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ABSTRACT

Voids of galaxies delineated by sharp one- or two-dimensional structures are the main features of the large-
scale clustering of galaxies. In order to objectively identify the significant structures in the first slice of the
Center for Astrophysics redshift survey, we perform a space-scale analysis of this galaxy catalog by means of
the wavelet transform. The wavelet coefficients allow us to detect on all scales within reach both over- and
underdense structures. The confidence level of the detection is computed under the assumption that galaxies
are distributed according to a Poissonian process with a nonuniform law. Significant voids and groups of
galaxies are identified at different scales, and small-scale clustering is taken into account to further assess the
reliability of the detection. The morphological parameters of the structures are estimated using an elliptical
Gaussian model of the local galaxy distribution. The hierarchical clustering of the high-density regions is
clearly exhibited. The structures identified on small scale are in good agreement with the published group
catalog of the slice obtained by dynamical criteria. Significant structures are also detected at the location of
the Abell clusters. Because the analysis is isotropic, the large-scale structures are traced by the alignment of
contiguous smaller structures. Voids are identified at a 99.5% confidence level and a selection criterion is
applied to take into account the multiple detections inherent to the analysis. We obtain a catalog of the astro-

physical voids in the slice.

Subject headings: galaxies: clustering — large-scale structure of universe

1. INTRODUCTION

The complexity of the distribution of galaxies and of clusters
of galaxies is now clearly established up to scales of 50 h~!
Mpc (see Oort 1983, Bahcall 1988, and Rood 1988 for reviews).
Galaxy correlations on large scales are detected using two-
dimensional catalogs from objective Schmidt plate processing
which cover a significant fraction of the sky, like the APM
catalog (Maddox, Efstathiou, & Loveday 1988). Valuable
information on the three-dimensional clustering of galaxies on
scales larger than 10 h~! Mpc is provided by wide-angle
redshift surveys, such as the Center for Astrophysics (hereafter
CfA) redshift survey slices based on Zwicky’s (1961-1968) and
Nilson’s (1973) magnitude-limited catalogs of galaxies (Huchra
et al. 1983; de Lapparent, Geller, & Huchra 1986; Geller &
Huchra 1989; Huchra et al. 1990), or the Southern Sky Red-
shift Survey based on the ESO (Lauberts 1982) diameter-
limited catalog (da Costa et al. 1988; da Costa et al. 1991).

