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ABSTRACT

We calculate both analytically and numerically the evolution of highly relativistic fireballs through the
stages of free expansion and coasting, and determine the dependence of the thermodynamic and radiation
variables in the comoving and laboratory frames. The dynamics and the comoving geometry change at the
(lab) expansion factors r/ry > 1 and r/r, > n?, respectively, where n = Eo/M,c? is the initial Lorentz factor. In
the lab, the gas appears concentrated in a thin shell of width r, until r/ry < n? and increases linearly after
that. Magnetic fields may have been important in the original impulsive event. We discuss their effect on the
fireball dynamics and also consider their effects on the radiation emitted when the fireball runs into an exter-
nal medium and is decelerated. The inverse synchro-Compton mechanism can then yield high radiative effi-
ciency in the reverse shock (and through turbulent instabilities and mixing also in the forward blast wave),
producing a burst of nonthermal radiation mainly in the MeV to GeV range. The energy and duration
depend on 7, the magnetic field strength, and the external density, and can match the range of properties

observed in cosmic gamma-ray bursts.

Subject headings: gamma rays: bursts — hydrodynamics — radiation mechanisms: miscellaneous

1. INTRODUCTION

Gamma-ray burst sources (GRBs) have long been suspected
to originate from the sudden release of energy in small regions
of space, where the initial energy density and characteristic
photon energy is so large that an opaque e fireball forms (e.g.,
Cavallo & Rees 1978; Paczynski 1986; Goodman 1986; Shemi
& Piran 1990). If these events were located at distances compa-
rable to (or larger than) typical galactic scales, the e* fireballs
would necessarily remain optically thick out to radii of at least
~10° cm (e.g., Zdziarski 1982; Imamura & Epstein 1987),
depending on the amount of normal electrons and baryons
mixed in with the pairs. If the fireball originated in a region
smaller than this, the radiation pressure on the optically thick
fireball would cause it to expand; the evolution of this fireball
was initially thought to lead, when it became optically thin, to
the observed gamma-ray bursts. This model has recently
received increased attention because the spatial distribution of
GRBs revealed by the BATSE experiment on the Compton
Observatory strongly suggested an extended galactic halo or a
cosmological origin (Meegan et al. 1992; Fishman 1992; Hart-
mann 1992; Paczynski 1992).

In its simplest version, the fireball model failed to account
for the duration and time structure of the observed bursts: it
predicts a very short burst, emitted when the expanding fireball
becomes optically thin (Goodman 1986), and a quasi-thermal,
soft y-ray spectrum (Goodman 1986; Paczynski 1986). Another
problem, emphasized by Paczynski 1990, was the possibility
that the y-rays could easily be degraded to even lower energies
by adiabatic cooling due to scattering on electrons associated
with baryons polluting the pair flow. In fact, in the latter case,
most of the fireball energy gets converted into bulk kinetic
energy of the polluting baryons, while the photon burst at
thinning has much less energy than the initially available one.
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These problems are removed when one considers anisotropic
(jet) scenarios where high Lorentz factor fireballs can escape
the inevitable baryon-polluted slow wind that must accom-
pany the initial energy deposition (e.g., Mészaros & Rees
1992a, b). In such cases, the main part of the observed gamma-
ray radiation occurs when the bulk kinetic energy of the
baryons (carrying essentially the full energy of the initial
fireball) is re-randomized and radiated away in the blast wave
being pushed ahead of the relativistically expanding baryons,
and in the reverse shock that propagates inwards into the
baryonic fireball gas as the latter is decelerated by the external
medium (Rees & Mészaros 1992; Mészaros & Rees 1993). This
is a very generic mechanism, which operates in almost any
scenario for the original energy deposition, as long as it makes
a relatively clean, high-entropy initial fireball. Moreover, the
process depends on the external environment, thereby allowing
the possibility that even a standardized type of fireball could
create bursts with a variety of complex time profiles.

The initial development of the fireball determines the final
properties of the blast waves, and thus of the bursts. In particu-
lar the final bulk Lorentz factor, together with the external
density, determines the blast wave burst duration, while the
dynamics of the fireball as a function of the baryon loading
determines the relative amount of energy in bulk kinetic form
(which gets radiated in the blast wave and reverse shock) and
in pair and radiation form (which escapes when the fireball
thins, usually before the blast wave burst). Since the relativistic
dynamics of the fireball expansion determines the entire ener-
getics as well as the temporal characteristics of the burst, a
detailed calculation is important.

In this paper we discuss the dynamics of the relativistic fire-
ball expansion from the acceleration stage through the coast-
ing phase, calculating both numerically and analytically the
thermodynamic and radiation variables of the flow through
the transition to optical thinness and the saturation of the bulk
velocity. We discuss the kinematics both in the comoving and
laboratory frames, and indicate the scaling of the behavior
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with the various parameters of the problem, extending the
treatment to the anisotropic (jet) case. We also consider the
role of magnetic fields in the dynamics of the evolution, includ-
ing the case of magnetically dominated fireballs, and investi-
gate the effect of the magnetic field on the radiative efficiency of
the reverse shock that arises when the coasting fireball is decel-
erated in an external medium.

2. NUMERICAL TREATMENT OF A HIGHLY RELATIVISTIC
EXPANDING GAS

2.1. Computational Approach

Because of the presence of a natural length in the problem
(the initial value of the radius r,) the gasdynamic equations do
not allow an exact similarity solution valid at all radii. For this
reason, a numerical solution is the only way to follow exactly
the development of the gas, although approximate analytic
solutions are possible in the initial acceleration stage and in the
later coasting phase (see § 3). Previous calculations of the free
expansion of a relativistic gas in spherical symmetry (e.g.,
Vitello & Salvati 1976, using a characteristics method) have
followed the evolution over one and a half decades in the
expansion factor. However, expansion over such a limited
range is usually not sufficient for the bulk velocity to reach its
ultimate saturation value, for the cases of large values of the
initial radiation to rest mass energy ratio  considered in many
problems, such as the GRB fireball problem,

E M -t
= ~10°Eg| ———2——] .
51<0_6 x 107° M®>

Here M, is the total mass of polluting baryons that get mixed
in with the photon-pair fireball of energy E, ~ 10°'E, ergs.
The latter is of the order of magnitude of the initial photon
energy expected from the liberation of an amount of gravita-
tional energy GMZ/Ry ~ eMgc? ~ 10°* ergs, where € < 1,
Ry ~ 105 cm, most of which goes into neutrinos and gravita-
tional waves.

