THE ASTROPHYSICAL JOURNAL, 413:221-236, 1993 August 10
© 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A.

HIGH-RESOLUTION OBSERVATIONS OF TURBULENCE IN THE SUBCONDENSATION
TMC-1C IN HEILES’ CLOUD 2: ESTIMATION OF THE VELOCITY SPECTRUM
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ABSTRACT

We have made mapping observations of 4’ x 4 and 8 x 8 areas of the subcondensation TMC-1C in
Heiles’ cloud 2 of the Taurus complex (140 pc) by using the 45 m telescope of Nobeyama Radio Observatory.
The 3CO(J = 1-0) and C*'80O(J = 1-0) lines were used and the beam size of the telescope was ~17” (0.01 pc).
From the raw data in each area we could extract fluctuating components whose wavelengths range from twice
the grid spacing for our mapping to the size of our observed area, and the components are considered as
turbulence in this study. We have evaluated unbiased autocorrelation functions (ACFs) of turbulent velocity
and intensity fields from the '3CO and C!®O data, respectively, and the ACFs show meaningful correlations
in the turbulent velocity and intensity fields. Based on the ACFs in the 4’ x 4’ area we have estimated power
spectra by a two-dimensional maximum entropy method. The velocity spectrum, equivalent to the lateral
three-dimensional spectrum, does not decrease monotonically in proportion to the wavenumber, but increases
in the range from 1/(0.05 pc) to 1/(0.03 pc), unlike Kolmogorov’s 5/3 law. This feature indicates that the
energy of the lateral part of turbulence per unit mass concentrates at the scales of <$0.03 pc, and that the
energy dissipation does not occur at such small scales. Besides, the spectrum seems to have a peak at 0.15 pc,
because turbulent motions having scales larger than ~0.15 pc are removed as ordered motions in our
analysis.

Subject headings: ISM: individual (TMC) — ISM: kinematics and dynamics — ISM: molecules — turbulence

1. INTRODUCTION

The existence of turbulent gas motion in molecular clouds
where new stars are born has been generally accepted from the
observationally confirmed fact that various molecular lines
have superthermal widths over a wide range of spatial scales.
The widths of the lines are typically a few km s~! in dark
clouds and a few tens km s~! in giant molecular clouds
(GMCs). The thermal width, on the other hand, is 0.24 km s !
with a typical cloud temperature of T = 10 K. The nonthermal
broad widths can not be well explained by other processes like
pressure broadening, Zeeman splitting, and so on. Taking
account of the molecular viscosity, the Reynolds number is
estimated to be of the order of 10® in molecular clouds, and
such a large value is consistent with the turbulent state inside
the clouds. Besides, the compressibility is dominant in the
clouds because of the high Mach numbers of 10-100, and the
turbulence as well as the gravitational instability complicates
the density structure of the clouds. Actually, aperture synthesis
observations of star-forming regions revealed very clumpy
morphology down to a small scale of ~1".

The studies of the turbulence in molecular clouds began with
the pioneering work by Larson (1981). He derived the famous
relation between the line width and the cloud size from the
observational data of many clouds. The similarity between his
relation and Kolmogorov’s law has supported the scenario
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that the turbulence in molecular clouds with various scales was
produced in the past owing to the energy cascade from the
largest vortex that might be driven by the galactic differential
rotation. Myers (1983) found a similar relation extended into
the subsonic regime. However, no one can answer why Kolmo-
gorov’s law holds even in the case of the compressible inter-
stellar medium. In addition to these size-line width relations, it
has been shown that the energy of the turbulence is compara-
ble with the gravitational energy (e.g., Larson 1981). The reali-
zation of the virial equilibrium is consistent with the following
observational facts: The lifetime of molecular clouds is larger
than their free-fall time, and the star formation rate in the
clouds is much smaller than the predicted value by theoretical
models of gravitationally collapsing clouds (e.g., see the review
by Scalo 1985).

The recent development of radio telescope systems enables
us to make efficient mapping with low noise over a vast area.
Scalo (1984) tried to find a correlation length in the turbulent
velocity field of a dense core in the p Oph cloud by a statistical
method. He estimated the autocorrelation and structure func-
tions of the velocity field. However, he could not find any
correlation lengths, probably because the grid spacing of the
C'80 data he analyzed was coarse. After his work, Kleiner &
Dickman (1987) analyzed the '3CO data of Heiles’ cloud 2.
They found a correlation length of ~0.1 pc in the turbulent
velocity field by evaluating the autocorrelation function, and
showed that the energy dissipation rate of the turbulence has a
single sharp peak at the length. They also suggested that the
correlation length might determine the mass of new stars,
because a region whose size is as large as the length contains
~1 Mg, the typical mass of T Tauri stars. From another
viewpoint, Falgarone (1989) and Falgarone & Phillips (1990)
noted the wing components of line profiles with high signal-to-
noise ratio, which were integrated over large mapping areas,
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and discussed that the components represent a signature of the
intermittency that is considered as a fundamental property of
turbulence.

Turbulence generally contains many vortices over a wide
range of spatial scales. This feature hampers the understanding
of turbulence by computer simulations. To simulate fully tur-
bulent motions, many grid points with fine spacing are
required, and calculations with such fine grids consume much
time. Supercomputers recently developed, however, have a
capability of performing some calculations of turbulence.
Passot, Pouquet, & Woodward (1988) performed two-
dimensional simulations of the turbulence in molecular clouds
with Mach numbers close to unity. Although the compression
of the gas is not dominant in flows with such low Mach
numbers, it was shown that Kolmogorov-type spectra are
compatible with the compressibility of the interstellar gas.
They also pointed out the development of a highly filamentary
structure in spite of no magnetic fields. Following this work,
Léorat, Passot, & Pouquet (1990) investigated the influence of
supersonic turbulence on gravitational collapse of clouds and
showed that the cloud collapse depends on the ratio of the
transfer time of compressible energy to the cloud free-fall time.

As described above, for understanding of the turbulence seen
in molecular clouds, it is very important to obtain mapping
data of the clouds with high angular and velocity resolutions
over vast areas, or to make three-dimensional calculations
including compressibility and self-gravity with many points on
fine numerical grids by supercomputers. In this study we have
observed the turbulence seen in TMC-1C by using the Nobey-
ama 45 m telescope with high sensitivity and with high angular
and velocity resolutions, in order to reveal the detailed velocity
and spatial structures of the turbulence in molecular clouds
and to understand the influence of the turbulence on star for-
mation. In the next section, the observed source TMC-1C and
the observing techniques to obtain our data are described, and
our statistical analysis of the turbulence in TMC-1C is shown
in § 3. In § 4 we discuss the velocity and spatial structures of
the turbulence. Our conclusions are summarized in the last
section.

2. OBSERVATIONS

The object TMC-1C is one of the subcondensations in
Heiles’ cloud 2 of the Taurus complex. The complex is a nearby
star-forming region, whose distance is estimated to be 140 pc
(Elias 1978). This small value enables us to observe the region
with high spatial resolution. In the complex, T Tauri stars
having low masses of <1 M are observed (Cohen & Kuhi
1979). Nevertheless, few signs of stars being formed at present
are found, and no disruptive OB stars are seen. The large-scale
structure of the complex is filamentary. Kleiner & Dickman
(1985) found a velocity gradient across the minor axis of the
filament, which may suggest a prolate structure. At smaller
scales complicated cloud structures, which are partly due to
hierarchical fragmentation and partly due to turbulence, are
seen in the maps by radio telescopes. In the densest central part
of the complex, Heiles’ cloud 2, the extent of which is a few
deg? in the sky plane, Schloerb & Snell (1984) discovered a
rotating ring. The diameter of the ring is ~ 1.5 pc, the rotation
velocity is ~1 km s~ !, and the ring is gravitationally frag-
mented into several subcondensations (see Fig. 1), whose
masses are of the order of 10 M. They showed that the
observed ring is consistent with numerical calculations for the
ring formation during the collapse of a rotating cloud. The
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FiG. 1.—Our observed areas indicated by two squares at TMC-1C are
superposed on the C'30 map of Heiles’ cloud 2 by Schloerb & Snell (1984).
The center position of the areas is at («, §) = (4*38™30:0, 25°54'45"0) (Schloerb
& Snell 1984). The smaller 4 x 4’ area was observed with a 20” grid, and the
larger 8’ x 8’ area with a 40” grid. The number of grid points was 169 for both
the two areas, and the beam size of the telescope was x~17".

subcondensation TMC-1C where we made our mapping is
one of the high-density fragments in the ring. At the object,
they reported that T%#C'%20) =22 K, T%*3CO)=52 K,
1(*3CO) = 29,and M = 15 M,

Our observations were made in 1989 January and in 1991
April, using the 45 m telescope of Nobeyama Radio Observa-
tory (NRO). We used the two 3CO(J = 1-0; 110.201 GHz)
and C'80(J = 1-0; 109.782 GHz) lines. At 110 GHz the beam
size was ~ 17" (0.012 pc), and the forward spillover and scat-
tering efficiency 7, was estimated to be ~0.8 from the obser-
vation of the Moon. The two CO lines were simultaneously
received by the 100 GHz band SSB Schottky-diode mixer
receiver cooled at 20 K. For pointing observations we also
used the 40 GHz band SSB Schottky-diode mixer receiver. A
polarization diplexer was put in the quasi-optical system in the
telescope to separate the two orthogonal polarizations. The
single-sideband system noise temperatures including atmo-
spheric, antenna, and transmission losses were typically 770 K
for the 13CO transition and 600 K for C*#0 in 1989 January,
and 700 K for *3CO in 1991 April at the elevation of 70°. At
the back end of the receivers we used a 2048 channel acousto-
optical spectrometer (AOS) with a 20 kHz channel spacing.
The frequency resolution was 37 kHz, corresponding to a
velocity resolution of 0.1 km s ! at 110 GHz.