The main feature of the galaxy distribution is the departure
from homogeneity at all scales within reach. The topology of
the distribution is characterized by a complex network of
sharp structures, one-dimensional filaments (Giovanelli et al.
1986) or two-dimensional sheets (de Lapparent et al. 1986),
suggesting a cell-like geometry (Jéeveer & Einasto 1978). Sta-
tistical analysis of the CfA slices shows that these structures
occupy only ~25% of the available volume (de Lapparent,
Geller, & Huchra 1991). The high-density structures appear to
connect clusters of galaxies and delineate large spherical
regions which are devoid of bright galaxies (de Lapparent et al.
1986; Pellegrini, da Costa, & de Carvalho 1989). Voids, like
that in Bootes (Kirshner et al. 1981), are thus frequent events of
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the distribution. The largest coherent structure detected so far
in the galaxy distribution is the so-called Great Wall with a
spatial extent of about 60 h~! Mpc x 170 h~* Mpc and ~5
h~* Mpc thick (Geller & Huchra 1989): however, this structure
appears to be made of portions of several surfaces which sur-
round adjacent voids and are therefore geometrically con-
nected. Hence the voids can be considered as the fundamental
physical units of the large-scale galaxy distribution. The
regular patterns revealed by pencil-beam redshift surveys
(Broadhurst et al. 1990) are also consistent with the presence of
voids alternating with sheets of galaxies out to z = 0.5 (see de
Lapparent et al. 1991). Measures of the velocity field of the
galaxy distribution provide dynamical evidence for the large-
scale structure. Analysis of an IRAS sample of galaxies con-
firms the dipole anisotropy caused by the motion of the Local
Group relative to the microwave background radiation (Yahil,
Walker, & Rowan-Robinson 1986; Yahil 1988). On larger
scale, peculiar motion of galaxies suggest a coherent infall into
a “ Great Attractor ” (Dressler 1988) located behind the Hydra-
Centaurus supercluster (Lynden-Bell et al. 1988; Faber &
Burnstein 1989). A coherent motion on such large scales is
nevertheless difficult to explain within the standard models for
the formation of large-scale structure (Kaiser & Lahav 1989).
The frequent occurrence of large voids in the galaxy distribu-
tion also challenges the theoretical models. The diameters of
the largest detected voids (of order of 50 h~! Mpc) put tight
constraints both on the nature of the dark matter and on the
spectrum of initial fluctuations (Melott 1987; Kofman 1989).
These implications have thus stimulated systematic searches
for low-density regions in galaxy and cluster catalogs (Burns et
al. 1988; Willick, Brodie, & Bowyer 1990; Kauffmann &
Fairall 1991). However, a fair sample of the galaxy distribution
is not yet available because the size of the largest detected
voids is close to the maximum size allowed by the correspond-
ing surveys (de Lapparent, Geller, & Huchra 1988).
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The main theoretical framework for describing the forma-
tion of large-scale structure is currently the standard cold dark
matter model (hereafter CDM; see Blumenthal et al. 1984;
Davis et al. 1985; White et al. 1987, and references therein).
This model assumes an inflationary flat universe dominated by
hypothetical weakly interactive massive particles, with A =0
and h = 0.5, and a gravitational growth of initial Gaussian,
scale-invariant, adiabatic fluctuations of density, and a
galaxy formation biased toward high-density regions. This
cosmological scenario is tightly constrained by the extreme
homogeneity of the microwave background radiation (Hogan
1990): on the one hand, the large-scale perturbations must be
sufficiently contrasted to enter the nonlinear regime with a
Hubble time, but on the other hand they must remain small
enough in amplitude for not introducing into the microwave
background radiation fluctuations larger than the current
observational limits (Smoot et al. 1991, Smoot et al. 1992).
Consequently the growing evidence of structures and coherent
motions on very large-scale is a serious challenge to the CDM
model. The detected large-scale flows (Burstein, Faber, &
Dressler 1990; Dressler & Faber 1990) and the positive angular
galaxy correlations on large scales (Maddox et al. 1990; Efsta-
thiou, Sutherland, & Maddox 1990; Picard 1991; Saunders et
al. 1991) indicate at a high confidence level that the standard
CDM model has to be at least revised. In order to reconcile the
CDM model with the present observational limits on the
microwave background anisotropy, one must either invoke a
scale-dependent bias of the galaxy distribution relative to the
mass distribution (Dekel & Rees 1987; Efstathiou et al. 1990)
or a positive cosmological constant. Recent CDM simulations
involving the Burgers equation approximation (Gurbatov,
Saichev, & Shandarin 1989) to reproduce some nonlinear
effects of gravity, as well as large N-body simulations of biased
open CDM model using the Zel’dovich approximation of the
linear theory, resemble the observed galaxy distribution
(Weinberg & Gunn 1990; Park 1990). But a detailed quantita-
tive comparison is still lacking and the consistency of the
model with the limits on the microwave background has to be
fully established. Several alternative models have been devel-
oped: hybrid inflationary models in which small-scale and
large-scale parameters are formed through different processes
(Lilje 1990); and non-Gaussian models involving explosions,
topological defects, or textures to initiate the large-scale clus-
tering (Ostriker & Cowie 1981; Vilenkin 1985; Turok 1989).
These alternatives are also challenged by the recent observa-
tional results.

Various statistical methods have been used to detect local
structures and to discriminate among theoretical models (see
Pellegrini et al. 1990). The two-point correlation function
introduced by Limber (1956) and developed by Peebles (1980)
is the most widely used statistics to characterize galaxy clus-
tering. However, its behavior at large scale where the growth of
structures might still be in the linear regime is poorly deter-
mined because of the large uncertainties in the determination
of the normalizing mean galaxy density (de Lapparent et al.
1988). Moreover, the sharp and strongly asymmetric structures
as those in the CfA catalog are best constrained by the N > 2
order moments of the distribution. Direct access to these high-
order statistics is provided by algorithms derived from the
graph theory, like percolation analysis (Zel’dovich, Finasto, &
Shandarin 1982; Tully 1987; West 1989), cluster analysis
(Paturel 1979; Tago, Einasto, & Saar 1984; Barrow, Bhavsar,
& Sonoda 1985) or minimal spanning tree techniques (Bhavsar
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& Ling 1988). But the results of these algorithms are often
parameter dependent, and their ability to discriminate among
models were questioned (Dekel & West 1985). Furthermore,
these algorithms fail to completely describe the clustering hier-
archy in which a galaxy can belong to several structures. The
properties of low-density regions are studied using the void
probability function, which can be written analytically in terms
of correlation functions (White 1979; Maurogordato &
Lachiéze-Rey 1987; Fry et al. 1989; Vogeley, Geller, & Huchra
1991). Several quantitative characterizations of the overall
geometry have been applied to galaxy catalogs: the multi-
fractal analysis (Jones et al. 1988; Peebles 1989; Martinez et al.
1990); the variations of galaxy counts-in-cells (Efstathiou et al.
1990; de Lapparent et al. 1991); and the genus analyses, based
on topological analyses of a smoothed version of the galaxy
distribution (Gott et al. 1989; Ryden et al. 1989). The multi-
fractal and counts-in-cells analyses suggest two-dimensional
structures. The genus analyses suggest a spongelike topology,
but the results are dependent on the smoothing length and on
the density threshold used for defining the topological surfaces.
All these indicators provide an objective way to compare
observational data with numerical simulations, but they
measure only a volume-averaged value of the parameters used
to characterize the distribution of galaxies. A local description
of the hierarchical properties of this distribution is by conse-
quence out of their reach, and they cannot be used to locate
structures.

