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ABSTRACT

We present a general method for calculating the bias and variance of estimators for w(f) based on galaxy-
galaxy (DD), random-random (RR), and galaxy-random (DR) pair counts and describe a procedure for quickly
estimating these quantities given an arbitrary two-point correlation function and sampling geometry. These
results, based conditionally upon the number counts, are accurate for both high and low number counts. We
show explicit analytical results for the variances in the estimators DD/RR, DD/DR, which turn out to be con-
siderably larger than the common wisdom Poisson estimate and report a small bias in DD/DR in addition to
that due to the integral constraint. Further, we introduce and recommend an improved estimator

(DD — 2DR + RR)/RR, whose variance is nearly Poisson.

Subject headings: galaxies: clustering — methods: numerical

1. INTRODUCTION

A common statistic characterizing the clustering of galaxies
is the galaxy correlation function. It has been estimated using
angular positions of galaxies in magnitude-limited samples, as
well as in surveys with redshift information. Since catalogs
with redshifts are still relatively small, angular galaxy corre-
lations are more readily available and with additional informa-
tion and assumptions can be used to estimate the spatial
function (Rubin 1954; Limber 1954; Fall & Tremaine 1977,
Fall 1979).

The angular correlation function w(6) is the projection of the
spatial function on the sky and is defined in terms of the joint
probability 6P of finding two galaxies separated by an angular
distance 6 with respect to that expected for a random distribu-
tion (see Peebles 1980, § 45),

5P = N7[1 + w(6)]5Q, 6Q, , 1)

where 6Q; and 6Q, are elements of solid angle and N is the
mean surface density of objects. If w() is zero, the distribution
is homogeneous.

In practice, pair counts of galaxies are measured as a func-
tion of angular separation from photographic plates or CCD
images. The usual estimator for w(f) is then given by the ratio
of the number of pairs of galaxies counted in the sample DD to
that expected for a random distribution RR with the same
mean density and sampling geometry, suitably normalized:

. DD
1+ w(H) RR° (2)
Other common estimators involve ratios of galaxy pair counts
to cross-correlated pair counts of data and randomly distrib-
uted points.

The major problems in estimating the angular correlation
function involve the lack of knowledge of the underlying
uniform density convolved with true and artificial large-scale
gradients, small sample sizes, and interactions of the sample
data with the boundaries of the sampling space. Different esti-
mators have been proposed to overcome these various prob-
lems and measure the correlation function with minimum bias
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and variance (Peebles & Hauser 1974; Peebles 1975; Sharp
1979; Shanks et al. 1980; Hewett 1982; A. J. Hamilton 1992,
private communication). Generally, it has been assumed that
the variance in these estimators is the Poisson error of the bin
counts (Peebles 1980, § 438).

Until recently most work has been done with strongly clus-
tered, bright galaxies and relatively large data sets. However,
as research has expanded into faint galaxy correlations with
small field sizes (Koo & Szalay 1984; Pritchet & Hartwick
1987, Efstathiou et al. 1991; Neuschaefer, Windhorst, & Dress-
ler 1991) new difficulties have arisen from working with smaller
data sets where the quantity of interest is both the amplitude of
the correlations as well as the relative changes in the ampli-
tude. Here small effects become important, and investigating
the uncertainty and biases in w(f) estimators in this regime is
the focus of this paper.

In the following section we develop a general procedure for
analyzing the bias and variance of any estimator for w() which
is constructed out of pair counts and/or cross-correlations
between data and random points. Section 3 contains the
explicit calculation of the quantities introduced in the preceed-
ing section with the added benefit that they are conditional
upon the number counts for any given data set. This method
gives accurate results in both high and low number count
regimes for an arbitrary two-point correlation function and
sampling geometry. In § 4 we apply these results to common
estimators of w(f) and show that the variances are larger than
common knowledge would predict, in agreement with other
studies (Ripley 1988), and that the estimator DD/DR has a
small additional bias not previously reported. We also intro-
duce the estimator (DD — 2DR + RR)/RR which minimizes
the variance to the Poisson level. Section 5 contains Monte
Carlo verification of our results, in a regime relevant to faint
galaxy counts, along with a simple prescription for estimating
the bias and variance given an arbitrary geometry, correlation
function, and estimator.