The numerical treatment of the free expansion of a highly
relativistic gas with spherical symmetry calls for the use of
Lagrangian hydrodynamics because of the vast range of physi-
cal scales present in the problem, of the order of 10 or more
decades. We have developed a Lagrangian code for relativistic
fluid flows that uses a second-order Runge-Kutta integrator
(Benz 1984) with adaptive time step. This method has the
advantage that a Courant (Courant, Friedrichs, & Lewy 1928)
condition does not limit the size of the time steps, an essential
ingredient in achieving short and long time scales. Relativistic
artificial viscous stress was implemented in the code and cali-
brated using relativistic shock tube problems. This was used to
verify the accuracy of the same code when artificial viscosity
was switched off, which turns out to be quite good (and signifi-
cantly faster) in the cases of free expansion treated here. The
reason why this is an excellent approximation is that shocks do
not normally occur in such free expansion problems. All the
runs described below are therefore for zero artificial viscosity.
Typically, simulations consisted of 200 Lagrangian grid points
(mass shells). Runs with different number of mass shells were
done to check the convergence of our results. We monitored
the ability of the code to reproduce the analytic solutions of the
plane symmetric rarefaction wave traveling inwards (Vitello &
Salvati 1976). We found that for 200 grid points the maximum
absolute error (<3%) as well as the maximum cumulative
error (<2%) appeared in the velocity. In our experiments this
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Lagrangian scheme was found to be able to handle successfully
values of n at least up to 10'°, leading to typical final bulk
Lorentz factors up to 10°.

2.2. Numerical Results

The initial gas configurations discussed here assume, for sim-
plicity, that the gas at t = 0 is uniformly distributed within
r <r, having a total rest mass M,, and that at t =0 an
amount of radiation energy E, > M, c? is deposited uniformly
throughout the spherical gas. This approximation is not very
restrictive, since the free expansion behaves essentially ballisti-
cally, after a few expansion time scales. The gas is optically
thick to its own electrons, and the resulting photon-pair-
electron-baryon fluid is essentially an isentropic fluid which
can be modeled as a gas of adiabatic index y, = 4/3, as long as
the photons are coupled to the matter by radiation drag. The
same applies to the case where the energy is mainly in the form
of magnetic fields (see § 4). After decoupling, the adiabatic
index becomes y, = 5/3. We have carried out calculations for
values of 5 ranging from close to unity up to the pure pair-
scattering regime # ~#,~ 10'° (see §3.3). As a specific
example, we discuss the case of # = 10* below, which is charac-
teristic of the relativistic behavior.

In the course of the expansion most of the mass, as seen by a
laboratory observer, is concentrated in a thin shell near the
leading edge of the expanding gas (cf. also Vitello & Salvati
1976). This is seen in Figure 1, where the distribution of the lab
density is plotted as a function of the (normalized) lab radius
for n = 10*. The curves are plotted at the times (from top to
bottom) when the lab frame expansion factor r(p,,,)/r, (Which is
proportional to the lab frame time) is equal to 0.2, 0.4, 0.6, 0.8,
1.0 times #.

As the gas expands, the mass shells acquire a bulk velocity
which initially increases in time and eventually saturates. The
distribution of this bulk Lorentz factor over the various mass
shells is shown in Figure 2, for a fireball of n = 10* at the lab
times (increasing from botton to top) when r(p,...)/7, = n'/% 1,
132, 7, %2, n3. One sees that the leading edge reaches a value
of I' ~ , and most of the mass reaches one-third of that value,
at the laboratory time for which the expansion factor
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F1G. 1.—Mass distribution in the laboratory frame for a fireball of n = 10*
at the times when the lab expansion factor r(p,,)/r, (proportional to the lab
time) is equal to 0.2, 0.4, 0.6, 0.8, 1.0 times #, from top to bottom.
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F1G6. 2—Distribution of the bulk Lorentz factor I' over the various mass
shells (i.e., against the Lagrangian mass coordinate), for 1 = 10, at the times
when the lab expansion factor (which is proportional to the lab time) is
HPmax)/To = 1'%, 1,12, 7%, 152, 13, from bottom to top.

H(Pmo)/T, ~ 17, ~ 1. After that the average bulk Lorentz factor
of most of the matter saturates to the value I ~ 5, while the
leading edge remains within a factor 2 of that value, and the
trailing edge of the inner 10% of the matfer tapers off fairly
steeply to zero.

The average bulk Lorentz factor (or what is nearly the same,
I'(pmax) Where the density is maximal) grows initially linearly
with radius, and saturates to a value I' ~ 7 after a (lab) expan-
sion factor equal to #. This is seen in Figure 3, where I’ (Pmax) 18
plotted against the expansion factor (P max)/To-
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FIG. 3—Average bulk Lorentz factor I" as a function of the expansion
factor (p ,,)/r,, for n = 10%.

Within the thin shell containing most of the mass, called the
mass envelope shell, the bulk of the mass (say, the inner 80%
away from the outer and inner edges) is distributed quite uni-
formly, even after the average bulk Lorentz factor has saturat-
ed (for r(p,.)/ro = 1T, ~n). Only later, particularly after
HPmad/To 2 1o/Ts ~ 17, a slight asymmetry favoring the leading
edge of the envelope shell starts to become apparent, but even
then the matter within the shell can be considered uniform to a
good approximation. This is shown in Figure 4a, where the lab
frame density p, is plotted against the Lagrangian mass coor-
dinate M/M, (where M, = M, is the total rest mass, which is

U R LA B I

_20 f= =

P/ Po

A S I S |
007 o s

M/M,

t

FiG. 4b

— pnl/2

FIG. 4—(a) Lab frame mass density against the Lagrangian mass coordinate, at the times (from top to bottom) when the expansion factor is n(p,,,)/r, = 7'/, 1,
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% n®

,n°.(b) Comoving frame mass density against the Lagrangian mass coordinate, for the same instants as (a).
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FI1G. 5—(a) Lab frame width of the shell where most (80%) of the mass is located, as a function of the expansion factor r(p ., ,)/r,, for n = 10*. () Comoving frame
width of the shell containing most (80%) of the matter, as a function of the expansion factor r(p,,,,)r,, for n = 10*,

mostly within the shell). In Figure 4b we show the same plot for
the comoving mass density p.. The latter is even more uniform
than the laboratory frame density. Thus, a comoving observer
would find that the world around it is essentially isotropic and
homogeneous, at least far from the edges, but with a density
that drops in time, as seen from the decreasing value of the
average density. The various curves, from top to bottom, are
for increasing times when the expansion factor r(p,.)/r, is
equal to n'/2, 1,72, n%, 12, n>.

