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ABSTRACT

We consider the effects of a finite velocity on the properties of atoms in the strong magnetic field character-
istic of neutron stars. Whereas in the absence of significant center-of-mass velocities the atomic structure is
determined by the cylindrical symmetry, the electric field induced by the finite motion breaks this symmetry
and distorts the atomic structure. The resulting dependence of the total energy on a generalized momentum of
the atom can be interpreted in terms of a mass anisotropy—the atom becomes “heavier” when it moves
across the magnetic field, the transverse mass being higher for the more excited states. The field-dependent
mass anisotropy, together with the field dependence of the binding energy of the atom, leads to a bending of
the trajectories of neutral atoms in nonuniform magnetic fields, tending to channel and retain them in regions
of high field. It also leads to a number of thermodynamic and spectroscopic effects. In particular, the mass
anisotropy introduces both quantitative spectroscopic changes relative to the stationary magnetized atom,
such as additional shifts and broadening of photoionization edges and lines, as well as qualitative changes,
such as new selection rules for radiative processes and for the annihilation of magnetic positronium. The ion-
ization balance of atoms and ions in pulsar atmospheres may also be strongly influenced, which together with
the opacity changes could lead to effects of significant importance for the modeling of neutron star atmo-

spheres in magnetic fields of strength B = 10° G.

Subject headings: atomic processes — magnetic fields — pulsars: general — stars: neutron

1. INTRODUCTION

The structure of atoms at rest in a magnetic field § = hwp, /4
Ry = B/4.7 x 10° G is of great astrophysical interest. In the
usual (stellar atmosphere or laboratory) case f < 1 one obtains
the well-known Zeeman effect as a perturbation of the non-
magnetic atomic structure, which does not significantly distort
the geometry of the atom. In the strong (e.g., pulsar) case g = 1,
the structure of the atomic levels is entirely different from the
Zeeman scheme, and the atom acquires a definite cylindrical
structure (e.g., Ruderman 1974; Canuto & Ventura 1977;
Herold, Ruder, & Wunner 1981; Mészaros 1992 and references
therein). However, most of the previous work on the strong
field case neglects the fact that if the motion of the atoms is
taken into account, a transverse electric field E = (v/c) x B
appears in the rest frame of the atom, which if sufficiently
strong will distort the eigenfunction and energy spectrum, and
will break the axial symmetry of the problem.

A first important step in this problem was taken by Gor’kov
& Dzyaloshinskii (1968), who found an integral of the motion
P of the neutral two-body system in a magnetic field that plays
the role of the momentum of the system. They also suggested
an approach to separate the center-of-mass motion and
obtained a Schrodinger equation for the relative motion. Some
general mathematical aspects of this problem were further
explored by Avron, Herbst, & Simon (1978). Herold et al.
(1981) considered the two-body problem in the special case of a
harmonic interaction between the particles and analyzed the
effect of the finite proton mass on the energy spectrum of a
hydrogen atom moving parallel to the magnetic field (P, = 0).
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Vincke & Baye (1988) obtained the first quantitative results on
the spectrum of the hydrogen atom moving across the mag-
netic field. They applied the perturbation approach, which
leads to a quadratic dependence of the energy correction on
P,, and calculated the field dependence of the effective
“transverse” mass of the atom for the four lowest tightly
bound levels. As a zero approximation, they used wave func-
tions and energies of the fixed atom calculated with a varia-
tional method.

Although the perturbation approach is valid only for trans-
verse atomic velocities that are not too high, it allows one to
understand many qualitative effects of the atomic motion that
are important for astrophysical applications. The anisotropy of
the atomic mass in a magnetic field should obviously lead to
qualitative differences in the kinematics of the atomic motion,
change the thermodynamic properties of plasmas in neutron
star atmospheres (e.g., ionization equilibrium), and give rise to
new spectroscopic effects potentially important for the inter-
pretation of soft X-ray/UV/optical observations of neutron
stars. These effects and their astrophysical implications have
not been discussed so far.

In the present paper we extend the investigation of the
physics of the atomic motion in magnetic fields, both qualit-
atively and quantitatively (§ 2). In particular, we investigate the
dependence of the transverse atomic mass on the magnetic
field, not only for the tightly bound levels but also for the
hydrogen-like levels, making use of numerical solutions of the
Schrodinger equation for a fixed atom. We consider also the
motion of positronium in a magnetic field, which represents a
special case due to equality of the e™ and e~ masses. We then
discuss different macroscopic consequences of the anisotropy
of the atomic mass (§ 3), both in general and for pulsar
environments. The applications of these results to specific
astrophysical problems are discussed in § 4, including possible
observational consequences.
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2. QUANTUM MECHANICS OF MOVING MAGNETIZED ATOMS

2.1. Generalized Momentum of a System of Charged Particles

To treat the N-body problem in a magnetic field, it is neces-
sary first to search for appropriate conserved quantities. The
velocity of the center of mass is not an integral of the motion,
in this case. This can be seen by considering the kinetic
momentum operator in a magnetic field for each particle i

;= p; — (e/c)A(r) @1
which defines a total kinetic momentum for the atom
N
P, = Y &, =MR. (2.2)
i=1
where p; = —ih(0/dr,) is the canonical momentum, M =Y, m;

is the total mass of the system, R = M ™! Y, m;r, is the center-
of-mass position. Using the Hamiltonian operator

N
H=Y =+ V(@y,...ry, (2.3
i=1

one sees that the commutator of the total kinetic momentum

operator and of the Hamiltonian does not vanish,
p 1 3 € .
Pkin=.—[pkimH]=z_niXB9 (24)

ih T m;
and therefore P,; (or R)is not a conserved quantity.
However, it is possible to define a total generalized momen-
tum P through

pop +§ﬁ3x,_z<A G g4 )
= Fin i = pi— i+ — Bxr,
=oc c c

e;
= p. £ B .
;(”'J’zc xr,>,

where 4; = A(r;), and the latter equality implies the cylindrical
gauge A; = (3)B x r;. This satisfies

[P,H]=0, (2.6)
so P is an integral of the motion (Gor’kov & Dzyaloshinskii
1968; Avron et al. 1978; Herold et al. 1981). In addition, the

individual components of the pseudomomentum also
commute with each other,

n A ih
[P,P]=— l; GMMB;(Z e,-) -0,

(2.5)