Expansions of finite-energy functions onto orthogonal bases
are widely used since the last century (e.g., Fourier analysis).
These decompositions are based on a scalar product defined
on the set R where the whole function is used instead of some
peculiar values. This unlocalized description is particularly
well suited to functions which are not continuous. It can then
be applied with great benefit to describe natural structures, i.e.,
which are intrinsically irregular, like the distribution of gal-
axies. However, to have a good description of the data, one
should also be able to locate independently structures which
may exist at different scales. This is particularly crucial for
characterizing the galaxy distribution because of the structures
are hierarchical. The wavelet transform introduced by J.
Morlet (see Goupillaud, Grossman, & Morlet 1984) allows us
to scan structures on different scales without deteriorating the
spatial information. Performed according to a scale parameter,
this space-scale analysis does provide indeed a description
which is as localized as possible given the smoothness and the
oscillatory behavior of the function chosen as analyzing
wavelet (see, for instance, Grossmann, Kronland-Martinet, &
Morlet 1988 and references therein). The main difference
between the wavelet transform and previous time-frequency
methods (e.g., the Gabor transform) is its invariance with
respect to dilations of the signal which insures a scale-invariant
description of the signal. One of the major applications of the
wavelet transform is therefore to detect and to measure locally
fractal behaviors (Holschneider 1988; Argoul et al. 1989; Gill
& Henriksen 1990).

The wavelet transform can also be used as a new cluster
analysis method. Its ability to unfold data in a space-scale
phase-space allows one to identify clusters of points according
to their characteristic scale. To quantitatively characterize the
large-scale structures in the distribution of galaxies, we devel-
oped an objective procedure based on the level of statistical
significance of each wavelet coefficient (Slezak, Bijaoui, &
Mars 1990). This tool was already used successfully to search
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for subclustering in Abell clusters (Escalera & Mazure 1992)
and to define asteroid families (Bendjoya, Slezak, & Froeschlé
1991). Because a lack of objects with respect to the local back-
ground can be analyzed in the same way as an excess of
objects, the method also allows detection and characterization
of the voids in the galaxy distribution. Here we apply the
wavelet analysis to the first slice of the CfA redshift survey (de
Lapparent et al. 1986; Huchra et al. 1990).

The paper is organized as follows. Section 2 presents first an
overview of the basic definitions and properties of the wavelet
transform. Its application to discrete data analysis is described
in details in § 3; we discuss in particular the reliability of the
detection with respect to a Poissonian noise, and the param-
eterization of the detected structures. We then report in § 4 on
the application of the wavelet transform to the first CfA red-
shift survey slice and discuss in § 5 the results of our analysis.
Finally, § 6 summarizes our conclusions.

2. THE WAVELET TRANSFORM

The wavelet transform of the one-dimensional function
f(x) € IX(R) is given by its decomposition onto a family of
functions which are derived by translations and dilations of a
unique bounded function (x). The function ¥(x) is called the
analyzing wavelet and can take complex values. Let us denote
¥¥*(x) the complex conjugate and y/(v) the Fourier transform of
Y(x). The wavelet coefficient C(a, b) corresponding to the
strictly positive scale a and the location b belongs to
H =R" x Randitis given by

+ X — b
Cla,b)=N(@ | f (X)l//*< 2 >dx ) (1)
where N(a) = a~ /> when the wavelets N(a)y(x/a) are normal-
ized in energy. The wavelet transform can also be viewed as a
filtering process with a set of passband filters y(av). Let us
denote f(v) the Fourier transform of f(x), then the correlation
integral in equation (1) can be written as