The width of the mass envelope shell in the lab frame is
initially nearly constant an equal to the initial radius, Ar/r, ~ 1
(see also Vitello & Salvati 1976; Goodman 1986). This remains
so, however, only until an expansion factor r(p,,,,)/7, ~ /T, ~
n? is reached. After that, the lab width starts to grow linearly
(see Fig. 5a). The comoving frame width, for its part, grows
initially linearly with the expansion factor until #, remains
approximately constant between # and 52, and then resumes a
linear growth with radius (Fig. 5b). The physical reason for this
behavior is discussed in § 3.

We have also calculated numerically the lab radius at which
an expanding fireball becomes Thomson optically thin against
its own electrons, as a function of the initial radiation energy to
rest mass ratio #. This condition is computed in the comoving
frame, being the same in the lab frame, as it should, since the
optical depth of a constant amount of mass is an invariant
between reference frames. This (lab) thinning radius r, is found
to vary as n~ /2, in excellent agreement with the analytic esti-
mate (3.13). Another quantity of interest is the value of the
average bulk Lorentz factor I', at which fireballs of varying »
become optically thin, as a function of #. The numerically com-
puted value of I', grows linearly with # for low values of 5 at
which optical thinness is achieved before the bulk velocity I'
saturates to , and I', decreases as n~ /2 for larger values of 1 at
which thinness is achieved after the bulk Lorentz factor has
saturated (in agreement with Shemi & Piran 1990). The linear
decrease ocy~1/2 changes to n° for very large values of 5 (or

initial radiation energies sufficiently larger than M,c?) at
which the opacity of the fireball at optical thinness is still
dominated by the pairs (instead of by the polluting baryonic
electrons). This occurs for # = 0.6 x 10'°, above which r, ~
constant, I', ~ 2.4 x 103 ~ constant (see § 3).

3. ANALYTICAL TREATMENT OF THE FIREBALL DYNAMICS

3.1. Accelerated and Saturated Expansion

A fireball expanding into a low-density external environ-
ment may, in its initial stages, be considered to be expanding in
a vacuum. Thus, as long as the inertia of the accumulated
external matter can be neglected, shocks will not play an
important role in the energetics. Pressure gradients may exist
in the expanding fireball gas, particularly if the initial density
and pressure distribution is inhomogeneous, but free
(unimpeded) expansion will tend to stretch these out. One may
therefore, as a first approximation, neglect internal pressure
gradients. Thus, even though we are dealing with a fluid, the
dynamics of the expansion would be expected initially to
resemble that of a collisionless gas of relativistic particles. The
particles initially have an isotropic velocity distribution within
a radius r,, with an initial random Lorentz factor y =y =
E,/M,c* But as they expand, the velocity distribution viewed
in the lab frame will become increasingly anisotropic. For the
ballistic expansion in the lab frame, when the particles have
reached a radius r their velocity vectors will be confined within
an angle (r/r,) ! of the radial direction. A transformation to a
frame of reference which is outwardly moving with a bulk
Lorentz factor

r~(@/r,) (3.1)

makes the particle velocity distribution appear again isotropic.
This frame is, therefore, the comoving frame of the expanding
particles in the initial acceleration phase, which moves
outward with a velocity increasing according to I' oc r. [For a
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jet geometry of opening angle 6 there is an approximate
angular scaling in equation (3.1) so that I' ~ (r/r,); see
below.]

The expansion occurs at the expense of the comoving frame
thermal energy E, which must therefore drop as E oc r~ 1. This
follows from the adiabatic behavior for a relativistic gas

E/E,=T/T,=(p/p)"" = (V./V)'?, (3-2)

where E, T, p, V are comoving energy, temperature, density,
and volume, provided V oc r? in the initial (linear expansion)
stage, where r is lab radius. The latter can be seen from the fact
that the laboratory frame radial extent of the particles in free
expansion is expected to be (initially, at least) Ar ~ r,, while the
comoving radial width AR is related to the corresponding lab
width through AR = ArI" (we denote comoving radii with
capital R and laboratory radii with lower case r). Since the
dimensions transverse to the motion will be the same in the lab
and comoving frame, the comoving volume in this
(acceleration) phase is V oc r?AR oc r?r, T oc 3.

The accelerating behavior I' oc (r/r,), however, can only go
on as long as the internal energy of the expanding gas is rela-
tivistic. After the comoving energy density drops below the
baryon rest mass density pc?, the bulk Lorentz factor I' must
saturate to the maximum value it can acquire, which is approx-
imately the initial thermal Lorentz factor # in the case of sig-
nificant baryon loading, or more generally

[s ~min [y, [,], (3.3

where the second value is appropriate for n > I',, given in
equation (3.14), as shown in § 3.4.

The initial acceleration and the saturation behavior can also
be obtained from a phenomenological expression for the
average bulk Lorentz factor (e.g., Shemi & Piran 1990, Piran,
Narayan, & Shemi 1992)

E,+M,c*> n+1 n+1
E+ M,c* nE/E)+1 nWV,/ V)P +1°

making the analogy with a section of the expanding universe,
that is, assuming spherical symmetry, homogeneity, and iso-
tropy. Here E is the fluid thermal energy density (initially
mainly in photons and leptons, with an admixture of M,
baryons). As long as it is optically thick and # = 1, the pressure
is radiation-dominated throughout the expansion, and the
adiabatic exponent is 4/3, as implied in equation (3.2). In the
linear expansion phase, we can take (from the discussion below
equation [3.1]) V13 oc r~1, where r is lab radius, so from equa-
tions (3.3) and (3.4) one gets for E,/E < n the accelerating
behavior I' ~ E /E ~ r/r,, while for E,/E > n one gets the satu-
rated I" - n; (see equation [3.2]). The saturation occurs (in
spherical symmetry) at r,/r, ~ n. However, for n > I',, given by
equation (3.14), n must be replaced by I',, (see § 3.4).