2. CONSTRUCTING ESTIMATORS FOR w(6)

2.1. Definitions and Notation

The angular two-point correlation function is the relative
probability of finding a pair of galaxies separated by certain
angular distance with respect to that for a uniform distribu-
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tion. Estimators for w(f) are generally constructed out of ratios
between three fundamental quantities. These are the number of
pairs of galaxies DD, the number of pairs given a cross-
correlation between the galaxies and a random distribution
DR, and the number of pairs for a random distribution RR, all
suitably normalized and with regard to the geometry in which
the data were taken. We will take their explicit dependence on
0 to be understood.

These pair counts are random variables, whose randomness
has two different aspects. First, they depend on the total
number of galaxies on the plate, n, which is a random variable
itself. This fixes the total number of pairs in DD as n(n — 1)/2.
However, even for a fixed n there will be variations in the pair
counts in the different bins due to the many different ways the
galaxies can be distributed over the survey area. We will calcu-
late the conditional average and variance of the estimator w(6)
for a fixed n. This most resembles a real observation with a
known number of galaxies, but with an unknown expectation
value for n. Later, we average over the distribution P(n), the
probability of having exactly n galaxies in the survey area.

The conditional averages with a fixed number of data and
random points n and n, will be given by (DD}, (DR}, and
{RR>. The symbol {...> =<...|n, n,> will denote the condi-
tional average of the enclosed quantity throughout.

The expectation value for RR is proportional to the fraction
of the total pairs in the bin with separations of 6 + d6/2, for a
uniform distribution. This fraction is a geometric quantity
which we seek from RR, given the complicated but known
shape and excisions of a real survey. It can be determined with
an arbitrary accuracy, by taking either a very large number of
random points and/or repeating the Monte Carlo calculation
many times over.

In this notation the two most common estimators for w(6),
like data-data pairs over random-random pairs and data-data
pairs over data-random pairs, are expressed in the following
simple way:

DD n/(n, — 1)
MO =RR wn — 1)
DD 2
L4 05(0) = o = G)

where the second term is the normalization. Below we will
consider both these and other estimators and calculate their
expectations and variances.

2.2. Fluctuations of the Pair Counts

To calculate the bias and variances of estimators of this
general form, it is useful to express the three pair counts in
terms of fluctuations about their means. Let

DD = {DDX1 + &),
DR = (DR)(1 + B),
RR = (RRY1 +y), )

where a, f, and y are the fluctuations about the mean for a
given realization of the data or random set Then by definition
{a) = (B> =<y> =0. The variance of y can be made arbi-
trarily small by choosing a large enough n,. Hereafter we will
consider this to be zero, but will provide a recipe on how to
estimate its magnitude in a practical case. Using a similar pro-
cedure, all fluctuations in DR will be due to variations in the

data points only. In essence, the random part behaves as a
continuum and will be taken as such throughout our calcu-
lations.

Using this method the mean and variance of any estimator
constructed out of combinations of these pair counts can be
expressed in terms of the mean pair counts and these fluctua-
tions. For example, the mean and variance of the estimator
DD/DR to second order in the fluctuations are

. /DD 2n, {<DD) /1+ «a
L+ w,(0) = <DR> ~1<DR> <1 n /3>
2, (DD)

1R

{DD)
1 (DR

<a> +<B*),

2
var wz(e)]:( < >(< 25 4 (B2 — 2(apy). (5)

The second moments of these fluctuations are simply the nor-
malized variances of the pair counts

(DD - DD — {DD)?