We mapped a 4 x 4’ (0.16 x 0.16 pc) area of TMC-1C by
using the two CO lines in 1989 January. The map center was at
(«[19501, 5[1950]) = (4"38™30°0, 25°54'45"0) (Schloerb & Snell
1984). The grid spacing was 20” (0.014 pc) in both « and ¢
directions, which was nearly equal to the beam size. Therefore
the main beam of the telescope could fully cover the mapping
area as efficiently as possible, although it is the most desirable,
from the sampling theorem, that the grid spacing be smaller
than half of the beam size. The total number of the observed
grid points was 169. In 1991 April we made another mapping
observation over a larger 8’ x 8 (0.33 x 0.33 pc) area with a
grid spacing of 40" (0.027 pc), using only the **CO transition.
The map center was the same position as in the 4 x 4’ area. In
Figure 1, the two square areas observed by us are superposed
on the C'80 map obtained by Schloerb & Snell (1984).
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Pointing calibration was made at the interval of 2 hr by
observing the SiO(v =1, J=1-0) maser emission from
NML-Tau (a[1950] = 3"50™436, S[1950] = 11°15'3270),
which is about 18° away from TMC-1C. The pointing error did
not seriously affect our data, because we obtained the major
part of the data when the wind velocity was less than 6 m s~ .
In such cases it is assured that the pointing error does not
much exceed 5”.

By the chopper wheel calibration method, we derived the
source antenna temperature T%, which was corrected for
atmospheric attenuation, ohmic losses, and rearward spillover
and scattering. To obtain physical quantities of the cloud, we
use the temperature T¥ (= T%/#;.,), Which corresponds to the
source intensity convolved with the antenna diffraction and
error patterns, instead of T (=T%/1,), because we could not
estimate the antenna—source coupling efficiency #,. (For these
definitions, see Kutner & Ulich 1981) We employed a
position-switching method and took the OFF position of
(Aa, Ad) = (35, 35), which was measured from the map center.
All the data were taken at elevations higher than 30°, and
during the mapping observations the reference spectra at the
mapping center were monitored.

3. RESULTS

3.1. Observed Data of the *3CO and C'80O Lines

For the 4’ x 4’ area mapped first, two velocity profiles of
13CO(J = 1-0) and C'30(J = 1-0) have been obtained at
each grid point. The typical rms noise levels (i.e., 1 o levels)
induced by the telescope system are 0.30 and 0.23 K for '3CO
and C'80, respectively. We show the two profiles averaged
over the area in Figure 2a. The profile of **CO has a broad
peak with a width (FWHM) of 0.95 km s~ ! and has a sub-
component on the redshifted side. The profile of C80 has a
narrow single peak with a width of 0.49 km s~!. The peak
temperature of *3CO is 4.0 K, which is smaller than the value
of 5.2 K obtained by Schloerb & Snell (1984), while the peak
temperature of C*80 is 2.7 K, which is a little larger than their
value of 2.2 K. These disagreements are not problematical
because our observed area does not overlap completely with
their area for TMC-1C, as shown in Figure 1. The average
velocities over the 4’ x 4 area are 5.32 and 5.11 km s ! for
13CO and C!'80, respectively, compared with the value of 5.3
km s~! obtained by Schloerb & Snell (1984). We also made
observations of *3CO in the larger 8’ x 8’ area containing the
4’ x 4 area. The '3CO profile averaged over the 8 x 8 area
agrees well with the !3CO profile shown in Figure 2a. The
typical rms noise level is 0.29 K, and the average velocity is
515kms™ 1.

In Figure 2b the optical depths of the two lines are estimated
from the ratio of the temperatures T}, adopting the value of
0.18 (terrestrial value) as the C*20 to !3CO abundance ratio.
Here we assumed LTE conditions and used a common excita-
tion temperature T, . It is valid to use the temperature T%
instead of Ty, if the two species have similar spatial distribu-
tions (i.e., similar coupling efficiencies #,). It is found that the
core component of 1*CO is optically thick, while the wing
component is optically thin. The maximum value of the optical
depth is 6.2 near the line center. This value is consistent with
the evaluation of the *3CO opacity at each grid point in our
mapping area: For the 1*CO optical depth at the peak velocity
of the C!'80 emission, the maximum, mean, and minimum
values are 19, 7, and 3 with a standard deviation of 3. On the
contrary, the C'80 emission is approximately considered to be
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FiG. 2—(a) Averaged profiles of the '3CO(J = 1-0) (solid line) and
C!80(J = 1-0) (broken line) emission over the 4’ x 4’ area. (b) Optical depths
of the two lines. Filled and open circles correspond to the optical depths of
13CO and C*'®O, respectively, at each velocity channel, and the averaged
profiles of the two lines are also drawn.

optically thin all over the velocity range. Therefore, the C*30
line may be more appropriate for the analysis of turbulence
than the 13CO line, although the wing emission of C*80 is very
weak. If molecular clouds mainly consist of numerous small
optically thick clumps, as suggested by Snell et al. (1984) for
high-velocity molecular outflows, then we may be able to use
the !3CO data for the analysis of turbulence in spite of the
large optical depth.

Figure 3 shows the maps of the total integrated intensities of
the 3CO and C'80 emission in TMC-1C. A northwest-
southeast gradient is seen in the two 13CO maps. In addition, a
clumpy structure is distinct, probably because the line traces
the fluctuation of the surface temperature of the cloud owing to
the large optical depth. On the other hand, the optically thin
C!'80 line traces a ridgelike structure from north to south,
which has already been found in the large-scale C!30 map by
Schloerb & Snell (1984) (see Fig. 1). The gradient seen in the
13CO maps is consistent with this ridge, suggesting that the
surface temperature of the ridge increases toward its central
(i.e., northern) part. The CCS observations of TMC-1C by
Yamamoto et al. (1993) revealed two peaks of a size of ~0.04
pc inside the north-south ridge. The distance between the two
peaks is about 0.15 pc. They also found a velocity gradient of
~09kms ™! pc~!from SE to NW.

3.2. Calculations of Centroid V elocities and Total Intensities

We calculate the centroid velocities and total intensities
from the velocity profiles of 13CO and C!®0 at each grid point.
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F1G. 3.—Total integrated intensity maps of *>CO in the 4’ x 4’ area (a) and
in the 8’ x 8’ area (b), and total intensity map of C*®O in the 4’ x 4’ area (c).
The levels of the gray scales in units of K km s™! are written in the right
elongated boxes. The offset values measured from the map center are in units
of arcseconds.
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F16. 4—Contour maps of the turbulent velocity field of >*CO in the 4’ x 4’
area (a) and in the 8’ x 8’ area (b), and contour map of the turbulent intensity
field of C'80 in the 4’ x 4’ area (c). The levels of the gray scales written in the
right elongated boxes are in units of km s ™! for the velocity field and in units of
K km s™! for the intensity field. The offset values measured from the map
center are in units of arcseconds.
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The centroid velocity V. (Dickman & Kleiner 1985) and total
intensity I at the (i, j)th grid point are defined by

Jo3 vTH(; iy j)dv

[ Th0; 4, j)do 0

VC(i5 ] ) =
and

v2
I4(i, j) = f TX(v; i, j)dv , 2
v1

where v means the radial velocity along the line of sight. For
13CO, the mean of the centroid velocity is 5.32 km s™*, its
standard deviation is 0.07 km s~ !, and the rms noise level is
0.02 km s~ ! in the 4 x 4" area. In the 8 x 8 area the mean,
standard deviation, rms noise level are 5.16, 0.13, and 0.02 km
s 1, respectively. For the total intensity of C*80, the mean is
1.34 K km s~!, the standard deviation is 0.25 K km s~ !, and
the rms noise level is 0.05 K km s~ *. The comparison between
these standard deviations and rms noise levels suggests that
autocorrelations will not be buried in the noise if the corre-
lations truly exist.

To analyze statistically the turbulent velocity field, we sub-
tract an average value V¥, from each centroid velocity calcu-
lated by equation (1). This is equivalent to replacing v in the
integrand of the numerator of equation (1) by v — V. Conse-
quently, it is found that the contribution of the wing emission
to the integral of the numerator is large as compared with that
of the core emission. This fact suggests that we can analyze the
turbulence by using the !3CO data in spite of the large optical
depth at the line center, because the wing emission of 13CO is
shown to be optically thin. This possibility will be quantita-
tively confirmed in § 4.1. For the intensity field calculated by
equation (2), on the other hand, we must use the data of the
optically thin C'80 line instead of the 3CO data, because the
contribution of the core emission to the integral dominates
that of the wing emission.