(34

3.2. Lab and Comoving Geometry

As the particles move outward with velocity vectors which
are increasingly radial, they form a radially expanding shell
whose radius is initially Ar ~ r,. The radial velocity spread
(v — ¢)/c ~ T2, and a noticeable departure from the approx-
imately constant width r, starts to become appreciable only
after r = r, where Ar ~ r Avjc ~ ryn~2 = r,, or ry/r, = n*. The
laboratory frame width is therefore

Tos forr Sy

3.5
r/T? =r/T2, forrzr,. (3:3)

Ar ~ max (r,, r/T?) ~ {
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The width in the comoving frame is AR = ArI’, which from
equations (3.1), (3.3), and (3.5) is

r,I'~0r forr<rg
ro FS
/T

where the two characteristic radii for saturation and for the
start of the shell linear expansion in the lab frame are

rfr,~ 07 'Ly, nr,~T2, (3.7)

and I is given by equation (3.3). The second part of the first
line of equation (3.6) follows from the behavior of " (eq. [3.10]),
which can be derived from equation (3.3), I’ ~ [(V/V,)}/3, T]
for [r <r, r 21, and from the ratio of comoving volumes
(V/V,)) = 2n6%r* AR /(4n/3)r2 = 0*(r/r)*(AR/r,)).  Here we
assumed that V' possibly consists of two cones (jets) of opening
half-angle 0,, and we define § = (3/2)!/26,, where 6 ~ 1 for
spherical symmetry. Using the above I" and equation (3.6), we
get the comoving volumes in the three different stages of free
expansion as

AR ~ forry Sr<m; (3.6)

forrzr,,

(4n/3)0%r3 for r <rg;
V = (4n/3)0°r*AR ~ { (4n/3)0°Tr,r* forry<r <r,;
(4n/3)0°T 7 1r*  for r > ry;

(3.8)

and the comoving radiation energy and temperature vary
according to

()-(3)-vm

0~ (r,/r) forr <rg;
07 2BT 1B, /r)?P forr,<r <ry;
02T L3(r,/r)

This is therefore the complete r dependence of the adiabatic
law (3.2). The factor 6 can be taken to include both an angle
dependence and a dependence on the statistical weight factor g
in the equilibrium energy density gaT* That is, 8 '=
(9./9)**0' "1, where (g,/g)'® = (11/4)}* accounts for the
change in the statistical factor for the equilibrium energy
density when the pairs annihilate as the temperature drops
below kT < m,c?, and ' is the angular factor which accounts
for the possibility of expansion along a restricted range of solid
angles. If we have radial expansion along two jets of solid angle
0,, and all of the energy is channeled into this solid angle,
0" ~ (3/2)'?0,. If the gas uses some of its internal energy to
perform work against a medium which prevents escape in the
directions outside of the jet angles 6, then the effective 8 <
(3/2)1/20,. In the discussion below (and in the numerical calcu-
lations of § 2) we have ignored the small shift of the curves
associated with the change of the statistical factor, that is, we
simplify to (g,/g) ~ 1, 8 ~ . (Note that this angular factor is
only approximately correct, since it does not account for any
possible lateral expansion or transverse radiation loss of the
jet; it is strictly valid for one-dimensional radial variations
within the angle 6'.)

The behavior of I', from the discussion following equation
(3.7) and (3.9) is therefore

O(r/r,) forr<ry;
r~<T forry<r<r;
r for r > ry,

s

(3.9)
for r > r,.

(3.10)

s
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and r, r, are given by equations (3.7) and (3.3). Thus, for a jet,
the asymptotic accelerated behavior has a similar radial depen-
dence as the spherical case, but the same bulk Lorentz factor is
achieved at radii which are higher by 1. This is because at
the same radii the jet, being confined to narrower angles, has a
larger internal entropy than the spherical flow. Also the satura-
tion radius is larger by 8! in the jet case. However, both the
jet and the spherical flow must saturate to the same final bulk
Lorentz factor I' given in equation (3.3), namely either to n or
to I',,, whichever is smaller (see § 3.2, eq. eq. [3.14]).

3.3. Optical Depth and Saturation Lorentz Factor

Depending on the value of y = E,/M,c?, the scattering
depth of the fireball at optical thinness is dominated by the
“polluting” baryonic electrons (when # < 7,, where the latter
is given by eq. [3.19]), or, if the fireball has very low baryon
pollution, the scattering opacity previous to reaching optical
thinness is dominated by the e* pairs (Goodman 1986; Pac-
zyfiski 1986; Shemi & Piran 1990), when 11 > 1,,.

1. Electron-dominated scattering. In the case n <7, when
baryonic electrons dominate at thinness, the optical depth is

1=Ma/mp0'Ar= E,x \ 1 (r, 2=r39—2'7>1 r,\?
47r20%r*Ar 4nr2c?) 6%n \ r " r)

(3.11)

Here o is the scattering cross section, k = o/m, ~ 0.4 cm? g™/,

and I',, is given in equation (3.14). The initial optical depth is
1,=T0"%n" ' =%,k =n""'%, ,k, where

2, = M, /4ur20% X, ,=E,c */Anrl0* =Z,n (3.12)

are the initial baryon mass surface density and the initial radi-
ation equivalent mass surface density. In the course of the
expansion, the gas becomes optically thin at a radius r, defined
by

r —1, -
r_t — ri/ZB lrl 1/2 — (zo K)I/Z — T;/Z

o

=19 x 10%E5, rg 107 'n~ Y2, (3.13a)

or
E,x

1/2
r= (m) =19 x 1049~ 1E¥2p 12 cm ,

(3.13b)

where the initial energy E, and radius r, have been arbitrarily
normalized to 10%! ergs and 10° cm, and the second version
(3.13b) is independent of r,. The critical Lorentz factor I',, and
the critical #,, are defined as

Ly =ty =(@,n)"° = E,xn)'? =, 1)

E 1/3
- ( 4n:2'22> =33 x 109ELPrg2? .