Cla, v) = a2 f(v) x J*av) . 2

In contrast to the standard Fourier analysis, the wavelet trans-
form analyses the signal both in scale and position, especially if
the localization and smoothness properties of (x) and y(v)
prevent sinc (x) oscillations in both spaces. The wavelet trans-
form provides a description of f(x) around the location b and
an analysis of f (v) around vo/a in Fourier space, where v, is the
center of the passing band of the filter. This scan of the Fourier
space with filters derived from one another by an affinity
implies an invariance of the transform under dilations and
provide us with a multiscale analysis of the signal. Because the
resolution of the wavelet transform increases in the spatial
domain and decreases in the frequency domain when the scale
decreases, thinner and thinner details of the signal are dis-
played when smaller and smaller scales are investigated. These
variations enable the wavelet transform to zoom into the
irregularities of the signal and to characterize them locally.
Actually the wavelet transform of a given signal has the same
scaling behavior as the signal itself (Holschneider 1988). One
can therefore extract from the data more information than a
mere global description of tke scaling properties.

The main property which must be satisfied by a function in
order to be a wavelet comes from the energy conservation
between the spaces R and H. To satisfy this criterion matching
the Parseval-Plancherel formula for the Fourier transform, the
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following integral must exist:
+ oo 7 2
c, = J WOr ,, 3)
) )

Therefore /(v) must be strictly equal to zero at the origin. For
differentiable functions y(x), it implies that the integral of y(x)
must be null. The best compromise between spatial and scale
resolution is obtained for a Gaussian law. Analyzing wavelets
have thus been defined from the even derivatives of this func-
tion because they satisfy the admissibility criterion of equation
(3). A popular analyzing wavelet is the so-called Mexican hat

x x2\ _
{5)= (1), @

which exhibits fast convergence properties and has an even and
symmetric Fourier transform.

Reconstruction of the function f(x) from its wavelet coeffi-
cients C(a, b) is given by (Grossmann & Morlet 1985):

1 [t [t~ 1 x — b\ dadb
f(x)=C_wJ‘va %C(a, b)lﬁ(T)_z‘- )

a
This solution is however not unique due to the genuine over-
determination of the wavelet transform which associates a two-
dimensional function to a one-dimensional function f(x).
Nevertheless equation (5) allows us to interpret the value of
f(x) at a given location x as the limit of the weighted sum of the
contributions at various scales around x. In other words the
whole set of structures at different scales around the location x
determine the value f(x). Equations (1)—(5) can be generalized
to multidimensional signals with or without distinguishing any
spatial orientation (Mallat 1989b; Antoine et al. 1990).

The redundancy of the wavelet transform allows us to define
a complete and bounded representation of f(x) by restricting
the half-plane H to a suitable discrete lattice {a,,, b,.,}. The
goal is of course to extract a finite set of coefficients C(a,,, b,,.,,)
which enables one to restore entirely the information by use of
an interpolation. The errors of reconstruction give thus a
measure of the quality of the sampling. It can be easily shown
from the invariance of the wavelet transform under dilations
that the sampling step of the space axis must be proportional
to the scale parameter. The fact that the filters y*(av) have the
same bandwidth Av/v on a logarithmic scale suggests to use for
the frequencies a uniform sampling on a logarithmic scale (see
also the binary decomposition of the information implied by
the Littlewood-Paley’s scheme 1937). Therefore the discrete
wavelet transform is based on the following samplings:

a,=ag b,.,,=nbgag .

Daubechies (1990) studied in details the completeness and sta-
bility of the discrete wavelet transform. In particular, she
showed that in order to reconstruct the signal the norm of the
restored function must be bounded by two constants A and
B which depend on the sampling lattice and on the wavelet
itself. Using the coefficients computed with the set of wavelets
{Y[(x — nbgy al)/ag]} the error on the norm is then proportion-
al to the value e = BA™* — 1. For the Mexican hat, Daub-
echies showed that there exists always a small error in the
reconstruction whatever the sampling steps are. For example,
with a, = 212 and b, = 0.5, she derives numerically a negligi-
ble € = 2 10~ 4, which ensures in practice an accurate enough
restoration of the initial function f(x). No error occurs when
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the bounds 4 and B are equal. This is the case for an important
class of discrete wavelets for which A = B = 1: these functions
define orthonormal bases of I*(R) and are called orthogonal
wavelets (see Meyer 1989, and references therein). A major
breakthrough in the understanding of orthonormal wavelet
bases came with the concept of multiresolution analysis devel-
oped by S. Mallat (1989a) similar to the Laplacian pyramid
scheme of Burt & Adelson for image decomposition and recon-
struction (Burt & Adelson 1983).