In calculating the centroid velocity and total intensity at
each position, we used common values of v, and v, at all the
observed positions for the first time. We tried to minimize the
influence of the noise by changing the values of v; and v,, and
obtained more increased correlations with making the velocity
range of the integration narrower. However, it is not physically
clear which velocity range we should take. Therefore we
abandon this method and introduce a threshold level to mini-
mize the addition of the noise: We adopt only the data in the
spectrometer channels whose intensities are above the thresh-
old level, and discard the other channels. For the 1 ¢ threshold
level, even the weak emission of the wing component can be
picked up. However, about 16% of the channels containing
only the noise are mistaken for channels containing a signal,
and as a result, the noise propagated from the telescope system
may seriously fluctuate the calculated V. and I. For the 3 ¢
threshold level, on the other hand, only 0.15% of the noise is
mistaken for a signal, and the noise will be considerably
excluded. In this case, however, the major part of the weak
wing component, which would mainly contribute to the calcu-
lations of ¥, will be excluded. Since the peak level of the noise
is at about the 1.5 o level, the threshold level of 2 ¢ seems to be
the best choice. To examine practically the influence of the
noise, we estimated autocorrelation functions (ACFs) for three
cases of the 1 g, 2 0, and 3 ¢ threshold levels. The comparison
among the three cases assures that the calculated ACFs do not
sensitively depend on the adopted threshold level. Consequent-
ly, we adopt the 2 ¢ threshold level for our estimation of the
centroid velocities and total intensities.

The calculations of the centroid velocities and total inten-
sities by means of the above procedure were automatically
done for each grid point by a computer. However, since the
computer cannot exclude the spikelike noise that rarely
exceeds our adopted threshold level, we needed to examine the
validity of the channels selected by the computer for all the grid
points.

3.3. Separation of Turbulent and Ordered Components of the
Velocity and Intensity Fields

We tried to separate components of turbulent motions from
components of systematic motions, on the basis of the spatial
distributions of the calculated centroid velocities and total
intensities. It is not easy to distinguish turbulent components
from systematic ones in the small areas of the cloud we
observed. This is because turbulent motions having spatial
scales larger than the size of our observed areas come to be
recognized as systematic motions. On the contrary, the data
analyzed by Kleiner & Dickman (1987) covered the entire
region of Heiles’ cloud 2, and they could unambiguously
separate turbulent components from systematic ones, the
motion of the center of gravity and the rotation of the whole
cloud. Ideally speaking, it is necessary to observe a whole
cloud even for the analysis of turbulence in small sub-
condensations. Presently observations covering large areas
with high angular resolutions are virtually impossible, and we
do not have the data for the whole cloud. Thus we must look
for the second-best method to analyze the turbulence seen in
the small areas.

For our analysis, we adopted a simple procedure as follows:
We considered constant (zeroth-order) and linear (first-order)
components as systematic motions and removed these com-
ponents from the data. Of course, the zeroth-order component
corresponds not only to the motion of the center of gravity of
the subcondensation TMC-1C, but also to some turbulent
motions having spatial scales larger than the size of our
observed areas. In addition, when the whole cloud of Taurus
rotates around an axis (Kleiner & Dickman 1987), its rotation
may produce a linear gradient inside the observed area much
smaller than the Taurus complex. Therefore we should exclude
the linear component from our data. It is possible that the
linear component also includes some turbulent motions with
spatial scales as large as the size of the observed areas. No
distinct linear gradient is found in the velocity field of 3CO
and the intensity field of C'80, which are used in our analysis
of the turbulence in TMC-1C. Therefore, ambiguities concern-
ing the subtraction of the linear component are excluded from
our analysis. For the intensity field of **CO and the velocity
field of C'80, on the other hand, there exist northwest-
southeast and southwest-northeast gradients, respectively.

In the above procedure, we can not extract large-scale disor-
dered motions in our observed small areas and can analyze
only some part of the turbulence in the cloud: The removal of
the zeroth-order component from the data obtained by a
Gaussian beam on a mapping grid is approximately equivalent
to the usage of a filter transmitting only the signal whose wave-
number ranges from 1/D to 1/(2d), where D is the size of the
observed area and d is the grid spacing, nearly equal to the
beam size. Later, the behavior of estimated power spectra of
the turbulence will confirm this interpretation. In our dis-
cussion we must have the incompleteness of our definition of
turbulence in mind.

Figure 4 shows the contour maps of the *3CO velocity and
C!80 intensity fields of the turbulence, where the constant

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...413..221K

226 KITAMURA ET AL. Vol. 413
components have been removed. The maps show some hier-
archy from the size of the larger observed area (0.33 pc) down
to the smaller grid spacing (0.014 pc), or the beam size of the
telescope (0.012 pc). The hierarchy contains various scales, and
the ACFs will pick up a typical scale among them. Therefore
power spectra are more appropriate than the ACFs in order to
describe these structures (e.g., Houlahan & Scalo 1990). The
turbulent intensity map of C*80 shows a ridgelike feature even
after the removal of the zeroth-order component, and the
velocity maps of '*CO indicate some anticorrelation with the
intensity map of C'80. The velocity map of 4 x 4’ area does
not seem to agree with the inner part of the velocity map of
8 x 8’ area; the disagreement is attributed to both the differ-
ence between the two grid spacings and the incompleteness of
our definition of turbulence.

3.4. Evaluation of Autocorrelation Functions of the Turbulence
inTMC-IC
Once the components of the turbulence are defined, we can
easily estimate the autocorrelation functions (ACFs) of the
turbulence by spatial average, according to the ergodic
hypothesis. The ACF of the velocity field at the lag vector of
(k, ] is calculated by

Yii OV li, DOV + k, j + I/N(k, 1)
Y SVli, OV, j)/N©, 0)

where C is the ACF, 6V, indicates the turbulent component of
the velocity field, and N(k, [) is the number of data pairs at the
(k, ) lag. A similar equation is applied to the turbulent com-
ponent of the intensity field, 61;. Note that the ACFs directly
derived from the mapping data are the two-dimensional ones
that are integrated along the line of sight and that are con-

volved with the beam pattern of the telescope, and not the true
ACFs defined in the real three-dimensional space. According
to the study by Dickman & Kleiner (1985), the true three-
dimensional ACFs of the turbulence can be estimated from the
two-dimensional ones obtained from radio data, when opti-
cally thin lines are used in observations. The correction for the
influences of the beam pattern and the line-of-sight integration
will be discussed in § 4. Hereafter we use the term “ACF ” as
the two-dimensional one and add the adjective “two-
dimensional” if we must distinguish between the two- and
three-dimensional ACFs.

Six ACFs of the turbulence in TMC-1C are shown in Figure
5. Except for the ACF of the 1*CO intensity field in the 4’ x 4’
area, all the ACF's show distinct positive correlations at small
lags, although scatters of the correlations are seen. Only the
profiles at the lags smaller than 0.1 and 0.2 pc are presented for
the 4 x 4’ and 8 x 8 areas, respectively, because statistical
scatters considerably increase at large lags and absolute values
of the ACFs even exceed unity. One of the physical quantities
characterizing the ACFs is a correlation length, which is the
spatial scale corresponding to the lag where the ACFs fall
down to e !, following the definition by Kleiner & Dickman
(1987). In the 4’ x 4’ area the ACFs of the velocity field show
correlation lengths of ~0.03 and 0.025 pc for the !3CO and
3 C!'20 lines, respectively. The ACF of the C'®0 intensity field
shows a similar length of ~0.04 pc, while the ACF of the !3CO
intensity field does not show any distinct length. In the 8’ x &
area, on the other hand, the ACFs show correlation lengths of
~0.07 and 0.05 pc for the *3CO velocity and intensity fields,
respectively. The errors of the ACFs due to the noise propag-
ated from the telescope system are estimated as Dickman &
Kleiner (1985) did and are plotted by small bars in Figure 5.
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F1G. 5.—Six autocorrelation functions (ACFs) for the turbulent velocity (6V,) and intensity (61;) fields of 3CO and C!80 in TMC-1C. The lag is in units of
parsecs. For the 4' x 4’ area, the ACFs at the lags smaller than 0.1 pc are shown, and for the 8’ x 8’ area the ACFs at the lags smaller than 0.2 pc are shown. In each
panel the correlation length is designated by an arrow. The estimated errors are shown by small bars, and the levels of zero and e~ ! are shown by solid and broken
lines, respectively.
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Figure 5 tells us that the influence of the noise on the ACFs is
negligible, which has been already expected in § 3.2.