This is the maximum possible bulk Lorentz factor achievable
for a given initial radiation energy E, deposited within a given
initial radius r, (§ 3.4). It is also, for a given E, and r,, the
“critical ” value of n = #,, (reached at a critical loading mass
M, = M, = [E,/4,,c*]) for which the thinning radius (3.13) is
equal to the saturation radius (ry/r,) ~ 6~ '5. For a given E,, as
one varies M, or #, the critical value n = 1,, = I',, is reached at

(3.14)
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aradiusr,, given by

Tm _Is_ N

~07'T, . (3.15)

r

o o o

For n <T,, optical thinness is reached after saturation,
whereas for n > I, optical thinness is reached before satura-
tion, so the bulk Lorentz factor at thinning I', = 0(r,/r,) is equal
to

L,=[n 0 V2] for[n<T,, Ihy<n<I,], (316)
where I, is given by equation (3.20).

2. Pair-dominated scattering. For very large #, such that
n>n,>I,, the e* scattering dominates, instead of baryonic
electron scattering, and optical thinness occurs when the pairs
fall out of equilibrium, which occurs at a lab radius r, given by

T
L= g7l 2~ 24 x 10EL 0
r, p

(3.17)

where T, ~ 15 keV is the temperature where the thermal pair
density becomes negligible, and T, ~ 36.4E1*rg ** MeV is the
initial temperature. This occurs during the acceleration stage,
so at this point, where pairs become optically thin, I' has
reached the value

T,=T,=E,[E,=T,T, = 0(r,/r,) ~ 2.4 x 10°E¥trs ¥,
(3.18)

valid for # > 5. The latter is the value of n above which the
pair-dominated regime occurs,

n,=T3/T2~ 063 x 10°EL2rs 112071, (3.19)

in terms of which one can write the Lorentz factor and the
radius at which pairs become optically thin as

TR -1
1",,:—1—/2, 2=9 11“,,:01—175. (3.20)
P To Mp

3.4. Photon Drag and Final Baryon Lorentz Factor

Photons are obviously coupled to the baryons when 7 > 1,
which ensures a radiation-like equation of state with adiabatic
index 4/3. However, even after t < 1, baryons may remain
coupled to the photons if the density of the latter is so large
that the Compton drag time is shorter than the expansion time
in the comoving frame. The comoving Compton drag time is
the time during which an electron sweeps up an amount of
photons whose mass equivalent equals one proton plus one
electron’s mass, t, ~ m,c*/orcu,, where u, is the comoving
photon energy density. This is longer than the Compton
cooling time by a factor m,/m,. The ratio of the comoving
baryon rest mass energy density u,, and the comoving photon
energy density u, is

% E
€ = = 2
u, M,c
E 0~ *n(r,/r) forr <rg;
=Ny 072837 Bw 3 forry<r<r,; (321)
o

0721 nL; (/)

Dividing the Compton drag time ¢, by the comoving expan-
sion time t,, ~ AR/c and multiplying and dividing by the co-

forr>r,.
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moving baryon density n (comoving baryon rest energy density
u,), the ratio of the Compton drag time to the comoving
expansion time is

. ) 03T, 3(r/r,)? forr <r,;
= t—D = o= 8B 3TLRw/r B forry<r <ry;
€t
x 7 0831, 30, 1 3(r/r,)® for r > r,
(3.22)

where T is the optical depth (3.11). The final decoupling of
photons and baryons occurs at a radius r, where { = 1, or at
the thinning radius r,, whichever is largest.

The final bulk Lorentz factor of the baryons is the value that
it has at decoupling from the photons, either when the fireball
becomes optically thin or when the Compton drag has become
longer than the expansion time, { > 1, whichever occurs last.
For n < I, the fireball saturates to a value I' = #, and thin-
ning occurs at a radius larger by a factor (r,/r) = (C,/n)** > 1
where {, = ([',,/n) > 1, so the final baryon Lorentz factor is
I, = 7 in this case. On the other hand, for n > T, at optical
thinness €, = (n/T,)>*>>1 and ¢, =(,/n** <1, so the
Compton drag keeps photons and baryons coupled beyond r,.
This means that, even though most photons do not collide,
most electrons do keep colliding with a small fraction of the
photons, and keep being accelerated (with their baryons). They
finally decouple when {, =1 at (r,/r,) = 6~ 'I’,,, where I'; ~
I',,e,=mnT,) >1,and 1, = ([',/n) < 1. The terminal baryon
bulk Lorentz factor is therefore

(3.23)

This is equal to the Lorentz factor at thinning I', in the case
n<T,whenl,=T;=nbutl, <I;whenn>T,.

I'y =min (n, ).

3.5. Baryon Loading and Final Radiation to Kinetic
Energy Ratio

One can distinguish four baryon-loading regimes, character-
ized by the value of 7, whose mass limits depend on E5

(H) High-load fireballs, for 1 <y <T,, or 0.6 x 1073
Mg <M, < 1.8 x 107° M. In this regime I' grows linearly
with r/r, until reaching ry/r, = 6~ 'y, where it saturates to #,
and becomes optically thin at r,/r, = [,(T,/m** > T, > r/r,.
The observer-frame (Doppler blueshifted) energy of the radi-
ation escaping under the assumption of isotropy (even if in
reality it is beamed) and the kinetic energy of the baryons is

E, . = E,0 2313 2/3=E 1)<k
r,ob [ r 0! r 0

t m,
E,=M,c*>n~E,.

That is, the thinning radiation burst is a small fraction of E,
(unless n — T',,), most of the energy having gone into the kinetic
energy of the baryons.

(C) Critical-load fireballs, for # =T, or M, ~ 1.8 x 107°
M. In this case I,=T, at ry=r,=r; and both the
observer-frame radiation energy and the baryon kinetic energy
assume their maximal value, E, o, ~ E,/2, E; ~ E /2.