Apart from functional analysis, the wavelet transform, and
especially the multiresolution description of S. Mallat, are well
suited to applications in signal processing such as matching
algorithms, texture discrimination, signal coding and image
restoration. In the field of astronomy, the multiscale analysis
provides a new way to analyze images: no parameters, like a
definite smoothing length, the background scale or the detec-
tion threshold are needed. Intricate objects are decomposed
into features with different scales detected at given resolution
levels (Bijaoui et al. 1989). The wavelet transform can also be
viewed as a new powerful method for clustering analyses
(Slezak et al. 1990). The interest of this technique is that it
describes the structures with no a priori assumption about the
hierarchical nature of the clustering, as in single or complete
linkage methods (Materne 1978), and with no a priori knowl-
edge of an initial partition of the set of points, as in non-
hierarchical methods (Paturel 1979; Moles, del Olma, & Perea
1985). Moreover, because of the strong mathematical support
which exists for the wavelet transform, the confidence level of
the detection with respect to a Poissonian process can be com-
puted analytically as explained in the next section.

3. DISCRETE DATA ANALYSIS

Let us consider a one-dimensional set of discrete data to be
analyzed, for example a set of P points with coordinates {x,}.
This catalog of points can be represented in a continuous
manner by means of Dirac functions.

P
fx) = k;fS(x — X - (6)

This modeling is fully justified because the wavelet transform is
linear. The discrete wavelet transform of this catalog is then the
correlation product, at each location b,,, associated to the
spatial resolution, of the wavelet function at the studied scale
a,, by the sum of the unit Dirac functions which model the
discrete data:

C(am’ bn;m) = N(am) _+w i 5()6 - xk)‘/’*(x_—al—)M)dx . (7)

m
If the analyzing wavelet is not defined on a compact domain,
one can choose a regular wavelet with fast convergence proper-
ties so that it can be usually considered as equal to zero outside
a limited area. Therefore only the K points inside this limited
area V(a) are involved into the computation, and by conse-
quence the wavelet coefficient C is the discrete sum of K values
of the wavelet function. Equation (7) thus becomes the follow-
ing equation which can be extended to multidimensional

spaces:
K
Cl@m> bum) = N(a,) Y, n/z*(x"—_——b"”"> . ®)
k=1 ap

The aim of a wavelet analysis applied to a discrete distribu-
tion is similar to that of cluster analysis: the description of how
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the data cloud is structured. The advantage of the wavelet
analysis is to provide several classifications for the same point
according to the investigated scale, and to allow examination
of the relationships between the different levels of the hierarchy
of structures, which is very useful for fractal or multifractal
distributions. The wavelet transform also allows one to
examine regions with a deficiency in points with respect to a
uniform distribution. These underpopulated regions are a
major feature of the large-scale galaxy distribution in the CfA
redshift survey slices, but their individual detection is out reach
of a classical technique, such as for instance, the void probabil-
ity function which gives only a global result at the examined
size.

3.1. Significant Coefficients

One characteristic property of the wavelet transform is to
yield coefficients equal to zero for a constant signal (ie., a
uniform distribution in the case of a catalog of points). Conse-
quently the existence of structures at a given scale is tied to the
presence at this scale of wavelet coefficients with a large
enough absolute value. A random distribution of points can
exhibit coefficients different from zero due to the statistical
fluctuations in the spatial repartition of these points. Hence,
the study of structures is based on the analysis of the statistical
significance of the coefficients, by comparison with the values
obtained from a locally uniform Poissonian distribution. The
level of significance is a function of the contrast of the structure
with respect to its local environment.

The statistical significance of a coefficient C is determined by
evaluating the probability P(c > C) to obtain a higher value
caused by a chance fluctuation of the underlying random
process. We therefore need to compute the probability dis-
tribution function of the wavelet coefficient F(c), and thus its
probability density function p(c), in the case of a Poisson dis-
tribution:

c

pl(c)dc . ©

P(c>C)=1——F(C)=1—4[

Besides its dependence on the analyzing wavelet, the law p(c)
depends on the number K of events involved in the coefficient
determination, and therefore on the local density p(x) and on
the volume V(a) under investigation. Because the characteristic
function (i.e., the Fourier transform of the probability density)
of a sum of K independent random variables is the product of
their characteristic functions, the probability density function
of the coefficient is equal to K — 1 convolution products of the
law associated to one event. This law is precisely the density of
the values of the analyzing wavelet: the value of the wavelet
coefficient for a single event is determined by the location of
this event inside the domain where the wavelet is defined, and
every position of the domain has the same probability to be
occupied. A Taylor expansion of the probability density p(c)
with respect to [p(x)V(a)]'/? shows that it converges toward a
Gaussian law for a large number of events all the more rapidly
as the dimension of the space increases (Bijaoui 1989).

