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ABSTRACT

This paper explores the evolution of the coarsely grained phase-space density in mergers and in galaxy
formation. In particular, numerical simulations are used to determine the properties of remnants produced by
“major” mergers between equal-mass galaxies. Contrary to some existing claims, remnants of mergers
between stellar disks are found to lack sufficient material at high phase-space densities to be identified as
elliptical galaxies. We quantify this effect by computing the cumulative coarsely grained phase-space distribu-
tion, s(f), for the remnants and compare it to that derived from simple models of the mass profiles of ellip-
ticals. In so doing, we estimate that the discrepancy is confined to the inner ~15% of the stellar mass. In
principle, this problem can be circumvented by dissipation in gas and star formation, but this process by itself
probably requires that the progenitors comprise a gas fraction ~25%-30% of their luminous mass. More
directly, as shown by additional simulation, the phase-space discrepancy can be reconciled by including
compact bulges in the progenitors having ~20%-25% the mass of the disks.

We further speculate on the relevance of our analyses to more general situations where the progenitor gal-
axies have very different masses or to remnants produced from repeated mergers in a dense galactic environ-
ment. A number of observational signatures are noted which may help to establish the importance of merging
to the structure and origin of early-type galaxies. In addition, we apply the methods developed here to the
sample of hot stellar systems cataloged recently by Bender et al. A strong correlation is found between the
luminosity of these objects and the “effective” coarsely grained phase density (f.g oc 1/0r%,). Implications of

these findings for the interpretation of the fundamental plane of elliptical galaxies are discussed.
Subject headings: cosmology: theory — galaxies: interactions — methods: numerical

1. INTRODUCTION

In many theoretical scenarios of galaxy formation, large
stellar systems are built up from mergers of less massive com-
ponents. Motivated by observations indicating that remnants
of “major” mergers of comparable-mass spirals relax to
objects with structural properties similar to elliptical galaxies,
Toomre & Toomre (1972) and later Toomre (1977) put forward
the “merger hypothesis”: that mostly stellar disks are the
building blocks from which more massive early-types are pro-
duced. At roughly the same time, Ostriker & Tremaine (1975)
suggested that dynamical friction and repeated merging near
the centers of clusters might be responsible for the massive cD
galaxies often seen there. Later, through increasingly sophisti-
cated numerical simulation, Barnes (1985, 1989) demonstrated
that compact groups may be subject to a “ merging instability,”
effectively destroying the group on a time scale short compared
to the age of the universe and yielding remnants which resem-
ble elliptical galaxies. As argued by White (1990) and Efsta-
thiou (1990), such an evolutionary history is a natural
consequence of the turnaround of larger and larger mass scales
with time in a hierarchical universe. These notions have been
extended through to subgalactic scales by, e.g., Dubinski &
Carlberg (1991), Katz (1991), and Katz & Gunn (1991) who
show that the collapse of individual protogalactic density per-
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turbations is not smooth, as in the Eggen, Lynden-Bell, &
Sandage (1962) picture of galaxy formation, but is often frag-
mented and clumpy, as envisaged by Searle & Zinn (1978),
implying that “minor” mergers may play a role in structuring
even late-type galaxies (Toth & Ostriker 1992; Quinn, Hern-
quist, & Fullager 1993).

Observations and modeling suggest that telltale signs of
galaxy interactions, including various types of “fine structure”
and kinematic anomalies, can persist for extended periods of
time, perhaps making it possible to identify merger remnants
long after they are born (e.g., Schweizer et al. 1990). If hot
stellar systems, in particular, are generally formed from the
agglomeration of less massive objects, it may be possible to
infer the nature of the progenitors by a systematic
“archeology” of early-type galaxies. For example, the
“starpiles” of major mergers like those imagined by Toomre
(1977) may differ subtly from the remains of former compact
groups or from spheroids produced by fragmented collapse in
an expanding universe. Identifying traits unique to remnants
produced by a given scenario may, therefore, help to establish
the relative import of ancient and present-day mergers to
galaxy formation.

In this paper, we examine one aspect of this problem by
studying to what extent the phase-space structure of remnants
can be used to constrain the nature of their progenitors. The
results here extend and expand on ones already presented by
Hernquist (1992, 1993a), who considered some aspects of the
structural and kinematic properties of merger remnants but
did not analyze their phase-space distribution. For simplicity,
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we restrict the first phase of our investigation to mergers
between identical galaxies consisting of dark halos, luminous
disks, and, optionally, compact luminous bulges. In addition,
we speculate on the relevance of our results for more general
situations involving more than two progenitors having a spec-
trum of masses, but defer a detailed numerical study of these
considerations for future works.

Many of the concepts presented and discussed here are not
new and have been put forward by many authors at various
times in the past. In particular, Carlberg (1986) was among the
first to note that the high maximum phase-space densities in
elliptical galaxies could not be attained by mergers of stellar
disks, owing to Liouville’s theorem. This sentiment was echoed
by Gunn (1987), who argued that “. . . [it does not seem
plausible] you can make rocks by merging clouds.” Neverthe-
less, the significance of Carlberg’s findings was disputed by
Lake (1989), who suggested that the central phase density in a
remnant might be boosted by infall of outlying material during
a merger; he also proposed that Carlberg’s assertion would be
restricted to a sufficiently small fraction of the remnant mass as
to be insignificant observationally. To date, none of these
various ideas has been tested with detailed simulations com-
prising realistic models for the progenitor galaxies.