@2.7)

provided that the atom is electrically neutral.
2.2. Perturbation Treatment of the Neutral Two-Body System

The neutral two-body system moving in a strong magnetic
field provides the simplest example to illustrate the effects of
nonnegligible velocities. Writing

(2.8)

for the relative position vector and the center-of-mass position
of the system (subscript e stands for negative charge), we have
for the total pseudomomentum

—_ —_ -1
r=r,—r;, R=M (mere+Miri),

P=— 2.9)

The eigenfunction of the Hamiltonian, AY = E¥, and of the
generalized momentum, P¥ = P¥, can be written in a form

separating the center-of-mass motion (Gor’kov & Dzyalo-
shinskii 1968)

¥(R, r) = exp B <ﬁ + % eB x r) . R]W,(r) , (2.10)

where  p(r) satisfies the Schrédinger equation

. N . - p?

Hpyp = E'/’P , Hp=H+ Hcoupl + m .
The first and second terms of the Hamiltonian A, describe the
relative motion at P =0 and the coupling between this and
center-of-mass motion,

@.11)

H2 2 2
fy p e (1 1 R e , €
H = — —_|— —— B B L.
rel 2[J,+2C<me mi) (rxp)+8[lC2( xr) r B
(2.12a)
~ e
H gy = Me (PxB)-r. (2.12b)

The dependence of E on P allows one to determine the mean
velocity of the atom for a given P

OE
Vy)=—. 2.13
Wy =25 213)
We treat now the coupling Hamiltonian as a perturbation;
that is, we consider the energy eigenvalue and the eigen-
function to be given by a perturbation series

P2
=ﬁ+€(0)+€(1)+...; l//=l//(°)+l//m+"' (2.14)
The zeroth order terms @, € are the solutions of the
Schrédinger equation when the coupling is neglected,

Flrel 'pfc()) = GLO)wfc()) s (215)

where « is a set of quantum numbers of the unperturbed (fixed)
atom. The first-order energy correction drops out, eV =
(x| Hepupt| € = 0, due to the vanishing of the matrix element
of H,,,, between states with equal projections of the angular
momentum onto B. The first nonzero coupling contributions
are given by the second-order terms,

@@=y

K #K

<K | Houpt | KD 12
cou

O _ ¢® . (2.16)

In a strong magnetic field (f > 1), when the adiabatic approx-

imation is valid, an appropriate set of quantum numbers is

k={N,s, v}, (2.17)

where N =0, 1, 2,... is the number of the Landau level,
s=—m= —N, —N + 1, ... is the negative of the angular
momentum projection onto B, and v is the “longitudinal”
quantum number which enumerates the eigenvalues €}, of the
(one-dimensional) Hamiltonian averaged over the transverse
relative motion, HJ, = p2/2u + (Ns|(—e*/r)| Ns)>. For the
discrete spectrum (el,, <0), v=0, 1, 2,... represents the
number of nodes of the longitudinal eigenfunction with parity
(—1)". At B — oo the energies of the tightly bound states (v = 0)
grow logarithmically, —ell,, ~ (In §)*> Ry, whereas the energies
of the hydrogen-like states (v > 1) cluster around the values of
the field-free hydrogen atomic levels. In terms of the magnetic
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atomic states, the zeroth-order energy eigenvalue is given by
(Herold et al. 1981)

f}?)s v = the(N + %) + thi(N +s+ %) + 6lljl,s,v s (218)

where wy; = eB/m;c = (m,/m)wy, is the ion cyclotron fre-
quency. In the ground Landau level N =0 we then have
simply s =0, 1, 2, - -+, and the second-order terms of the per-
turbation expansion are given by

e_(2) - Z I <0SV | Hcoupl | N’S’V’> |2
> N,s'v’ €(')l - €Ns v — N'hog, + (s — s’ — N')hwy;’
(2.19a)

where the matrix elements are calculated with the zero-order
wave functions

—1s¢
Nsvd> =y (p, ¢, 5126802
<r| SV> l/’Nsv(p ¢ Z) \/ﬂ ayy N'(N n s)' e
dN
& (&% Ygnal2) , (2.19b)

in which & = p?/2a%;, ay, = (ch/eB)'/? is a characteristic mag-
netic length, and gy,(2) is an eigenfunction of the one-
dimensional Hamiltonian AJ},. With the aid of the well-known
expressions for the matrix elements of cyclic projections of the
radius vector (see, e.g., Potekhin & Pavlov 1993) the second-
order energy correction (eq. [2.19a]) can be computed to be

i
€(2) = — m tho
[ (S + 1)Igsv;o,s+ 1,v' _ SI(ZJsv;O,SA 1,v’
Xosv — XO,s+ 1,v’ + thi XO,s—l,v’ — Xosv + thi
1(2)sv 1,s—1,v
, (2.20)
Xosvy — X1,s—1,v + hwﬂe

where we have used the definitions

ANsy = _€I|\|Isv s> Wpgo = BB/MC = (me/M)wBe P (221)
and the overlapping integrals I are given by
IOsv,N's’v’ = J‘ dz ggsv(z)gN’s’v'(z) . (222)

Note that these differ from zero only if v and v’ have the same
parity. The total energy corresponding to an eigenstate
{N=0,s,v}is

P2 P2

Eo(P) = €2 ;
Osv( ) €0sv+2M+2Ms+v

(2.23)

where in the last term we have defined the perpendicular com-
ponent of the mass of the atom, M2, as

<_A_4_s_§>—l — ﬂ — 1 _ hw x Z [ (S + I)Igsv;o,s-#l,v'
M = #o Xosy — Xo,s+1,v + hwp;

2
SIOsv;O.sl 1,v

XO,s—l,v' — Xosv + thi
) £ TP
+ Osv;1,s—1,v ] (224)
Xosv — Xl,s—l,v’ + the
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It follows from the completeness property of the eigenfunctions
g Nsv(z)’

Y. GR@gnsl2) = 8z — 2) , (2.25)

that
Z IOsv N's'v' =

With the aid of this relation, equation (2.24) can be trans-
formed as follows:

2 2
ﬂ—l _ 2 {ﬁ [(S + 1)10sv;0,s+ 1,v’ SIO.sv;O,s—l,v' ]
sV T i i
v M aOsv;O,s+ 1,v’ + 1 aO,s—l,v';Osv + 1

me 1(2)sv;1,s—1,v’ }
t e (>
M agsv;l.s—l,v' + 1
where a§y, oy = hwpe pi/(Xosy — Xnsv)- If one formally lets
B - o, the coupling integrals simplify, I'og,.x' 541, — 0,y and
ae,.n.s+1,y > 1, 50 that in this limit the mass anisotropy ratio
Hg, = 0. In the opposite limit of comparatively low magnetic
fields, agq, n+sv <€ 1, the anisotropy is very small, p,, ~ 1.

