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ABSTRACT

A novel mechanism, by which the intense flux of neu
energy and momentum into the stellar matter outsi

trinos in a supernova explosion can effectively transfer
de the neutrinosphere, is proposed. The energy and

momentum rate can be greater by orders of magnitude than that conventionally accepted. Roughly, the new

rate scales with the first power of the Fermi constant Gg,

between individual neutrinos and fermions.
scattering cross section by a factor Grl,
explosion.

instead of the second power resulting from collision

Through scattering of neutrinos and sound waves, it increases the
which may shed new light on the problem of the stalled supernova

Subject headings: hydrodynamics — instabilities — supernovae: general

Late-type stars, of masses greater than 8 M o> ¢an undergo
core collapse leading to a Type II supernova explosion. The
explosion drives a strong outgoing shock wave and pushes the
overlying stellar matter into the interstellar space. After the
collapsed matter reaches a hard core, the shock is pushed out
at an initially increasing speed. Because of the strong stellar
gravity and loss of energy in dissociating nuclei, the shock has
to strive to plow through the overlying matter to travel
outward; the shock loses energy and slows down. Whether it
can successfully escape to the interstellar space depends on the
amount of the gravitational binding energy of the initially
infalling matter and the details of nuclear reactions (Bethe
1990). In the past, theoretical calculations have shown that for
progenitor stars of masses less than 25 M o, €ither the explo-
sion energy is too low and the time scale is too long to account
for the typical Type II supernova light curves (several times
10°! ergs) (Wilson et al. 1986), or the explosion is inhibited and
left with a stalled shock (Hillebrandt 1987). These calculations
depend sensitively on the controversial equation of state in the
stellar core and lead to different results. This problem is further
exacerbated by SN 1987A. The explosion promptly gave out
an energy of about 2 x 10°" ergs, and yet its progenitor star is
believed to be a blue star of 15-20 M o (Arnett 1987; Woosley,
Pinto, & Ensman 1988).

Although the ultimate energy source of the explosion is the
gravitational binding energy of the infalling matter bounced
back from the core, it is the neutrinos, released by converting
protons into neutrons in the neutron stars, that carry most of
the binding energy (several times 1053 ergs s ') (Burrows,
Mazurek, & Lattimer 1981). In the extremely dense stellar
core, neutrinos scatter matter rapidly and take about 1 s to
diffuse out of the neutrino “ photosphere.” Because the shock
density is relatively low, neutrinos leaving the neutrinosphere
will pass through the shocks located about several hundred
kilometers from the core. Neutrinos interact little with the
shock, according to the conventional calculations of neutrino-
fermion collision, and, not surprisingly, only a small fraction of
neutrino energy and momentum is deposited into the shock.
The bounced shock may become stalled due to an inadequate
initial kinetic energy and a lack of subsequent energy input. In
some calculations using a favorable equation of state, the small
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amount of additional neutrino heating can help the shock
succeed in moving away (Bethe & Wilson 1985); however, the
explosion energy is often found to be too low for typical Type
IT supernovae (Wilson et al. 1986). Generally speaking, the
stalled shock problem of Type IT supernovae is a serious one,
and thus far no consistent theory has been developed to
remedy this difficulty.

In our view, the difficulty may stem from the usual assump-
tion of particle collision between the neutrinos and the elec-
trons and nucleons, which results in too small a cross section
for rapid transfer of neutrino energy and momentum. The
cross section g, of the neutrino-Fermion collision scales as G2,
where Gy is the Fermi constant (Bahcall 1989). The mean free
path I, and the time scale for the neutrinos to dump their
streaming energy into the matter are respectively (o,n)"! and
(o, nc)™ !, which also scale as Gr 2, where ¢ is the speed of light
and n is the matter density. Approximately at the time when I3
exceeds the density scale length, neutrinos and matter will be
decoupled, and the location where the decoupling occurs is
called the neutrinosphere. Beyond the neutrinosphere, I
becomes too large for neutrinos to exchange energy or momen-
tum efficiently with matter.