Here we consider these issues by quantifying the evolution of
the coarsely grained distribution function in major mergers
and by computing the phase-space structure of the remnants
and comparing them to simple models of elliptical galaxies. In
§ 2, we summarize the nature of phase-space constraints in
stellar-dynamical systems and develop related tools which can
be applied to numerical simulations and observations of the
global structure of hot stellar systems. In addition, the simula-
tion techniques and galaxy models are discussed briefly.
Results of the analysis applied to mergers of identical disk-halo
and disk-bulge-halo galaxies are presented in § 3. Implications
and extensions of the findings are described in § 4, along with
possible applications of our methods to observed properties of
elliptical galaxies. Finally, we speculate on the overall signifi-
cance of the results in § 5 and suggest other tests which might
be used to infer the relevance of mergers to the origin and
observed properties of present-day galaxies.

2. METHODS

2.1. Phase-Space Diagnostics

In a stellar system, the finely grained phase-space density,
f(x, v), measures the probability of finding a star in the differen-
tial phase-space volume dx dv centered on the point (x, v), when
multiplied by dx dv. In the limit that individual stellar encoun-
ters are negligible, f(x, v) evolves according to the collisionless
Boltzmann or Vlasov equation, which can be written

Df

=0.
Dt

2.1
Physically, this is simply a continuity equation and implies
that the phase-space density around the phase-space point of
any star is always preserved (e.g., Binney & Tremaine 1987). In
particular, if a stellar-dynamical system initially has a
maximum phase-space density, f,.., and undergoes collision-
less evolution to a new state, then the maximum phase-space
density of the final system cannot exceed f,,,,. This consider-
ation motivated Carlberg (1986) to suggest that ellipticals
cannot be made from mergers of stellar disks since f,,, is larger
in ellipticals than exponential disks. Indeed, numerical simula-
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tions have verified this argument but systematic attempts have
not been made to quantify the amount of “dense” material
that would be required to eliminate this problem. This is an
important issue since, as noted by Lake (1989), if the mass in
question is negligible, then the implied discrepancy between
Jmax in remnants of mergers between stellar disks and actual
ellipticals might not be observable, in practice.

When dealing with numerical simulations and interpreta-
tions of observational data, f(x, v) usually cannot be computed
reliably since six-dimensional phase space is not sampled
smoothly owing to limited resolution. In these situations, the

‘nature of phase space can, however, be explored quantitatively

with the coarsely grained distribution function, f(x, v), defined
so that f(x, v)Ax Av is the probability of finding a star in the
macroscopic volume Ax Av centered on the point (x, v). Even
when numerical simulations are coarse-grained into relatively
few dx and dv bins, it is still difficult to have enough particles to
precisely estimate the phase-space density.

We have taken the approach of coarsely graining the dis-
tribution along energy hypersurfaces. This approach is moti-
vated by noting that galaxy mergers effectively isotropize the
velocity distribution. It has the technical advantage of being
simple to calculate from numerical simulations. This approach
differs from that of Lake (1989) who computed the coarse-
grained density on a finer six-dimensional grid. Our approach
leads to a much lower coarse-grained phase space density for
spiral disks.

For example, in a spherical, isotropic system, the phase-
space density is a function solely of the energy, E, and f(E)dE is
the probability of finding a particle in a phase-space volume
around a point on the hypersurface given by the energy E.
Correspondingly, the differential energy distribution, dN/dE,
measures the number of stars in the energy range, E to E + dE
according to

dN

=), 22
where g(E) is the phase-space volume of a given energy hyper-
surface

g(E) = '[d3r d*vé[E — H(r, v)]

= 16n2 J. " dr /AW — ] .

0

(2.3)

Here ¥(r) is the potential and ¥(r,,) = E. In the analysis below,
we coarsely grain the phase-space density on energy hyper-
surfaces by computing dN/dE and then use equations (2.2)-
(2.3) to measure f(E), the coarsely grained phase-space density
averaged over these hypersurfaces.

For a smooth isotropic system, the coarsely grained distribu-
tion function calculated in this manner is identical to the finely
grained distribution function, f(E). As an illustration, consider
the density-potential pair defined by

Ma 1

p(r) = mrrra (24)
GM

o) = — Tt a’ (2.5

where M is the mass and a is a scale length. As shown by
Hernquist (1990a), this model provides an excellent fit to the
light distribution in elliptical galaxies and, moreover, is com-
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pletely analytic. In particular, the corresponding distribution
function is
M 1

E —
7@ 8./2nav] 1—gq
x [3sin™! g+ q(1 — ¢®)"*(1 — 2¢*)84* — 84> —3)],

2)5/2

2.6
where 26
a
= = 2.7
q=_| am B 2.7)
and
M 1/2
vg=(ga—> . (2.8)

Here f(E) is normalized so that fdx dv is the mass in the six-
dimensional volume element dx dv centered on the phase-space
point (x, v). The function f(E) is shown as a solid line in Figure
1 for a model with unit mass and scale length in units where
G = 1, where it is compared with a coarsely grained estimate of
f(E), computed from an N-body realization with N = 40,000
particles, using the procedure described above. In the limit
of large N, we expect f(E) — f(E) exactly. Clearly, the agree-
ment between f(E) and f(E) is quite good in this, case and the
scatter in the measured values of f(E) is consistent with
Poisson fluctuations arising from sampling errors.