To calculate the longitudinal energies and overlapping inte-
grals for arbitrary m; and m,, one can use these quantities
calculated in the well-investigated limit m; — oo, together with
the scaling laws (cf. Wunner, Ruder, & Herold 1981a),

XNsv(B) = j'XNsv(B/j'zﬁ m; — OO) >
INsv.N’s’v’(B) = INsv,N’s’v'(B/j}’ m; = CD) ’

where 4 = m;/M.

The perturbation approach is justified as long as |e@,| <
| A€l |, where Ael), is the distance between the level {Osv} and
a closest level admixed by the perturbation Hamiltonian

H - With the aid of equations (2.20) and (2.27), this condi-
tion can be rewritten as

(2.26)

(2.27)

(2.28a)
(2.28b)

<o
2M l -1

in terms of the “kinetic energy” of the transverse atomic
motion.

= Kmex | (2.29)

2.3. Mass Anisotropy of the Moving Hydrogen Atom

For the hydrogen atom (m, < m,) one can neglect the second
term in the curly brackets of equation (2. 27) and put m; ~ M.
Besides, at high magnetlc fields one has I3,,.0+1,,~ 1 and
I%.0s+1.v <1 for v #v. For instance, the calculations
carried out with codes described by Potekhin & Pavlov (1993)
show that 6 x 1073 < (1 — I3y0 010) <2 x 1072, 1.6 x 1074
< ogo12 <2 x 1073, 3 x 1075 < I200 014 <4 x 1072, etc,
for 10* > B > 50. This means that the sum over ' is deter-
mined mainly by the term V' = v, in which we can replace
130y.01y = 1,50 that

s+ 1 s
iusv = i + 1 - i + 1
A0sv;0,5+1,v A0,s-1,v;0sv

In particular, if the atom is in one of the levels with s =0,
including the ground one (s = 0, v = 0), we obtain

>_1 . (230

hwg;

foy =1+ (2.31)

Xooy — Xo1v

To calculate the transverse atomic mass with these simplified
equations, one needs only to know the energy spectrum of the
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atom at rest, which has been investigated thoroughly in many
papers. We have verified that, e.g., for the ground level, equa-
tion (2.31) gives an accuracy of at least 5% at 50 < § < 10%,
compared to the more accurate equation (2.27). The numerical
results discussed below were obtained from equations (2.30),
(2.31), with the energies calculated in earlier papers (Rosner et
al. 1984; Simola & Virtamo 1978) for B < 1000, and those
obtained with our adiabatic code (Potekhin & Pavlov 1993) for
B > 1000.

The dependence on the magnetic field of the transverse
atomic mass in the s = 0 band is shown in Figure 1. We see
that the transverse mass grows monotonically with increasing
field strength for all the levels. It is much higher when the atom
is excited to the hydrogen-like levels (v > 1) since the ioniza-
tion potentials yo,, and yo,, are much closer to each other.
However, in magnetic fields typical of neutron stars the anisot-
ropy is not small, even for the ground level (4o, ~ 1.15-1.8 for
B = 10'2-10"'3 G). The field dependence of the anisotropy for
the ground level can be understood from the well-known
approximations (e.g., Canuto & Ventura 1977) o, ~ RyIn? g,
and Y00 — Xoio ~ RyInf  which yield jpoo—1~
4(m,/m;)(B/In B). The magnetic effect on the mass is stronger for
odd hydrogen-like states than for even ones. The reason is that
the energies of the odd states are much closer to the corre-
sponding field-free hydrogen levels, and the distances between
the adjacent odd levels, x90, — Xo1,, are much less than for the
even ones. Approximations for the quantum defects obtained
by Hasegawa & Howard (1961) allow one to estimate ug, ~
(m,/m)v*B1n? B and u,, ~ (m/m;)v>p*1n? B for even and odd v,
respectively.

The mass anisotropy ratios for the four lowest tightly bound
states (v = 0) are plotted in Figure 2. They also increase with
the field and with the quantum number s. These dependences
(for p < 500) have been calculated previously by Vincke &
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F1G. 1.—Dependence of the transverse mass of the hydrogen atom (in units
of the field-free mass) on the magnetic field for different longitudinal levels v
(figures near the curves) on the s = 0 band.
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F16. 2—Dependence of the transverse atomic mass of the hydrogen atom
on the magnetic field for tightly bound levels (v = 0) with different s (figures
near the curves).

Baye (1988) with a much more complicated version of the per-
turbation approach.

The limiting kinetic energy of the transverse atomic motion
for which the perturbation treatment is still valid can be esti-
mated from equations (2.29) (with Aef), = Xos — Xo.s41.v

+ hwpg;) and (2.31). In particular, for the states with s = 0O the
limiting energy equals

(Xooy — Xo1v + A®ENX00y — Xo1.)

Kmax —_
Ov
hwpg;

= Yoov — Xo1v >

(2.32)

where the latter equality stands for the case hwg; > ¥oo,
— Xo1,- As an example, for f = 500 (B = 2.35 x 10'? G) we
obtain K§¢* ~ 260 eV, KT5* ~ 30 eV, KF&* ~ 8 eV, KIé* ~
0.15 eV, Kg5* ~ 0.5 eV, etc. We see that the limitations are
rather strong, especially for the hydrogen-like levels.