Kleiner & Dickman (1984) tried to replace the denominator
N(k, ) in equation (3) by N(0, 0) or [N(k, )N(0, 0)]*/? to reduce
the statistical scatter at large lags. When we adopt N(0, 0), the
correlations at small lags may be seriously biased like (D — r)/
D, where D is the size of the observed area and r is the absolute
value of the lag vector. This is because the sizes of our observed
areas are not sufficiently large compared with the correlation
lengths. Therefore we adopt the unbiased estimator with the
denominator of N(k, I). Dickman & Kleiner (1985) pointed out
that the magnitude of the correlations is reduced owing to the
noise induced by the telescope system. The correlation at zero
lag is the sum of the variance of the noise-free velocity fluctua-
tion, o2 and the variance of the noise, 2, although the corre-
lations at nonzero lags are not influenced by the noise.
Consequently the ACFs including the noise are reduced by a
factor of [1 + (6,/0.)*] !. We made a correction by multi-
plying our estimated ACFs at nonzero lags by a factor of
1 + (6,/0.). The correlations at small lags slightly increased by
this correction, because the factor is at most 1.1 in our data.
After this correction we cannot find any factors biasing the
ACFs at lower orders.

When we consider the ACF's as a function of the magnitude
of the lag vector, the scatters of the plotted points are attrib-
uted to both the statistical scatter and the anisotropy of the
turbulence, while the errors due to the noise propagated from
the telescope system are estimated to be small as shown in
Figure 5. The statistical scatter of the ACFs becomes large with
increasing lag and fluctuates the estimated correlations around
the true values to some extent. If the number of the data points
is sufficiently large, the statistical scatter is reduced, and only
the anisotropy remains. In this study, however, we cannot dis-
criminate between these two kinds of scatters, and we sacrifice
the anisotropy to reduce the statistical scatter as possible; the
ACFs are averaged over the angular direction of the lag vector
assuming isotropy, as was done by Scalo (1984). The profiles of
the isotropic ACFs in Figure 6 show a slightly jagged feature at
small lags, and this fact suggests that both the statistical scatter
and the anisotropy would not seriously influence our dis-
cussion of spherically symmetric properties of the turbulence.
Of course, the correlation lengths defined by the ACFs in
Figure 5 agree with those by the isotropic ACFs in Figure 6.

3.5. Evaluation of Structure Functions of the Turbulence in
TMC-1C

Another useful statistical measure to analyze turbulence is a
structure function (SF). The structure function, S, at the (k, )
lag is defined by

i {0Veli, j) — OVli + k, j + D}*/N(k, 1)
Y. OVeli, OVeli, )/N(O, 0)

For globally homogeneous turbulence the ACFs are useful.
However, such situations are not realistic in molecular clouds,
and a more realistic approximation is local homogeneity, in
which case the probability mean values of physical quantities
of turbulent fields increase in proportion to spatial coordi-
nates. In such cases the SFs are known to be appropriate,
rather than the ACFs. For the globally homogeneous fields,
the SFs come to be related with the ACFs as the following
relation:

S(k>l)=Z

@

S(r) = 2[1 — C(r)] . &)
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F1G. 6.—Isotropic autocorrelation functions (ACFs) plotted by filled circles
and isotropic structure functions (SFs) plotted by open circles for the turbulent
13CO velocity (6V;) and C'®0O intensity (51,) fields. Instead of the SFs them-
selves, we show the functions of 1 — SF/2 for the comparison with the ACFs.
The profiles of the ACFs and SFs are averaged over the angular direction of
the lag vector assuming spherical symmetry. The lag is in units of parsecs and
the profiles all over the lag ranges are shown. The levels of zero and e~ ! are
shown by solid and broken lines, respectively.

The SF becomes proportional to r?/ for the Kolmogorov-like
turbulence, and the function is convenient for the analysis of
relations between velocity dispersions and spatial scales. Scalo
(1984) used the SF to analyze the turbulence in the p Oph
cloud, and O’Dell & Castafieda (1987) used the function for the
turbulence seen in H 11 regions.

We calculated the SFs of the turbulent velocity and intensity
fields in TMC-1C. The estimated SFs are shown in Figure 6.
These SFs are averaged over the angular direction of the lag
vector as well as the ACFs, and we display 1 — S(r)/2 instead of
S(r) itself for the comparison with the ACFs. At the lags smaller
than ~0.1 pc, the isotropic SFs do not seriously differ from the
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isotropic ACFs, and at larger lags the SFs tend to show smaller
correlations than those by the ACFs. Because of the good
agreement between the two functions at the lags smaller than
0.1 pc, we discuss the turbulence in TMC-1C by means of the
ACFs.

3.6. Estimation of Velocity and Intensity Power Spectra of the
Turbulence in TMC-1C

We have estimated power spectra consistent with the iso-
tropic ACF's that were calculated from our observed data in the
4 x 4 area, by employing a two-dimensional maximum
entropy method (MEM). Figures 7a and 7b show the two-
dimensional power spectra of the turbulent velocity and inten-
sity fields, which are corrected for the beam pattern of the
telescope. Later the velocity spectrum will be shown to be
equivalent to the lateral three-dimensional spectrum Fyy of
turbulence in our discussion. The broken lines show the esti-
mated level of the noise induced by the telescope system. Fur-
thermore, we get the spherically symmetric spectra by
multiplying the corresponding two-dimensional ones by a
factor of 4nk?, where k means the vector of the wavenumber.
Here we assume that the turbulence is homogeneous and iso-
tropic and that the observed lines are optically thin. These
spectra are shown in Figures 7c and 7d. In contrast with the
4’ x 4’ area where a full sampling was made, only an under-
sampling was done for the 8 x 8 area, and power spectra are
not estimated for the larger area.
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It is clear from Figures 7a and 7b that the estimated power
spectra of the velocity and intensity fields of the turbulence do
not obey the power law with a single index like Kolmogorov’s
law. One peak is seen at the spatial scale of ~0.15 pc. From
0.15 to 0.05 pc, the spectra decrease and come to increase from
0.05 to 0.027 pc. According to the sampling theorem, we can
not estimate the power spectra at the scales smaller than 0.027
pc, or twice the grid spacing. Although the estimated error
tends to increase with decreasing the spatial scale (ie., with
increasing the wavenumber), the error is roughly one order of
magnitude smaller than the power spectra. Therefore, the pro-
files of the power spectra profiles cannot be explained by the
sum of Kolmogorov-like spectra and the noise spectra, and the
increase found at the scales smaller than ~0.05 pc must be
explained by some physical processes.

It is well known that the ACF's can be converted into power
spectra by the Fourier transformation. Compared with the
ACFs, the power spectra are more useful to study physical
properties of turbulence. However, it is difficult to calculate the
power spectra from the estimated ACFs, because the statistical
scatter becomes larger with increasing the lag, and because the
correlation cannot be estimated at a large number of points in
a lag space. An FFT-technique is not a powerful tool when
statistical scatters are large because of a small number of sam-
pling grid points. In such cases an MEM is known to be an
effective method. Although the MEM generally consumes
much computational time, it can estimate the power spectra,
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F1G. 7.—Estimated two-dimensional power spectra of the turbulent **CO velocity field (a) and C'®0 intensity field (b) in the 4 x 4’ area. The velocity spectrum is
equivalent to the lateral three-dimensional spectrum F of turbulence. (c) and (d): Spherically symmetric spectra converted from the corresponding two-dimensional
ones in the upper panels by multiplying a factor of 4nk. The powers are in units of km? s ™2 pc?, K km? s~ 2 pc?, km? s~ 2 pc, and K2 km? s~ 2 pc for (a), (b), (c), and
(d), respectively, and in the abscissa we use the quantity u = kd, where d is the grid spacing, instead of the wavenumber k itself. In panel (a), three corresponding
spatial scales are written in units of parsecs. Broken lines in the two upper panels show the noise levels. These spectra are calculated from the 9 x 9 correlation array

using the truncated power series of the degree 39.
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with some confidence, even from noisy data obtained with a
small number of sampling points.

We used the convolution power algorithm proposed by
Woods (1976). In this algorithm a maximum entropy spectrum
is expanded into a power series and, as a result, the corre-
sponding correlation function can be expressed by a convolu-
tion power (CP) series. If we find coefficients of the CP series so
as to reproduce the observed ACF, then the maximum entropy
spectrum will be obtained. The appropriate values of the coeffi-
cients are iteratively searched by using a gradient algorithm. If
we truncate the CP series at a certain number of terms, an
iteration equation becomes simple and faster convergence can
be attained. However, we have no criteria for the degree M of
the truncated series. By our numerical experiments 39 is an
appropriate value for M. Even if we take larger values for M,
the resulting spectra are not changed, but only the computa-
tional time lengthens. The convergence of the original algo-
rithm is not very efficient, because approximate gradient forms
were used. By using accurate gradient forms, we improved the
original iteration scheme and obtained faster convergence. A
remaining problem is how to determine the size of the corre-
lation array where we try to fit a maximum entropy model to
the ACFs. We tried spectral estimation for 3 x 3,5 x 5,7 x 7,
...and 13 x 13 arrays of nearest neighbors. For larger arrays,
the profiles of the spectra become more jagged, although more
information is incorporated. We obtained the best output for a
9 x 9 array, the size of which corresponds to the maximum lag
of 0.08 pc. This is consistent with the fact that the profiles of the
ACFs are smooth at the lags smaller than 0.1 pc and is consis-
tent with the good agreement between the ACFs and SFs at
the small lags. We examined our CP scheme for the two types
of correlation functions, exponential and Gaussian ones,
whose Fourier transformations are simple and analytic. It is
confirmed that the CP scheme can reproduce the analytic spec-
tral functions from the correlation dataon 3 x 3,5 x 5,7 x 7,
... and 13 x 13 arrays. Ong (1971) proposed a gradient algo-
rithm not by expanding a spectrum into a power series, but by
integrating an accurate functional form. Although this method
is more accurate than the CP method, it requires laborious
computations because two-dimensional integration is needed
at each iteration. We could get the convergence of Ong’s iter-
ation only for the three 3 x 3,5 x 5,and 7 x 7 arrays, and the
results agreed well with those obtained by the CP method. This
agreement also supports the validity of our spectral estimation
by the CP method.