In an anisotropic system or one that is not completely
phase-mixed, coarse-graining erases the small-scale irregu-
larities that are represented in the finely grained distribution
function. Consequently, f(E) does not satisfy the Vlasov equa-
tion. Nevertheless, as discussed in § 3 and 4 it is possible in
some cases to predict roughly how f(E) will evolve, given some
assumptions about the nature of the initial conditions (e.g.,
Hausman & Ostriker 1978).

As implied by Figure 1, stellar systems contain material at
both very high and very low phase-space densities. To quantify
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FiG. 1.—Finely grained distribution function, f(E), for a Hernquist (1990)
model with unit mass and unit scale length. Squares show the coarsely grained
distribution function, f(E), computed from a numerical realization of the Hern-
quist model with 40,000 particles.
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F1G. 2—Cumulative phase-space distribution function, s(f) for the profiles
shown in Fig. 1. Solid line shows the result for the finely grained distribution
function, while squares show the quantity s(f) for the coarsely grained dis-
tribution function, computed from the numerical realization.
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the amount of material at a given phase-space density, it is
expedient to work with integral rather than differential quan-
tities. We will coarse-grain the distribution function into
energy bins and compute the cumulative distribution from the
differential energy distribution:

_ ED AN
s(f) = —dE ,
) f I

where E, = y(0) is the central binding energy and E(f) is given
by inverting the distribution function, f(E). As always, when
computed from, e.g, a simulation with limited resolution,
the cumulative distribution refers to the coarsely grained
phase-space density, f(E), and will be denoted by s(f). For an
isotropic distribution function, s(f) should approach s(f), the
fine-grained distribution function, with increasing particle
number. Figure 2 shows a comparison between s(f) and s(f)
for the analytic model shown in Figure 1 and its numerical
realization with N = 40,000 particles. As expected for the large
N limit, s(f) and s(f) are quite close and the scatter is greatly
reduced relative to that in Figure 1, owing to the fact that s(f)
is an integral quantity.

The notion of coarse-graining can be extended to produce
global averages which provide insight into how the phase-
density will evolve in certain cases and which can be employed
to interpret observed properties of hot stellar systems. For
simplicity, it is useful to introduce an “effective phase-space
density,” which is a measure of the mean phase-space density
within the effective radius of a galaxy. Begin by defining f;,
to be the average phase-space density within the spherical half-
mass radius of the galaxy according to

_— M/4
Sz = (4nr},,/3)dn03y/3)

where, by definition, half of the total mass, M, lies within the
radius r,,, and it is assumed that half of the mass in this region

2.9)

(2.10)
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has speeds less than o4, the maximum three-dimensional
velocity dispersion. This expression can be simplified by elimi-
nating the mass according to the virial theorem o3, ~
2GM/5ry), (e.g., Binney & Tremaine 1987), and by using the
fact that 0,4 = 034/3"/2. Equation (2.11) then becomes

e 5/31 1 (2.11)

V2712802 G oayar?),

For the model shown in Figure 2, r;,, =1+ 2% and 044 &
0.3, depending weakly on the velocity distribution (Hernquist
1990a), implying f;,, = 0.012. Figure 2 suggests that this is
indeed a good measure of the median phase-space density
within the half-mass radius.

In what follows, we will estimate the effective phase-space
density from observational samples. In so doing, we will
employ the central line-of-sight dispersion, ¢, and the project-
ed half-light radius, R,, to define an effective phase-space
density for the luminous matter:

1

S = m . (2.12)

For an assumed mass model, f ¢ can be related to f; ,.

2.2. Simulation Techniques

As a detailed application of the various concepts introduced
in § 2.1, we consider numerical simulations of mergers between
identical galaxies constructed to resemble present-day spirals.
The models ignore the effects of dissipation in gas, but include
the various collisionless components thought to dominate the
mass distribution of real galaxies. In the calculations, two iden-
tical galaxies with self-gravitating disks, halos, and optional
compact bulges merge following close collisions from para-
bolic orbits.

The galaxy models are constructed according to the pro-
cedure described by Hernquist (1993b). Briefly, particles are
distributed in space according to analytic density profiles
chosen to mimic those which are thought appropriate for the
various components of galaxies like the Milky Way (e.g.,
Bahcall & Soneira 1980; Caldwell & Ostriker 1981). The disks
are assumed to follow an exponential distribution in cylin-
drical radius and are modeled by isothermal sheets perpen-
dicular to the disk plane; that is, the vertical density is
proportional to sech? z/z,. Throughout, we adopt a system of
units in which the radial scale length of the disks, h, the masses
of the disks, M, and the gravitational constant are all unity.
Scaled to the Milky Way, this implies that unit length, mass,
time, and velocity are roughly 3.5 kpc, 5.6 x 10'°® M,
1.3 x 107 yr, and 260 km s~ !, respectively. For simplicity, we
use zo = 0.2 in all simulations reported here. Since the verti-
cal scale height is constant across each disk, the Toomre
Q-parameter (Toomre 1963) varies weakly with radius and is
normalized so that its mean value {(Q) =~ 1.5.