In this work we propose a new mechanism of the neutrino-
matter interactions through scattering of neutrinos with sound
waves. We will show that in the presence of streaming neu-
trinos, the scattered sound waves grow at a rate scaled as Gpn,,
a much larger rate, where n, is the neutrino density. This result
is not unlike the interactions of photons and electrons. For
individual electrons to scatter photons, the cross section is the
Thomson-scattering cross section, which scales as e?. However,
in the presence of streaming electrons, collective electromag-
netic waves can be excited, whose growth rate is a fraction of
the squared plasma frequency, scaled as e’n,, where n, is the
electron density. Streaming neutrinos here are analogous to
streaming electrons, and sound waves are analogous to electro-
magnetic waves. In fact, the analogy is not quite exact, since
the way in which neutrinos interact with matter is different. As
we will show later, entropy irregularities in the matter are
required to make the sound waves grow at the aforementioned
rate; otherwise, the growth rate will still scale as Gi.

In the downstream region of the strong supernova shock,
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there are fluctuations of all kinds. Besides sound waves and
vortices, there should also be an abundance of entropy irregu-
larities, which will be shown to trap the proposed unstable
sound waves. We suggest that it is in this downstream region of
the supernova shock that the physical conditions are appropri-
ate for the matter to tap the neutrino energy efficiently beyond
the conventional neutrinosphere, thereby making the explo-
sion successful.

It has been pointed out that plasma waves can be excited by
the streaming neutrinos (Bingham, Dawson, & Su 1993). This
is in fact a second-order effect, because the growth rate scales
as GZnn,. Moreover, in the case of a supernova explosion, the
stellar matter is too collisional for plasma waves to excite. We
therefore consider the interaction of neutrinos and hydrody-
namical waves. To justify this point, we shall make an estimate
of the parameter regime of interest. For a collapsed star of
20 M, the electron density at the rebounced shock 1 s after
the collapse is ~ 103! g cm ™3, and the electron temperature is
of the order of mega—electron volts. The electron-electron col-
lisional frequency is w,/n, 43, where w, and 4p, are the plasma
frequency and the Debye length, respectively, and its value is
about 10~ 3wp, much larger than the growth rate of the plasma
wave or even the frequency of the proposed sound wave. Con-
sequently, plasma waves have no chance to grow in the pres-
ence of collisional damping of electrons.

This makes us turn to the fluid picture, where the collision
between the fermions is so frequent that all species of fermions
are tightly coupled. The only dissipation is through viscosity,
which is dominated by the ion viscosity: n; ~ 107 °T?n3}!
cm~2 s~ 1, where the subscripts of temperature T and matter
density n denote their values in units of 10° ¢V and 10*! par-
ticles cm ™3, respectively. For sufficiently long-wavelength
sound waves, the fluid is effectively dissipationless for the
waves to have a sufficient time to grow; we will come back to
this point and make a comparison later.

The Lagrangian density of neutrinos in the presence of elec-
trons can be written as

Lv + Lint = lpv(lh& —m, cz)l//v

Gg _- -
- 7% [ 7+ ys W Y7+ 9s], (1)

where the first term represents the Lagrangian of free neutrinos
and the second the interaction Lagrangian (Bethe 1986). The
interaction Lagrangian is actually the coupling between neu-
trino current j* and fermion current j; by the weak interaction
manifested by the presence of the Fermi constant Gg. The
projection operator 1 + 75 for neutrinos equals 2.

In the presence of fluid perturbation, the total Lagrangian
density must include the fluid component. The linear sound
wave obeys the perturbed fluid Lagrangian density, and, for
the convenience of later application, we shall write the per-
turbed fluid and interaction Lagrangians alone:

1 0&\? 5 5
0Lgyyiq + OLin = 5 Mny, %) Civ-9

- 8j, + onév - j
_ ZGF<6n6nv—noév ’”:2 nov ’°”>, 2)

where & is the fluid displacement, C, the sound speed, M the
average nucleon mass, and the subscript zero denotes the equi-
librium quantities. The perturbed quantities with subscript v
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are for neutrinos, and those with no subscript are for matter.
Furthermore, we have also assumed that the fluid perturbation
is nonrelativistic.