@y = e
DR - DR) — {(DR)?
ey = PR ©

The presence of (af) in these quantities it due to the corre-
lated nature of DD and DR and is given by

D - DR) — R

capy — DD DR> — (DDY(DR) o
{DD){DR)
Therefore, in order to calculate the bias and variance of an
estimator based on these pair counts we must calculate the first
and second moments of the pair counts as well as their cross-
correlations. Explicit calculation of these quantities is the focus
of § 3.

3. CALCULATION OF PAIR COUNTS AND FLUCTUATIONS

3.1. Uncorrelated Pair Counts {DD)

First consider n points to be distributed in a uniform
random fashion over the survey area Q. Their distribution,
while multinomial, is very well approximated with an infinitesi-
mal Poisson process. Divide the sampling space Q into K cells.
In the limit of large K, the number of galaxies found in any cell
v, is either zero or one, a greater number being an infinitesimal
of higher order. The probability of finding an object in any cell
is {v) =n/K. The expectation for a second cell becomes
Gy =(m— 1K — 1),etc.

The expected number of pairs in the uncorrelated case for an
angular separation 0 given K cells can be expressed as

(DD) = <Zv v, @:-’j> Z(v IDIOHN 8)
i<j i<j

where @Y, is one, if cells i and j are separated by a distance

0 + dB/2, and zero otherwise. In our analysis we will only be

concerned with the case i # j, that is, we are working with pair

counts, not cell counts. For a given sample with n random

points, the probability that both will contain a point is

nn — 1)

KK —-1)" ©

v Vj> =
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Since this quantity is a constant, it can be taken outside the
summation, and we are left with Z,< ;©%;. Tt is useful to rewrite
this as

X K(K —1)

YO == G,0). (10)
i<j

where G,(0) is a dimensionless geometric form factor which is

equal to the fraction of unique cell pairs separated by a dis-

tance 6 + d0/2. Therefore, the expected number of pairs for a

sample with n galaxies is

nn — 1)
K(K —1)

(K )_n(n—l)

G0 = ;

(DD) =

G,0), (1)

independent of K. The quantity G,(0) is identical to the prob-
ability of finding any two randomly placed points separated by
a distance 6 + d6/2 in the same geometry. For a large number
of realizations we can estimate the ensemble average of the
number of pairs as

Ex(DD)= 3 <DD>P(n)

~ G,0) i =D by =T 60, (12)

where P(n) is the probability of obtaining n galaxies from a
Poisson distribution with mean N.

To determine the second moment of the pair counts we will
follow the same method as above and take the ensemble
average over n at the end:

K K

(DD - DD) = <Zv 0% Y v v,®2,>
i<j k<l

K K

PRST

i<jk<l

ViV v 005, . (13)

The total number of nonzero terms in this sum is [G,(0)K(K
— 1)/2]2. Since there are either zero or one galaxies in each cell
v;, the expectation value of all the moments of v; are equal to
v = {v;> = {v?). Therefore, it is useful to divide the terms of
this equation into three separate sums which depend on the
relative values of the individual indices, considering degenerate
configurations explicitly, similar to the approach of Peebles
(1980, § 48).

Since i < j and k < I, in the sum there are three terms corre-
sponding to various degeneracies in the indices. The first term
consists of the cases in which no indices overlap. Given K cells

there are
(I;)(K ; 2) =K(K — 1)K — 2)(K — 3)/4

such combinations. Let G, (6) be the fraction of these which
satisfy the constraint that the members of the pairs i, j and k, |
are separated by a distance 6 + d6/2, that s,

* ~ 1)K — 2)K — 3
Zk ,®0 @H_K(K 1)(K4 2)K —3) G0, (14)

where ) * indicates that all summing indices are different. In a
similar manner, the second term consists of those cases in
which one of the two indices k, | overlaps with either i or j. The
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total number of these cases is

2<12(>(K —2)=K(K — 1)K —2).