Of course, the same perturbation approach can be also
applied in the limit of a weak magnetic field (8 < 1). In this
case, one has the usual set of quantum numbers, x = {n, I, m}.
Thus, in the ground state (n=1, I=m=0) one has
{100]| H gy |21 + 1) ~ e(P/Mc)Ba,, where a, is the Bohr
radius, which immediately gives Mioo ~ M[1 + O(8*m,/m,)].
Exact calculations give the value

9 hwg; hwpg,
2 Ry Ry

We see that at f <1 the anisotropy remains very low,
although it grows with B faster than in the limit of very strong
fields.

oo =1+ (2.33)

2.4. The Positronium Atom

In this case we have m; = m,, M = 2m,, hwg; = hwy,, and
€\, = hwp (2N + s + 1) + €ll,,. The latter equality means that

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...416..752P

756

all the states with s # 0 are lifted above the states with N = 0,
s=0 by an energy T hwg, and are essentially metastable
(Wunner et al. 1981b, 1983). Therefore we consider only a set
|N =0, s =0, v). Making use of the relations (Hasegawa &
Howard 1961)

IN2) = GN+s,—5,(2) (2.34)

one can transform equation (2.27) for the positronium case as
follows:

stv = XN+s,—s,v )

I%O 01

-1 __ v,01v’
”Ov - Z ae + 1 .
v “00v,01v’

(2.35)

In the same approximation which we used for the hydrogen
atom, I, 01, =~ 8,,, €quation (2.35) yields

hw
oy =1+ —2e—,
Xoov — Xo1v

(2.36)

where y,,, are the negatives of the longitudinal energies for
positronium. According to equation (2.28a),

XOsv(B) = %XOSV(4B’ m; = Q)) . (237)

The field dependence of the mass anisotropy ratio for three
lowest levels of the positronium is shown in Figure 3. The mass
anisotropy is seen to be much stronger in the positronium case
than in the hydrogen atom since it does not contain the small
factor m,/m;. For example, the transverse mass ratio is pyo =~
740 for B = 500. The dependence of the mass anisotropy on the
magnetic field for the ground level can be approximately
described as pyo ~ 8f/In . The limiting energy of the trans-
verse motion equals (see eq. [2.29]) KT2* ~ 40, — Xo1.» Which
yields, for example, K3g* ~ 30 eV for § = 500.

3. KINEMATIC, THERMODYNAMIC, AND SPECTROSCOPIC
CONSEQUENCES

3.1. Mechanical Effects

When the neutral atom moves in a weakly nonuniform field
(where the typical inhomogeneity scales are macroscopic, and
the variation of the field as seen in the comoving frame is
adiabatic), the motion can be described quasi-classically, i.e.,
one can consider the mean coordinate, momentum, velocity,
etc., as functions of time and use for these the classical equa-
tions of motion. Just as in classical mechanics, one can con-
sider the generalized momentum P and center-of-mass position
R as two canonical variables which obey Hamilton’s equa-
tions,

R=0x/0P, P=—0#/0R (3.1)

where # =E + U is the Hamiltonian function, E = —y
+ P}/2M + P}/2M* = E[P, B(R)] is the previously derived
energy of the atom (y > 0 is the binding energy), and U = U(R)
is the potential of any external (nonmagnetic) forces. Then the
first of Hamilton’s equations coincides with equation (2.13),
and the second one reads

dp _ _OE
dt OR

where F = —0U/0R is the external force. The first term in the
right-hand-side of equation (3.2) is an additional force caused
by the nonuniformity of the magnetic field (we are indebted to
H. Herold for a crucial clarification on this point). For an atom
at rest (P = 0), it is directed along the gradient of the magnetic

+F, (3.2)
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F1G. 3.—The same as in Fig. 1 for the positronium atom

field magnitude, dB/6R. If the magnetic and external fields do
not vary with time, then the Hamiltonian function is con-
served, d(E + U)/dt = 0. If, for instance, F = 0, and the mag-
netic field does not change its direction in the region of the
motion, B = B(X, Y)e,, then equations (3.2) and (2.13) imply
that, along the atom’s trajectory,

V, =const, M*V} — 2y = const . (3.3)

Since M and y depend on B (see § 2.2), the latter equation
means that the transverse component of the mean velocity of
the atom may change while the atom moves in a nonuniform
magnetic field. We consider two specific examples below.

3.1.1. Refraction of an Atomic Beam

Consider an atomic beam in the X-Z plane moving adia-
batically from a uniformly magnetized region of space into
another uniformly magnetized region. Let the magnetic fields
B, and B, (B, > B,) be parallel to the Z-axis in both regions.
It follows from equation (3.3) that the beam velocities ¥; and
V, in the corresponding regions are connected by the equa-
tions

Vaz="Viz, M%V§X_2X2=M.{-V%X—2XI ,» (34
sinf, V, AM* 2Ay \ "2
272 _ 1|1 29, — 3.5
sn6, V, ( R R VIN (3.52)
AM* 20y \!?
= <1 M cos? 0, + M1 V%) , (3.5b)

where 0, and 6, are the angles with respect to the X-axis, i.c.,
the normal to the boundary (following the convention used in
optics of refractive media, not to be confused with the usual
magnetic notation where 0 is respect to the magnetic field
direction), Ay = y, — x» > 0 is the difference in binding ener-
gies,and AM* = M1 — M3 > 0.

Let us look first at a beam going from a region of stronger
field B, toward one of lower field B,. According to the second
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of equations (3.4), the beam cannot penetrate into the lower
field region at any incidence angle 0, if M} V2 < 2Ay. This
means that the kinetic energy of the beam is too low to over-
come the potential barrier formed by the difference of the
binding energies even at normal incidence 8, = 0. The beam is
reflected, changing the sign of the tranverse velocity V,y.
However, if M} V2 > 2Ay, there exists an angle of total internal
reflection 0,,

29 —

cos® 6, MIV3
such that the beam is reflected from the lower magnetic field
region for incidence angles 6, > 0, (see the trajectory a — a in
Fig. 4), but is able to penetrate through the boundary if 8, <
.. In the latter case the beam is deflected from its original
direction toward the boundary, 6, < 0, < n/2 for any 6, if
AM*V? < 2Ay (e.g, the trajectory b, —b,). If, however,
AM*V? > 2Ay, there exists a critical angle 6,,

cos? . — 20 2Ay
¢ AMYVE T AMAVE

such that the beam is deflected toward the boundary for 6, >
0. (the trajectory b, — b,), and toward the X-axis (0 < 0, < 6,)
for 6, < 6, (the trajectory c; — c,).

