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ABSTRACT

In this paper, a detailed application of the relativistic Sobolev method of Hutsemékers & Surdej (HS) to
homologously expanding atmospheres (with supernovae as the only example in mind) is described. The
expressions for the common-direction (CD) and common-point (CP) frequency surfaces for homologous
expansion are derived. The CP frequency surfaces are necessary for interacting line effects and were not con-
sidered by HS. Other important expressions of the relativistic Sobolev method are presented and briefly dis-
cussed. The validities for supernovae of the stationarity approximation and the relativistic Sobolev method’s
neglect of advection are briefly discussed. Some demonstration spectra calculated using the relativistic and
classical Sobolev methods for models in homologous expansion are presented and compared. For the analysis
of supernova atmospheres with the highest velocities observed, the relativistic Sobolev method treatment
yields a small, but significant, improvement over the classical Sobolev method treatment.

Subject headings: line: formation — radiative transfer — relativity — stars: atmospheres

1. INTRODUCTION

The well-known Sobolev method is an approximate radi-
ative transfer technique introduced by Sobolev (1947) and
extended by others (e.g., Castor 1970; Rybicki 1970; Lucy
1971; Rybicki & Hummer 1978, hereafter RH; Klein & Castor
1978; Olson 1982; Hummer & Rybicki 1985, 1992; Bartunov
& Mozgovoi 1987; Puls & Hummer 1988; Jeffery 1988, 1989,
1990; Mazzali 1988, 1989, 1990; Hutsemékers & Surdej 1990,
hereafter HS) which is used to calculate line radiative transfer
in atmospheres with large velocity gradients. The classical
Sobolev method relies on the first-order Doppler shift formula
and is thus nonrelativistic. In this paper, it is assumed that the
reader is familiar with the Sobolev method and the concepts of
common-direction (CD) frequency surface (used for evaluating
the flux emergent from an atmosphere), common-point (CP)
frequency surface (used for evaluating the line source functions
in an atmosphere with interacting line effects), resonance point
and region, and Sobolev optical depth and escape probability.
The paper of RH is a useful reference for the Sobolev method.
The criterion for the Sobolev method’s validity (except in the
case of extremely strong lines; see Hummer & Rybicki 1992) is
that the ratio (here called the velocity ratio) of the atmo-
sphere’s characteristic random velocity (i.e., the thermal veloc-
ity or perhaps a mean microturbulent velocity) to the velocity
scale height (i.e., the velocity range over which temperature,
density, and occupation numbers change by a factor of order 2)
be small. For quantitative accuracy, the velocity ratio should
be <0.1 (Hamann 1981; Olson 1982; Natta & Beckwith 1986).
(Note that Hamann’s strictures on the Sobolev method’s treat-
ment of interacting line effects were made obsolete by Olson.)
The Sobolev method has been useful for calculating synthetic
spectra for stars with winds (e.g., Pauldrach, Puls, & Kudritzki
1986; Pauldrach 1987; Puls 1987) and supernovae (e.g., Branch
et al. 1985; Jeffery & Branch 1990; Jeffery et al. 1992, hereafter
JLK; Kirshner et al. 1993).

The Sobolev method is particularly suitable for supernovae.
Supernova atmospheres have thermal velocities no larger than
of order 10 km s~ ! (except at early and almost never observed
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epochs) and microturbulent velocities are usually thought to
be negligible. Supernova velocity scale heights in the photo-
spheric epoch are ~ 103 km s~ *. Therefore, supernova velocity
ratios are ~ 1072 The velocity field, called (uniform motion)
homologous expansion, exhibited by supernovae after early,
and almost never observed, epochs, is an especially simple case
of general expansion. In homologous expansion, the radius of
any matter element is given by

1)

where v is the element’s constant velocity and ¢ is the time since
all the elements were in one place. Supernovae enter homolo-
gous expansion when initial radii of matter elements and all
forces acting on the matter elements become negligible. The
classical CD and CP frequency surfaces for homologous
expansion are planes perpendicular to the line of sight and
spheres centered on resonance points (i.e., the common points
of the CP frequency surfaces), respectively (see §§ 2 and 3).
The classical Sobolev optical depth for homologous expansion
is direction independent (see § 4). The simplicities of homolo-
gous expansion are, however, lost if ejecta velocities are so high
that the classical treatment (including the use of the first-order
Doppler shift formula) becomes inadequate. Typical supernova
ejecta velocities, detected from line Doppler shifts, are of order
5000-15,000 km s~ !. Thus, relativistic corrections to the clas-
sical (i.e., first order) Doppler shifts are typically less than of
order 5%. There are, however, observations revealing higher,
and in a few cases much higher, supernova ejecta velocities.
The blue edge of what is probably the P Cygni absorption of
the Mg 11 resonance lines in an IUE spectrum of Type II super-
nova SN 1987A from day 1.658 after the explosion (Kirshner et
al. 1987) suggests that there was ejecta moving at ~40,000 km
s~ 1. The blue edges of the Ca 11 H and K lines’ P Cygni absorp-
tions in premaximum spectra from Type Ia supernovae SN
1984A (Wegner & McMahan 1987; Branch 1987) and SN
1990N (Leibundgut et al. 1991; JLK) also suggest that there
must be some ejecta at ~40,000 km s~ !. Even higher ejecta
velocities may yet be detected in future observations. At

r=ut,
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velocities of ~ 30,000 km s, the classical Doppler shifts are in
error by ~10% and a relativistically correct treatment of radi-
ative transfer becomes desirable.

HS developed a relativistic Sobolov method intended for
applications to objects with very high ejecta velocities such as
broad absorption-line quasars and supernovae. A principal dif-
ference from the classical Sobolev method is that the rela-
tivistic CD and CP frequency surfaces do not have constant
velocity components in the specifying directions of these sur-
faces; of course, the CD frequency surfaces still emit line radi-
ation at a constant frequency in the frame of an observer at
infinity and the CP frequency surfaces in the comoving frames
of their common points. Because of this difference, it is better
to refer to these surfaces as frequency surfaces following HS
rather than to use the expression velocity surfaces used by, e.g.,
RH. HS did not consider relativistic CP frequency surfaces
(and therefore interacting line effects) nor the case of homolo-
gous expansion at least as we define this case. Because of the
high velocities in supernova ejecta, the lines in supernova
atmospheres, especially blueward of 5000 A, are almost always
significantly interacting with other lines and interacting line
effects cannot be ignored.

In this paper, a detailed application of the relativistic
Sobolev method including interacting line effects to homolo-
gously expanding atmospheres (with supernovae as the only
example in mind) is described. The expressions for the CD and
CP frequency surfaces for homologous expansion are derived
in §§ 2 and 3, respectively. We also discuss beam paths in the
comoving frame in the CD and CP frequency surface cases. In
§ 4, other important expressions of the relativistic Sobolev
method are presented and briefly discussed. The expressions
assume that the velocity field of the atmosphere is spherically
symmetric, but not that it is a homologous expansion velocity
field or even a monotonic velocity field (see definition below).
The expressions do not take account of advection. In § 5, we
discuss for the case of supernovae the validities of making the
stationarity approximation and of the relativistic Sobolev
method’s neglect of advection. In § 6, some demonstration
spectra calculated using the relativistic and classical Sobolev
methods for models in homologous expansion are presented
and compared. Conclusions are given in § 7. The Appendix
discusses the relativistic Sobolev method in the case of atmo-
spheres in exponential expansion, a near relative of homolo-
gous expansion.

Before ending this introduction, there are a few further
points we should discuss. Because this paper deals with quan-
tities in both the comoving and observer frames, it is useful to
recall the Lorentz transformations for these quantities. The
subscript or superscript 0 will be used to denote comoving
frame quantities. The relations for frequency and cosine of
angle from the radial direction for a system with a spherically
symmetric velocity field are

vo=w(l —pup), v=voy(l+ poh), )]
_pu—8 Mot B
ST Tw " T 1+ B G

(e.g., Mihalas 1978, p. 495), where B is the radial velocity
divided by ¢ and

1

N

)

The azimuthal angle about the radial direction is the same in
both frames. The relations for specific intensity, source func-
tion, and opacity are

19 1
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respectively (e.g., Mihalas 1978, pp. 495-496).

Homologous expansion is an example of what we will call a
monotonic velocity field. We define a monotonic velocity field
to be a velocity field in either general expansion or general
contraction: i.e., a velocity field where matter is everywhere in
either expansion or contraction. In such a velocity field, the
velocity component along any possible beam path is either
strictly increasing or decreasing. An example of a non-
monotonic velocity field can be a spherically symmetric decel-
erating outflow.

It should be emphasized that relativistic radiative transfer
calculations for supernovae using techniques other than the
Sobolev method are now common. First-order relativistic
Monte Carlo calculations have been reported by Lucy (1987)
and first-order relativistic comoving frame calculations by, e.g.,
Eastman & Kirshner (1989). Full relativistic comoving frame
calculations have been done by Harkness (1991a, b; Wheeler &
Harkness 1990) and by Hauschildt, Best, & Wehrse (1991).
Comparisons of calculations with these techniques and the
relativistic Sobolev method ought to be done; such compari-
sons are, however, beyond the scope of the present paper.