The Euler-Lagrange equation of this perturbed Lagrangian
can be obtained by using two additional constraints which
relate on and v to & The perturbed velocity is defined as
Sv = 0&/0t; furthermore, the pressure equation demands that
8P = —T'P,V - & which is related to the density perturbation
by n = (no/TP,)3P = 6P/C2, where T is the adiabatic index
and C, is the sound speed. The Euler-Lagrange equation for
the fluid perturbation is obtained by taking a variation with
respect to the vector field & The equation of motion follows

0* 2Ggj 0 2G C?
<_ -GS \/;VICFZIVO v (h)(w * \/_ 5 Vi(noJoy * 00)
26 C2 (@

NVIFYs [~y .5 2y72
M2 <8t dj, + C;V 5nv>, 3)

or? ot Mc?

where we have multiplied C2V - by the Euler-Lagrange equa-
tion. Upon taking the Fourier transformation in t and x, we
thus obtain

(2 - ez B 2Gmek )
Mc

26, C?
- LMCFZ— (C2K26n, — wk - 8j,) . (4)

To solve equation (4), we need to relate on, and dj, to on.
This is achieved by a kinetic theory approach. We assume that
the neutrino is ultrarelativistic and its wavelength is so short
that the neutrino can be regarded as a particle. In a collision-
less system, the distribution of the neutrinos, f(p, x, t), must
satisfy the Vlasov equation. The neutrinos experience a mean
force given by the matter, as described by the interaction
Lagrangian. To the lowest order in the limit of small CJc, the
matter can be regarded as static, and the individual neutrino
energy is modified by the presence of matter in the following

manner:
E = ﬁGFn + /Pt + mict, )

where E is the neutrino energy and p the neutrino momentum.
The Hamilton equations of motion for a particle read

dx OE dp

—=—~cp, —=—VE=—/2GVon, 6

i op P V/2GeVon ©)
where p is the unit vector along the direction of particle
motion. It follows that the linearized Vlasov equation becomes

9 _ . %olP)
<6t+cp V)éfv—ﬁGFV(Sn Pt ()

where df, and f,, are the perturbed and equilibrium distribu-
tion functions, respectively.
Again, the Fourier transformation of this equation yields

of = _{[GF" : g fvo(P)]/((U —k 'ﬁc)}én : ®)
/4

The desired on, and dj, are simply | 8fd*p and [pdfd>p/m,,
both of which are proportional to G dn. In doing the angular
integral, one encounters a singularity associated with the wave-
neutrino resonance o = k * pc, which gives rise to the Landau
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damping or inverse Landau damping depending on whether
the local slope of f,, is negative or positive. As the bulk neu-
trinos stream outward relative to the matter beyond the neu-
trinosphere, it is likely that Sy has some range of positive
momentum gradient for the excitation of the unstable sound
waves.

When substituting 6n, and §j, back in equation (4), we find
that terms on the right-hand side are of order G2, and therefore
the growth rate is of order G#, comparable to the collisional
frequency between fermions and neutrinos and too small for
any improvement beyond the conventional calculation of a
supernova explosion.

However, we can drastically improve the growth rate by a
factor of Gy! by considering, instead of free-propagating
sound waves, the sound waves trapped in temperature cavities.
Because the temperature cavity must persist for a sufficiently
long time for the excited sound wave to grow, it must be in
pressure equilibrium with the ambient matter, which means the
temperature cavity is also a density bump. Since both the Rey-
nolds number and the thermal insulation in the stellar matter
are very high, there can be plenty of density irregularities
created behind the supernova shock, persisting for a long time.
It is these irregularities that can tap the neutrino streaming
energy effectively to excite unstable sound waves, thereby dissi-
pating the neutrino energy into the stellar matter via hydrody-
namical processes.

To illustrate this mechanism, we shall consider a simple one-
dimensional model, where the temperature cavity is modeled
as

c2 o C} for —-L<x<L,
s C? otherwise ,

©)

where C; > C,. For a given w and some range of k , there exist
trapped sound waves.

The sound wave must die away outside the two surfaces at
x=1=1L,as e ™ for x > L and ¢ for x < — L. The real
parts of both x, and x_ must be positive. Ignoring the G2
terms, we have two dispersion relations outside the two sur-
faces:

2/26: . _ /26
wz - (ki - Kzi)cf + Mcz £ ky.]vOy =+ MCZ £

(10)

To show the instability, let us choose k= a + ib, where a > 0
and a > | b|. Since the imaginary part of the frequency w; is
much smaller than the real part ®,, we can expand w? in
equation (10). It then results that

\/—26F.jv0xa
@1 MC2 ( )

Since, to the leading order, the problem has symmetry about
the x = 0 plane, the solution must be either symmetric or anti-
symmetric to the first power of Gy.. Solving for k, from equa-
tion (10), we find that k, = a + ib — i4,/2G . j,o., ,/Mc2C2. It
naturally follows that b = 2, /2G g j, o, ,/Mc2C?.