Consider now an atomic beam going from a region of
weaker field B, toward a region of stronger field, B,. In this
case the beam is able to penetrate through the boundary for all
angles of incidence 0,. It follows from equation (3.5b) that if
AM1 V2 < 2Ay, then 0, < 0, for any 0,. If the inverse inequal-
ity is fulfilled, we obtain 8, < 0, < 0, for 0, < 6, (the trajectory
¢, —¢;),and 6, < 8, < min (6,, 6,) for 8, > 6, (the trajectory
b, > b,).

Let us consider now the case when the beam moves in the
X-Y plane perpendicular to the magnetic field. Since J0E/
dY = 0, we have dPy/dt = 0, and

MiVy = M{Viy, MiVi=MiVi-2Ay, (38)

(3.6)

(3.7)

\\ X ,/
\\ %0//
@ IIIg n.<n I, s
Iy A oY 1,
- -
3 B B, ——3
ng>n,
Z
a
=3 B, B, ——
.
1 n,>n; b n,>n, 1
. 2
o ya cy \\\@ S
b9 XN\ SN
4 1 m, < b ™ey
//’/ Y 1 1 N AN
-7 7 n;<n, \, SN

- / \ ~

Fi1G. 4—Refraction of the atomic beams a, b, c traveling in two uniformly
magnetized regions in the X-Z plane. Magnetic fields B, and B, are parallel to
the Z-axis (B, > B,). The beam velocities, transverse masses, and binding
energies are assumed to be such that AM*V? > 2Ay, AM*V3 > 2Ay. The
angles of total internal reflection 6, and critical angle 6, are given by eq. (3.6)
and (3.7). Note that transitions of the beam are allowed only between the
regions I & I, I, & II,, and III, & III,; n, and n, are the velocity-dependent
“refraction indices ” in different regions.
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sinf, Vyy Vi (Mg 1/21 2Ay \ 712
sin 0, T \M3 Miv?

1\1/2 1/2
= <%> (1 + Ajf"iz) . (39)

2 272
The beam can enter the region of lower field B, only if
M+V? > 2Ay. If this condition is fulfilled, the beam is deflected
toward the boundary, 8, > 0;. On the other hand, the beam
can enter the region of higher field B, at any V,, deflecting
away from the boundary 8, < 6,.

These neutral atomic beam direction changes show some
partial resemblance to the phenomenon of light refraction. The
main difference is that the “ refractive index ” is not only depen-
dent on medium properties (e.g., the field strength) but also on
the velocity of the beam. For instance, in the example shown in
Figure 4, the beam moving toward the boundary in the regions
I and I1, (8, > 6.) “meets” the lower field region as having a
lower refractive index, n, < n,, whereas n, > n, for 6, <6,
(i.e., for the incident beam in the region III,). The picture is
naturally reversed for a beam entering the larger field region:
n, < n, for 6, > 6, (region II,), and n, > n, for 0, < 6, (region
IIL,).

3.1.2. Trajectory Bending in a Nonuniform Magnetic Field

Take the magnetic field to be of the form B = B(X)e,, dB/
dX > 0, and let the atom be at the coordinate origin at t = 0.
Then the conservation of P,, Py, and E yields the following
equations of motion

Z =Y, Y=V td Mo 3.10
= t, = t——, .
0z oy R MJ'[X(t)] ( )
X ML 1/2 M.L _ MJ_ V2 2A -1/2
j dX<—l> <1 L e, ) = Voxt,
0 MO M VOX MO VOX
(3.11)

where Mg = MY(X = 0), Ay = x(X) — x(0). Given the depen-
dence of B on X (and thereby M1[X] and Ax[X]), one can find
R(t) from these equations, as well as the equation for the trajec-
tory.

If Voy = V,; = 0, the motion is one-dimensional along the
X-axis. If, for instance, V,x < 0, the atom starts to move in the
negative X direction, slowing down due to a force caused by
the decreasing binding energy (Ay < 0 for X < 0). It changes
the direction of the motion at a point where 2|Ay| = M§V3y
and accelerates toward positive X. Since the transverse
mass grows with increasing B faster than the binding energy
(see § 2.3), the acceleration eventually decreases and turns into
deceleration, while the atom keeps going along the gradient
of B.

If V,y =0 or V,, = 0, the motion is two-dimensional in the
X-Z or X-Y plane, respectively. In the X-Z plane, the trajec-
tory equation is

X 1\ 1/2 -1/2
z = Yoz j dX<M—l> (1 -4 ) . (312
‘/OX 0 M 0 M ] VOX
The shape of the trajectory near the origin depends essentially
on the sign and magnitude of V. For sufficiently large ¢, the
motion along X slows down due to the growth of the trans-
verse mass so that the trajectory bends toward the direction of
the magnetic field lines, d2X/dZ* < 0, independently of the
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initial conditions. When the atom moves in the X-Y plane, it
accelerates due to the gradient of the binding energy in the X
direction and decelerates due to the growth of the transverse
mass in both the X and Y directions. As a result, the trajectory
bends toward the gradient of the magnetic field, d>X/dY? > 0.

If both V,y and V,, differ from zero, the trajectory is three-
dimensional. It bends simultaneously toward both the mag-
netic field lines and the direction of the magnetic field gradient.

The simple examples considered above illustrate some of the
general features of the atomic motion in a nonuniform mag-
netic field: the atoms tend to bend their trajectories, on the one
hand, toward the direction of the field gradient, due to a force
caused by the dependence of the binding energy on B, and on
the other hand, toward the magnetic field lines, due to the
anisotropy of the mass of the atoms. If the directions of the
gradient and of the field itself are close to each other, as in the
important case of atoms near the pole of a magnetic dipole,
then both effects conspire together to make the atoms bend
their trajectories in the same direction, i.e., toward the polar
region. It should be emphasized that such trajectory bending in
a nonuniform magnetic field is inevitable also when the atomic
motion is driven by external nonmagnetic forces.