If the correlation data on an array of nearest neighbors are
given, we can directly estimate two-dimensional spectra, which
are convolved with the Gaussian beam pattern of a radio tele-
scope. In addition, the estimated spectra are the ones that
passed through a filter. Roughly speaking, the filter can pass
the signal whose wavelength ranges from 2d to D, where d and
D mean the grid spacing and the size of the observed area. In
our observations, the grid spacing is nearly equal to the beam
size (HPBW) of the telescope, ®. Although the signal filtered
out cannot be recovered, it is easy to get rid of the influence of
the Gaussian beam. The convolution with the beam pattern
becomes an exponential factor in a wavenumber space as
shown by equation (BS), and we can easily estimate the two-
dimensional spectrum F,(k,) that is not convolved with the
beam pattern of a telescope, from the spectrum F, (k,) directly
estimated from the observed data. Since the exponential factor
in equation (B5) becomes smaller than 0.17 for |k, | > 1/(2d),
the factor works as a filter cutting off the components having
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the wavenumbers larger than 1/(2d), and it is assured that the
estimated spectra are not seriously influenced by the aliasing.
We examined the influence of the aliasing for Gaussian and
exponential spectra and for spectra obeying a power law with
indices of —1 to —4, and concluded that the spectra were
slightly raised only at the wavenumbers from 1/(2.5d) to 1/(2d).
Therefore the increase at kd = 0.3 ~ 0.5 shown in Figure 7
cannot be produced by the aliasing.

4. DISCUSSION

4.1. The Structure of the Turbulent Velocity Field in TMC-1C

From the analysis by the ACFs, it is revealed that there exist
at least three correlation lengths in the turbulent velocity field
of Heiles’ cloud 2. In the 4’ x 4’ (0.16 x 0.16 pc) area the ACF
of the 13CO line shows a correlation length of ~0.03 pc, and
the ACF of C'30 shows a similar length of ~0.025 pc. The
fields of '3CO and C!80 have a similar correlation length
despite the difference between the optical depths of the two
lines; the *3CO line is optically thick for the core component
and thin for the wing component, while the C*80 line is opti-
cally thin over the whole profile. This is because the wing
component mainly contributes to the ACFs of the velocity
field, as pointed out in § 3.2. To examine this interpretation, we
obtained the turbulent velocity field by extracting the optically
thin part of V sx <4.7kms ! and Vg > 5.4 km s~ ! (see Fig.
2b) from the 3CO velocity profile at each grid point and esti-
mated the velocity ACF. The resultant ACF for the optically
thin part agrees with the ACF for all the velocity range,
although the correlation slightly decreases. Consequently, it is
confirmed that the turbulent velocity field can be analyzed
from the !3CO wing component as well as from the C'®0
whole profile. In the 8’ x 8'(0.33 x 0.33 pc) area containing the
4’ x 4’ one, the ACF of 13CO shows a correlation length of
~0.07 pc. Besides, in the ~1° x 1° (2.4 x 2.4 pc) area covering
the inner region of Heiles’ cloud 2, Kleiner & Dickman (1987)
found a correlation length of ~0.1 pc from the ACF of *3CO.
From the C'80 data, the masses of spheres whose radii are
equal to the correlation lengths can be estimated to be 0.3,
1.6, and 3.2 M for the lengths of 0.03, 0.07, and 0.1 pc,
respectively.

A simple interpretation of the above facts is that the turbu-
lence prevailing in Heiles’ cloud 2 has hierarchical structure
and that the hierarchy contains at least three discrete levels
corresponding to the correlation lengths shown by the ACFs,
unlike Kolmogorov’s scenario. This interpretation is satisfac-
tory if the medium scale of 0.07 pc does not exist. Since the size
of the 4’ x 4’ area is comparable with the scale of 0.1 pc found
by Kleiner & Dickman (1987), we cannot recognize their scale,
and we find a new small scale of 0.03 pc. Kleiner & Dickman
(1987) could not find the scale of 0.03 pc from the data
observed by Schloerb & Snell (1984), because the beam size of
the telescope used by them was 53” (0.036 pc). Even if the beam
size is smaller than 0.03 pc, the typical turbulent motion in the
small condensation TMC-1C will be buried under the motions
with larger scales in Heiles’ cloud 2. In fact, the ACF in the
4’ x 4 area becomes almost unity all over the lag range if we
redefine the components of the turbulence by subtracting the
velocity of 5.96 km s~ !, which is the mean velocity in Heiles’
cloud 2 (Kleiner & Dickman 1987), from the centroid velocities
estimated in TMC-1C. In such an ACF we cannot recognize
the existence of the small scale of 0.03 pc. From the above
discussion the coexistence of the two correlation lengths of 0.03
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and 0.1 pc is consistent with the hierarchy model containing
several discrete scales. However, the existence of the 0.07 pc
scale does not seem to agree with the model. In the 8’ x 8’ area
it is natural that we could not find the scale of 0.03 pc because
of the 40” (0.03 pc) grid. On the contrary it is unnatural that we
found the scale of 0.07 pc instead of the scale of 0.1 pc, since the
size of the 8 x 8 area is larger than the 0.1 pc scale. Is the
difference between the scales of 0.07 and 0.1 pc due to the
difference between the two observed areas? If the 0.07 pc scale
truly exists, why could we not find the scale of 0.07 pc instead
of the 0.03 pc scale in the 4 x 4’ area whose size is about twice
larger than 0.07 pc?

As discussed above, it seems to be unreasonable to consider
that the correlation lengths shown by the ACFs in the small
areas represent true physical scales characterizing the turbu-
lence. This is mainly because we have no reliable method to
separate turbulent components from systematic ones in the
small areas observed by us, as previously stated; we cannot
distinguish large-scale turbulent motions from systematic
motions so far as the analysis is limited in a small area com-
pared with the whole cloud. In contrast with our work, Kleiner
& Dickman (1987) could truly get rid of systematic motions,
because they analyzed the data obtained over the whole cloud.
Therefore, we should take an interpretation that the corre-
lation lengths derived by us do not directly reflect real physical
scales in the cloud, and that the lengths reflect only the appar-
ent typical scales seen in the gas motions that can be picked up
as turbulence by individual observations made over the two
areas. In fact, the correlation length seems to increase contin-
uously with increasing the size of the analyzed area where the
ACEF is estimated, as shown in Figure 8. This relation can be
considered as follows: The upper limit of the spatial scales of
the turbulent gas motions that can be picked up in our analysis
increases in proportion to the size of the analyzed area. If the
gas motions with larger scales are taken into account, then the
correlation length defined by the ACF lengthens. This interpre-
tation will be validated from the analysis of the velocity power
spectrum in § 4.3. Consequently, our derived scales from the
ACFs are not true correlation lengths seen in the turbulence
for lack of a reliable method to extract all the turbulent com-
ponents in a limited small area. However, the correlation
lengths derived in the small areas are useful to characterize the
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degree of correlations in the ACFs. Besides, our estimated
ACFs do not lose their worth, because the profiles of the ACFs
are closely related to power spectra of some components of the
turbulence.

The correlations shown by the two-dimensional ACFs
increase, compared with those shown by the three-dimensional
ACFs, owing to the two following factors: the convolution
with the beam pattern of a radio telescope and the integration
along the line of sight. The ACFs do show a correlation length
as large as the beam size of a telescope, even if the turbulence
does not have any scales. Actually, even for white noise the
ACEF shows a correlation length of 0.850, where © is the beam
size (see eq. [A3]). Furthermore, when the three-dimensional
ACF has a Gaussian form with a correlation length I, the
apparent correlation length defined by the two-dimensional
ACF becomes (IZ + ©%/In4)'/2 (see eq. [A6]). Therefore, corre-
lation lengths comparable with the beam size are not true, but
artificial. Since the ACF of the turbulent intensity field of 3CO
shows a correlation length of ~0.01 pc as small as the beam
size (see Fig. 5d), it is found that the scale is artificial and the
ACF shows no significant correlations. In addition to the con-
volution with the beam pattern, the correlations increase
owing to the integration along the line of sight. For example,
Kleiner & Dickman (1985) showed that the correlation lengths
become twice as large as true scales in clouds at the worst.
Taking account of the two influences, we derived the relation
between the two- and three-dimensional ACFs as shown by
equation (A5).