Since Monte Carlo and comoving frame techniques can be
made more exact than the Sobolev method and are capable of
treating low-velocity regimes as the Sobolev method is not, the
reasons for the further use of the Sobolev method for super-
novae ought to be mentioned. Sobolev method codes are
simpler to develop and are less computationally demanding
than the other techniques and so are more suitable for fast
extensive analyses of supernova spectra. In detailed non-LTE
calculations of supernova spectra, the Sobolev method pro-
vides a very useful means of calculating radiative transition
rates (e.g., Eastman & Pinto 1993). The Sobolev method can be
applied to aspherical systems (Jeffery 1987, 1988, 1989, 1990,
1991a, b), whereas the comoving frame formalism has not been
generalized for these systems and Monte Carlo calculations for
aspherical systems would be computationally very demanding,.
The Sobolev method offers a useful mental picture of radiative
transfer. Given these reasons for using the Sobolev method,
further improvement of supernova Sobolev calculations by
making them relativistic seems worthwhile especially as the
implementation of the relativistic effects turns out to be
straightforward.

2. THE CD FREQUENCY SURFACES FOR HOMOLOGOUSLY
EXPANDING ATMOSPHERES

Consider an atmosphere in homologous expansion and an
atomic line with (comoving) line center frequency v,. Let there
be a cylindrical coordinate system with symmetry axis along
the line of sight and an impact parametere axis pendicular to
the symmetry axis and intersecting it at the expansion center.
We use z as the symmetry axis coordinate with positive z in the
direction of the observer and p as the impact parameter coordi-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...415..734J

736 JEFFERY

nate. We will measure velocity in units of ¢, and therefore use
rather than v as the velocity symbol. The CD frequency formu-
lae for the line will be given in terms of velocities; spatial
distances can be obtained by multiplying the velocities by the
appropriate time. In order to obtain these formulae, consider a
point with radial velocity f, z-axis velocity B, and impact
parameter velocity f8,. These velocities are related by

B.=up, B=+/B+5B;. @

Let
0=d—1=—-—1. ()]

Substituting from equations (8) and (9) into the first expression
of equation (2) and solving for 8, gives

24 /1 _ (32 2
m=ﬂu=d tvl-d +D&. (10)

d? +1

The two solutions for f, are the relativistic formulae for the
CD frequency surfaces. The lower case solution is the classical
analog solution. The upper case solution is a purely relativistic
solution.

The surface defined by equation (10) is in fact an axisym-
metric ellipsoid with center at the velocity point (f,, §,) =
[0, d%/(d*> + 1)], and semimajor axis, semiminor axis, and
eccentricity

1 1 d
Jé+1 2+ Jir ]
respectively. When the discriminant of equation (10) is zero
(i.e., when f, equals the semimajor axis), the two solutions for

B, reduce to one solution and we have a limiting CD frequency
surface velocity point. For this limiting velocity point, we have

the limiting velocity
Jar+d?+1
va +a +1 ) (12)

d*+1

1)

Blim =

The behavior of g, as a function of d is of interest. For both
d = 0 (redshift to zero-frequency case) and d = oo (blueshift to
infinite frequency case), f;,, = 1; thus, the velocity at the limit-
ing impact parameter position is the velocity of light. For d
between 0 and oo, f;,, has one stationary point, a minimum for
d = 1 where By, = (3)}/2/2. The behavior of the f, function
(i.e, of [BZ; + BZ]'/?) with constant d is monotonic decreasing
with B, for the upper case and monotonic increasing with f,
for the lower case. Thus, for any value of d including d = 0,

B- < Bim < B+ . (13)

It follows that upper case solution for the CD frequency
surface will be physically relevant only for a homologously
expanding atmosphere where matter is moving at radial velo-
cities greater than (3)'/2/2 (in units of c). To present knowledge,
there are no astrophysical atmospheres exhibiting physical
velocities at all close to (3)*/2/2. Consequently, the upper case
solutions are currently only interesting formalism.

To second order in small 6 and 8, the classical analog solu-
tion for the CD frequency surface is

H =515+ 48 14
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The first-order classical analog solution,

s _§—d—1=—_1, (15)
Vo
is, of course, the classical solution itself; one can see that the
classical CD frequency surfaces are planes perpendicular to the
line of sight.

Figure 1 displays the behavior of the CD frequency surfaces
for several values of d. For d = 0, the two solutions form a
sphere of radius 1. As d increases, the ellipsoid formed by the
two solutions shifts toward higher f, values, contracts, and
increases in eccentricity. For d = oo, the closed curve formed
by the two solutions contracts to a point with 8, =1, B, =0,
and f = 1. The upper case solution for B, = 0 always has §, =
B = 1. Naturally, the solutions are unphysical when they have
B =1: ie., when they correspond to a frame moving at the
velocity of light. In the classical case, redshifted and blueshifted
line photons emitted by the atmosphere can only come from
the B, < 0 and B, > O regions of the atmosphere, respectively
(see eq. [15]). Figure 1 shows that in the relativistic case
redshifted photons can come from the B, >0 region for
sufficiently large 8. Noting, however, that

<1 for B,<0 (16)
(see eqgs. [2], [4], [8], and [9]), it follows that all line photons
coming from the B, < 0 region are redshifted, and thus (and
just as in the classical case) blueshifted line photons can only
come from the f, > 0 region. Figure 1 suggests that the closed
CD curves for different d values never intersect. This sugges-
tion is easily confirmed. The upper and lower cases of equation
(10) are strictly decreasing and increasing functions of d,
respectively, for d > 0, except for the upper case solution for
B, =0 which is 1 for all d and which can be ignored for this
argument. Thus, along any impact parameter f,, one upper

Jt=173

 Jt=1r2

FiG. 1.—The homologous expansion case CD frequency surfaces for
several values of d = v/v, are marked by solid lines. The expansion center and
the point solution for the d = oo case are marked by dots. Beam paths for
several f values are marked by dashed lines.
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(lower) case solution can never intersect another upper (lower)
case solution. Since along any impact parameter f,, the lowest
upper case solution f§, value and the highest lower case solu-
tion f, value are the same f, value and in both cases the S,
values are obtained for the same limiting d value given by

B2 -1, (17)

it is clear that the closed CD curves of constant d never inter-
sect at all. The existence of dy;,, means, of course, that lines
cannot give rise to arbitrarily large shifts for specified §, > 0.

Consider a beam propagating in the z-direction that at time
t, is located at point (p,, z;) = (8,1 t, B.,1, t1), where B, | >
0. As time passes, the impact parameter of the beam stays
constant at p,, but the impact parameter velocity decreases
according to

dlim =

Bp="10 (18
The z coordinate increases according to
z=ct—t)+z,. (19)
It follows from equations (18) and (19) that
B.=1-1B,, (20)
where we define
1—B.1
f= B 21

Thus, a z-directed beam in the comoving frame follows a
straight line path where f, = 1 when f, = 0:ie., when t = oo.
Beams paths for several f values are marked by dashed lines in
Figure 1. From Figure 1, it appears unlikely that a beam can
intersect the CD frequency surfaces for line (i.e., for a given d
value) more than once not counting the always present
unphysical intersection at the velocity point (0, 1). If one sub-
stitutes the solutions for the CD frequency surfaces (see eq.
[10]) into equation (20), one obtains a single solution (aside
from the unphysical solution [£,, .] = [0, 1]) for the velocity
point of intersection between the beam and the CD frequency
surfaces:

(Bps B.) = I:

2f @ -1f2+1
(d2+1)f2+1’(d2+1)f2+1]' 2)

For f < 1/(d? + 1)V/2, the beam intersects the upper case solu-
tion CD frequency surface and for f > 1/(d? + 1)*/2, the lower
case solution CD frequency surface. For f = 1/(d? + 1)*/2, the
beam, of course, intersects the limiting CD frequency surface
velocity point. If §, = 0 for a beam at a finite time, then f, = 0
always and the beam is collinear with the z-axis; such a beam
obeys equation (19), of course, and only intersects the upper
case CD frequency surface solutions at the velocity point (0, 1).
Because only one physically relevant intersection of a z-
directed beam and the CD frequency surfaces for a line can
occur, there is no direct remote radiative coupling of a line to
itself in homologously expanding atmospheres. In § 3, we will
demonstrate that propagating photons always become redder
in the homologous expansion comoving frame, and thus
remote self-coupling mediated by a second line is not possible
either. The monotonic shifting of photon frequency also occurs
in all monotonic velocity fields in the classical limit (because
the first-order Doppler formula applies) where remote self-
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coupling is likewise not possible. Atmospheres in exponential
expansion (like homologous expansion a form of general
expansion) with very high velocities can exhibit a relativistic
remote self-coupling as pointed out by HS (see the Appendix).
A nonrelativistic remote self-coupling can occur, of course, in
atmospheres with nonmonotonic velocity fields where there
are remote matter elements that are at rest with respect to each
other. Such atmospheres are discussed by RH (see also § 4).