Halos are represented by a truncated mass profile re-
sembling an isothermal sphere with density structure p oc
exp (—=r/rd)/(1 + r*/y?), with y =1 and r, = 10. With these
choices, the rotation curve of a disk plus halo galaxy is rela-
tively flat for radii r < 10 (Hernquist 1992).

When added, bulges are represented by nonspherical ver-
sions of Hernquist (1990a) models (Dubinski & Carlberg 1991;
Hernquist 1993a, b) with scale lengths a = 0.2 and ¢ = 0.1.
Rotation is included in some calculations by requiring all par-
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ticles to circulate in the same sense around the symmetry axis,
yielding ratios of circular to random velocity v/o ~ 1 within
the half-mass ellipsoids of the bulge (Hernquist 1993a).

The analysis described in § 3 was based on approximately
25 simulations of mergers between identical galaxies: the four
bulgeless calculations presented by Hernquist (1992), the eight
models reported by Hernquist (1993a) which include bulges
with and without rotation, a subset of seven of these 12 with 4
times the particle number used in Hernquist (1992, 1993a), and
about a half-dozen other simulations employing different
orbital geometries from the other sets. The ratio of halo-to-
disk-to-bulge mass in each galaxy is always H:D:B =
5.8:1:M,, where M, is either O or 4, depending on whether or
not the galaxies are bulgeless.

The simulations described and presented here were per-
formed using a hierarchical tree algorithm (Barnes & Hut
1986), optimized for vectorizing supercomputers (Hernquist
1987, 1990b). Forces are computed with a tolerance parameter
0 = 0.7, including terms up to quadrupole order in the multi-
pole expansions. Interparticle forces are softened with a cubic
spline (e.g., Hernquist & Katz 1989; Goodman & Hernquist
1991) and different species of particles have their own softening
lengths to mitigate discreteness effects. Particle coordinates are
integrated with a leap-frog algorithm (e.g., Press et al. 1986),
employing a sufficiently small time step to guarantee energy
conservation to better than 1%.

Low-resolution simulations were performed with 16,384,
4096, and 16,384 particles in each disk, bulge, and halo, respec-
tively. High-resolution models employed 4 times as many par-
ticles in each component. All calculations were done on the
Cray Y-MP and Cray C-90 at the Pittsburgh Supercomputing
Center.

3. MAJOR MERGERS

As is by now well established, close encounters of galaxies
from parabolic orbits lead to complete merging in just a few
dynamical times (e.g., van Albada & van Gorkom 1977; White
1978, 1979; Gerhard 1981; Farouki & Shapiro 1982; Barnes
1988, 1992), and the ensuing remnants have properties remi-
niscent of elliptical galaxies. Little is known in detail, however,
about how the distribution function behaves in such events.
When dissipation can be neglected, Liouville’s theorem applies
and the fine-grained phase-space density is exactly conserved.
Owing to sampling errors we cannot determine reliably how
the finely grained distribution function evolves in simulations
like those reported here, but the structure of phase space can
still be quantified by appealing to coarse-graining.

From simple energetic considerations, it is possible to
predict a priori how quantities like the effective phase density
introduced in § 2.1 will evolve in parabolic mergers between
identical spherical galaxies. Prior to the encounter, the rms
three-dimensional velocity dispersion, o, the mass, M, the
gravitational radius, R, and the total energy of each galaxy, U,
are related by the virial theorem according to

Mo? GM?
U > R (3.1
After a merger from a parabolic orbit, assuming that negligibly
few particles are lost, the mass of the remnant is 2M and the
total energy is 2U. Thus, the gravitational radius of the
remnant is double that of each progenitor, and the velocity
dispersion is unchanged (Hausman & Ostriker 1978). Hence, in
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parabolic mergers, the effective phase density should drop by a
factor ~4 as the luminosity doubles.

Real galaxies are not spherical, of course, and consist of
several distinct components; it is not clear to what extent this
energy argument applies. During a merger, energy and angular
momentum are transferred from the luminous material to the
dark halo, with a resulting tendency for the velocity dispersion
of the luminous material to increase (Okumura, Ebisuzaki, &
Makino 1991).

We can estimate these effects by studying simulations of
mergers of multicomponent galaxies. We begin by computing
the cumulative phase-space distribution, s;,;;.((f), for the lumi-
nous component in the progenitors, using the approach out-
lined in § 2. First, the differential energy distribution, dN/dE,
and the radial mass profile, M(r), are determined by averaging
on spheres. The mass profile is then used to compute the
potential and the density of states, g(E). Finally, equations (2.3)
and (2.4) are used to obtain s(f). This approach isotropizes the
disks and treats the material in the outer portions of the disks
as being at relatively low coarsely grained phase-space density.