(L) Low-load or underloaded fireballs, for I',, <n <#,, or
18 x 107° My < M, <095 x 107'* M. For these (rather
low) values of the pollutant mass, I' grows linearly with r/r,
until becoming optically thin at r,/r, < r/r, ~ r,/r,, where it
has the value T, ~ 6(r,/r,) = [,,(T,./m)*/* < n. Most of the radi-

(3.24)
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ation energy escapes from here without further scattering,
while the baryons continue coupled by Compton drag to a
small fraction of the photons until the radius r, where I'; =
T',,. The bulk of the observer-frame radiation energy observed
(assumed over 4m) and the final kinetic energy of the protons
are

rD

E, o ~ E,,B‘(—)I“, ~E,,

T

E,=M,c’T; ~ E,,(%’E) <E,. (3:25)

(P) Pair fireballs, for n >n, or M, <095 x 107> M. In
this extremely underloaded regime, the pairs dominate the
Thomson opacity, and the value of I" grows linearly with r/r,
but it always becomes optically thin at the same value of the
radius where I' ~ '), 1 /r, = 1,/r, ~ 6~'T,, given by equations
(3.18)—(3.20), independent of n as long as the latter is greater
than #,. The observer-frame radiation energy at thinness under
the assumption of isotropy and the final kinetic energy of the
baryons is again given by equation (3.25).

In the cases described above, the “thinning” burst (arising
when 7 ~ 1) is unlikely to be the main burst observed. The
significance of the ratio of observed radiation energy to kinetic
energy, in our “standard” model (Mészaros & Rees 1993), is
that this represents the ratio of the energy in a short precursor
burst to that in the main burst, the latter coming from the
recovery of the kinetic energy upon interaction with the exter-
nal medium (§ 4).

4. MAGNETIC FIELDS, EFFICIENCY, AND PHOTON ENERGIES

4.1. Magnetic Fireballs

In almost any model of the initial energy release, the initial
mass motions are expected to be extremely violent (v ~ ¢), and
this could magnify any pre-existing magnetic fields, via com-
pression, shearing, turbulent dynamo mechanisms, Parker-
type instabilities, etc. (e.g., Usov 1992; Narayan, Paczynski, &
Piran 1992; Thompson & Duncan 1993). If the initial total
“disposable ” energy (i.e., that portion of the available gravita-
tional energy that is not lost in the form of neutrinos) is E, =
1051E5, ergs, this might be distributed between radiation and
magnetic components as

Ep,=(¢E,, E,=(1-0E,, 4.1)

where ¢ < 1. One may define separate magnetic and radiation
1 parameters

Hp = EB,,/MOC2 = ff], ", = Ero/MoC2 = (1 - lf)"] (42)

in terms of the usual total y = E,/M,c?, withy = 5 + 1, = &n

+ (1 — &)n. Even if the magnetic fields have a large-scale struc-
ture, the expansion is essentially isotropic in the comoving
frame, and therefore the magnetic energy density will evolve
oc V43, so the total magnetic energy and radiation energy in
the comoving frame vary in a similar manner, Ep/Ep =
B*/B? = E,JE, = (V/V,)"'/3 where the volume factors are
given by equations (3.9). The bulk Lorentz factor, similarly to
equation (3.4), is again

__E,+M, n+1
Er + EB + Mo B r’r(Er/Ero) + r’B(EB/EB,,) + 1
__n+t
TR

@.3)
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so that, as in the case of pure radiation, I' ~ 8(r/r,) for r S r,
while I' ~ T, for r 2 r,, with r/r, = 67 'I'; and I’ = min (y,
I',), where I',, is given by equations (3.14). The behavior is
therefore the same as in § 3, even if all the disposable energy E,
goes into magnetic fields (¢ — 1), that is, for a purely magnetic
fireball. The maximal initial magnetic field will be

B, = (8nEE,/V)'/? ~ 10V EV2EL2r 32 G | 4.4)
and the comoving field strength evolves according to
B 0~ 2(r /r)? for r <rg;
(E) ={ 074BT B3 /)*3 forrg<r<ry; 4.5)

04T, /r)?

where r, r, are given in equation (3.7). Even after most of the
pairs annihilate, the exponentially small fraction of frozen-in
surviving pairs is enough to provide the currents needed to
support large-scale fields, so that the behavior (4.5) is uninter-
rupted beyond the radius at which annihilation, optical thin-
ness, photon drag decoupling, etc., occur.

We may also consider briefly the most extreme scenario of
magnetic field dominance, that where the initial field B, is in
equipartition not with the disposable energy E, ~ 10 E, ergs
(which, as in supernovae, is of order 10~ 3 of the total liberated
binding energy from the gravitational collapse of about a solar
mass) but rather with the binding energy itself, E, ~
GMZ/Ry ~ 10°*Es, ergs. This might occur in a rapidly spin-
ning object, where rotational and shearing motions would
imvolve a large fraction of the total binding energy. In this case

B, = B,, ~ 3 x 10'%(¢/10%)'2 G, (4.6)

where formally, in terms of the first of equations (4.1), & ~ 103
Now, however, 7, is no longer defined as (1 — &) but rather
just as u, = E, /M, c®. The dynamic considerations are similar
to those just described, but the dynamics is entirely described
by using 7, instead of # everywhere in § 3, and increasing I',,, in
equation (3.14) by a factor 10 (since E5, ~ 103).

forr > r,

4.2. Standard Shock Deceleration Model

The magnetic fields are carried on in the comoving frame of
the polluting baryons M, present originally in the fireball, and
continue expanding with the latter and the corresponding elec-
trons plus surviving pairs until the fireball matter is decelerated
by the external medium (Rees & Mészaros 1992). For a fireball
which has saturated its bulk Lorentz factor to a value I'; = min
[n, T,] the deceleration occurs when the mass of external
matter swept up by the fireball equals I'; M, ; the swept-up
external matter is shock heated to a comoving average thermal
Lorentz factor y, ~ I'; ~ n > 1, while a reverse shock starts to
propagate into the adiabatically cooled fireball material, even-
tually reheating it to a marginally relativistic average random
Lorentz factor y, ~ I', < 2. If the forward and reverse shocks
are able to build up magnetic fields which approach equi-
partition with the postshock thermal energies of the particles
(similarly to what seems to occur in supernova remnant
shocks), both the forward and reverse shock regions can
radiate away the entire thermalized bulk kinetic energy of the
shock, that is, the entire total initial disposable energy E, of the
event. However, because of the dependence of the radiative
efficiency on the magnetic field strength, it is worthwhile to
consider departures from shock magnetic equipartition. One
needs also to consider the effects of possible frozen-in primor-
dial fields in the fireball ejecta such as discussed in the previous
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subsection. These can be characterized by an initial strength B,
and may have been amplified by shear or turbulent dynamo
effects during the cataclysmic event of the initial energy release,
parameterized through ¢ defined in the first of equations (4.1).