Let us pick this degenerate index as i. Then the fraction G(6) of
all triplets of cells, which given one point as the center, the
other two are within a distance 0 + d6/2 of the first, becomes

Z 04,04 = K(K — 1(K — 2)G(0) . (15)

i, j, k

The last term consists of the case in which two pairs overlap.
As above, this is denoted by the fraction G,(0) of K(K — 1)/2
pairs of cells which are separated by a distance 6 + df/2. As a
check on pair conservation,

[K(K - 1)]2 _ K(K — 1)K — 2)K — 3)
2 - 4

KK -1
3 .
Multiplying these cases by their respective probabilities

cancels all K dependence as before, in equation (11). Summing,
we get

+K(K — 1)K —2) + (16)

nin — 1)(n — 2)(n — 3)
4

(DD - DD} = x G,(0)

nn—1)
2

+nn —1)n —2)G0) + ———— G,0). (17)

This equation can be simplified further by taking into con-
sideration the constraint that the total number of nonzero
terms in this sum equals the number of pairs squared:

[G 0 K(K )] 6.0 K(K — 1)K — 2)(K — 3)

4
K(K —1)
-

Dividing both sides by K* and taking the limit for large K
gives

+GOK(K — 1)(K — 2) + G,0) (18)

G,6) = G3(0) . (19)

Therefore, the concise expression for the expected variance of
the number of pairs is

—1n—2)(n-3 2

= =20 =3 o [oln=1)

4 2

nn— 1)

2
Here only the last term is DD, the Poisson noise. When n is

distributed as a Poisson random variable with mean N, the
variance over the Poisson ensemble becomes

N3G(0) + NTZ G,(0) . @1)

var (DD) =

+ n(n — 1)n — 2)G(0) + G,60). (20)

vary (DD) =

It has been generally believed that the variance in pair counts
is Poisson in the number of pairs var(DD) = (DD) (see Peebles
1980, § 48). The last term in equation (21) equals the expected
number of pairs; however, the additional term N3G,(6) can be
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relatively large depending on the bin width. In two dimensions,
the coefficient G,(6) depends on the second power of the bin
width while G,(0) depends on the first. Therefore, the variance
in pair counts only approaches that of the expected number of
pairs in the limit of an infinitesimal bin width. Note also that
for n relatively small, this equation would greatly overestimate
the exact variance as given by equation (20) and illustrates the
utility of working with conditional pair counts for small
samples. The value of the conditional variance, on the other
hand, can be greater or less than the expected number of pairs
depending upon the relationship between n, G(0), and G,(6).
Calculating {a?) we obtain

2 G(6) i
= 1) {2(" B 2’[63(0) - 1] t 60 1} - @

3.2. Correlated Pair Counts {DD)

Several complications arise when generalizing the above
method to the case of nonzero correlations. The first concerns
the sample size in relation to the correlation length. We will
explicitly add the correlations now to the derivation. Let us
define wq as the mean of the two-point correlation function
over the sampling geometry,

Cay =

Wg = f G (O)M(60)dQ . 23)
Q

The normalization of G ,(6) is equal to one by definition.

We can calculate the conditional expectation for the number
of pairs at a separation 6 + df/2 given that our correlated
sample contains n galaxies. Now the expectation value for the
infinitesimal pair count becomes

nn — 1)

KK —1) @4)

vy = [1+ w@)] .
The inclusion of correlations will also change the normal-
ization. Let Cq be this unknown normalization constant for
the conditional expectation, such that after integrating over 6
we retrieve the correct total number of pairs. Thus

-1
(DD = Cu : ) 6,001 + w)] . (25)
Integrating over 6 we obtain
2
{DDQ = Cq | G,(0)[1 + w(0)]dQ
nn —1) Jo Q
=Co(l +wg) =1. (26)
Therefore
1
= 2
Ca 1+ wy’ @7
and the expected number of pairs given n galaxies is
n(n — 1) 1+ w(b)
DD) = G .
DDy =T Gy0) T, - (28)

The constant is the integral constraint correction used when
estimating w(f) with an unknown mean surface density
(Peebles 1974). The next complication arises in calculating the
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expected number of pairs squared. Looking again at equation
(17), the three terms must be modified in order to take into
account the relative excess probabilities of finding pairs, trip-
lets, and quadruplets given the correlation function. Here we
will assume that the correlations are weak enough that the
higher order (three- and four-point) correlations are negligible.
Also we neglect quantities which are second order in w(6). For
recent results in the strong clustering regime, but neglecting the
discreteness, see Mo, Jing, & Borner (1992).