In calculating the formal Sobolev solution for the emergent
flux from an atmosphere, the usual procedure is to add up the
contributions to a z-directed beam from CD frequency surfaces
and any continuum sources proceeding either forward or back-
ward along the beam path. The beam may end on the farthest
CD frequency surface being considered or on an opaque
source of continuum radiation, usually a central radiating
spherical core representing either a photosphere or a thermali-
zation layer. Since the beams travel along straight lines in the
comoving frame, dealing with occultation due to a core is
straightforward. In § 4, the expressions for frequency surface
contributions to a beam are presented. After calculating the
flux in a beam, one integrates over all beams being emitted to
get the net flux. For homologous expansion, equation (22) pro-
vides the locations of the points where a beam for a specified f
parameter intersects the CD frequency surfaces. For example,
if proceeding backward along a beam, one evaluates equation
(22) for progressively bluer lines: i.e., progressively larger line
center frequencies v, or progressively smaller d values. One is
also evaluating the contributions from the CD frequency
surface at progressively earlier times as one proceeds backward
along the beam. It is straightforward to show that no beams
emitted by a core can interact with the upper case solution CD
frequency surfaces, except that if the core is large enough to
intersect upper case solution CD frequency surfaces, then inter-
action is possible at the points of intersection. Line and contin-
uum photons emitted in the atmosphere and, as Figure 1
suggests, beams entering the atmosphere from other regions of
space can interact with the upper case solution CD frequency
surfaces.

One must do the integration over all beams for the net flux
as an integration over a physical area in order to obtain the net
flux in the proper units. For example, one may chose to inte-
grate over the plane that is perpendicular to the line of sight
and tangent to the outermost physical shell of the atmosphere.
Let this shell have velocity f,,,,. Say one does this integration
at time ¢. The observer will see this flux at time

tobs* =t+ tC - tmax > (23)

where ¢t is the light travel time from the expansion center to
the observer and t,,,, = Bmax ? is the light travel time from the
expansion center to the outermost shell at time t. The obser-
ver’s epoch is, of course, defined as fy,, = typsy — tc. FOr a
synthetic spectrum calculation, one usually specifies t,,, and
obtains t from

tobs (24)

=1—Bmax.

In a time-dependent calculation, clearly all atomic conditions
must be specified as functions of time. For time-independent
calculation (i.e., one making the stationarity approximation),
one must choose an appropriate characteristic time. t,, for
these atomic conditions. In the case of supernovae, much of the

t
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spectrum formation will occur relatively close to the expansion
center or close to the plane perdendicular to the line of sight
running the expansion center. Moreover, both matter nearer
and farther than the expansion center are important for P
Cygni profile formation. Therefore, the obvious choice for the
characteristic time for supernovae is

tth=t—1¢

t (25)

max ~— ‘obs *

In § 5, we discuss the validity of time-independent supernova
Sobolev method calculations.

3. THE CP FREQUENCY SURFACES FOR HOMOLOGOUSLY
EXPANDING ATMOSPHERES

In order to find the homologous expansion case formulae for
the CP frequency surfaces, consider a reasonance point P, a
local line (i.., a line at point P,) with line center frequency v?,
and a remote line (i.e., a line not at point P, in general) with
line center frequency v3. The set of points from which a photon
flow can occur from the remote line to the local line at P,
constitutes a CP frequency surface for P,; P, is the common
point of this CP frequency surface. Consider a resonance point
P, for the remote line located on this CP frequency surface. We
will think of P, and P, as points attached to matter elements
sharing in the homologous expansion. The diagram in Figure 2
shows the relevant quantities and geometry in the observer
frame. Using equation (1), we know that

Bi=—L, g, =12 (26)

Tty ct,’

where t, and ¢, are the times when a photon traveling from P,
to P, is at P, and at P,, respectively. To specify the CP fre-
quency surface, we need to find expressions in terms of 8, u;,
and v and v for B,, uy, He, piy (see below), and AB, the
geometrical velocity difference between points P; and P, at
one instant in time.

“1r1

FiG. 2—The relevant quantities and geometry in the observer frame
needed to derive the formulae for the homologous expansion case CP fre-
quency surfaces. The expansion center and the two resonance points are
marked by dots. The line connecting the two resonance points is the observer-
frame beam path between them. The arrow shows the direction of photon
propagation.
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Geometry provides us with the expressions

ry=/r} +Ar® —2r Arp, , 27)
ry = Ucty + uiAr, (28)
Ar=pyry —pprs, 29

and physics with the expression
Ar=ct, — t) . (30)

We define

x = i—; : 31)

Using these expressions, it is straightforward to obtain
Br=/1—2x(1— ) +x*(1+ B} —2mB), (32

_ 1 —p, B,
- o
_ 1_ 1F1
1 —1 1
po = X == D (1;‘2 L2y (35)

Then using the Law of Cosines and substituting as necessary
gives

AB = /B? + B2 — 2B, B, ke (36a)
=(x— D1+ B — 21,8, - (36b)

Note that Af is a physical velocity only in the classical limit.
We must now find an expression for x.
For the two lines to be radiatively coupled,

v v
= (37
11— pB) vl — 12 B5)
(see eq. [2]). Let
v
d12=v_0, 512=d12—1' (38)

1

Using the expression for d, ,, equation (33) for x, and equation

(37), we obtain
x = dia7s _ diay/1— B3 (39)
Y2 J1— B}

Substituting for B, from equation (32) and solving for x yields

X = 2dfz(1 — 84 (40)

do(1 + Bt —2u B) + (1 = BD

We also have

@ — )1 — f)
= . 41
A+ p—ampyra—p

Since x — 1 > 0 always, it follows from equation (41) that
d,, > 1 always. Thus, propagating photons always get redder
in the comoving frame and photon flow must always be from a
bluer to a redder line. Remote self-coupling is not possible, but
locally self-coupling is allowed, of course, for d,, = 1. The CP

x—1

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...415..734J

No. 2, 1993

frequency surfaces for exponential expansion cases, however,
do allow remote self-coupling as we show in the Appendix.
From equation (41), it is straightforward to show that x — 1
and therefore Af increase monotonically with d,.

Given the expressions for x and x — 1, we can calculate 8,,
U2, Hc, and AB. The CP frequency surface itself is obtained
from the expressions for §, and uc. The cosine u, is needed for
the radiative transfer on the CP frequency surface (see § 4). The
Ap could be used to locate the CP surface if we knew y; in
terms of the analogous cosine for the geometry where the
points P, and P, are considered at one instant in time. We
denote this cosine by y, . From the Law of Cosines we have

Ba= /Bt + AB* — 2B, ABu,, . 42)
Using the expressions for §,, Af, and x — 1, we find
Hy — ﬂl (43)

Hiy = .
* vV 1 +ﬁf—zﬂ1ﬁ1

It should be clear that u,, is not defined when Af =0 (ie,
when d,, = 1). Note that u,, is not the same as u} (the
physical comoving counterpart to u,; see eq. [3]); however,
Hix M) = 1 when p; = +1, and p,, and puf do agree to
first-order in small §,. It is easy to show that u,, < u, always
and that the equality holds only for 4, = + 1. Inverting equa-
tion (43), we get

Hy = .ul* vV 1-— ﬁ%(l - ,Ltf*) + ﬂl(l - Au%*) .

Using this expression we can now calculate A as a function of
M1 *°

There is an interesting consequence to the fact that u,, and
therefore 6,, are independent of x and d,,. From the Law of
Sines, we find that

@4)

(45)

where 0,, is the angle analogous to 6,, but for the geometry
where the points P, and P, are considered at one instant in
time. Clearly, f, sin 6,, is also independent of x and d,,, and
thus beams incident on P, must follow straight line paths in
the comoving frame as well as in the observer frame. Since P, is
an arbitrary point, all beams follow straight line paths in the
comoving frame. This result also follows from our demonstra-
tion in § 2 that beams moving in the z-direction in the observer
frame move along straight lines in the comoving frame, since
any direction can be taken as the z-direction. Since the beams
follow straight line paths in the comoving frame, the effective
cosine of half the angle subtended by a central spherical core is

B, sin 0,, = B, sin 6, ,

iul* core — \/ 1-— (ﬂcore/ﬁl)2 ) (46)
where B, is the core radial velocity.
Using equations (36) and (41), we find
g @ VU= P01+ BTy

di(1+ B3 —2u, By) + (1 — B3)

We can use equation (44) to make Af a function of y,, rather
than u,. The CP frequency surface specified by equation (47) is
axisymmetric, of course, but not an axisymmetric ellipsoid. The
expressions for Af to third, second, and first order in small 6, ,
and f, are

Ap* = 01,[1 — %512 + U B161; — %ﬁﬂl + H%)] s
A.BZd = 512(1 - %512) >

(48)
(49)
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Aﬁ15'=512=d12—1=w—1, (50)
1

respectively. The first-order solution is the expression for the
classical CP frequency surface: i.e., a sphere centered on the
common point. It is interesting to note that the spherical CP
frequency surface is maintained to second order.

Figure 3 displays the behavior of the CP frequency surfaces
for B, values 0.1 and 0.9, and 6, , values 0.1,0.3, 1, 2, 5, and 0.
For , = 0.1 and small §,,, the CP frequency surface is nearly
a sphere centered on the common point. As J,, increases, the
CP frequency surface distorts slightly and becomes a sphere of
radius 1 centered on the expansion center for ,, = co. For
B, =09, the CP surface is oval-shaped for small 6,, and
becomes a sphere of radius 1 centered on the expansion center
ford,, = co.

To evaluate the line source function at a resonance point,
one sums all the contributions to a beam incident on the point
from the CP frequency surfaces and any continuum radiation
sources, and then integrates over all angle. In § 4, the expres-
sions for frequency surface contributions to a beam and for the
relativistic line source function are presented.