Once the merger is complete, in the sense that most of the
system has relaxed into an equilibrium state, we employ the
same approach to compute the final cumulative phase-space
density function for the remnant, s¢;,,,(f). Most of the simula-
tions show distinct tidal tails and faint “shells” (Hernquist &
Spergel 1992) which are smoothed out by the radial averaging
process.

The result of this procedure applied to four mergers involv-
ing progenitors having compact bulges is shown in Figure 3.
The simulations began with the same pair of identical galaxies,
but the models differed in the orientation of the initial spin
planes of the merging galaxies, as in models 1-4 of Hernquist
(1992). The solid line in Figure 3 shows the cumulative phase-
space density for the luminous progenitors, while the light
curves show the s(f) profiles for the luminous remnants.
Despite the fact that the various disk orientations produce
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remnants having rather different shapes and outer isophotes,
the final cumulative phase-space profiles are remarkably
similar. This suggests that the evolution of the coarsely grained
distribution function is rather insensitive to the precise details
of the merging process and that the various averages per-
formed in the analysis have not biased the results significantly.
Figure 4 shows the ratio of the initial to final coarsely
grained phase-space density for the remnants shown in Figure
3. Throughout most of the remnant, the effect of violent relax-
ation and phase-mixing is to decrease the coarsely grained
distribution function by roughly a factor of 3—4, with a some-
what steeper decline in the outer regions. This behavior is
likely due to the transfer of energy and angular momentum
from tightly bound to loosely bound material in the remnants
as the merger progresses; an effect which acts to concentrate
the inner regions and puff up the outer ones. These findings are
in good agreement with the energy argument presented above,
which predicts that the effective phase density should drop by a
factor of 4 in a parabolic merger of identical, spherical galaxies.
The results embodied by Figures 3 and 4 are quite encour-
aging and suggest that analyses of the type proposed in § 2.1
can serve as useful guides in interpreting the phase-space evo-
lution of numerical simulations. Perhaps most important in
this regard is the fact that the coarsely grained distribution
function evolves in a manner similar to that predicted from
mass and energy conservation. The energy argument is inde-
pendent of the detailed processes which bring the system into
equilibrium. In addition, the agreement between this estimate
and the simulation results presented in Figure 4 strongly imply
that the latter are not corrupted by numerical artifacts, like
enhanced two-body relaxation. Together, these considerations
suggest that Liouville’s does not play a significant role in deter-
mining the overall properties of the remnants: the coarsely
grained phase-density is reduced relative to the progenitors
throughout the remnants, except perhaps near their very
centers. These expectations are consistent with the statistical
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F1G. 3.—Initial and final cumulative distributions of coarsely grained phase-space density, s(f), for different mergers. All simulations began with the same pair of
identical galaxies. Heavy solid line shows the profile for the progenitor galaxies, and light curves show s(f) for remnants produced by four mergers of galaxies
comprising disks, bulges, and halos from different orbital geometries (cf. models 1-4 of Hernquist 1992).
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F1G. 4—Ratio of initial to final coarsely grained phase-space densities, as a function of the cumulative profile, s f), for the simulations shown in Fig. 3.

mechanical treatment of violent relaxation outlined in Spergel
& Hernquist (1992).

Of greatest interest to the present discussion are compari-
sons between the phase structure of the remnants in the simu-
lations and that expected for observed elliptical galaxies. An
illuminating example is provided by Figure 5, which shows the
cumulative distribution of the coarsely grained distribution
function is the remnant of a simulated merger between bulge-
less disk-halo progenitors, where it is compared with that for a
Hernquist model with the same effective radius. In view of the
fact that the structure of real ellipticals is well-fitted by the
latter, the departure between the two curves in Figure 5 at high
phase-space density implies that elliptical galaxies cannot be
constructed from mergers of pure stellar disks. Note that the

T TTTT

T

deficit of high phase-space material is not restricted to a negli-
gible fraction of the remnant mass. At small values of f, the
difference between the curves in Figure 5 is not statistically
significant. Nevertheless, based on comparisons between
models with varying particle number, we estimate conserva-
tively that there is a true deficit of high phase-space density
material in the inner ~ 10%-20% of the remnant by mass.

4. DISCUSSION

4.1. The Merger Hypothesis
The findings summarized in § 3 have a number of implica-
tions for the suggestion that ellipticals are produced by
mergers of disk progenitors. Our results appear to be quite
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FIG. 5—Cumulative phase-space density, s(f), found by coarsely graining the remnant of a merger between two galaxies consisting of only disks and halos.
Dashed line shows the form of s( f) predicted for a Hernquist model with the same effective radius as the simulation remnant.
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consistent with Carlberg’s (1986) claim that stellar disks lack
sufficient material at high phase-space densities to serve as
building blocks for elliptical galaxies. This deficit of high
phase-space density material is also apparent in surface density
profiles of the remnants. A convincing demonstration of this is
shown in Figure 6, where the projected mass density of the
remnant from the disk-halo simulation in Figure 5 is compared
with a remnant formed from a merger with identical orbital
properties, but where the progenitors also include 25% of their
luminous mass in compact bulges. In this figure an R'/* profile
would be a straight line. Obviously, the remnant in the simula-
tion where the progenitors lack bulges is too diffuse in the
center to be identified with an elliptical galaxy, as expected on
the basis of the analysis presented in § 3 above. Figure 6 also
demonstrates that when the progenitors include sufficient mass
in dense spheroids, the projected surface density of the remnant
is remarkably like that of an elliptical galaxy. (The apparent
turnover of the dotted curve in Figure 6 for Q** < 0.5 is an
artifact of limited resolution in the simulation.)