The value of the distribution function F(c) for a given coeffi-
cient provides information on the amplitude of the chance
fluctuations and allows a statistical interpretation. For a
uniform distribution of events, F(c) = 0.5. A value close to zero
F(c) < €, or to unity F(c)>1—¢, implies a deficiency,
respectively an excess of events, with an increasing significance
level as €, decreases. Note, however, that K has to be greater
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than 2 for the overdense regions and at least equal to 4 for the
underdense regions in order to provide a reliable measurement.
Otherwise a location b and a scale a can always be found such
that the value of the wavelet coefficient seems to be significant.

3.2. Detection of Structures

We detect the structures by examining the extrema of the
significance level map built from the set of wavelet coefficients.
Because the most contrasted structures are those which are
most likely to be real, the maxima and the minima of this map
locate the overdense and underdense regions, respectively. The
quality of the detection is insured by selecting the extrema
which are greater or equal to a high confidence level threshold
(we use 99.5%).

The independence of the wavelet coefficients is essential if
their statistical significance is to be derived from the probabil-
ity density p(c). However a detection of the extrema with a
sufficiently high spatial resolution implies use of a denser sam-
pling than the one leading to disjointed integration areas V(a)
for the computation of each coefficient. The overlap of these
areas produces a correlation between the values of the coeffi-
cients for neighboring regions. If the spatial resolution is fixed,
the larger the studied scale, the greater is the correlation.
Therefore, from a mathematical point of view, the ensemble
average cannot be replaced by a spatial average, and the ergo-
dicity of the stochastic process is lost. The use of the probabil-
ity density of the wavelet coefficient thus yields only an
estimation of their significance level called confidence level. By
consequence the threshold chosen for the detection of struc-
tures only approximates a thresholding at the same value of
significance.

Nevertheless, despite the spatial correlation of the coeffi-
cients, the significance level of the detected structures can be
estimated. In practice, the distance between the extrema which
locate structures is at least equal to that necessary to insure
their mutual independence. The maximum number n; of these
independent coefficients is given by the ratio of the total
number of wavelet coefficients by the area V(a). So let us con-
sider these independent coefficients computed from a uniform
distribution. By definition, and due to statistical fluctuations,
only €,n; of them are detected with a confidence level 1 — ¢,.
Hence, the quantity €;n; is an estimation of the maximum
number of extrema—and thus of structures—which are a false
detection for the considered detection threshold and wavelet
scale. The ratio between €,n; and the total number of detected
structures in the analyzed distribution gives therefore the prob-
ability that a given structure is observed by chance. All the
structures have obviously this same significance level. Addi-
tional information about the structures themselves has to be
taken into account in order to assess more precisely the physi-
cal reality of a given structure. It can be noted of course that
detected structures with the highest confidence level have the
lowest risks of being random fluctuations.

The confidence level of the wavelet coefficients is computed
at each scale with respect to a Poisson distribution with a
spatially varying density parameter. However, if a structure is
detected at a given scale, the null hypothesis for larger scales at
this location is no longer a uniform distribution. The Poisson
noise depends on the signal itself and applying the previous
scheme results in a biased detection for these large scales since
the high-density clumps lead to a higher noise value. This
problem occurs for instance in the multiple detections induced
by the multiscale linear analysis of the wavelet transform.
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Thus, even the wavelet transform separates the different scales
almost totally, the Poisson noise forces us to examine the influ-
ence of small scale structures on the statistical level of the
detection of larger ones (see § 5). This question can be exam-
ined via numerical simulations of the data. Using a density
map built from the real data in order to generate pseudoran-
dom catalogs, statistics on the values of the wavelet coefficients
can be computed at the locations where structures have been
detected using the Poisson hypothesis. The standard devi-
ations give a distance criterion with respect to a null coefficient
and then yield a more accurate measure of the statistical sig-
nificance of the real coefficients at these locations. These sig-
nificance levels are obviously lower (higher) for the high- (resp.
low-) density structures than those computed from the r.m.s.
statistic obtained from uniform Poisson distributions.

3.3. Descriptions of Structures

The detection of the extrema allows us to locate the signifi-
cant structures but lacks the fundamental information about
their morphology because of the local status of this kind of
detection. Position uncertainties can furthermore result from
too large a discrepancy between the shape of the analyzing
wavelet and that of the structure. The morphological proper-
ties can formally be derived from the shape of the contour
outlining the coefficients which have a confidence level identi-
cal to the chosen detection level. Most of the time the domains
defined in this way include one extremum. Nevertheless one
must be able to take into account the correlation between the
coefficients before extracting from this contour relevant mea-
surements about the morphology. We solve this difficulty by
analyzing the morphology of the initial point distribution
inside the area V(a) around the extremum.