4. RELATIVISTIC SOBOLEV METHOD FORMALISM

For reference, we present and briefly discuss in this section
the relativistic Sobolev method expressions for resonance
region line optical depth, width, and escape probability, the
formal solution for radiative transfer through frequency sur-
faces (which is exactly as in the classical case), and the line

F1G. 3.—The homologous expansion case CP frequency surfaces for f,
values 0.1 and 0.9, and J,, values 0.1, 0.3, 1, 2, 5, and oo. The two common
points are marked by small dots and the expansion center by a large dot. The
CP frequency surfaces for the §, = 0.1 and f, = 0.9 common points are drawn
with solid and dashed lines, respectively. The CP frequency surfaces get mono-
tonically larger as ,, increases. The CP frequency surfaces for 6,, =
overlap exactly and are spheres of radius 1 centered on the expansion center.
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source function. The derivations of these expressions are given
by HS or follow directly from HS and classical Sobolev
method presentations (e.g., RH and Jeffery & Branch 1990).
The expressions assume that the velocity field of the atmo-
sphere is spherically symmetric, but not that it is a homologous
expansion or a monotonic velocity field. Additionally, the
expressions assume (just as for the classical Sobolev method)
that advection can be neglected; this assumption is discussed
in § 5 for the case of supernovae. For the line source function
expression, complete redistribution (CRD) in frequency and
angle in the comoving frame is assumed; the analogous
assumption is usually made for the classical Sobolev method
where, of course, there is no distinction between comoving and
observer frame quantities, except for frequency. A discussion is
given of how the assumption of CRD in angle can be dispensed
with for a certain kind of line scattering.

The expression for the relativistic Sobolev optical depth of a
resonance region centered at a point P is given by

a® (1 — up)?
ve ol u(u — B)op/or + (1 — w1 — BAB/r|’

where v is the comoving line center frequency for a line for
which P is a resonance point, a° is the comoving frame inte-
grated line opacity at P, and § and 0f/0r are evaluated at P.
The beams that will interact with the line at P must have
observer frame frequencies v satisfying v3 = vp(1 — up). In the
classical limit,

T=

(51

0 -1

oup)
Os

1
_Tst

ol ®

[=]

1
ve | W2 (@B/or) + (1 — w)B/r|’

where 1'% is, of course, the classical Sobolev optical depth (e.g.,
RH) and s is an observer frame beam path coordinate for a
beam path through P in the direction determined by p with
s=0atP.
For homologous expansion,
op 1

o (53)

| R

(52)

and thus

aCct (1 — upy’

Ve ylun— B+ (1 —pi1 =Y
To second order in f§, the homologous expansion Sobolev
optical depth is given by

oOct

(54)

T = Thom

t= = (- pp) =i —pf), (59
P
where tist is the classical homologous expansion Sobolev

optical depth. Clearly, the second-order correction to the clas-
sical homologous expansion Sobolev optical depth will tend to
enhance outward transmission relative to inward transmission.
The classical homologous expansion Sobolev optical depth is
direction-independent.

The appropriate comoving frame frequency profile for a line
in astrophysical contexts is usually a normalized Voigt func-
tion (e.g., Mihalas 1978, pp. 279-281). The Voigt function has a
Gaussian core with a maximum at the line center frequency
(here labeled v3) and becomes a Lorentzian function in the
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wings. The Gaussian core is due to the thermal velocity field
and perhaps a microturbulent velocity field. When the Lor-
entzian wings are insignificant, the Voigt function becomes
nearly zero when v, differs from v by more than a few times
the Gaussian width Av}, which by the usual stellar atmo-
spheres convention is 2/2 times the Gaussian standard devi-
ation. The Lorentzian wings will only become significant for
very strong lines with Sobolev optical depths of order 103 or
larger (e.g., Hummer & Rybicki 1992). If the thermal velocity
field alone determines the Gaussian core, then the Gaussian
width is the thermal frequency width and is given by

o Uh _ Vp/2kT/m (56)

0 _ A0 _
Avg, = Avy, =vp -

where AvY, is the thermal frequency width and v, is the thermal
velocity; i.e., the most probable thermal speed or the thermal
velocity width (e.g., Mihalas 1978, p. 110).

The observer frame resonance region (characteristic) width
l.. is defined to be the spatial counterpart of the line Gaussian
(frequency) width Av2,. The expression for [, is

e Ave,
" v0/0s[v(1 — uPl|
_ A, (1= pp)
vp 72l u(p — BYop/or + (1 — u(1 — BAB/r1’
where Av2,, B, and 0B/or have been evaluated at P. For
homologous expansion,
Les=1

_ Av?}a ct (1 — /’lﬂ)
ve o Ylup— B+ (1L —pA1 =B
Note that if the Gaussian core of the line profile is determined
by the thermal velocity field, then

(7

res res hom

(58)

0
AVgacl _ o (59)
Vp
(see eq. [56]). The resonance region width can also be con-
sidered as the observer frame characteristic width of the CD or
CP frequency surface on which the resonance point lies. Note
that the resonance region can have an effective size scale that is
much larger than the defined resonance region width if the
Lorentzian wings of the line are not negligible.

The formal Sobolev solution for the radiative transfer of a
beam through a single frequency surface in the limits of s (the
beam path coordinate) going to effective negative and positive
infinity relative to the frequency surface is

Iv={1v‘°° for s— —o0;

60
I;*e "+ S(1—e77) for (60)

§—00;
where I ® is beam intensity well before the frequency surface
and S, is the observer frame line source function evaluated at
the center of the frequency surface (i.e., at s = 0). This expres-
sion can be immediately generalized to the multiple line inter-
action case by considering all lines as effectively infinitely far
apart: ie., as not having overlapping resonance regions. The
generalized expression is

N N i-1
IL=I;%— % 1,+ Y Si(l—e Me— Y 1 (61)
i=1 i=1 Jj=1
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where N is the number of frequency surfaces the beam has
traversed and the subscripts and superscripts i and j label the
frequency surfaces counting backward along the beam path.

A useful expression derived with the assumption of CRD in
frequency and angle for the comoving frame line source func-
tion at P is

(1 — )T, + G°
0o _ L —" €W TY )
§ E+(1-€9 (62)

where €° is the fraction of photons absorbed by the line that
are not directly reemitted, G° is the nonscattering line source
function which accounts for new line photons due to collisional
excitations and transitions from other levels and the contin-
uum, f is the Sobolev escape probability, and J?,, is the mean
integrated specific intensity. All the quantities used to evaluate
SO are evaluated at P. The observer frame line source functions
appearing in equations (60) and (61) are obtained by multi-
plying S° by [y(1 — up)] 3 (see egs. [2] and [6]). The escape
probability is given by

pofiotn 63)

T 4n °

where the integration is over all solid angle. For homologous
expansion in the classical case, f = (1 — e %)/t since the clas-
sical homologous expansion Sobolev optical depth is
direction-independent (see eq. [55]). (Note that we use f as
the Sobolev escape probability symbol in this paper rather
than the conventional f [e.g., RH; HS] since we require f for
its even more strongly conventional use as v/c.) The mean

integrated specific intensity is given by

To = 3§[v(1 - uﬂ)]31v}°°<l ‘f_t> To e

4

The equation (62) is exactly as in the classical Sobolev
method, except that there is no distinction between comoving
frame and observer frame quantities in the classical case. To
evaluate S° requires doing the integral for J2,, accounting for
all other relevant lines using the CP frequency surfaces and any
continuum-radiating surfaces that may be present such as a
central continuum-radiating core. In a classical general expan-
sion case (see, e.g., RH) and in any homologous expansion case
(see § 3), J2, will not depend on the line for which it is being
evaluated, but only on bluer lines. Thus, if €°, G° and all
continuum sources of flux were known, equation (62) would
allow an explicit evaluation of all line source functions by
starting from the bluest line considered and evaluating each
line source function for the whole atmosphere in order of
decreasing frequency. In a classical general contraction case
with the same knowns, the same procedure could be followed,
except that one would start from the reddest line and proceed
blueward. In cases with nonmonotonic velocity fields, a line
source function will in general depend nonlocally on itself (i.e.,
there will be remote self-coupling of the line in general) and on
the source functions of redder and bluer lines. RH consider the
classical Sobolev method treatment of nonmonotonic velocity
fields. In extremely relativistic atmospheres in general expan-
sion, there is also a possibility of remote self-coupling and
dependence of the line source functions on both redder and
bluer lines. Such relativistic effects arise for exponentially
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expanding atmospheres as we show in the Appendix. At
present, there is no observational need to invoke these rela-
tivistic effects and the techniques for evaluating line source
functions when they occur have not been worked out.

For simple calculations, one can introduce reasonable pre-
scriptions for €® and G°. For example, if a core continuum flux
has a higher temperature than the atmospheric temperature
above the core (which is the usual situation), then it is natural
to assume that lines with lower levels that are ground levels or
metastable levels have their source functions mostly deter-
mined by excitation from their lower levels by the core contin-
uum flux. Thus, a reasonable approximation is to treat these
lines as pure scattering lines by setting €° and G° to zero. With
this approximation, equation (62) reduces to

J
SO="%. 65

Equation (65) is essentially the same as HS’s equation (34) for
the Sobolev line source function in the pure scattering case.
The Sobolev optical depths of the lines can be determined
using LTE occupation numbers or some simple prescription.

For more exact self-consistent radiative transfer calcu-
lations, the line source functions and opacities must in general
be obtained from a non-LTE calculation of the atomic
occupation numbers. A Sobolev method non-LTE calculation
uses the J°, and f values for all relevant lines in the determi-
nation of these atomic occupation numbers (Klein & Castor
1978).