The first term in the case of zero correlations is simply the
expectation of quadruplets with unique indices. In the case of
nonzero correlations it becomes a weighted average over pos-
sible distinct pairs, the members of which are constrained to lie
within a distance 6 + d0/2 of each other while the relative
position of the two pairs is averaged over the sampling space.
As an approximation, we will work to first order in the two-
point function. The excess probabilities are given in terms of
two-point correlation functions between each pair of points,
thus

n(n — 1)(n — 2)(n — 3)
K(K — 1)(K — 2)(K — 3)

<Vi"j"k vy =

X(L+ w + wy + wy + wy + wiy +wy) . (29)

The pairs ij and kl are constrained to lie within 6 + d6/2 of
each other, and so w;; = wy; = w(0), while the other four pair
separations are averaged over the sampling space, somewhat
constrained by the two fixed pairs ij and kl. Here we make the
approximation that the average value for wy, etc., over the
sampling space is wq. This becomes a poor approximation as
the separation approaches the sample size, however, the error
is definitely second order, and the exact result could be calcu-
lated numerically if a higher degree of accuracy was needed.
Normalizing as above we get

nn — 1)n — 2)(n — 3)
4

1 —2w(6)
1+ 2w

G(0) (30)
Similarly, the second term is given by the average over the
three pairs given three points, with two points constrained to
lie within 6 + d6/2 of a third, and by consequence within twice
that distance of each other. This last average we will approx-
imate by w(6) as well, thus

1 + 3w(6)

n(n — 1)(n — 2)G(6) T4 3w
Q

(€3]

The last term is simply the expected number of pairs given the
two-point function and a separation 6 + d6/2,

(DD} = @ G,(9) 111—“:52) . (32)
Therefore, the expected number of pairs squared is
(DD - DD> = n(n — 1)(n4— 2)(n — 3) G2(0) 11++22M:$:)
+n(n — 1)(n — 2)G,(6) —li—_:_i—;:fz—)
4 = D60 111':52) . (33)
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The conditional variance is calculated by simply sub-
tracting the square of the expected number of pairs. Therefore,

{a?) is now given by
G(6) 1+ wO)
TR 2)[6,%(0) o]

1 14w
G,0) 1+ w0 1} : (34)

(a?y =

In this expression both w(f) and wq appear only next to unity,
thus they are negligible as far as the variance is concerned since
we are assuming the weak correlation regime. Consequently
we get a considerably simplified expression in agreement with
the case of zero correlations, equation (22).

3.3. Data-Random Pair Counts (DR)

We will proceed in a similar manner in calculating the mean
and variance of the data-random cross-correlation pair counts.
For each hypothetical data set we would first cross-correlate it
with a large number of random sets and take the average
results to approach the continuum limit. Next we take an
ensemble average over different realizations of the data, condi-
tional upon n to calculate the mean and variance. The calcu-
lation here follows closely that of §§ 3.1 and 3.2. Since random
and data points are uncorrelated, the mean number of data-
random pairs is simply

{DR) =nn,G,0) . (335)
The equation for the second moment is given by
K K
(DR - DR) = <Zvipj®?j > Vi ®2z> , (36)
i%j k#L

where p; is the continuum expectation that cell ! contains a
random point. This calculation proceeds almost identically as
that explicitly shown for the expected variance of pairs in § 3.2,
except that when the indices of two random points overlap in
this calculation, the joint probability is given by (n,/K)? rather
than n,/K since we are working with an average over random
sets for each data set. The solution is given by