Dealing with essentially bidimensional data, let us consider a
catalog of positions on a plane. As indicated by equation (8),
the discrete isotropic wavelet transform of a two-dimensional
catalog yields a set of two-dimensional images. One way to
characterize the structures detected at a given scale is to fit to
each of these structures a two-dimensional Gaussian elliptical
distribution. This choice is justified by the compromise
between the number of shapes modeled by this fit and its sim-
plicity. However one can already note that nonconvex struc-
tures will be poorly described. The algorithm that we have
developed is applied directly to the data points. The wavelet
analysis provides only the approximate coordinates of the
structure (indicated by the position of the corresponding
extremum) and an estimation of the size of the structure (the
wavelet scale a). The characteristics of the elliptical model—the
center, the position angle, and the ellipticity—are determined
by identifying the statistical moments of the local distribution
with those of an ellipse. The value of the major axis (a quanti-
tative measure of the background-corrected extension of the
structure) is derived by fitting the radial density profile around
the position of the extremum by a Gaussian law and adopting
3 times the FWHM of the fitted Gaussian (the mathematical
method is that of Slezak et al. 1990 with some minor technical
improvements).

The application of the elliptical modeling to underpopulated
areas sets a problem which is imperfectly solved. The difficulty
lies in the computation of the moments of these regions: there
is no way to attach to the lack of data points a function analo-
gous to the sum of Dirac functions which would stand for their
presence. Therefore, the straightforward moments calculated
for the underpopulated regions using for each of them the
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points within the V(a) area centered on the minimum do not
describe the characteristics of the void but those of the data
points delineating the void. Actually the difference is large
when the distribution of data does not isotropically surround
the voids and when the latter have a high contrast. The highly
deficient voids delineated by sharp sheetlike structures of the
CfA survey illustrate this extreme case. A better approximation
to the moments of the underdense regions is the difference
between the classical moments describing the surroundings of
the void and the moments computed from the same region
uniformly populated. We therefore chose to fit ellipses to these
moments in the same fashion as for the overdense regions.

The limits of this kind of description are those of the model-
ing which is performed. Structures with a curved shape and
underdense regions are obviously not well described by a two-
dimensional Gaussian elliptical modeling fitted on moments
based on data points. A solution which overcomes the problem
of the correlation between the coefficients lies in the recon-
struction of structures from the significant coefficients at all
scales and the analysis of the resulting contour at a given
resolution. The detection, localization and parameterization of
the structures will however remain unchanged. This issue will
be discussed in a further paper.

3.4. The Physical Objects

The scales at which the wavelet transform can detect struc-
tures in a set of points range from the scale defined by the mean
separation between points up to about one third of the largest
separation between points. Knowledge about the physics of the
objects or the processes under study allows us, however, to
stop this hierarchy before these extreme limits. These are the
free parameters common to all techniques for describing a
cloud of data.

The linearity of the wavelet transform implies that even low-
order moments structures are detected at several scales. There-
fore, one must keep in mind the fundamental difference
between the physical object and the structures detected at the
same location by the wavelet transform. These structures
depict only the object at each different scale whether it is iso-
lated or embedded into a larger structure. An object is defined
only by the full hierarchy of these structures.

4. PROCESSING OF THE CfA REDSHIFT SURVEY SLICE

In order to obtain preliminary results about the large-scale
distribution of galaxies in the Universe, the ongoing CfA Red-
shift Survey is divided into contiguous strips across the sky.
Each strip is 135° wide in right ascension and 6° thick in
declination. The projected catalog was derived from a merge
version of Zwicky’s (Zwicky et al. 1961-1968) and Nilson’s
(Nilson 1973) catalogs of galaxies. Radial velocities measure-
ments for all galaxies brighter than B = 15.5 have been already
completed for several slices (Geller & Huchra 1989). Here we
analyze the available first CfA slice bounded by 8" < a < 17"
and 26°5 < § < 32?5 (Huchra et al. 1990). Because the large-
scale structures are poorly defined at velocities larger than
15,000 km s~ ! (the separation between galaxies becomes com-
parable to the size of the voids). we include in our analyses only
galaxies below this velocity.

Because the spatial extent of the slice is much smaller in
declination than in right ascension, it is reasonable to ignore
the declination coordinate and project the sample onto a con-
stant declination surface. We thus consider the slice as a two-
dimensional distribution where the polar coordinates of each
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object are its right ascension and radial velocity. The discrete
wavelet analysis of this catalog using an isotropic wavelet
becomes a set of two-dimensional images which can be
handled easily and contain most of the relevant information
about the large-scale clustering in the slice.