If instead of assuming CRD in angle (in the comoving
frame), one assumes that a hybrid phase matrix (a linear com-
bination of the Rayleigh phase matrix and the isotropic scat-
tering phase matrix) applies (in the comoving frame), then it is
possible to develop a formalism for the determination of the
relativistic Sobolev line source Stokes vector. The line source
Stokes vector (which is analogous to the line source function) is
the quantity needed to treat polarized radiative transfer for
which nonisotropic scattering is of most interest. The formal-
ism for the line source Stokes vector is analogous to the for-
malism leading to equation (62). Papers by Jeffery (1988, 1989,
1990) have shown how the hybrid phase matrix can be incor-
porated in the classical Sobolev method in order to treat pol-
arized radiative transfer. The expressions developed in these
papers for the line source Stokes vector will also hold for the
relativistic Sobolev method provided they are regarded as rela-
ting comoving frame quantities. For spherically symmetric
atmospheres, one can use the analytic expressions for the line
source Stokes vector given by Jeffery (1990, egs. [37a] and
[37b]). For axisymmetric atmospheres (Jeffery 1989) and three-
dimensional atmospheres (Jeffery 1990), there are matrix equa-
tions that must be solved to obtain the line source Stokes
vector. These matrix equations can be solved by ordinary
numerical means or cumbersome analytic expressions could be
developed. The simple analytic expressions for the line source
Stokes vector obtained for the classical spherically symmetric,
axisymmetric, and three-dimensional homologous expansion
cases cannot be made relativistic because these expressions
demand direction-independent Sobolev line optical depths
which are not available in the relativistic homologous expan-
sion case (see eq. [54]). Note that the axisymmetric and three-
dimensional atmospheres would have to possess spherically
symmetric velocity fields in order for the relativistic Sobolev
formalism developed in this section to apply.
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No consideration has yet been given to the relativistic
Sobolev method treatment without the assumption of CRD in
frequency.

The procedures for evaluating the net flux from an atmo-
sphere using the Sobolev method formal solution (i.e., egs. [60]
or [61]) and for evaluating the mean integrated specific inten-
sity in the relativistic case are essentially the same as in the
classical case. One must, however, account for all transform-
ations of frequencies, specific intensities, angles, etc., between
the different frames (see eqs. [2]-[7]). The net effect of these
transformations (as was discovered in doing the calculations
for the demonstration spectra presented in § 6) is at least as
important for a relativistic Sobolev method calculation as the
effects of the relativistic CD and CP frequency surfaces. We
discuss the use of the CD and CP frequency surfaces briefly in
§§ 2 and 3, respectively. Relevant discussions of the procedures
of classical Sobolev method calculations are given by, e.g.,
Mihalas (1978, p. 471), RH, Bartunov & Mozgovoi (1987), and
Jeffery & Branch (1990). HS provide a detailed discussion of
several kinds of calculations with the relativistic Sobolev
method.

Finally, it should be noted that the implementation of all the
relativistic effects that constitute the relativistic Sobolev
method in an existing Sobolev method computer code for
homologously expanding atmospheres is straightforward.

5. STATIONARITY, ADVECTION, AND THE RELATIVISTIC
SOBOLEV METHOD AS APPLIED TO SUPERNOVAE

In developing the relativistic Sobolev method for super-
novae, we have not so far made the stationarity approx-
imation: i.., assumed that the radiative transfer in supernovae
could be approximated as time-independent. Our formalism
for the CD and CP frequency surfaces accounts for expansion
of the atmosphere during the flight time of the photons (see §§ 2
and 3). Thus, if one knew all the atomic occupation numbers
and continuum radiation sources as functions of time, one
could calculate the time-dependent emergent flux with the for-
malism we have developed. However, most supernova calcu-
lations using the Sobolev method do not attempt a
time-dependent treatment and use the stationarity approx-
imation for the atomic occupation numbers and continuum
radiation sources. Supernovae are, of course, primary exam-
ples of rapidly varying astrophysical objects, so some justifica-
tion for the stationary approximation is needed. Since the
Sobolev method is principally concerned with radiative trans-
fer in the outer atmosphere above the photosphere (i.c., where
the continuum is optically thin), it is interesting to address the
issue for that region of supernovae. (In this paper, the term
photosphere denotes that atmosphere layer which is at approx-
imately a continuum optical depth of 2/3.)

Consider a supernova with a photospheric velocity v,,. The
effective velocity width of the atmosphere above the photo-
sphere is very roughly ~uv,,. Consider only pure scattering in
lines and continuum, since this should give the main outer
atmosphere behavior. Most photons emitted from the photo-
sphere will interact with 0, 1, or 2 lines and with continuous
opacity of order once before escaping the atmosphere. Note
that each line interaction will, in general, consist of several
scattering events in a resonance region. For the moment, con-
sider only the flight time; we will justify the neglect of the
interaction time in resonance regions below. The flight time
Atgigne Will typically be of the order of mv,,t/c, where m is
roughly the number of line and continuum interactions an
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atmosphere-escaping photon undergoes and is a factor of
order a few at most, and ¢ is time since the explosion. Thus, the
ratio of flight time to time since explosion is given approx-
imately by

At
tftllght ~ Zgh _ (66)

Since t is the evolutionary time scale of a supernova, the
smaller Atg,.,,/t is, the better the stationary approximation.
One might guess that stationarity would be a rather good
approximation for Atg;,,,,/t ~ 0.1 and would become only mar-
ginally good for Atg;,y,/t = 0.5. The range of known supernova
photospheric velocities is very roughly 1500-15,000 km s™*;
most observed photospheric velocities, however, fall in the
range ~ 5000-12,000 km s~ . The photospheric velocity is not,
of course, fixed for a given supernova, but decreases in time as
the ejecta decreases in density and the photosphere recedes
into the ejecta. The photospheric velocity evolution of Type I1
supernova SN 1987A exhibited the entire ~1500-15,000 km
s~ ! range if day 100 of that event is taken as the end of its true
photospheric epoch (Jeffery & Branch 1990, Fig. 16). The only
other supernovae (of which the author is aware) for which
photospheric velocities as high as of order 15,000 km s~ ! have
been determined are Type Ia supernovae SN 1984A (Branch
1987) and SN 1990N (JLK). Since typically m < 3, we conclude
that Atg;./t < 0.15 in the most cases. Thus, the stationary
approximation is reasonably well justified for radiative transfer
in supernovae above the photosphere even for the highest
observed supernova photospheric velocities.

A second concern for the application of both the relativistic
or classical Sobolev methods to supernovae is the neglect of
advection, the outward transport of energy by the flow of
matter. Considering only pure scattering in lines and neglect-
ing all relativistic effects since only an approximate result for
supernova-like velocities is of interest, the mean time that
a photon is trapped in a resonance region and thus being
advected is given approximately by

t
Aty ~ ﬁ(—v'h + At&) ; 67)
4

where 7 is the mean number of scattering events, ¢ is again the
time since explosion, vt is resonance region width for
homologous expansion in the classical limit assuming the Lor-
entzian wings, of the line profile and microturbulence are negli-
gible (see eqs. [56], [58], and [59]), v, t/c is the characteristic
flight time between scattering events in the resonance region,
and At is the comoving frame mean duration of a line excita-
tion. For typical supernova temperatures of order 10* K
(implying v,, of order ~1-10 km s~ !) and for observable
epochs (which typically begin ~ 10 days after explosion and
very rarely ~1 day after explosion and last till of order
hundreds of days), one finds that v, t/c is unlikely to be smaller
than ~0.3 s. For important lines, At® will be 10~ % s to within
about 3 orders of magnitude. Thus, it is clear that the second
term in equation (67) is negligible. The Sobolev expression for n
in the classical homologous expansion case is

n=r1 (68)
(e.g., Jeffery 1991b). Therefore, neglecting the second term and
substituting for 11, equation (67) becomes

(69)
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The importance of advection clearly increases with the ratio
of advection length [ 4 to the characteristic size of the super-
nova l,.. This ratio is approximately given by

Lt OpnAlag T
lchar vph t c

(70)

For typical values of v,,, equation (70) predicts that advection
will become very important for 7 = 3 x 10*. With optical
depths of this size, assumption of negligible Lorentzian wings
will usually be rather poor (e.g, Hummer & Rybicki 1992).
Above the photosphere, however, lines with optical depths that
are at all near this 3 x 10* (at least above 2000 A) seem to be
very rare. Lines that form strong profiles in supernova spectra
typically have optical depths of order 100 or less above the
photosphere. Therefore, typically [,4/l.4,, < 0.003 and the
neglect of advection for line transfer above the photosphere is
very well justified. It has been shown, however, that advection
is quite important for radiative transfer below the photosphere
(Hauschildt et al. 1991). This is clearly because of the strong
photon trapping in optically thick expanding layers. Thus,
Sobolev method calculations of deep radiative transfer can
only be of qualitative accuracy.

To validate the neglect of the line interaction time in the
discussion of stationary approximation, consider the ratio

mAi,4 L™

(71)
Atggn, 0

ph
For typical values of v, and v, this ratio will be small when
7 < 103, Since 7 2 10° rarely occurs above the photosphere,
the neglect of the line interaction time in the discussion of the
stationarity approximation is justified.

The conclusion of this section is that the use of the station-
arity approximation and the neglect of advection are justified
in Sobolev method line radiative transfer calculations for
supernova atmospheres above the photosphere.