The magnitude of the deficit of high phase-space density
material in remnants produced in mergers of bulgeless progeni-
tors can be estimated from results like that in Figure 6, by
subtracting the surface density from that appropriate a pure
RY*law of the same mass and effective radius. In the particular
example shown in Figure 6, this difference amounts to ~15%
the luminous mass and is confined to radii <3 the effective
radius of the remnant, again in good agreement with Figure 5.
These results are contrary to the suggestion made by Lake
(1989), who speculated that stellar material from the outer disk
might settle into the center of the remnant and boost the
phase-space density there. In the simulations, there is a very
good correlation between initial and final binding energy (e.g.,
Barnes & Efstathiou 1987; Quinn & Zurek 1988; Spergel &

[T I I LU ] T T TT [ TTTT l LI l_
0 —
D
S 2 —
&
2 - —
-4 — —]
11 | 1 111 | | . JJ 111 l | .
5 1 15 2 25
QV‘

FiG. 6—Logarithm of surface density of luminous components of two
merger remnants. Solid line is for a remnant produced from the merger of two
equal-mass galaxies consisting of only disks and dark halos. Dotted line is
from a simulation with identical orbital properties, but where the progenitors
also contain compact bulges. In the latter simulation, the bulge-to-disk mass
ratio is 1:3. Surface density is shown as a function of fourth root of the
“elliptical radius,” Q (see Hernquist 1992 for details).
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Hernquist 1992). Furthermore, while our results show that the
half-mass properties of galaxies do not constrain merging sce-
narios, the discrepancy between the phase-space structure of
remnants of bulgeless stellar disk mergers and real ellipticals
is sufficient to exclude the formation of ellipticals by such
mergers.

The overall significance of these results for the merger
hypothesis is unclear. The deficit of matter at high phase-space
density can be obviated by adding bulges to the progenitors.
We have not determined precisely the fraction of luminous
mass which must reside in compact bulges to eliminate the
problem, but the results above indicate that ~25% is suffi-
cient. Much smaller bulge masses will probably not be viable
since not all bulge material falls into the center of the remnants,
and the estimate above suggests that pure stellar disks fail to
produce good R'/* laws by x15% of their mass.

In principle, the deficit can also be removed by dissipation
in gas and star formation. Hydrodynamical simulations
(Negroponte & White 1983; Hernquist 1989, 1991; Barnes &
Hernquist 1991; Hernquist & Barnes 1991) show that tidal
forces in a merger tend to drive a significant fraction (~50%)
of the gas in progenitors into the centers of the remnants. Since
the gas is not subject to Liouville’s theorem, it can become
much more centrally concentrated than the stars. This sudden
infall of gas will likely fuel a starburst, perhaps forming enough
stars at high phase-space density to account for the central
structure of ellipticals. By itself, this route does appear to
require a progenitor gas fraction ~ 30%, which exceeds that in
present-day early spirals, but is probably consistent with the
gas content of galaxies in the early universe when the merger
rate was higher.

4.2. Galaxy Catalogs

Somewhat more speculative than our analysis of remnants
of major mergers is the application of the various tools devel-
oped in § 2.1 to observed properties of elliptical galaxies. One
of the remarkable properties of elliptical galaxies is that they
comprise a two-parameter system lying in a “fundamental
plane” (Djorgovski & Davis 1987; Dressler et al. 1987). This
correlation is apparent in the recent sample compiled by
Bender, Burstein, & Faber (1992), who tabulated velocity dis-
persions, effective radii, and luminosities of nearby hot stellar
systems. We will use these quantities to compute the effective
phase-space density of these systems and to see whether or not
it correlates with the luminosity.

Figure 7 shows the correlation between absolute magnitude
and f for the giant and intermediate ellipticals in Bender et
al.’s sample. The correlation is extremely good: a least-squares
fit finds that M = —1.35(+0.06) log f.¢; + constant, with an
rms scatter of only 0.15 mag, and so is nearly as tight as the
correlation found by Bender et al. between absolute magnitude
and mass-to-light ratio (x, and x in their notation). A least-
squares fit to the fundamental plane viewed edge-on for the
same data set yields an rms scatter of only 0.18 mag. While the
effective phase density is computed from similar quantities as
K3, it has a different dependence on velocity dispersion and
effective radius:x; oc 62R,, whilef ;1 oc 6RZ;.

As discussed below, the significance of the result in Figure 7
is problematic. It is interesting that in terms of luminosity the
fit translates into a correlation L oc f;2-34*%92) which, as
argued in § 3, is consistent with the interpretation that higher
luminosity objects are built from major mergers of roughly
comparable mass progenitors. Furthermore, as we show in
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F1G. 7—Correlation between effective phase-space density and absolute
magnitude in a sample of nearby giant and intermediate mass ellipticals. Filled
squares denote giant ellipticals and filled triangles denote intermediate ellip-
ticals. Solid line is a least-squares fit to the data. The effective phase-space
density was computed from the velocity dispersion and effective radius (see
text).