3.1.3. Magnetic Forces in Magnetized Atmospheres

Since the energy of the neutral atom depends on the mag-
netic field, an additional “magnetic” force is exerted on the
atom in any nonuniform magnetic field (see eq. [3.2]). This
means that an additional term, proportional to the gradient of
the energy averaged over a Maxwell-Boltzmann distribution
(see § 3.2) should be added into the equation of hydrostatic
equilibrium for a magnetized stellar atmosphere. Since the
averaged energy {E) does not depend on the direction of the
magnetic field, the equilibrium equation reads

o7 _N 0(E) 0B

RPN T9B ar”
where N, is the number density of atoms. Since (E)> = {)) in
the perturbation approach, the force is proportional to the
gradient of the mean binding energy. If the typical length scale
for the magnetic nonuniformity is R,,, the ratio of the magnetic
force to the gravitational force can be estimated as

Ju _RLRy B Xp
f, GMM,R, Ry 0B
K

(ot 2 5 5

If the atoms are mostly on the ground level, then (B/Ry)(d<{x)/
0B)~2InfatB> l,and ~2B%atf < 1.

Although the magnetic force is much smaller than the gravi-
tational force (if R, ~ R,), its absolute value may be rather
high, f,, ~ 3 x 10’(N,/10%* cm~3)(10 km/R,) dyn cm~3 for
B ~ 1000. The magnitude of this force could be even higher if
for some reason Ry, < R,,, e.g., if the field is nondipole, or has a
small-scale structure induced, e.g., by migration (Ruderman
1991), thermomagnetic effects (Blandford, Applegate, & Hern-
quist 1983) or initial conditions. What is more important, it has
a component orthogonal to the gravitational force. This means
that pressure, density, and temperature in the atmosphere are
constant not at the spherical surfaces of constant gravitational
potential but at the nonspherical surfaces of constant total
(gravitational + “magnetic”) potential. For instance, in the

(3.13)

~ 1077

(3.14)
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dipole magnetic field case the tangential component of the
force is directed from the equator toward nearest pole, being
zero at both the equator and poles. This results in an increase
of the density and pressure at the poles as compared with those
at the equator at the same radius. It is well known (see, e.g.,
Schwarzschild 1958) that the heat balance in such nonspherical
atmospheres can be maintained only if there is some flow of
matter in the meridional planes, i.e., meridional circulation.

3.2. Thermodynamic Effects

According to equation (2.23), a Maxwell-Boltzmann dis-
tribution of a hydrogen gas can be written as

. 1 [P P
" e {_ kT |:2M oMt (0)]} > G

+ o P2
Z = P -l
J dPy exp ( 2MkT)

J(P) =

where

— 0

x J 2nP, dP, Y exp [—
1} K

P2 0
IMIKT ~ ﬁ]

k 3/2 M-L (0)
= T L3
(2rMKT)* 3. 7 [ kT]

K

(3.16)

is the partition function. Since we used the perturbation
approach, which is not valid at high temperatures (see eq.
[2.32]), this expression for Z can be directly applied when the
temperature is sufficiently low that only the ground level is
populated. Equation (3.15) implies that the distributions of the
atomic momenta and velocities in a given “internal” state
are anisotropic. The average values of the longitudinal com-
ponents remain the same as in the absence of a magnetic field,
while the transverse components become

Py = 2MIT > (P> (V> = JkT/ME <V}
(3.17)

Equation (3.16) means that the atomic partition function in the
magnetic field increases its value over that which would be
calculated for the atom at rest. Since the fraction of nonionized
atoms is proportional to the partition function, the ionization
degree decreases with respect to what is expected without
allowance for the mass anisotropy.

3.3. Radiative Effects
3.3.1. Changes of the Oscillator Strengths and Selection Rules

A more direct effect on the opacities is due to the fact that
the change of the wave functions due to the motion of the
atoms should change both the oscillator strengths of radiative
processes and the applicable selection rules. The selection rules
change due to an admixture of states with s’ = s + 1, which
means, in particular, that the motion allows additional tran-
sitions which are forbidden for the fixed atom (as considered
until now). Consider, for instance, the absorption of the left-
polarized quanta propagating along the magnetic field (this
polarization is responsible for the electron cyclotron absorp-
tion by free electrons) from the states with N; = 0, s; = 0. The
quanta may be absorbed only if the atom goes to a state with
s; = — 1. Such states exist only for N, > 1; that is, without
motion, the absorption is allowed only for very high
frequencies, ® > wp, — wp; + (€l _ Loy — eOva)/h wg,. This
means that at low temperatures, when only the ground state is
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populated and atoms are not ionized, the gas is transparent to
the extraordinary normal wave, which causes some (artificial)
troubles, e.g., in modeling neutron star atmosphere spectra at
UV temperatures, such as are relevant for cooling pulsars
being now observed by ROSAT. If the motion is taken into
account, the states with s = 1 are admixed to s; = 0, and tran-
sitions to N, = 0, s, = 0 become allowed. Applying the stan-
dard expression for the wave function in the first order of the
perturbation theory to general formulae for the photoioniza-
tion cross section in the adiabatic approximation (Potekhin &
Pavlov 1993), we obtain the cross section for the left circular

polarization (superscript “ — ”) given by
oo h2P2 |IOva 01v,|2 ho L
00vi—00v
s =M (hwg: + Xoov; — Xo1v)” Ve Ry ay’

(3.18)

where a = e*/hc, I, 01y 18 the overlapping integral of the
longitudinal wave functions of the initial (bound) and final
(continuum) states, €, is the longitudinal energy of the final
state, ag is the Bohr radius, and L is the normalization length
along the z-direction of the final state. Comparing this with,
e.g., the cross section for the right circular polarization from
the state {01v;} of a fixed atom (Potekhin & Pavlov 1993), we
get (for equal values of € ;)

- 2

900vi—00v, _ P hawg; - Koy,
+ - 2 max °

001v;—»00vs 4M (hwp; + Xoov — Xo1vy) Kgy:

where K,,, = P3/2Mg,. and K3** is given by equation (2.32).
Note that, when averaged over a Maxwellian distribution, the
cross section (3.18) is proportional to the temperature of the
gas.