In the case of the velocity field, the correlation function
B[(®%*u? + L?x?)'/?] in equation (A5) must be expressed by
two scalar functions even for the homogeneous and isotropic
turbulence, because the velocity field is described by the two
independent potential and solenoidal fields (Monin & Yaglom
1977). For simplicity of analysis we assume that the compress-
ibility is not dominant in TMC-1C and that the velocity field
can be described only by the solenoidal field, although the
velocity widths (FWHM) of the !3CO and C'®0 lines ex-
ceed the sonic velocity. For the solenoidal velocity field
B[(®%*u? + L?x?)!/?] is replaced by B, (®u, Lx) of equation
(B1), and B,, is expressed by the function B;; according to
equation (B2). To the two-dimensional velocity ACF of 3CO
we fitted the following three models for B, ,(r): (1) a Gaussian
type of correlation function, exp [ —(r/l.)*], where I, means a
correlation length; (2) an exponential type of correlation func-
tion, exp (—r/l,); and (3) a Kolmogorov type of correlation
function, 1 — 0.63(r/I,)*3. The Gaussian and exponential func-
tions are proved to be correlation functions of some turbu-
lence, and the Kolmogorov-type function is an approximate
form. The power spectra of the Gaussian and exponential types
have a single peak at the wavenumber corresponding to the
correlation length I, and the spectrum of the Kolmogorov
type has two scales corresponding to the energy injection scale,
which is about twice as large as I, (see eq. [25] of Kleiner &
Dickman 1985), and the energy dissipation scale that is much
smaller than I . The fitting results are shown in Figure 9a. The
fitting does not seem to be good. The exponential type is the
best, and the Kolmogorov type is the worst. The fitted values
of the correlation length I, are written in the figure. To get
better fitting, steep and gentle gradients are required at small
and large lags, respectively. This may require more compli-
cated correlation functions, or the incorporation of both the
solenoidal and potential components. For the cloud depth L
we took three values of 0.16 pc (a typical size of the sub-
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F1G. 9.—Three or two analytical functions fitted to the ACFs of the turbu-
lent '3CO velocity field (a) and C'®O intensity field (b) in the 4’ x 4’ area;
Gaussian, exponential, and Kolmogorov-type functions. The fitted values of
the correlation length I, are drawn in each panel.

condensations in Heiles’ cloud 2), 1.2 pc (the size of Heiles’
cloud 2), and 2.4 pc (a typical width of the Taurus filament).
The fitting results did not depend on the cloud depth L.

4.2. The Structure of the Turbulent Intensity Field in TMC-1C

The ACFs of the turbulent components of the total inten-
sities of 13CO and C'80 are shown in Figures 5d, Se, and 5f.
The ACF of 13CO in the 4’ x 4’ area does not show any corre-
lation lengths, and the ACF of C'20 in the same area shows a
length of ~0.04 pc. For the core component mainly contrib-
uting to the ACF of the total intensity, the !3CO line is emitted
mainly from the surface of the cloud and traces the fluctuation
of the surface temperature. On the other hand, the C*80 line is
approximately emitted from all over the line of sight and traces
internal structures of the cloud. Therefore the correlation
length of 0.04 pc probably reflects a typical size of clumps in
the cloud. In Figures 3c and 4c the central peak or the ridge
probably corresponds to the 0.04 pc scale. If there exists a
clump with the size of 0.04 pc, then its mass is estimated to be
~0.1 M, from the total intensity of C'#0. Since the mass is
smaller than the corresponding Jeans mass of ~1 Mg, the
clumpy structure seen in TMC-1C is probably produced by the
turbulence, and the fragmentation process due to the self-
gravity does not dominate the turbulence. The CCS observa-
tions by Yamamoto et al. (1993) revealed two peaks having the
size of =0.04 pc in a larger elongated clump with a size of 0.1

TURBULENCE IN TMC-1C IN HEILES’ CLOUD 2 231

pc x 0.3 pc. The southeast peak seen in the clump corresponds
to the central peak in Figures 3¢ and 4c. In the 8’ x 8 area the
ACF of '3CO shows a correlation length of 0.05 pc. Since the
13CO emission is optically thick for the core component, this
scale does not correspond to the size of clumps but probably
correspond to the scale seen in the fluctuation of the surface
temperature of the cloud. In Figure 9b we fitted two models to
the two-dimensional ACF of the C!80 intensity: One is the
model that the three-dimensional correlation function B(r) in
equation (A5) behaves as exp [ —(r/l.)*], and the other is that
the function behaves as exp [ —(r/l.)]. The fitting is not good,
although better fitting was done for the exponential type. Two
kinds of slopes are required to improve the fitting, which is the
same as in the velocity case. The fitted value of I, = 0.02 pc for
the exponential case is just the half of the apparent value of
0.04 pc in Figure 5f, as Kleiner & Dickman (1985) pointed out.

When a molecular line is optically thin, the total intensity of
the line is represented by the line-of-sight integration of the
product of the excitation temperature T, and absorption coef-
ficient k of the emitting gas. Therefore the ACF of the turbu-
lent intensity field of C*80 in Figure 5f is related to the scalar
field of the product T, x of the turbulence. Since x is roughly
proportional to both the mass density p and the inverse square
of the gas temperature, T 2, the total intensity reflects the
ratio of the gas density to temperature assuming T ~ T,. If the
variation of T over clouds is smaller than that of p, then the
total intensity directly reflects the integration of p along the
line of sight. Only in such situations can we get some informa-
tion of the density field of the turbulence from the variation of
the total intensity over the cloud surface. In real molecular
clouds, however, the variation of T over the the clouds is not
negligible, and it is difficult to analyze the density field separa-
tely from the temperature field. On the contrary, the variations
of p and T affect the calculations of the centroid velocities only
to the first order, as pointed out by Dickman & Kleiner (1985),
and we can analyze the velocity field without considering the
variations of the gas density and temperature.

It is expected that the density field is connected with the
velocity field through hydrodynamic equations including self-
gravity, because molecular clouds are generally compressible.
We calculate cross correlations between the velocity and inten-
sity fields (Fig. 10). The cross correlations are normalized by
the product of the two standard deviations in the velocity and
intensity fields. For the velocity field both the 3CO and C*80
data are used, and for the intensity field only the C'20 data are
used. Although the cross correlations increase from negative
values to positive values with increasing the lag, as expected
from Figure 4, any significant correlations are not found. This
fact may suggest that the compressibility is not dominant in
the turbulence seen in TMC-1C, or that the intensity field does
not correctly reflect the density field, owing to the variation of
T along the line of sight, even if the physical link between the
density and velocity fields is strong.

4.3. The Power Spectrum of the Turbulent Velocity Field
inTMC-IC

It is shown that the estimated power spectra of the turbulent
velocity and intensity fields do not show monotonic decrease
like Kolmogorov’s law, but decrease at the scales larger than
~0.05 pc and change into increase at the scales smaller than
~0.05 pc (Figs. 7a and 7b). At large scales, one peak appears at
~0.15 pc, probably because we subtracted the turbulent com-
ponents with spatial scales larger than the size of the observed
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F1G. 10.—Cross-correlation between the turbulent velocity and intensity
fields in the 4' x 4’ area of TMC-1C. The correlations are normalized by the
product of the two standard deviations of the turbulent velocity and intensity
components. Circles show the cross correlation between the C'®0 velocity and
C!80 intensity, and squares show the cross correlation between the 13CO
velocity and C!®0 intensity.

area (0.16 pc) as a constant component. As stated previously,
we found that the velocity ACF could not be well fitted by the
Kolmogorov-type function. If the Kolmogorov-like turbulence
is prevailing in TMC-1C, the profile of the spectrum in Figure
7c becomes a decreasing straight line whose slope is —5/3 in
the range from 0.15 to 0.027 pc. In the Kolmogorov’s picture,
the energy of the turbulence that is input at the largest scale is
cascaded down into smaller scales owing to the viscosity of the
gas, and finally dissipates at the smallest scale, where new stars
are formed. In real molecular clouds, however, it is difficult to
suppose such a simple process, because compressibility and
shock waves are prevailing at all spatial scales owing to the
supersonic motions of the gas, and because the self-gravity of
the clouds connects rotational motions to radial motions.
Therefore, it is not surprising that Kolmogorov’s law does not
hold in TMC-1C, and we can expect more complicated spectra
of the turbulence in TMC-1C, as Figure 7 shows.

Our estimated power spectrum of the velocity field can be
shown to be equivalent to the lateral three-dimensional spec-
trum F yy, of turbulence after the correction for the beam pattern
of a radio telescope, as shown by equation (B10). Note that the
turbulence is assumed to be homogeneous and isotropic. The
true power spectrum of the turbulence is defined in the three-
dimensional cloud, and is changed in some degree into the
two-dimensional spectrum F,(k,) owing to the integration
along the line of sight. Therefore, we should know the three-
dimensional spectrum F, (k) that is Fourier-transformed from
the three-dimensional correlation function B,,(r), instead of the
two-dimensional spectrum F,(k,) transformed from the two-
dimensional correlation function B,(r,). The relation between
the two correlation functions B,(r,) and B,,(r) is expressed by
equation (B3): The larger the distance from the cloud surface
becomes, the more the information about the correlation func-
tion B_(r) is lost, and it seems very difficult to estimate F,,(k)
itself from F,(k,). However, we can obtain the lateral part Fyy
of F, (k) (see eq. [B9]), although the remaining longitudinal
part F;; cannot be estimated from our two-dimensional
observed data.