6. DEMONSTRATION SPECTRA

In this section, some demonstration spectra calculated using
the relativistic and classical Sobolev methods for models in
homologous expansion are presented and compared. Demon-
stration relativistic spectra calculated using velocity fields con-
sidered appropriate for stellar wind atmospheres are reported
by HS. For the relativistic calculations, we made the station-
arity approximation for the atomic conditions and chose the
characteristic time for the models to the observer time (see the
discussion in § 2). For the classical calculations, the station-
arity approximation has been made for both the atomic condi-
tions and the photon flow, and the characteristic time was
again chosen to be the observer time. The stationarity approx-
imation for photon flow means, of course that observer-
directed beams have constant §, (see § 2). In order to conform
to most usual format, the spectra are given in the f, representa-
tion rather than in the f, representation and are plotted versus
wavelength rather than frequency. Note that

AZ
Iv=11?, 10,A3=1,2°. (72)

An important detail of the classical calculations is that equa-
tions (15) and (50) were used to calculate the CD and CP
frequency surfaces, respectively. Alternative expressions for the
classical CD and CP frequency surfaces are f.% =1 — vo/v
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and AB™ =1 —v{/vy. The two sets of classical CD/CP fre-
quency expressions are equally valid and give identical sets of
results when second-order terms are actually negligible. When
second-order terms are not negligible, however, the two sets of
expressions will yield different sets of results which will, of
course, both be in error to some degree. Because of the high
velocities used for the calculation of classical spectra presented
here, these classical spectra are only exactly reproducible using
equations (15) and (50).

The model (which will be called the schematic model) used
for first three comparison calculations consists of a core which
radiates a wavelength-independent angle-independent contin-
uum flux surrounded by a line scattering atmosphere: no con-
tinuous opacity is included. The core and atmosphere are both
in homologous expansion. The core velocity and the core
Sobolev optical depths are parameters. Above the core, a line
optical depth is made to scale as an inverse exponential of
velocity : thus

T = Teore e‘(”‘”corc)/ve ) (73)

where v, is the core velocity, 7., is the core optical and the
parameter v, is the e-folding velocity of the atmosphere. Artifi-
cial lines with pure scattering line source functions were used.

Figure 4 shows the first comparison between relativistic and
classical spectra. The spectra have been normalized to their
continuum flux levels. The core velocity and e-folding velocity
for the calculation were 15,000 km s~! and 2500 km s~ !,
respectively. These atmospheric velocities are roughly those of
Type Ia SN 1990N at its earliest observed epoch; SN 1990N is
one of the supernovae with the highest observed photospheric
and ejecta velocities (see §§ 1 and 5 and JLK). The outer
boundary velocity of the atmosphere was set effectively to
infinity. Only a single line of line center wavelength 3000 A was
included in the calculations. The core Sobolev optical depth of
the line was 10® and thus the line was strong; the Ca 1 H and
K lines in SN 1990N were of comparable strength in the ear-
liest observed epoch and gave rise to that supernova’s broadest
observed P Cygni line. Both the relativistic and classical line
profiles seen in Figure 4 are typical P Cygni profiles with emis-
sion features centered near the line center wavelength and
blueshifted absorptions. The slope change near ~2850 A in
both profiles is due to the fact that the CD frequency surfaces
for wavelengths above ~ 2850 A intersect the core while those
for wavelengths below ~2850 A do not. The blue edge of the
relativistic absorption shows that ejecta moving as fast as
~40,000 km s~ ! is important for line formation.

The normalization of the spectra in Figure 4 hides the fact
that they have different overall energy scales. The ratio of the
relativistic continuum flux to the classical continuum flux is in
fact 1.2. This extra energy in the relativistic case is due to the
correct relativistic treatment of energy exchanges between
radiation and the matter’s (macroscopic) kinetic energy. The
energy exchange is mainly a consequence of the (4/A)® trans-
formation factor in the Lorentz transformation of specific
intensity (see eq. [72]). For an emitting moving source, this
factor gives rise to an enhancement of blueshifted (i.e., forward)
emission and reduction of redshifted (i.e., backward) emission;
the effect is sometimes called the relativistic beaming effect.
Since the core hemisphere facing the observer is moving
toward the observer, A < Ao, and thus there is a continuum flux
enhancement in the observer frame. For matter moving toward
the observer at the core velocity (o/4)° = 1.28; since most of
the core has a smaller velocity in the observer’s direction than
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F1G. 4—Relativistic and classical spectra calculated for the homologously expanding schematic model. The core velocity is 15,000 km s~ *. Only one line with a

line center wavelength of 3000 A is included in the schematic model atmosphere.

15,000 km s !, the continuum flux enhancement we calculated
is less than 1.28. The extra continuum flux energy must be
thought of as coming at the expense of the matter’s kinetic
energy. Since the (4o/4)° transformation factors are not
employed in the classical calculation, no such continuum flux
enhancement occurs for the classical spectrum.

It should be noted that the treatment here assumes that the
matter’s kinetic energy is too large to be perturbed by energy
exchanges with the radiation field. This assumption is well
justified for supernovae which have total kinetic energies of
order 10°! ergs and luminosities near-maximum light of order
10*3 ergs s~ ! for Type Ia’s and = 10*? ergs s~ ! for other types.
Supernovae do not stay at maximum light very long and
decline in luminosity by an order of magnitude or more over a
period of tens of days. Thus, it is clear that even over 100 days
the total radiation energy processed by a supernova atmo-
sphere will be much less than the supernova’s total kinetic
energy; the total energy exchange between the total radiation
energy and the supernova’s total kinetic energy will be smaller
still. Tt follows that over shorter time periods, the energy
exchanges will be negligible for the matter’s kinetic energy.

It is the Lorentz transformation of specific intensity that is
primarily responsible for the differences between the emission
features in the relativistic and classical spectra. In both rela-
tivistic and classical cases, the emission feature flux comes from
the atmosphere limb and was originally mostly blueward of the
line center wavelength in the observer frame and directed
roughly perpendicularly to the line of sight. After being
redirected toward the observer by scattering through large
angles, the emission feature flux is more centered about the line
center wavelength. The (4,/4)° transformation factors ensure
that in the relativistic case energy is lost in the emission feature
formation; this energy loss does not happen in the classical
case. The loss of emission feature flux energy in the relativistic
case results in the smaller emission feature relative to the con-
tinuum flux level. The transformation factors also enhance the
blue side and reduce the red side of the relativistic emission
feature. This effect is partially responsible for the blueshift of

the relativistic spectrum’s maximum by 15 A from 3000 A (i.e.,
by 0.5% of the line center wavelength). The relativistic CD
frequency surfaces are the other partial cause of this blueshift.
In the classical spectrum, the maximum is right at the line
center wavelength as one would expect.

The differences between the absorptions in the two spectra
are mostly due to the difference between the relativistic and
classical CD frequency surfaces. One notable difference is that
the blue side of the relativistic absorption is ~10-20 A blue-
ward of the blue side of the classical absorption. Both blue
sides, of course, form in about the same location in the model
atmosphere. If we tried to fit the relativistic absorption blue
side with the classical one, we would have to make the layers of
blue side formation ~ 1000-2000 km s~ faster in the classical
calculation. Clearly, a classical fitting procedure would be
somewhat in error for observed supernova P Cygni absorp-
tions as broad as those shown in Figure 4.

The difference in optical depth treatment between the rela-
tivistic and classical Sobolev method gives rise to differences in
the spectra which are noticeable, but less important than those
due to the Lorentz transformation of specific intensity and the
different CD frequency surfaces. The differences in the spectra
due to the different treatment of the angles are very small
because of the first-order agreement in the relativistic case
between p;, and u} (see § 3) results in a nearly classical
photon-flow-stationary treatment of angles; at higher ejecta
velocities significant spectral differences do arise because of the
different treatment of angles.

The moderate profile differences and the overall energy scale
difference between the spectra shown in Figure 4 show that
relativistic effects are not negligible for atmospheres with
velocity fields as fast as those in the fastest observed super-
novae.

Figure 5 shows relativistic and classical spectra calculated
with exactly the same parameters as for the Figure 4 spectra,
except that a second artificial line with line center wavelength
3300 A and core optical depth 10° has been included in the
calculations. Thus, once again, the ratio of relativistic contin-
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F1G. 5—Relativistic and classical spectra calculated for the homologously expanding schematic model. The core velocity is 15,000 km s~ !. Two lines with line
center wavelengths of 3000 and 3300 A are included in the schematic model atmosphere.

uum flux to classical continuum flux is 1.2. Both spectra show
typical examples of blended P Cygni profiles. The absorptions
of the 3300 A line largely suppress the emission features of the
3000 A line. This suppression is consistent with past experience
which shows that P Cygni absorption generally tend to domi-
nate overlapping emission features. Because of this general
behavior, it is often much easier to identify absorptions than to
identify emission features in observed spectra; consequently,
the absorptions are usually the features that are labeled in
figures. If the two artificial lines were moved farther and farther
apart, the profiles would approach the appearance of and even-
tually become noninteracting P Cygni line profiles. If the two
model lines were moved closer and closer together and finally
made coincident, the profiles would converge to a single line
profile. Demonstration spectra (calculated with the classical
Sobolev method) showing the behavior as two lines are moved
from wide separation to the same wavelength are given by
Jeffery & Branch (1990, Figs. 10-11). For the case of pure
scattering lines, a single line profile due to two coincident lines
of equal strength would be identical to the line profile of one of
the lines acting alone if its optical depths were doubled every-
where (e.g., Jeffery & Branch 1990, p. 193). One should note
that the size of the line features for strong lines (i.e., those with
Sobolev optical depths greater than of order 1 over a substan-
tial part of the atmosphere) tend to vary much more weakly
than linearly with optical depth (e.g., Jeffery & Branch 1990,
pp. 188-189); thus, doubling the optical depths of a strong line
will cause a much smaller than twofold change in the size of
line profile features.