§ 4.3, it is also consistent with some forms of hierarchical
clustering.

A correlation of the type displayed in Figure 7 was, in fact,
anticipated in earlier work by Carlberg (1986) who found a
strong correlation between galaxy luminosity and central
phase-space density. If all ellipticals are well described by de
Vaucouleur’s profiles (e.g., de Vaucouleurs 1948, 1987), there
should be a dimensionless relation between core and effective
radii and between central and effective velocity dispersion.
Thus, there should be a dimensionless ratio relating the effec-
tive to central phase-space density. We have chosen to focus on
the effective phase-space density since it is a much more robust
quantity and is not dominated by the details of the density
profile in the inner regions.

Interestingly, the strong correlation between effective phase-
space density and galaxy luminosity can be extended to include
less massive systems. Figure 8 shows the relationship between
f.¢r and magnitude for giant ellipticals, intermediate ellipticals,
dwarf ellipticals, compact ellipticals, bulges, and dwarf spher-
oidals. The fit shown in Figure 8 is derived from all the galaxies
except for the dwarf spheroidals. Figure 8 suggests that dwarf
spheroidals should be viewed as part of a formation sequence
distinct from that of other hot stellar systems. A least-squares
fit to the galaxy magnitudes and f,¢ yields M = —2.04 log f.¢
+ constant, with an rms scatter of 1.4 mag. If we restrict our
attention to the compact, intermediate, and giant ellipticals,
then the scatter in the diagram is reduced. The dotted line
shows a fit to these three populations. It has a scatter of only
0.43 mag and a slope of —1.66. This implies that L oc f 32-°°.
Bulges lie along this line but with a larger spread. This may be
partly due to difficulties in separating bulges and disks or
perhaps is a result of dynamical coupling between disks and
bulges. Dwarf ellipticals appear to be a parallel but distinct
branch of the family of hot stellar systems.

It is possible that the correlations in Figures 7 and 8 might
be improved by removing peculiar motions from the Bender et
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al. sample; they assume a smooth Hubble flow when comput-
ing galaxy luminosity and effective radius. Deviations from the
Hubble flow will lead to distance errors which may account for
some of the scatter in Figures 7 and 8. The estimated galaxy
luminosity is proportional to D? and the effective phase-space
density is proportional to D~ 2. Thus distance errors shift the
galaxies along a line of slope —1 in the plane of Figures 7
and 8.

4.3. Hierarchical Merging

As noted in § 4.2, the observed correlation between lumi-
nosity and effective phase density in the Bender et al. sample
can be interpreted as arising from the growth of hot stellar
systems via major mergers of comparable mass progenitors. In
this case, as suggested by the energy argument and simulations
results in § 3, we expect a correlation of the form f . oc L2,
quite similar to the fit to the data in Figure 7. Clearly, however,
it is not likely that all massive structures developed in this
manner. Even if it is the case that mergers are indeed
responsible for producing hot stellar systems, it is not plausible
that the progenitors always have nearly the same mass, or that
only one merger event necessarily gave rise to the structure
seen in all ellipticals today.

A definitive interpretation of the correlation found in § 4.2
will await detailed modeling under a much wider set of initial
conditions than considered here. We can, however, speculate
on what trends might be expected in other situations. For
example, the energy argument in § 3 can be generalized
straightforwardly to successive mergers of identical subsystems
from parabolic orbits. A remnant produced from mergers of p
identical spherical progenitors will have binding energy, mass,
and gravitational radius equal to p times that of each progeni-
tor, and the velocity dispersion will be unchanged. The effective
phase density of the remnant will, therefore, be a factor p?
smaller than that of each progenitor. This suggests that in a
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scenario in which galaxies are built up through mergers of
identical weakly bound subsystems, we expect that f ., oc L2
from this naive argument, as in major mergers of comparable
mass galaxies.

This is certainly not a “universal ” relation, however, and it
is not difficult to imagine merging scenarios where it fails to
some degree. Consider a galaxy of mass M, which successively
merges with p identical less massive objects from parabolic
orbits, each having mass M, = M,/p. Suppose, also, that the
primary has gravitational radius, R,, and dispersion, ¢,, and
that the corresponding quantities for each less massive object
are R, and o,. Since the energy argument involves simple
linear combinations of conserved quantities, we can predict the
structure of the ensuing remnant by first adding the p less
massive objects together and then combining this system with
the primary. Applying this procedure, it is trivial to show that
the remnant mass, M,.,,, energy, U,.,, dispersion, o,.,, and
gravitational radius, R ., satisfy

M, .=2M,, 4.1)
M
Urem = - Tl (0'% + 0'%) s (42)
Orem = 3(01 + 03) , 4.3)
and
402
Riem =R . 4.4
rem ' 62 + o2 (“44)

The effective phase density of the remnant, f,,,, will be related
to that of the original primary, f; by

Jen _~/2 [1 + (2)2]3/2 : 4.5)

fi 16 o4

If 6, = 04, then we recover the result found earlier, independent
of the mass ratio of the progenitors. If instead, we postulate a
parameterized relation between dispersion and luminosity of
the form L oc ¢”", then