Using an extended spectrum F§y derived from our estimated
spectrum Fyy of the turbulent velocity field, we try to repro-
duce a two-dimensional correlation function B,,,, which is

scales from 0.15 to 0.05 pc in Figure 7a, and F{% agrees with
Fyy at the scales smaller than 0.15 pc. We succeeded in repro-
ducing a steep slope at small lags (<0.02 pc) and a gentle one
at large lags in the case of D = 0.16 pc, as shown in Figure 11.
Because of the existence of these two slopes, we could not
successfully fit the three analytic functions to the velocity ACF
in Figure 9a. The qualitative agreement between B,,, and our
estimated velocity ACF validates our spectral estimation by
the MEM. Besides, we can qualitatively reproduce the linear
relation shown in Figure 8 by changing D in equation (6). This
fact validates our interpretation of the velocity power spectrum
and suggests that the correlation length defined by the ACF is
not directly connected with a true physical scale owing to the
incompleteness of our definition of turbulence. The correlation
length only reflects the functional form of the power spectrum
of the turbulence whose small-wavenumber part is cut off
owing to the finite size of the observed area. It is noted that the
real correlation length of ~0.1 pc found in the ~1° x 1° area
by Kleiner & Dickman (1987) is shorter than the scale of 0.5 pc
that is expected in the ~1° x 1° area according to the linear
relation in Figure 8. The relation shows a scale of 0.1 pcin a
12" x 12’ (0.49 x 0.49 pc) area. Therefore, it is suggested that
the power spectrum has a real peak at the wavenumber of
~1/(0.49 pc), which produces the 0.1 pc correlation length. In a
small area where all components of turbulence cannot be rec-
ognized, it is essential to obtain power spectra of turbulence
rather than correlation lengths.
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FIG. 11.—Autocorrelation functions reproduced from the model power
spectrum of the turbulent velocity field of !*CO in the 4 x 4’ area. The model
spectrum at the scales larger than 0.15 pc is extrapolated from the estimated
power spectrum at the scales from 0.15 to 0.05 pc in Fig. 7a, and the model
spectrum agrees with the estimated one in the range 0.15-0.027 pc. We
changed the size of the analyzed area for the turbulence from 0.16 to 0.33 pc by
an increment of 0.028 pc, corresponding to each profile from left to right. The
level of e ! is written by broken line.
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At the scales where the turbulent motions prevail and the
gas velocity is supersonic, clouds cannot gravitationally con-
tract to form new stars inside them. At the scales where the
turbulent motions decay and the gas velocity becomes sub-
sonic, on the other hand, the clouds can contract by self-
gravity, resulting in formation of new stars (Larson 1981;
Myers 1983; Henriksen & Turner 1984). Stahler (1983) pro-
posed that new stars are born in the clouds where thermal
motions are dominant, from the analysis of the birthline of T
Tauri stars. Therefore, it is important to answer why the energy
of the lateral part of the turbulence per unit mass concentrates
at the small scales of <0.03 pc in TMC-1C. The similarity
between the power spectra of the velocity and intensity fields
may suggest that not only the energy per unit mass but also the
energy per unit volume concentrates at the small scales,
although we cannot directly estimate the energy per unit
volume. At such small scales there may exist the energy input
from new stars through some processes like stellar winds. In
fact, one of the IRAS point sources is located at the south edge
of TMC-1C (see Fig. 1), and is identified with the star, Haro
6-33, which has the bolometric luminosity of 0.37 L, (Myers et
al. 1987). However, it is doubtful that the star is one of the
driving sources for the turbulence, because the star is not
located around the center of our observed areas and has no
outflow. Another promising candidate for the driving sources
of the turbulence is the self-gravity of the cloud. Léorat et al.
(1990) simulated two-dimensional turbulence with low Mach
numbers for the self-gravitating compressible fluid. Their
density and velocity spectra do not show monotonic decrease.
The density spectrum has a flat part at medium scales, and the
velocity spectrum of the solenoidal part has a peak at a rela-
tively large wavenumber, which may correspond to the
increase at the scales smaller than 0.05 pc in our estimated
velocity spectrum. Although the results of two-dimensional
turbulence are not directly applicable to three-dimensional
turbulence, it is possible that small cores in TMC-1C can have
some energy due to gravitational contraction. First, some
energy is injected into a giant molecular cloud with a spatial
scale [;, by, for example, the galactic differential rotation. Next,
some parts of the GMC contract into small fragments with the
scale of fl,, (0 < f < 1). The factor f is evaluated to be 0.1,
according to the review by Scalo (1985). This process repeats
until the appearance of the cores that directly contract into
new stars. Unless these fragments in the hierarchical structure
considerably lose their energy during the cloud lifetime owing
to some processes like collision (Scalo & Pumphrey 1982),
radiative cooling, and so on, the medium with the intermediate
scales between "I, and f"*'I;, has less energy, and the profile
of the velocity power spectrum shows an increase in the range
of the wavenumber from ~ 1/(f",,) to 1/(f"*1,), like our esti-
mated spectrum in Figure 7.

On the other hand, the mass of a sphere with a radius of 0.03
pc is estimated to be ~0.3 M from the optically thin C'20
data, which is smaller than the corresponding Jeans mass of
~1 M. In the calculation of the Jeans mass we adopted the
gas temperature of 10 K and the gas density of 10* cm ™3, If our
estimation of the masses is true, the above comparison indi-
cates that the self-gravity does not dominate in the small sub-
condensation TMC-1C. Therefore, the energy concentration at
the small scales of ~0.03 pc must be attributed to the energy-
transfer process of the turbulence itself, even if the turbulent
motions presently seen in TMC-1C were generated by gravita-
tional contraction at larger scales in the past.
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For the case of the existence of energy input at small scales,
the inverse energy cascade from small to large scales might
occur. Levich & Tzvetkov (1985) explained mesoscale atmo-
spheric phenomena seen on Earth by introducing the inverse
cascade in three-dimensional turbulence. They showed that the
energy injected into the atmosphere through deep convective
clouds can be transformed into coherent motions of larger
scales owing to the three-dimensional inverse cascade. Krishan
(1991) applied this idea to the solar granulation, and Krishan
& Sivaram (1991) applied it to the clustering of galaxies. The
turbulence itself or both the turbulence and self-gravity prob-
ably provide the energy input at small scales in TMC-1C,
which might trigger the inverse energy cascade, although we
should quantitatively investigate whether the conditions for
the inverse cascade hold in molecular clouds or not. A quanti-
tative model of the compressible turbulence in self-gravitating
clouds is proposed by Henriksen & Turner (1984). They con-
sidered the compressible, gravitationally driven, and angular
momentum-limited turbulence, and derived the scaling laws
including both the virial equilibrium and Larson’s velocity-size
relation (Larson 1981). This study strongly suggests the impor-
tance of the compressibility and self-gravity for the under-
standing of turbulence in molecular clouds. From an
observational standpoint, it is very important to observe veloc-
ity and density structures of molecular clouds over large areas
by Nyquist sampling, using radio telescopes with beams as
small as possible. We have started making such laborious
observations of the Taurus cloud by using the multibeam
(four-beam) system equipped with the 45 m telescope of
Nobeyama Radio Observatory in the winter of 1992.

5. SUMMARY

We have observed the turbulence seen in the 4’ x 4’ and
8’ x 8 areas of the subcondensation TMC-1C in Heiles’ cloud
2 by using the '*CO(J = 1-0) and C*30O(J = 1-0) lines with
the spatial and velocity resolutions of 0.01 pc and 0.1 km s~ !,
respectively. We have been able to extract the turbulent com-
ponents whose wavelengths range from twice the grid spacing
for our mapping to the size of our observed area. The turbulent
velocity and intensity fields have been statistically analyzed by
the autocorrelation and structure functions (ACFs and SFs),
and the power spectra of the fields have been estimated from
the ACFs. Our results are summarized as follows:

1. The estimation of both the optical depth and ACFs
assures that the turbulent velocity field can be analyzed from
the '3CO wing component as well as from the C!20 whole
profile, and that the turbulent intensity field can be analyzed
only from the C'80 whole profile. For the calculation of the
centroid velocity it is found that the contribution of the opti-
cally thin wing emission of 3CO dominates that of the opti-
cally thick core emission.

2. The ACFs of the velocity fields of the !3CO and C'®0
lines have similar correlation lengths of ~0.03 pcin the 4’ x 4
area, independent of their optical thickness. In the 8’ x 8’ area
the ACF of the '3CO velocity field shows a correlation length
of 0.07 pc. The ACF of the turbulent intensity field of the C'30
line has a correlation length of 0.04 pc in the 4’ x 4’ area.

3. The behaviors of the SFs agree well with those of the
ACFs at the lags smaller than ~0.1 pc.

4. It is found that the correlation length defined by the ACF
continuously increases with increasing the size of the analyzed
area where the ACF is estimated, because we can analyze only
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the turbulent components whose wavelengths range from twice
the grid spacing for our mapping to the size of our observed
area. Consequently, the correlation length defined by us in the
areas smaller than the whole cloud does not directly corre-
spond to a true physical scale in the subcondensation
TMC-1C, because of the incompleteness of our definition of
turbulence. In such small areas where all components of the
turbulence cannot be recognized, we should rely not on the
ACFs themselves, but on the power spectra obtained from the
ACFs.