A calculation has been done that was identical to the one
yielding the relativistic spectrum in Figure 5, except that clas-
sical CP frequency surfaces were used. The redder profile (i.e.,
the line features redward of ~2950 A) of the resulting semi-
relativistic spectrum differed from the redder profile of the fully
relativistic spectrum by being lower by less than ~1% of the
continuum flux level; the differences between the profiles were
most noticeable at the bottoms of the absorptions and at the
tops of the emission features. The bluer profiles (i.e., the line

features blueward of ~2950 A) of the semi relativistic and fully
relativistic spectra were identical. This is to be expected since in
homologously expanding atmospheres a bluer line cannot
interact with photons coming from a redder line (see §§ 3 and
4). Once can see that the difference between the use of rela-
tivistic and classical CP frequency surfaces is very small for
velocity fields of the scale we are using.

Figure 6 presents relativistic and classical spectra calculated
with parameters that make the schematic model much more
relativistic than in the calculations for Figures 4 and 5. The
core and e-folding velocities were set to 2.0 x 10° km s ™! [ie.,
to ~(2/3)c] and 20,000 km s~ !, respectively. The outer bound-
ary of the atmosphere was set to a velocity of 2.7 x 10° kms™!
(i.e., to 0.9006¢). The velocity width of the atmosphere is only
35% of the core velocity, and thus the atmosphere is geometri-
cally thin. Only a single artificial line of line center wavelength
3000 A and core Sobolev optical depth 10 was included in the
calculations. The Sobolev optical depth of this line falls to only
30 at the outer boundary. Thus, the line is in fact saturated
throughout the atmosphere: ie., e * <1 everywhere in the
atmosphere. This means that nearly all of the flux emergent
from a resonance region will be due to the source function, not
to the incident beam (see eq. [60]).

For the choice of parameters we have made, the schematic
model is unlike any known physical system. It is implausible,
as can be seen from equation (66), that the stationarity approx-
imation for atomic conditions would be valid for a system with
the velocity field we have set up. The use of a wavelength-
independent core continuum flux is unrealistic for wavelength
intervals as large as are needed to calculate the broad profiles
in Figure 6. We have continued to use the wavelength-
independent core continuum flux, however, because it is the
neutral choice. Because the schematic model in this case is so
unrealistic, the spectra we have calculated using it are intended
only to demonstrate extreme relativistic effects.

The classical line profile is exactly what one would expect for
a model with the parameters described; it is remarkable only
because of its very large wavelength width. The explanation of
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FiG. 6.—Relativistic and classical spectra calculated for the homologously expanding schematic model. The core velocity is 2.0 x 10° km s~ [ie., ~(2/3)c], and
thus the model is much more relativistic than in the cases for Figs. 4 and 5. Only one line with a line center wavelength of 3000 A is included in the schematic model

atmosphere.

the special features of this profile is as follows. The blue side of
the absorption is caused by the classical CD frequency surfaces
(which, we recall, are planes perpendicular to the line of sight)
that are on the near side of the ejecta and do not intersect the
core. As a CD frequency surface is moved farther away from
the core (i.e., as it becomes a CD frequency surface for smaller
wavelength), there is an increasing annulus about the line of
sight where beams from the core never intersect the (physical)
CD frequency surface. This annulus grows until it is the entire
projected area of the core; when this happens the flux has
returned to the continuum level. The blue edge of the absorp-
tion shows a slope discontinuity because the Sobolev line
optical depth is large out to the outer boundary and then goes
to zero discontinuously. The flat bottom of the absorption is
also due to the thin shell geometry of the atmosphere which
causes the emergent flux for the wavelength range correspond-
ing to the line of sight velocities between (v2,,., — v2,.)/? and
Veore (Where vg,., is the outer boundary velocity) to be
wavelength-independent when the core flux is wavelength-
independent (e.g., Jeffery & Branch 1990, p. 192). The classical
emission feature is limited in wavelength because the line-of-
sight extent of the atmosphere limb is only from (v2,.,
— 02, )Y to — (V2 — 02,,)!/% The classical planar CD fre-
quency surfaces with line-of-sight velocities more negative than
— (Ve — VZ,re)*'? have no surface area inside the atmosphere
that is not occulted by the core, and so only the core flux
emerges at the redshifted wavelengths corresponding to these
CD frequency surfaces. The sharp cutoff of limb emission due
to occultation causes the discontinuity in spectrum slope at the
red edge of the emission feature at 7600 A.

The relativistic P Cygni profile in Figure 6 is much more
blueshifted than the classical P Cygni profile and has a rather
different shape. As for the calculations for Figures 4 and 5, the
greater blueshift of the absorption is mainly due to the rela-
tivistic CD frequency surfaces and the blueshift of the emission
feature is mainly due to the combined effect of the Lorentz
transformation of the specific intensity and relativistic CD fre-
quency surfaces. The other changes in shape from the classical

spectrum are not, however, easily understood; all relativistic
effects play a role in causing them. The steep rising blue side of
the absorption and the discontinuity in slope at the blue edge
of the absorption are the same as in the classical case and have
essentially the same explanation. One distinction, however, is
that because the beam paths in the comoving frame do not
constant 8, values, but have f, values that coverage to zero as
B. goes to 1 (see Fig. 1), the annuli where beams from the core
can evade the CD frequency surfaces occur only for CD fre-
quency surfaces whose z-axis velocities are 20.89¢; i.e., whose
z-axis velocities are much higher than v,,.. Since the atmo-
sphere ends at 0.9006¢, the blue side of the relativistic absorp-
tion is steeper than in the classical case.

Just as with the relativistic and classical spectra in Figures 4
and 5, the overall energy scale of the relativistic and classical
spectra in Figure 6 is different. Because of the much higher
velocities used for the Figure 6 spectra, there is a much greater
enhancement of the relativistic spectrum’s energy relative to
the classical spectrum’s energy than for the spectra of Figures 4
and 5. The ratio of relativistic continuum flux to classical con-
tinuum flux for the Figure 6 spectra is 55. For matter moving
toward the observer at the core velocity (4,/4)° = 56 which is
very close to the calculated enhancement factor for the contin-
uum flux.

The relativistic and classical spectra for the final comparison
were calculated using a realistic supernova model. This model
is essentially the same model that JLK used for an analysis of
the photospheric epoch spectra of Type Ia supernova SN
1990N. The model has a total mass of 1.4 M, and thus con-
forms to the standard picture of Type Ia’s in which the Type Ia
progenitors are white dwarfs with masses near the Chandra-
sekhar mass. The model is in homologous expansion and has
an inverse exponential density profile with e-folding velocity
3160 km s~ '. The composition of the model is displayed in
JLK’s Figure 1. This composition is a modified version of the
composition of the deflagration model W7 of Nomoto, Thiele-
mann, & Yokoi (1984) and Thielemann, Nomoto, & Yokoi
(1986). For our calculation, the spectrum is mostly formed
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above ~ 15,000 km s~ ' where the composition does not come
from model W7, but instead was constructed by JLK in order
to fit the early spectra of SN 1990N. This outer composition is
homogeneous and the dominant elements in descending order
by mass fraction are oxygen (0.53), carbon (0.36), magnesium
(0.034), silicon (0.032), sulfur (0.018), neon (0.0092), argon
(0.0038), and calcium (0.0032). The iron peak elements have
smaller abundances, but due to their large line opacities they
are very significant for spectrum formation. The iron peak
elements are not in solar ratio and are dominated by radio-
active *Ni, not iron, at the explosion epoch. The radioative
6Ni gives rise to the decay chain *Ni - 5¢Co — *6Fe, where
the half-lives of **Ni and 55Co are 6.10 and 77.12 days, respec-
tively (Huo et al. 1987).

The earliest observed SN 1990N spectrum (which is the ear-
liest observed spectrum for any Type Ia) is from 1990 June 26,
14 days before maximum light (i.e., before the B maximum).
This spectrum comes from at least 3 days after the explosion
(Leibundgut et al. 1991). Following JLK, we assume that the
epoch of the spectrum is 6 days after maximum and chose the
density and °Ni:3%Co:%%Fe ratio our model to simulate SN
1990N at that time. The core velocity density, and temperature
of the model were set to 13,000 km s~ !, 3.38 x 10713 g cm 3,
and 14,000 K, respectively. The mass above the core is 0.274
M . At the electron photosphere (i.e., at an electron scattering
opacity optical depth of 2/3) the velocity, density, and tem-
perature of the model were 16,400 km s~ !, 143 x 10713 g
cm ™3, and 10,600 K, respectively. The temperature profile pre-
scription of JLK has been assumed with v; = 16,000 km s~!
and T; = 11,000 K (see JLK for definitions of v, and T;). The
outer boundary of the model was set effectively to infinity. The
Sobolev line optical depths were calculated for the model using
LTE. The lines were all given Planck function source functions
evaluated at the local temperature (i.e., €® was set to 1 and G°
to €°BYin the source function; see eq. [62]). All lines included
in Kurucz’s line data files (Kurucz 1991) belonging to the rele-
vant ions were used in the calculations; thus, the quasi-
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continuous expansion opacity due to overlapping lines arose
naturally in the calculations. The only other continuous
opacity included is electron scattering opacity which is treated
using the discretized continuous opacity approximation
(Jeffery 1989, 1991b; JLK).