In order to estimate the radiative efficiency at the deceler-
ation shock, we use the parameters of our “standard ” shock
model, for example, Mészaros & Rees (1993). For typical
parameters, the shock deceleration occurs after the fireball
ejecta has saturated (and after it has become optically thin,
producing a brief and weak precursor burst). The deceleration
radius r, at which the fireball gas starts to feel the inertia
of an external medium of uniform density n.,, = n, cm~3 is
rd/ro = (rlext/rlz)l/a’ where Next = (Eo/I/a Rext mp CZ)’ or ry=
(3E,/4nn , m,c*n*)'3, which is

ra~ 10169723 YBELB3H =213 ¢ |

@.7)

(For maximal magnetic dominance, one would use E5; ~ 10,
n = ng, & ~ 103, but for the purposes of this example we con-
sider the more conservative case of E5; ~ 1,¢& < 1,n, ~ 1) The
comoving width of the forward and reverse shocked shells is #
times larger than their laboratory width Ar ~ r,/4%, or AR ~
ran ~ 10130139~ 23EL3y 53 cm. The comoving expansion
time is consequently

fex = AR/c ~ 103EYPn; 13023353 s | 4.8)

while the laboratory expansion time (which is the observed
GRB burst time, if the shock radiates efficiently) is I'; ~ # times
shorter, At = r,/n’c ~ 1 3 ®3 s. The total number of baryons
(protons) involved in the fireball is N,,=E,/nm,c* ~
105*E5,n ™1, and the comoving density in the preshocked fire-

ball gas (for r, > r, in eqs. [3.8] with [3.2]) is

n=n,=N,,n/(4n/3)0%r} ~ 107 'ncm > . (4.9)

If the reverse shock, whose bulk Lorentz factor achieves at
most a value I', < 2, produces a shock equipartition field, this
is B, , = (8nnm,c’T,4)'* ~ 10°n; '?n, G, while if the mag-
netic field is mainly the original frozen-in field, possibly ampli-
fied and adiabatically expanded (eq. [4.4] or [4.6]), this is

B, = 4B,07 43 *R(r,/r)? = 4 x 107 EVorl2n3Re! 3 G
(4.10)

where in both cases we have included a factor 4 to take into
account the shock compression factor. Aside from the dif-
ferent n dependence, we may consider both the shock-
equipartition and frozen-in fields to be given by equation
(4.10), where the shock-equipartition field case has &, ~
250n1/SELErd?¢~1?y5 1, while the frozen-in field has ¢ < 1 (or
¢ < 10 in the extreme magnetic dominance case).

4.3. Radiative Efficiency and Photon Energies

The efficiency of the blast wave moving ahead of the contact
discontinuity can only be affected by the field B < B, , devel-
oped in the shock, as discussed in our previous papers. Here we
focus on the radiative efficiency of the reverse-shocked fireball
material, which can be affected by the original, possibly ampli-
fied, fireball field B, of equation (4.10). The “fireball” at the
stage just before the reverse shock moves into it contains only
a small fraction of the cooled original pairs, and the original
polluting baryons and electrons. In the reverse shock, with a
field of order (4.10), relativistic electrons with a Lorentz factor
y ~ 10% are sufficient to ensure a comoving synchrotron

cooling time t,, ~ 2 x 10%yg 'E}*n{*n;* comparable to the
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comoving expansion time (4.8), that is, near unit radiative
efficiency, producing photons of characteristic energy
~10y2EY2ES M50 2333 MeV in the laboratory frame. The
maximum photon energies could well be significantly larger
than this, if shock acceleration is considered. If the latter is
limited by synchrotron losses, the maximum possible 7y is
Yme S 10’B~ 12 and the maximum energy of the synchrotron
photons is ~ 113 GeV in the laboratory frame, independently
of the field strength. For 53 ~ 1, synchrotron self-absorption
would be negligible for observable radiation in the X-ray or
gamma-ray band. Note also that there could be no significant
cyclotron line features in the X-ray band, unless 77, = 103¢ 1/,
which would imply too short burst time scales.

Synchrotron losses, however, will almost certainly be sur-
passed in importance by the inverse Compton (IC) losses of the
electrons, in the radiation field of the synchrotron photons.
The electrons passing through the shock may energetically
attain an average Lorentz factor

y ~ (m,/m), ~ 4 x 103, 4.11)

where { > 1 if Fermi-type or other shock acceleration mecha-
nisms are present. The ratio of comoving synchrotron cool-
ing to expansion time ./t ~5 x 10% 'B7%/t, ~2.5
x 103 ETEWNBR; 7P > 1 if (<1, that is, without
shock acceleration the synchrotron efficiency would be low.
The ratio of the synchrotron photon energy density and
the magnetic energy density is u,/ug ~ nP,,ARc™'/up ~
102EL3n; 2307 213¢2yL3, where uy = B?/8m. The ratio of the
comoving inverse Compton cooling time to the expansion time
is therefore

?—C M ly 2.5 x 101n20%3¢E -1 3583,

ex usy ex

(4.12)

giving a first-order inverse Compton efficiency of 4% even for
modest average Lorentz factors y ~ 4 x 103 with { ~ & ~ 1.
The synchrotron photons (optical in the comoving frame,
X-ray in the lab frame for this y and n; ~ 1) would be boosted
by the single inverse Compton scattering to MeV and GeV
energies in the comoving and lab frames.