5. We have estimated the power spectra of the turbulent
velocity and intensity fields from the ACFs. The velocity spec-
trum is shown to be equivalent to the lateral three-dimensional
spectrum, if the homogeneous and isotropic turbulence is
assumed. The spectra do not monotonically decrease in pro-
portion to the wavenumber, and the velocity spectrum is
inconsistent with Kolmogorov’s 5/3 law. Although the spectra
decrease at the wavenumbers smaller than 1/(0.05 pc), they
come to increase at the wavenumbers from 1/(0.05 pc) to
1/(0.03 pc). This fact suggests that the energy of the lateral part
of the turbulence per unit mass does not dissipate at the small
scales of <0.03 pc but does concentrate.

Vol. 413

6. The estimated velocity spectrum shows a peak at 0.15 pc,
probably because the turbulent motions having the scales
larger than ~0.15 pc are removed as a constant component in
our analysis. The apparent peak at 0.15 pc is expected to shift
toward larger scales with enlarging the observed area up to
~0.5 pc, and as a result the apparent correlation length
defined by the velocity ACF for some components of the tur-
bulence would proportionally lengthen up to ~0.1 pc. The
true scale of 0.1 pc found by Kleiner & Dickman (1987) strong-
ly suggests the existence of a real peak at a wavenumber of
~1/(0.5 pc) in the velocity spectrum.
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APPENDIX A
INFLUENCE OF THE BEAM PATTERN OF A RADIO TELESCOPE ON ACF

To examine the influence of the beam pattern of a radio telescope on autocorrelation functions (ACFs), we use the following
approximate functional form of the beam pattern as

0\? 0 — 1.60)2 0\2
P(6) ~ —In16[ — X — —_— 103 — =) |-
(6) exp[ n 6<®)]+005exp[ ln16< 056 >]+1x 0 exp[ ln16<5>] (A1)

Here we consider Fraunhofer diffraction for a 13 dB tapered circular aperture, and we take account of the main Gaussian beam with
the beam size (HPBW) of ® ~ 17" (the first term), the second lobe appearing at the angular distance of 1.6® (the second term), and
the error pattern with the angular width of § ~ 10’ corresponding to positional errors of the panels constituting a paraboloid of the
telescope (the third term). The adopted values are appropriate to the Nobeyama 45 m telescope. The peak power of the second lobe
is —13 dB, 03r 0.05, and for the error pattern the peak power is estimated from the beam efficiency (~0.4) and is found to be of the
order of 1077,

When we observe a physical quantity a with a radio telescope having the beam pattern given by equation (A1), we will obtain an
observed quantity 4 convolved with the beam pattern as

Alr;) = fP( lry — raalr)dr; (A2)

where r, and r;, mean angular distances measured in the sky plane; the subscript 2 indicates quantities in the sky plane. For
white-noise-like fields, we obtain an autocorrelation function C(r,) as follows:

| Ak 262 vk, in4
MAt)rak,  ~ P\ ~e2") (A3)

where A(k,) means the Fourier transform of A(r,). It is noted that the ACF produces a spurious correlation length of 0.850 for white
noise. Besides, this result shows that minor lobes and error patterns do not have any influence on the ACF.

The two-dimensional ACFs are closely related to the three-dimensional ACFs, if we adopt the following assumptions: (1) A cloud
is homogeneous and the excitation conditions of the observed lines are uniform; (2) the turbulent fields are isotropic; and (3) the
observed lines are optically thin. The relation between the two- and three-dimensional ACFs was expressed by equation (III-33) in
the paper by Kleiner & Dickman (1985). Since the influence of the beam pattern of a radio telescope was not taken into account in
equation (ITI-33), we study the influence here.

The centroid velocity v,, calculated from the velocity profile observed by a radio telescope at each grid point, is related with the
radial velocity v, of the cloud gas as follows:

C(rp) =j

In16 In16

1 L
vlrs) = f —o7 &P [ ~ o7 21— ,,2)2] 7 f e, 2z, (Ad)
0
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where L is the depth of a cloud and z is measured from the cloud surface along the line of sight. In this relation we took account of
only the main beam of a telescope, according to the above result (see eq. [A3]). Using equation (A4), we can extend equation (I11-33)
by Kleiner & Dickman (1985) in the case that observed data are convolved with the Gaussian beam of a radio telescope as

(v, (x,)00,(x5 + 1,)> < r%) & duu exp (—In4 - u?) - I4[In16(r,/@)u] (4 dx(1 — x) - B(4/®*u* + L>x?)
=exXp\| — In4 =2
C0v,(x,)00,(x2)> ] & duu - exp (— Indu?) [} dx(1 — x) - B(,/©%u® + L*x?)

Clry) =

AS)

where C(r,) is the two-dimensional ACF, dv, is the turbulent component of v, r, is the magnitude of the lag vector, I, is the zeroth
order modified Bessel function of the first kind, and B(r) is the three-dimensional correlation function. Here angle brackets denote an
ensemble average. If we take B(r) = exp [ —(r/l.)*] with a correlation length of I., for example, the two-dimensional ACF takes a
simple functional form as

o) - i) (49

and the apparent correlation length becomes /12 + (©?/In 4)

APPENDIX B
INTERPRETATION OF THE POWER SPECTRUM ESTIMATED FROM OBSERVED VELOCITY FIELD

From two-dimensional observed data, we can estimate the lateral three-dimensional spectrum of the turbulence in molecular
clouds. For the homogeneous and isotropic turbulence the component of the correlation tensor, B,, is defined by the turbulent
component of the radial velocity, dv, as follows:

B,.(r) = {0v,(x)ov,(x + 1)) = [BLL(\/ "2 +z%) — Byl vV '2 +z )] 2 5+ BNN(\/ "2 +z ) (B1)

where r = (r,, z) is a lag vector, and B;; and Byy are longitudinal and lateral correlation functions (Monin & Yaglom 1977). Here
angle brackets denote an ensemble average, r, is in the sky plane, and z is measured from the cloud surface along the line of sight;
the subscript 2 indicates quantities measured in the sky plane. For a solenoidal isotripic field, for example, B;; and Byy are not
independent of each other, and Byy is expressed by By, as

rd
2 d By (r) . (B2)

The two-dimensional correlation function B,(r,), which is calculated from the fluctuating component of the centroid velocities
averaged along the line of sight, is related with B,,(r) as follows:

, 272 L L zz\" 2> L o L zz 2 s

(0]

Byn(r) = Bry(r) +

where L is the depth of a cloud. The correlation function directly derived from the turbulent component of the observed velocity
field (see eq. [A4]), B,,(r,) is expressed as a convolution of the beam pattern and the correlation function B,(r,):

In4 In4
Boy(ry) = 70? jexP I: =y (ry + sz)Z:IBz(sz)dsz s (B4)
where © is the beam size (HPBW) of a radio telescope. Since power spectra are converted from the correlation functions by the

Fourier transformation, we have
2

120?
Fo(ks) = exp < - k%)Fz( —ky), (B5)

where F,(k,) and F,(k,) are the power spectra converted from B,,(r,) and B,(r,) by the Fourier transformation, respectively, and
k, means the wavenumber vector in the sky plane. Therefore, the two-dimensional power spectrum estimated from the observed
data, F (k) is related to B,, as follows:

2@2
Fobs(kz) = exXp < k2> fdsz J‘ < >Bzz(szs z)dze+12nkz sz (B6)

Since the component of the spectral tensor, F,, is defined by B,, as follows:

obs'

Fzz(st kz) = fBzz(rZa Z)e—ianz.rze—ianzz dr2 dz , (B7)
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' the component F,, can be approximately connected with the spectrum F
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: . L 202
Fzz(k25 0) = JBzz(rZs z)e—lZﬂ:kz 2 dr2 dz = JdVZ[J Bzz(r23 Z)dz:ledlznk2 N exp < k%>Fobs( - kZ) .

(k) as

obs'

‘0

(B8)

2 In4

Here we neglect the term (1 — z/L). If B,, approaches zero at lags much smaller than L, the term (1 — z/L) can be regarded as unity.

Like equation (B1), the component F,, is expressed as

k?
F(k;, k) = [Fri(y/ k3 + k2) — Fyn(y/ k3 + k2] 21kl + Fyn(y/ k3 + k%),
2 z

(B9)

where the functions F;; and Fyy are called longitudinal and lateral three-dimensional spectra. Consequently the lateral three-
dimensional spectrum F yy can be evaluated from the two-dimensional power spectrum corrected for the beam pattern as

L ‘0
Fax(1ky|) = Fo k;, 0) = 3 XP (

202

k%>F obs(—K2) . (B10)

In4

The spectrum integrated with respect to the angular direction of the wavenumber vector, E(k), is written as

E(k) = 2nk*[2F yn(k) + Fi(k)] .

(B11)

From our two-dimensional data, we cannot estimate the longitudinal three-dimensional spectrum F;; . In the solenoidal isotropic

case, F; vanishes, and E(k) can be estimated only from Fy.
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