Fien _ /2 [1 + (5>2/"]3/2 : (4.6)

fi 16 L

Hence, for a value n ~ 4, as in the Faber-Jackson relation, this
result predicts a correlation of the form foc L™22% for L, =
L,/2 and foc L™ ?7 for L, = L,/5. Thus, at least in the context
of these simple-minded considerations, we still anticipate a
definite correlation between effective phase density and lumi-
nosity, but one that is somewhat steeper than in mergers
between identical galaxies. Clearly, arguments like this are
subject to considerable uncertainty, however, since, among
other things, it is found experimentally that the dispersion in
remnants produced by mergers of identical spherical galaxies is
slightly greater than that in the progenitors (e.g., Okumura et
al. 1991). The transfer of energy from the luminous material to
the halo will increase f,.,, and flatten the f — L correlation.

4.4, Implications for Galaxy Formation

There appear to be many routes to forming giant ellipticals
in cosmological models which involve hierarchical clustering.
Giant ellipticals may have been built up through mergers of
smaller spherical stellar systems, from mergers of spirals con-
taining large bulges, or from mergers of gas-rich spirals in the
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early universe. Establishing definite trends that might be used
to test these various suggestions observationally is clearly of
highest priority. While violent relaxation tends to erase much
information about initial conditions, there may be subtle, yet
observable differences between the various routes just noted.
For example, since phase-mixing is least effective in the outer
regions, observations of the structural and kinematic proper-
ties of ellipticals at low surface density may provide some in-
formation on their origin (e.g, Heyl, Hernquist, & Spergel
1993a, b).

It would appear much more difficult, however, to form dwarf
galaxies by merging, owing to the absence of suitable progeni-
tors. The effective phase-space density of dwarf ellipticals is
much larger than that of any known spiral. If dwarfs form
dissipationlessly, their high phase-space densities require that
these galaxies originated at very high redshifts. If dissipation
played an important role in the formation of dwarfs, then
either they started out with very little angular momentum or
quite efficiently transported it outward.

Dwarf spheroidals do appear to have a very different forma-
tion history from other hot stellar systems. As Figure 8 shows,
these objects deviate significantly from the mean relation
between luminosity and effective phase-space density and are
much less concentrated than other hot stellar systems. It is
possible that some dwarf ellipticals comprise debris from
mergers of massive disk galaxies (Barnes & Hernquist 1992) or
that tidal effects have significantly influenced their formation
and evolution (e.g., Kuhn & Miller 1989).

5. SUMMARY

In this article, we have explored the use of the coarsely
grained phase-space density as a tool for understanding the
evolution and formation of hot stellar systems. Unlike the
finely grained phase-space density, the coarsely grained phase-
space density can be easily measured in both computer simula-
tions and from observations of elliptical galaxies.

In numerical simulations, the coarsely grained phase-space
density shows a relative uniform decrease by factors ~3-4 in
mergers of equal mass systems. This phase space decrease is
consistent with simple analytical estimates. Furthermore, the
phase-space structure of remnants of major mergers proves
conclusively that pure stellar disks do not represent viable
progenitors from which ellipticals can be formed. This finding
can be reconciled with the merger hypothesis either by adding
compact bulges to the progenitors or, at least in principle,
through the effects of dissipation in gas. This is not unreason-
able, since while Sc galaxies contain a significant amount of
gas, Sa galaxies contain large bulges.

The addition of bulges to the premerger galaxies may not,
however, alleviate problems with metallicity. Giant ellipticals
are more metal-rich than bulges and compact ellipticals (for a
discussion, see Ostriker 1980). There is a very strong corre-
lation between the strength of the magnesium line and lumi-
nosity, apparently necessitating that star formation must play
some role in the formation of ellipticals. If, in fact, many or all
ellipticals are formed via major mergers, it seems likely that
both bulges and gas dynamics are required.

To simplify the interpretation of observations, we also have
defined an effective coarsely grained phase-space density,
fus = 1/o4r? and found that it correlates extremely well with
luminosity for elliptical galaxies and bulges of spiral galaxies.
This correlation extends from dwarf up to giant ellipticals,
hinting that it might provide important information about the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...416..415H

424 HERNQUIST, SPERGEL, & HEYL

origin of hot stellar systems. An intriguing result is that the
slope of the luminosity—f,;, correlation is consistent with a fully
dissipationless scenario for forming hot stellar systems.

At present, we do not fully understand the physical signifi-
cance of the correlation between effective phase-space density
and luminosity found for the Bender et al. sample of elliptical
galaxies, although, as we suggested earlier, it may be a direct
consequence of the formation history of these objects. A corre-
lation of this form would arise in dissipationless collapse
models provided that the perturbation spectrum incorporates
significant power on small scales. Alternatively, our findings
may reflect the nature of merging and growth structure in a
hierarchical universe. However, in this interpretation, signifi-
cant amounts of dissipation would be required to form the
smallest objects, which would necessarily have the highest

phase-space densities. If such objects could be built at suffi-
ciently early times though, then the correlation between
coarsely grained phase-space density and luminosity may
simply reflect the nature of the dynamics of merging of mostly
stellar systems.
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