(3.19)

3.3.2. One-Photon Positronium Annihilation

Another interesting consequence of the change of the selec-
tion rules occurs in the case of positronium, for which one-
photon annihilation now becomes possible. This process is
forbidden by the conservation of energy and momentum if the
positronium mass is isotropic (Wunner et al. 1981b). However,
with allowance for the mass anisotropy, the conservation law is

P2 P
v o e =ho, (200
P=1tq, (3.20b)

where M = 2m,, q = w/c, gives for the energy of the annihi-
lation photon

B 2m, c?
~ cos? 0 + (M/M3,) sin? 0

_ _ Xooy 2 M a2
x[l \/1 (2 m,c? >(c 0s 9+M(l)vs1n 9):|,

(3.21)

where 6 is the angle between ¢ and the magnetic field. It follows
from this that the annihilation is allowed only if

m,c? M} M
29< o 3.22
S 0% 2 — oo M- M MG, - O
which, in turn, is possible when
M XOOv
>2 - 3.23
M m, c? ( )
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The latter inequality is fulfilled even in not very strong mag-
netic fields, 8 2 1, e.g., in old millisecond pulsars. In the typical
fields of the more standard neutron stars, we have M3, > M
(see § 2.4), which leads to an obvious simplification of the equa-
tions (3.21) and (3.22). When cos 0 varies from zero to the
maximum value, the energy of the created photon increases
from 2m, c? — %00, t0 2(2m, % — Xo0,)-

3.3.3. Spectral Line Width and Photoionization Edge Changes

The atomic lines and photoionization edges suffer additional
shifts and broadening due to the magnetic mass anisotropy
Consider, for instance, the bound-bound absorption process
| 1> + hw — | 2). With allowance for the momentum conserva-
tion, P, = P, + hq, the energy of the absorbed photon obeys
the following equation:

(Pi +ha)* P2,

heo = Eo — E. = €© _ O
@ 2 1= €3 € + M M
(Pl+th)2_ Pi, ~ €@ _ O
2M% 2M, !
+P1,hwcos0+Puhwsin0005(p
Mc M3c

P (1 1

+ > (Mj Mf)’ (3:24)
where 0 is the angle between the wave vector ¢ and the mag-
netic field, and ¢ is the angle between the Bg and BP, planes.
The third and fourth terms in equation (3.24) are the modified
Doppler shift while the last term is the “magnetic” shift
induced by the mass anisotropy (or, in other words, by the
different dependences of the binding energies on the gener-
alized momentum). Being averaged over a thermal distribution
of generalized momenta P, (cf. eq. [3.15]),

1 M P2, P?,
S®) = kT Mt P <_ IMKT ~— 2MkT
the shifts becomes the modified Doppler width

MM7
Ip= \/Mz\/cos20+(Ml)zsm 6

) , (3.25)

= J(ThH? + (Th)?, (3.26)
and the magnetic w1dth is
kT M7
=—|1——]). .
| P ( ; é) (3.27)

The modification of the Doppler width due to mass anisotropy
has been mentioned by Wunner et al. (1983) who, however,
assumed M1 = M3. As a numerical example, for the states
[1>=|s=0, v=0) and |2) =|s=1, v=0) at g =500
(B = 2.35 x 10'2 G) we have € — €{® = 55 eV, M, = 1.27M,
M, =237M, hI), =047kT, hIp=0.025KkT/100 eV)'/?
(cos® 8 + 0.23 sin? 6)1/2 V. For kT = 20 eV this gives #I"y, =
9.4 eV, hl'p = 0.011(cos? @ + 0.23 sin? 0)}/2 eV, and T'y/Tp =
800.

The (normalized) line profile can be obtained by averaging
6(hw — E, + E,) over the momentum distribution,

F(w) =n"3? f due J‘ dvve ™"’
()

— o

2n
x J do 8(Aw — ul'}y — oIS cos @ + v°Ty,), (3.28)
(0]
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where

[ — e”1/h,
v= P, 2M:kT) 2.

For 6 = 0 integration yields

1 Aw T2 Aw T
F(w) = 3T, %P ( i > erfc (F_D + 2—r°—> . (3.29)

This has the asymptotic shape

R L)

fo Lo
FD 2M

J
) Awl\ (T3
1 =1
T e"p[ ( T >+(4r§,>]’

Ao Ty
L r, " or,,

Thus, while the typical drop-off half-width blueward of Aw = 0
is characterized by I',, the redward half-width is given by the
much larger Ty, which therefore dominates the total width
and is the most important broadening mechanism. At other
angles 0 the profile has a similar asymmetric shape, its mag-
netic width being independent of 6 and the Doppler width
decreasing gradually with increasing 6.

Analogous considerations are applicable to the case of
bound-free (photoionization) edges. Since atoms in highly
excited states have very large transverse mass (in other words,
the lower boundary of the continuum is independent of P), we
can put M3 — o in the above expressions for the widths,

[2kT kT
I'p=w I\—/I?COSG’ I"M=7.

This means that the edges are broadened mainly redward, with
a typical width I',.

Aw=w— u= P ,2MkT) ',

if Aw >0,

F(o) = (3.30)

if Aw <O, >1.

(3.31)

4. DISCUSSION AND ASTROPHYSICAL APPLICATIONS

The effects of a finite velocity on the structure and properties
of neutral atoms and ions in a strong magnetic field discussed
here are of potentially significant importance for the atmo-
spheric structure, energy balance, and spectral properties of
neutron stars, in particular isolated cooling neutron stars,
radio pulsars, and accreting X-ray pulsars. The perturbation
method used to describe these effects is valid only within a
range of (relatively low) temperatures (see eq. [2.32] and esti-
mates below). However, it has the advantage of being signifi-
cantly simpler than a nonperturbative approach, and it is
amenable to a quantitative solution of the problem in analytic
form, allowing the investigation of a number of interesting
departures from the previously known lore of atomic physics
in pulsar atmospheres.

The main microphysical effect that the allowance for atomic
motion induces in the (strongly magnetized) atom is an effec-
tive anisotropy of the mass between the directions parallel and
transverse to the magnetic field. This is caused by the fact that
the perfect cylindrical symmetry enjoyed by the stationary
magnetized atom is broken by the presence of the finite electric
field induced by the motion of the center of mass. The anisot-
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ropy grows with the magnetic field, being much stronger for
excited atomic levels.