(DR - DRY = nn2[GX(0)(n — 1) + G,(6)] (37)
and
_1{60 _
w = G e

3.4. Cross-Correlations between DD and DR

As the last step, we calculate

K K

(DD - DR) = <Zvi v;0f kap,®2,> . (39)
i<j k%l

We have to distinguish the case when all of i, j, k are difierent

and the case when k coincides with either i or j. Summing up

the different cases we obtain

@b - DRy == 10— 2630 + 26,00;  @0)
thus
2[6(0)
oy =~ [Gi 0 1] : (41)
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4. APPLICATION TO VARIOUS ESTIMATORS

At this point let us introduce a new quantity depending on
the survey geometry and number counts

_116O _
=~ [Gg(e) 1]. 42)

This is the combination that appears everwhere in the
variances of the fluctuations. For 6 small, G(60) ~ G2(6) but
always t > 0, as can be seen in equation (44) below. It is also
convenient to introduce

2 1 GO N 2
P=m— ) [G,,(e) 2 G,%w)“]‘n(n—l)c,,w)’ “3

the inverse of the pair counts, the usual Poisson error. Using
these expressions {a?), {#2), and {af)> can be rewritten as

(a?> =4t +p,
B =t,
{afy =2t . (44)

Here it is easy to see that the first quantity in <{a?) which is
dominated by the triplet term ¢ enters into the variance as the
first power of 1/n while the second term p, which is approx-
imately equal to the inverse pair counts, depends on (1/n)%
This relationship becomes important below. From {«?) one
can also see that as a general rule the variance in excess of
inverse pair counts becomes significant when

2{[1/G,0)] — 1}
GOGeN—1 > @5)

4.1. Estimators for w(6)

At this point we are ready to consider various estimators.
For the sake of simplicity, let us introduce the pair counts
normalized for both the auto- and cross-correlations as

___b | _1+wo
d= G (On(n — 1)/2° = 1+ wq

.__DR
~ G(0nn,”’

>

{x>=1. (46)
Out of these we construct four different estimators shown in
simplified notation as

DD/RR: 1+ w,(0)=d

DD/DR: 1+ w,(0) = %

DD/DR?: 1 + wy(0) = % @7

(DD — 2DR + RR)/RR: 1+ w,(0) =d —2x + 2,
DD/DR?* having been suggested by A. J. Hamilton (1992,
private communication). In terms of fluctuations about the
mean pair counts and substituting for {(a?», (2>, and {aB),
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these estimators and their variances become

14+ {Wy(0)) =<dp, var [W,(0)] ~ <d)>*(4t + p)
1+ Wy(0)) =~ <dy(1 — 1), var [y(0)] >~ <d)*(t + p),
1+ (3(0)) ~ <dX(1 — 1), var [Wy(0)] =~ <d>*(p),

14+ y(0)) = <dp var [W,(0)] ~ <d>*(p) . (48)

4.2. Strategies

While the variance of the first two estimators are first order
in (1/n), the third and fourth are second order. In fact, the
variance of these last two estimators is very nearly inverse in
the pair counts, closely approximating a Poisson variance.
However, the third estimator has a small bias in addition to
that due to the integral constraint. This additional bias in the
second and third estimators is a consequence of the fact that
they are constructed out of the ratio of two random numbers.
Therefore, the fourth estimator is preferred when estimating
w(6).

Although this estimator appears similar to that introduced
by Sharp (1979) and discussed by Hewett (1982), it is different.
That estimator, which is given by (DD — DR)/RR, was pri-
marily aimed at edge effects and has a variance identical to that
for DD/DR discussed above. Beyond the advantage of reduced
edge effects, the main emphasis here is on the smallest possible
variance. In the variance of the correlation function there is a
large contribution from (DD - DD}. The largest term, quadra-
tic in the number of galaxies, cancels with the square of the pair
counts. However, as we have shown, the dominant remaining
source of noise is proportional to n® rather than the usual n*
from the pair counts themselves. Through the inclusion of the
appropriately scaled DR component, we have eliminated the n?
part of the variance as well, leaving only the Poisson term
behind.

