Ansatz works so long as p(x) and 6(x)
are slowly varying functions. We can take p(x’) = p(x) and
0(x") = 6(x) + (x’ — x)V, 0. Substituting into equations (6) and
(7) we find

_n
Jnh

In the limit A/ — 0, # = p(x)d(p — AVH) as it should. For finite
h/n, & is proportional to a Gaussian in (p) of thickness #/.

It is convenient to write our equations in terms of the dimen-
sionless quantities y = x/L, t = t/T, and y = (4n/p)'/*}, where
L and p are the typical size and density of the system of interest
and T = 1/(Gp)*'? is roughly the timescale for collapse. The
Schrodinger and Poisson equations then become

f(x, p) = p(x) e—(p—tha)Z;,Z/hz ) (14)

2i$%-—-V§x+2:Z’2U(y)x ViU = yx*, (15)
where ¥ = mI?/hT. % is roughly the ratio of the size of the
system to the de Broglie wavelength and is typically ~N, and
¥, 7, and y are of order unity.

The Schrodinger equation is solved numerically using
Cayley’s Method (Goldberg, Schey, & Schwartz 1967), an
implicit finite-differencing scheme. The potential field is
obtained from the density field using the fast Fourier trans-
form, just as in PM codes.

In Figure 2 (Plates L4 and L5) we give the results for a
self-gravitating one-dimensional system solved by both the
Schrédinger method and a simple N-body code. The initial
conditions are those of a “cold” system with »(x) =0 and
p(x) = p exp (—x?/I?). The length of the simulation is such
that particles near the center of the distribution make two
complete orbits, well within the regime where multistreaming
is occurring.

4. COSMOLOGICAL SIMULATIONS

Consider now an Einstein-de Sitter universe dominated by a
nonrelativistic ¥ field. Since we are dealing with weak gravity
and nonrelativistic fields, only the Newtonian potential (in a
Robertson-Walker background) enters the field equations. We
find

Loy h?
ih il V3 + mV(r)y
4nG
VIV = T gy — ) (16)

where a(t) = (t/t,)*" is the Robertson-Walker scale factor, t, is
the current age of the universe, and we have set a(t,) = 1.  has
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FIG. 1.—%(x, p) calculated from the Ansatz equation (9) using equations (6) and (7). N = 2048 gridpoints were used, and we have taken n = (1/2nN)'/? ~ 0.0088.
If the distribution function were instead mapped with particles as in B-body simulations, then there would be approximately 10 particles in the circle shown on the

plot.
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FIG. 2.—One-dimensional collapse using Schrédinger (a) and N-body (b) methods with 2048 gridpoints and 2048 particles,
distribution function (eq. [6] for the Schrodinger code). Time T is mea
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sured in units of the orbit time for particles close to the center of the distribution.
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been scaled by a factor =¥ so that {yy*) = pa® = p, is the
critical density. Writing equation (16) in terms of the dimen-
sionless quantities y = x/L, x = (6nGt3)'*y, and U =
3t aV /212, we find

4P 0y

'3 Glna
where Z = ma'?I2/ht, and L is the comoving size of the box
used for the simulation. In Figure 3 (Plate L6) we show results
for a two-dimensional cold dark matter universe. Simulations
using identical initial data (a = 0.04, p/p ~ 0.1) were done
using the Schrédinger code discussed here and with a PM code

2

U=y*—1, (17)
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(Kates et al. 1991). Figures 3a and 3b are for a = 0.48. In the
Schrodinger simulation, we plot | |> where in fact, if we are
interest in p, we should be plotting { #(x, p)dp. We show |y |?
to illustrate multistreaming (ripple effect along sheets). Compu-
tation time was comparable, with the Schrodinger method
being slightly faster.
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