One intriguing consequence of these effects is the fact that a
beam of neutral atoms will be refracted upon entering a region
of high magnetic field, with “ refraction indices” depending on
the velocity of the incident atoms, while for atoms trying to
move out of a region of high field there exists an angle of
incidence beyond which total internal reflection occurs so that
they remain in the high field region (§ 3.1.1). This is due to the
competing effects of an increased binding energy and an
increased transverse mass in the high field region. Neutral
atoms moving in an inhomogeneous magnctlc field will have
their trajectory bent (§ 3.1.2). For motion in a plane containing
the magnetic field direction the trajectory bends closer to the
field, while for motion in a plane perpendicular to the field
there is a tendency to bend in the direction of the gradient of
the field. This phenomenon is of interest for the problem of the
gravitational accretion of neutral matter onto dead radio
pulsars, or onto accreting X-ray pulsars along directions where
the ionizing radiation flux is not significant or is self-absorbed.
Previously, it was thought that neutral matter, if accreted,
would ignore the magnetic field and fall in radially. The present
result, however, indicates that neutral matter will have a ten-
dency to gradually align its motion along the field lines. As a
result, both ionized and neutral matter would tend to accumu-
late onto the magnetic polar caps, contrary to previous
assumptions. Another consequence (§ 3.1.3) is that neutral
atoms in the atmosphere of a neutron star or a magnetic white
dwarf will be subjected to an anisotropic magnetic volume
force directed toward the poles or toward the regions of higher
field, which may cause meridional circulation in the atmo-
spheres of these stars.

Another consequence, which could influence the analysis of
many types of neutron stars (even those with fields as low as
those in millisecond pulsars and possibly X-ray bursters, e.g.,
B = 10° G), is the fact that the ionization balance in the atmo-
sphere could be significantly different from that previously
thought to exist (§ 3.2). The physical reason for this is that the
level-dependent anisotropic mass enters the effective momen-
tum that describes the distribution function, and through that
the partition function which is used to calculate Saha’s equa-
tion for the ionization balance. The conventional Ansatz has
previously been to take most ions, particularly the low-mass
ones, to be completely ionized in the atmospheres of X-ray
radiating neutron stars. The ionization state of the atmosphere
is a major element in the modeling of the soft X-ray emission of
cooling pulsar atmospheres (Romani 1987; Miller 1992; Shiba-
nov et al. 1992, 1993; Ventura et al. 1992, 1993). A reliable
knowledge of the state of ionization is required for any quanti-
tative work on the interpretation of the observations of such
objects. Perhaps of even more far reaching consequences, the
usual assumption of completely ionization of H and He in all
types of X-ray emitting neutron stars may need to be reevaluat-
ed. If a fraction as small as 10~ ° of the H and/or He were
neutral, the effects could be significant at X-ray energies, since
the frequency dropoff of the opacities in a magnetic field above
the ionization edges is more gradual than in the free-field case
(Gnedin, Pavlov, & Tsygan 1974; Potekhin & Pavlov 1993).

Several distinctive soft X-ray spectroscopic features are
expected as a result of the mass anisotropy. Aside from the
possible signature of H and He bound-free continua, qualit-
atively new effects appear because of changes in the selection
rules and in the oscillator strengths of both bound-free and
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bound-bound transitions (§ 3.3.1). If the atoms were stationary,
the left-hand polarized photons (which are the most abundant
ones) can be absorbed from the low-lying N; = 0, s; = O states
only by states with N, > 1, which represents a very large jump
in energy for reasonable pulsar fields, so this polarization
would be essentially free to escape unhindered. The breaking of
the symmetry by the finite motion, however, makes the AN = 0
transitions allowed in the moving atom, with the consequence
that photons with this (most important) polarization are
subject to a finite opacity. This causes in the diffusion regime a
significant buildup of the photon density above the main ion-
ization threshold, changing substantially previous estimates of
the spectral fluxes and the polarization of the thermal-like
radiation from neutron stars.

At gamma-ray energies, an interesting prediction is that of
the existence of a new channel for positronium annihilation
introduced by the finite velocity. In this case, the one-photon
annihilation of positronium (which is forbidden for the station-
ary positronium) becomes kinematically allowed, and involv-
ing only one photon vertex its cross section is expected to be
significantly larger in sufficiently strong magnetic fields than
that for two- or three-photon annihilation. The energy of the
photon is also twice that of the two-photon annihilation and
could give rise to some of the lines observed near 1 MeV
(previously ascribed to single-photon annihilation of free e*e”
pairs, e.g., Teegarden & Cline (1981). This mechanism could
also be of importance in the consideration of photon-
positronium state mixing in pulsars, or “photon-trapping”
(e.g., Usov & Shabad 1985; Herold, Ruder, & Wunner 1985),
which has been invoked to explain the presence of high-energy
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gamma rays in pulsars at angles relative to the magnetic field
larger than the kinematic limit for one-photon annihilation of
unbound e*e ™ pairs.

The energies of the photoionization edges and bound-bound
lines of neutral atoms, which are dependent on the magnetic
field strength, are also affected by the finite atomic velocity.
The mass anisotropy modifies the Doppler widths of the edges
and lines, and the dependence of the anisotropy on the level
number causes a new type of very strong, asymmetric broaden-
ing, with predominance of the long-wavelength wing (§ 3.3.2).
Thus, both the edge and line shifts and widths are dependent
on a combination of the magnetic field strength and the tem-
perature. An independent determination of the temperature
(e.g., through continuum spectrum atmosphere modeling)
would then allow a determination of the magnetic field
strength from the edge or line positions and widths. Current
observations at soft X-ray energies (e.g., with ROSAT or
EUVE) may be able to detect such features in cooling pulsars,
in particular from relatively high-flux objects such as PSR
0656+ 14 (Finley, Ogelman, & Kiziloglu 1992) or Geminga
(Halpern & Holt 1992).

We are grateful to J. Ventura, D. Yakovlev, A. Potekhin, and
V. Bezchastnov for useful discussion, and to the referee, H.
Herold, for a careful reading and valuable comments. Our
special thanks are due to Alexander Potekhin for providing the
codes to calculate the energy levels and overlapping integrals
in strongly magnetized hydrogen. This research has been par-
tially supported through NASA NAGW-1522.
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