The radiative efficiency will be larger in the presence of diffu-
sive or other shock acceleration mechanisms producing an
electron power-law distribution. If the maximum electron
energy achievable is limited by first-order inverse Compton
losses, using the Thomson limit in the electron rest frame and
balancing t,c with the acceleration time t, ~ y/wg where wg =
eB/m,c, one gets a maximum y significantly higher than equa-
tion (4.11) by a factor {, ~4 x 10'EL}2p]/12¢E1/8y 2712,
However, the synchrotron photon energy in the electron rest
frame becomes comparable to the electron rest mass at a
slightly lower Lorentz factor, {; ~ 10~ /653 23, This may be
the more appropriate maximum { to use for estimating the
spectrum, since the Klein-Nishina dropoff in the rest-frame
scattering cross section strongly limits the number of photons
scattering off electrons more energetic than that. For this value
of (g, the synchrotron and first-order IC photons have a char-
acteristic maximum energy of

E,, ~ 20E3n; 2P 503" keV

Eic ~ 103E5on 2R3~ opi eV, (4.13)
in the lab frame, and a radiation efficiency
€ ~ 4 X 1073EG 7 1RESIen3
€c ~min [1, 4 x 101n 207 23¢129213] | (4.14)
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Another effect which could increase the efficiency is the
higher order IC scattering (e.g., Rees 1967). The Thomson
optical depth of the fireball shell material is

Ty ~ nop fAR ~ 0.6 x 107 3EL3n 1072333 | (4.15)

where f < 1 is the fraction of the fireball ejecta material that
has been heated by the reverse shock. When 1 is larger than
772 (as long as the scattering is not Klein-Nishina dominated)
the conditions are fulfilled for both first-order and higher order
inverse Compton scattering to dominate over synchrotron
losses. This is because the synchrotron, first-order IC, second-
order IC, etc., photon energy densities are

uy, ~ nP,, fAR/c ~ nopy*ug fAR ~ try%ug, (4.16a)
e ~ nPic fAR/c ~ nory*uy, fAR ~ t3y*ug, (4.16b)
e ~ nPie fAR/c ~ nopy*uc fAR ~ t39%up , ... (4.16¢)

and for 7, = 7y~ 2 the ratio of the successive energy densities in
equation (4.16) are larger by increasing factors of 192 > 1.
Even for y ~ 103 the IC losses exceed synchrotron losses by a
factor 10, and the second-order IC losses would exceed first-
order IC losses by another factor of 10, were it not for the fact
that for second-order IC and the maximal y the photons in the
electron rest frame are now subject to the Klein-Nishina
decrease in the cross section. (For y ~ 10° the respective
factors are 10°, 101°, etc., and the importance of the IC losses
makes itself felt already when the shock has heated a small
fraction f = 1073 of the fireball material.) Notice that for both
our simplest model (using the average Lorentz factor y ~ 10%)
and for the nonthermal acceleration model with y,, ~ 10°, the
first-order IC is in the Thomson limit and exceeds synchrotron
losses, but the Klein-Nishina losses diminish the importance
(at least as far as the efficiency is concerned) of the second- and
higher order IC scattering, although they will affect the spec-
trum. In the power-law spectrum model, the first-order IC
efficiency is unity for & = 6 x 10™%y;*3nt0*3, that is, for
initial fields B, 2 2.5 x 10'3n2EL20*3r5 3?3523 G in the
fireball, or for fields developed by turbulent instabilities in the
reverse shock which are a factor 107 3n23/6EL/Sry 32y 1/3
below equipartition with the mean energy of the reverse post-
shock particles, a fairly undemanding assumption. Since the
contact discontinuity is likely to be unstable, turbulent mixing
of the reverse-shocked fireball gas with the material ahead of
the discontinuity could also lead to high radiative efficiencies
in the gas behind the forward blast wave.

5. DISCUSSION

We have presented both analytical and numerical calcu-
lations of the evolution of a freely expanding ultrarelativistic
gas produced by an impulsive energy release. The expansion
and cooling from an initially optically thick and extremely hot
fireball is followed through the stage where the rest-frame
energy density becomes comparable to the rest mass density,
where the expansion bulk Lorentz factor, which until then
grew proportionally to the expansion factor, saturates to a
value which is equal to the smallest of the ratio of the initial
thermal energy to rest mass energy in the fireball or the bulk
Lorentz factor at which Compton drag becomes negligible.
The laboratory and comoving frame geometry as well as the
radiation and gasdynamic variables were investigated for a
large range of values of n = E,/M,c? between 1 and 10'°, and
we derived analytic scaling laws showing the dependence of the
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variables as a function of the various initial parameters, includ-
ing an approximate angular scaling for the case of jetlike
expansion within a limited range of solid angles.

We have also devoted particular attention to the likely mag-
netic field content of fireballs. An initial magnetic field, poss-
ibly amplified by the violent mass motions in the initial
impulsive event, may contribute a dynamically significant frac-
tion of the total fireball energy; there is also the possibility that
a field develops in the shock-heated fireball after the ram pres-
sure of an external medium decelerates the expansion. When
the fireball runs into an external medium and is decelerated,
the efficiency with which the re-randomized energy is radiated
depends on the magnetic field strength, and on how the elec-
trons are accelerated by the resultant shocks. (The radiation
processes during the deceleration phase which give rise to the
typical burst profiles are, fortunately, rather less sensitive to
precisely how the fireball was originally formed—the forma-

tion mechanism may have resembled the impulsive model dis-
cussed in §§ 2 and 3, or alternatively could have been spread
over as long as a second, as in the scenarios of Fichler et al.
1989, Usov 1992, Narayan et al. 1992 or Woosley 1993. We
find, for a range of assumptions, that inverse synchro-
Compton cooling should be extremely efficient in radiating
away the kinetic energy of the cooled fireball in a time scale
short compared to the expansion time, which gives the right
order of magnitude duration and total energy for a gamma-ray
burst source, and produces a nonthermal spectrum with the
bulk of the energy in the MeV to GeV range.

We thank T. Piran, A. Shemi, and R. Narayan for sending
us, at the time of submitting this manuscript, their preprint on
the fireball hydrodynamics, in substantial agreement with our
results in § 2. This research has been partially supported
through NASA NAGW-1522.
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