It is also important to note that these results assume an ideal
world wherein galaxies are distributed in an infinitesimal
Poisson process and perfectly observed. Other errors certainly
arise due to variable seeing conditions across the sky. If these
materialize as a systematic modulation of the galaxy density on
scales comparable to the survey area, one can also show that
our estimator is optimal. One can also have several areas,
observed in the same geometry, with both Poisson and system-
atic variation in the number counts from field to field. If one
first estimated a mean density from the different areas, and
then used that for normalization, a serious bias and variance
would be introduced. Our method, based upon the conditional
average, is clearly preferred.

The question arises as to whether it is advantageous to esti-
mate w(f) from one large field with n galaxies or, rather, to
break the field up into m subfields with a mean of n/m galaxies
per field and average the results. If the nosie went as 1/n, it
would not matter whether the field is split into smaller bits.
Using the optimal 1/n? estimator, breaking the field up would
increase the variance by at least a factor of m. Additional error
is also introduced by the 1/m loss in total pairs.

5. MONTE CARLO VERIFICATION AND ANALYSIS

Given the present interest in estimating the angular corre-
lation functions of faint galaxies, we will apply our results in a
regime with a density, number count, and bin width approx-
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imating that of Efstathiou et al. (1991) only as a typical appli-
cation of our result. In the following section a simple procedure
for estimating G,(0) and G,(0) is described, and in § 5.2 we
examine results for estimators DD/RR, DD/DR, and
(DD — 2DR + RR)/RR.

5.1. Estimating G (0) and G,(0)

Although for a circular geometry G,(6) can be derived ana-
lytically, G,(6) is much more difficult and may not be express-
ible in closed form. In any event, most data are not given in a
perfect geometric form as some areas are usually masked out
due to meteor trails, bad pixel lines, bright stars, etc. However,
these quantities can be estimated to an arbitrarily high accu-
racy in the following simple way. G,(0) is the probability of
finding any two randomly distributed points separated by a
distance 6 + d6/2 while G(0) is the probability given one point
of finding two others at a distance 6 + d6/2 of the first. There-
fore, these quantities are given by

) = (ny(6)>
P nin — 1)/2°

_ <6
Gil6) = n(n — 1yn —2)/2°

where n points are randomly distributed over the sampling
geometry, <n,(6)) is the average number of unique pairs over
an ensemble of random data sets, and {(n,(0)) is the average
number of unique triplets given one point as the center. The
number of points and realizations can be chosen depending
upon accuracy, computer time, etc.

Since the two quantities G,(6) and G,(6) must be estimated,
there arises the question of their errors. However, since the
variance of an average scales as inverse in the number of runs,
100 runs using the same number of points as in the data set
under consideration should reduce the contribution to the
variance from these quantities by this same factor compared to
the data. The question also arises as to whether it is better to
estimate G,(0) from m runs with n points per run or, rather,
from one run with mn points. Since the variance of G () scales
as 1/n, either method gives the same 1/n variance. Nevertheless,
the first method reduces the computational work by a factor of
m and so is to be preferred.

(49)

5.2. DD/RR, DD/DF, and (DD — 2DR + RR)/RR

Our Monte Carlo results are based on 1570 galaxies in a
circular geometry of radius 237". We estimate w(f) in 15
logarithmic bins of equal size with a lower limit of 3"5. The
Monte Carlo realizations were generated as follows:

1. We chose 1570 random points within a circle of radius
237" using RAN3 (see Press et al. 1986).

2. Distances between unique pairs of points were calculated
and summed for each bin DD. For DR, the original set of
random points for each run was cross-correlated with 100
additional sets of 1570 random points. The average of this
cross-correlation gave DR for that data set. These were then
used to calcuate 1 + Ww(0) for that run.