The interior region has standing waves, and they obey the
same dispersion relation (eq. [11]), except that C, and «, are
replaced by C, and + ik, respectively. Again, for a given w,
we can solve for k.. That is,

kx = i [kO + (I(D, Q),/Cg kO)] + wiwr/cg a,
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where

ko = /kX(C? — C3) — aCé/c,.

The forward-traveling wave has slightly shorter wavelength
than the backward traveling wave, resulting in an envelope of
length scale w;w,/C2a; moreover, the amplitudes of both
waves decrease slightly as they propagate along.

So, far, a has been arbitrary. It is determined by matching
the solutions at the boundaries x = + L, which will yield dis-
crete eigenvalues for a. The matching condition is to require
that the pressure perturbation be continuous across the
boundary. As the unstable modes of large growth rates require
large a, therefore, from the expression for k., the instability
favors large values of k,. The self-excited modes will surely
choose the smallest possible wavelengths. The most unstable
waves oscillate many times within a distance of 2L, and the
discrete values of a are densely distributed and can be regarded
as a continuum.

This slab model of a temperature cavity is just to illustrate
the principle behind the instability. Since the most unstable
waves are of short wavelength, any three-dimensional tem-
perature cavity, which does not necessarily have a sharp tem-
perature boundary as used in this toy model, can trap sound
waves and make this instability operate. However, the growth
rate of the sound wave can be reduced substantially when the
wave is trapped by temperature irregularities of gentle gra-
dients. This is because, first, the growth rate is proportional to
the inverse length scale of the wave in the evanescent region,
and, second, this length scale is comparable to the wavelength,
which becomes larger as the wave approaches the boundaries.
A short-wavelength sound wave propagating in a medium of
gentle gradient can be described by

exp [—iwt +ik,y+i ka(x)de ,

w? 5
kadx =+ J ) ky dx
) Ax 20 [Ax?
~+— —dx = —_— (12)
te \/L dx *3cV T

near the boundary. The above approximate equality arises
from an expansion of the sound speed near the evanescent
boundary, and L is the length scale of the temperature cavity.
Apparently, the inverse length scale of the wave is of order
(0?/C2L)"3, smaller than that in a sharp boundary by a factor
(C/wL)'. Therefore, for temperature irregularities of general
shape, we expect that the sound wave should grow at a rate

Grjwo (1 \'7
‘“M_(ﬁ) ’ @)

where

where 4 is the average wavelength in the temperature cavity.
The growth rate given by equation (13) scales as the first
power of Gr, and it is a fraction of a factor
(Gej,o/Mc2C)A/L)' of the wave frequency. In the case of a
supernova explosion, this is about 10~ '%(A/L)'3R;2,, given
that the neutrino flux is about 3 x 1053 ergs s !, Mc? ~ 1
GeV, the matter and neutrino temperatures both about 1 MeV,
and the location of the shock at about 500 km. As an example,
since the proton-proton collisional mean free path is roughly
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107 cm, let us choose a sound wave of wavelength, say, 1073
cm and a cavity of length L = 1 cm. Such a wave will grow in
1 s, which is just offset by the viscous damping, at a time also
about 1 s. Since the viscous damping scales as 272, for sound
waves with a slightly longer wavelength or sound waves
trapped by a smaller cavity the neutrino-driven growth can
dominate the viscous damping, resulting in a net growth. After
the sound wave grows in several e-folding times, the wave
energy can begin to be dissipated by nonlinear processes,
whereby the neutrino streaming energy and momentum are
indirectly transferred to the stellar matter. Note that the
growth rate depends rather weakly on the 1 power of L but
sensitively on the second power of the location of the shock.
The neutrino energy must be dumped to the matter at radii not
much larger than 500 km; otherwise, the growth rate of the

wave will be too weak to overcome the viscous damping. On
the other hand, the intense neutrinos can only come out of the
neutrinosphere in a time on the order of 1 s, which means the
shock must have traveled for a distance on the order of a few
hundred kilometers before the intense neutrinos arrive. There-
fore, one expects that the stalled shock will only receive an
additional kick after few seconds of the core collapse. Whether
such a kick can produce a few times 10°! ergs s~ ' of luminosity
for a 15-20 M, progenitor star remains a question, which can
only be answered by a detailed study.
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