The June 26 SN 1990N spectrum is shown in Figure 7 along
with the relativistic and classical spectra calculated using our
model. The scale of the relativistic spectrum is set by forcing it
to have the same integrated flux as the observed spectrum in
the wavelength range 4300-5900 A. The scales of the rela-
tivistic and classical spectra are in their calculated ratio. The
ratio of the relativistic and classical core fluxes varies over the
narrow range 1.1645-1.1709; the variation is due the slow
variation of the core flux with wavelength. The cause for the
difference in core fluxes is the same as described for the core
spectra in Figures 4, 5, and 6. The emergent synthetic spectra
have a variable ratio with a mean of 1.13; we expected this
ratio to vary based on the earlier demonstration results. Figure
7 shows that the relativistic spectrum is very similar in shape to
the classical spectrum. As we could expect from the earlier
demonstration results, the relativistic line profiles are blue-
shifted relative to the classical line profiles. The distinction
between the relativistic and classical spectra is small. If we had
fitted the scale of the classical spectrum to that of the observed
as we did for the scale of the relativistic spectrum, then the
distinction would be even smaller. Since distinction between
the observed and relativistic spectra is much larger than that
between the relativistic and classical spectra, the lack of rela-
tivistic effects in the classical calculation is not the limiting
error in the classical calculation. Nevertheless, it is clear that
truly accurate calculations would need to be relativistic espe-
cially if one did attempt to calculate the absolute flux scale.

Although we are not concerned with analyzing the SN
1990N spectrum, a few remarks can be made. A full analysis of
the SN 1990N spectrum is given by JLK. The SN 1990N spec-
trum is a combination of IUE UV and CTIO optical spectra;
the spectra are joined at ~3200 A. The absolute scale of the
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F1G. 7—Relativistic and classical synthetic spectra calculated for a realistic Type Ia model and the observed 1990 June 26 spectrum of SN 1990N. The model
parameters were chosen in order to fit the SN 1990N spectrum which comes from 14 days before maximum light and is the earliest Type Ia spectrum observed.
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IUE spectrum is accurate to ~10%. The optical spectrum
required a correction factor based on photometry in order to
set the absolute scale. Unfortunately, the V photometric cor-
rection factor was 1.600 and the B photometric correction
factor was 1.259 (Schmidt 1992). The V photometric correction
factor was deemed to be somewhat more reliable and was
adopted here. The redward of ~8070 A, the SN 1990N spec-
trum is decreasing with wavelength. This decreasing region is
physically unlikely, and there are reasons to believe the spec-
trum may be inaccurate at some point beyond ~ 7500 A (Foltz
1992). Therefore, the discrepancy between the observed and
synthetic spectra redward of ~ 8070 A is not worrisome.

The synthetic spectra are lower than the synthetic core
spectra (only the relativistic synthetic core spectrum is shown).
In the optical this flux reduction is due mainly to backscatter-
ing to the core by electron scattering opacity and the much
larger flux reduction in the UV is due mainly to line blanketing
caused principally by iron peak element lines. The UV flux
reduction is necessary to reproduce the well-known UV flux
deficiency of Type Ia supernovae relative to blackbody fits to
the optical. Our synthetic spectrum calculations reproduce the
SN 1990N UV deficiency, but not all the details of the
observed UV region. We have labeled some of the observed P
Cygni absorptions with the multiplet designations. The identi-
fications (made on the basis of synthetic spectrum fits) are the
most certain ones that can be made; less certain identifications
are discussed by JLK. The Si i1 13858 multiplet is of similar
strength to the Si 1 46355 multiplet, but it is only a minor
contributor to the large absorption centered at ~3650 A; the
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Ca 11 43945 multiplet is the dominating contributor to this
absorption.

7. CONCLUSIONS

We have derived the CD and CP frequency surface expres-
sions and presented the other expressions needed for the imple-
mentation of the relativistic Sobolev method for the case of
atmospheres in homologous expansion. This implementation
in existing Sobolev method codes for homologously expanding
atmospheres is straightforward. The prime astrophysical
examples of homologously expanding atmospheres are super-
novae. For the analysis of supernova atmospheres with the
highest velocities observed, the relativistic Sobolev method
treatment yields a small, but significant, improvement over the
classical Sobolev method treatment. It is possible that super-
novae with photospheric velocities and ejecta velocities much
higher than 15,000 km s~! and 40,000 km s~ %, respectively,
will be observed in the future. For such cases, Sobolev method
calculations would have to be relativistic. The relativistic
Sobolev method offers a formal improvement over the classical
Sobolev method in all cases.

I thank the referee, Phil Pinto, Bruno Leibundgut, and Bob
Kirshner for their comments on this paper and Brian Schmidt
for calculating the photometric correction factors for the SN
1990N spectrum. The research for the paper has been sup-
ported by NSF grant AST-89-05529 and NASA grant NAGW-
1789.

APPENDIX
THE RELATIVISTIC SOBOLEV METHOD APPLIED TO EXPONENTIALLY EXPANDING ATMOSPHERES

Consider a spherically symmetric atmosphere with a velocity field given by
B=kr, (A1)

where we again measure velocity in units of ¢ and where k is a constant. This atmosphere is like a homologously expanding
atmosphere in that velocity is proportional to distance, but unlike in that it is stationary and that matter elements instead of being in
uniform motion are accelerating. As a function of time, the velocity of a matter element obeys

B =Boe", (A2)

where f, is the matter element’s initial velocity at ¢ is the time since it started its motion. We will call this sort of velocity field
exponential expansion. There is no astrophysical case of exponential expansion that we are aware of. However, a brief discussion of
the application of the relativistic Sobolev method to the case of exponential expansion satisfies a formalism interest.

A little thought shows that the CD frequency surfaces for exponential expansion are the same as those for homologous expansion
(see § 2 and Fig. 1). The distinction is that in exponential expansion the observer-directed beams follow paths of constant §,. As one
can see from Figure 1, there is a possibility of a beam interacting twice with the CD frequency surfaces for a single d value: ie., of
remote self-coupling in very relativistic atmospheres when the upper case relativistic CD frequency surfaces can become physical. As
we showed in § 2, there must be matter with f > (3)1/2/2 in order for this to occur. It is easily shown that the remote self-coupling is
one way: i.e., a beam can interact with lower case CD frequency surface and then the upper case CD frequency surface, but a
collinear beam going the opposite direction cannot interact with the two CD frequency surfaces in the reverse order. In this respect,
the exponential expansion remote self-coupling is unlike the two-way remote self-coupling that can occur in nonrelativistic
atmospheres with nonmonotonic velocity fields (see § 2 and RH). The possibility of remote self-coupling in exponential expansion
cases was pointed out by HS, who do not, however, use the expression exponential expansion.

The general expression for the CP frequency surfaces (i.e., the general expression for Af) for exponential expansion is quite
different than that for homologous expansion. Using the same definitions as in § 3, this expression for a common point P, is

AB=ABs =B, —1+GFJ/G*— GBI — ),

(A3)
where

d%z Vf(l - #1!31)2

= . (A4)
1+di 9301 — py By)?

G
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For some parameter values one finds Af < 0. In these cases, photons emitted from P, will interact with the line at a remote point a
velocity interval | AB | away. There is no CP frequency surface where this occurs.

Because exponential expanding atmospheres are stationary, the beam path geometry in the observer and comoving frames is the
same (see Fig. 2). Therefore, the expression for f8, follows simply from the Law of Cosines:

Ba= /Bt + AB* — 2AB(u,y) - (AS)
The expression for p, follows from equations (37) and (38)
_ 1 —di(yi/y)A — i By) (A6)

U
’ B>

The lower case solution for Af is the classical analog solution. This solution to second and first order in small ,, and f, becomes
A/ﬁd =01,(1 - %512) > (A7)
ABY =64, , (A8)

respectively. The solutions both give spheres centered on the common point; the first-order solution is the classical solution itself.
The second- and first-order classical analog solutions are identical to those obtained for the homologous expansion case (see § 3).
No remote self-coupling is allowed to second order.

The general solutions for A are physically meaningful (i.e., describe physical CP frequency surfaces) only when the discriminant
of equation (A3) is greater than or equal to zero and, as explained above, when Af > 0. Few simple ways of understanding the
general behavior of the equation (A3) have been found. A full discussion of this general behavior is beyond the scope of this paper;
here we will make only a few remarks. For §,, < 0 (a case for which no classical or second-order classical analog solution exists),
both the upper and lower case solutions of equation (A3) can become physically meaningful, but only for 8, very close to 1. For
d,, = 0, the general solution reduces to

AB = {Z[G — (1 =BT (A9)

0.

The zero solution of equation (A9) is just the local self-coupling solution. The upper case solution of equation (A9) gives the remote
self-coupling solution. This solution is only physically meaningful when A > 0; it is easy to show that Af can become greater than
0 only when B, > (3)'/?/2. Thus, as we already knew from a consideration of the CD frequency surfaces remote self-coupling can
only occur for B, > (3)/%/2. For §,, > 0, the upper case solution of equation (A3) was never found to be physically meaningful in a
numerical study of its behavior.
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