3. One hundred runs were made, and the mean and variance
of w(6) were calculated.

4. G,(0) and G(6) were calculated using equation (49) for 100
runs with 1570 random points per run in the same geometry.
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F1G. 1—a) Eq. (45) is plotted as a function of the point separation. Total number counts above the curve indicate the dominance of the triplet term over the
Poisson. Data sets with number counts falling above this line would have a variance significantly greater than Poisson, using an estimator such as DD/DR. (b) The
variance ratio of the DD/DR estimator to the inverse pair counts for 1570 points based upon G,(0) and G(0) from the Monte Carlo runs. Note that this
underestimation of the true variance scales approximately linearly with the number counts and thus becomes worse for higher number counts in the same geometry.
For the estimator DD/RR all values would increase by a factor of 4. (c) The mean of the estimator DD/DR with error bars from the Monte Carlo runs. The additional
bias due to the random nature of the denominator is insignificant at this number count. The envelope shows the standard errors assuming a Poisson variance. In
agreement with (b), the true standard deviations have been underestimated up to a factor of 8. (d) The estimator (DD — 2DR + RR)/RR with error bars from the
Monte Carlo runs. The envelope is the standard error assuming a Poisson variance. Notice the excellent agreement.

The line in Figure l1a shows number counts as a function of
separation for this geometry and bin width where the excess
variance due to the third-order term becomes comparable to
the Poisson variance (eg. [45]). When the total number count
is above the curve the variance is dominated by the triplet term
rather than the Poisson. Data sets with number counts falling
above this line would have a variance significantly greater than
Poisson, using an estimator such as DD/DR.

Figure 1b presents the ratio of analytical variance of the
DD/DR estimator to the inverse pair counts for 1570 points
based upon G,(0) and G,(6) from the Monte Carlo runs. It is
important to note here that since the variance of DD/DR scales
as (1/n) and the pair counts as (1/n)?, the relative error in
assuming inverse pair counts for the variance would increase
approximately linearly as a function of an increasing number
of data points. For the estimator DD/RR, this ratio would
increase by approximately a factor of 4 (not shown). The ratio
of the variance of the estimator (DD — 2DR + RR)/RR to the
inverse pair counts is approximately one over the entire range.

Figure 1c shows the mean of the estimator DD/DR along
with error bars from the Monte Carlo runs. The additional
bias in this estimator is insignificant for this number count. The
envelope shows the standard errors assuming a Poisson
variance. In agreement with Figure 1b, the standard errors are
seen to be underestimated by a factor as large as 8.

Figure 1d shows the estimator (DD — 2DR + RR)/RR along
with error bars from the Monte Carlo runs. The envelope is

again the standard error assuming a Poisson variance. Note
the excellent agreement and significant reduction in variance.

6. CONCLUSION

We have developed a general method which can be used to
calculate easily the bias and variance of any estimator derived
from galaxy-galaxy (DD), random-random (RR), and galaxy-
random (DR) pair counts and present a simple procedure for
estimating them to high accuracy for any sampling geometry,
point density, and correlation function. As these results are
developed in terms of conditional expectations in the number
of data points, they are valid for both high and low number
counts.

Using this method the variances of the estimators DD/RR
and DD/DR are derived and shown to be significantly greater
than the common wisdom Poisson estimate, that is, inverse
pair count. An improved estimator (DD — 2DR + RR)/RR for
w(0) is introduced whose variance is effectively Poisson. This
estimator which improves the estimation of the angular corre-
lation function is straightforward and costs the researcher no
additional computational work. Researchers who wish to
assume errors which are Poisson in the pair counts should take
advantage of this new estimator. This is especially important
when researchers are calculating maximum likelihood fits to
correlation functions, pushing their results to the limits of their
data such as with sparse data sets, or when they have few fields
and thus cannot independently estimate the error.
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These calculations can easily be generalized to provide
errors for the spatial galaxy correlation function and to con-
struct optimum estimators for higher order correlations. Also,
they may be used to estimate the cross-correlation between
different angular bins, in order to fit a correlation function with
a proper maximum likelihood method. We hope that using
conditional estimators has clarified the issues relating to the
sources of the statistical noise in correlation functions, and
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that this work will be extended to various more specialized
applications.
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