The first CfA slice contains the Coma Cluster, with its
prominent finger-of-God superposed on the underlying large-
scale clustering. The ability of the wavelet transform to detect
small departures from homogeneity makes the detection of this
preeminent feature doubtless. However, this structure can
prevent the detection of nearby small clumps due to the linear-
ity of the wavelet transform. We thus remove the 175 galaxies
which are members of the Coma Cluster as defined in the
group and cluster catalog-extracted from the slice by Ramella
et al. (1989).

The velocities of the 880 remaining objects have then been
scaled so that a homogeneous Poissonian process with the
same limiting apparent magnitude and luminosity function as
the data (see de Lapparent et al. 1989a) leads to a uniform
distribution of constant density. This transformation is called

an anamorphosis. The anamorphosed velocities V,,, are
derived from the true velocities V' by
Vv
Vana(V) = K J\ Nexp(v)dv + KO ’ (10)
0
where
N ,(v) oc V2T{o + 1, dex [0.4M* — my,, — 5 log v — 15]}
(1)

is the expected number of galaxies per velocity interval unit at
velocity v (given in km s~ !) in a survey with a limiting magni-
tude my;;,, and a Schechter luminosity function with character-
istic parameters M* and a. The function N, resembles a
skewed bell distribution with a peak at V,,, = 5400 kms ™" for
the luminosity function derived for the slice (M* = —19.2 and
o = 1.1; de Lapparent et al. 1989a). The constants K and K,
are determined by setting

Vana( V;)eak) = V;aeak (l 2)

I/ana( Vmax) = Vmax (1 3)
with V.

ax = 15,000km s ™1,

With the anamorphosis, the pie-shaped slice becomes a
square with right ascension and velocity as Cartesian coordi-
nates: we arbitrarily scaled the velocities so that the 8"-17"
range in right ascension is equal to the 15,000 km s ~* range in
velocity. The distance between two objects are therefore given
as velocities. Because the large-scale structures in the CfA slice
are likely to be unbound, and because the peculiar velocities of
these structures are small compared to the size of the voids
(Bothun et al. 1989), this confusion of the velocity and spatial
coordinate for structures which are not aligned or perpendicu-
lar to the line of sight is reasonable. On the contrary, a separate
processing of the two coordinates would have been necessary
for analyzing relaxed structures such as clusters of galaxies.
Note that the anamorphosis distorts the structures. Voids at
V < Vyea OF V > V. are systematically smaller (resp. larger)
than those at V,,,, and their shape is also modified. However,
the anamorphosis ensures that a given structure would be
detected with nearly the same detection level at any velocity
inside the survey. Subsequent morphological analyses can then
be performed on the true velocity distribution in the pie
diagram configuration.
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F1G. 1—Isopleth maps of the wavelet coefficients superposed on the first
CfA redshift survey slice with the Coma Cluster removed (each galaxy is
indicated by a dot), for scale values (Fig. 1a) a = 350 km s~ !, (Fig. 1b) a = 700
km s™*, and (Fig. 1c) a = 1400 km s~ . Solid (dashed) contours stand for
isopleths which are between 1 r.m.s. and 3 r.ms. above (below) zero with
increment of 0.4 r.m.s. Overdense regions are detected for values of a corre-
sponding to their characteristic scale.

We use for the analyzing wavelet the radial Mexican hat
given in equation (4). This isotropic wavelet is the simplest
compromise for analyzing the CfA slice where large-scale
structures seem to occur with any orientation with respect to
the line of sight. Moreover, this second derivative of the Gauss-
ian function can be considered from a practical point of view as
compactly supported, which results in fast computations.
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Another advantage of the Mexican hat function is that its two
first moments are equal to zero, and therefore the resulting
wavelet analysis is insensitive to additive backgrounds or to
gradients. Finally, it does not differ very much from the other
wavelets actually used in image processing (e.g., spline
wavelets). The dependence of our results on the analyzing
wavelet will be all the more weak that the probability density
function p(c) takes into account the detailed shape of the selec-
ted wavelet.

We compute the discrete wavelet transform of the CfA slice
for eight scales a increasing with a factor ~2'/2 from 175 km
s 1t02000kms~1:175kms™ % 250 km s~ !, 350 km s, 500
km s~ 700 km s~ %, 1000 km s~ !, 1400 km s~ !, and 2000 km
s~ 1. The lower limit is close to the typical velocity dispersion of
galaxies in groups while the upper limit is constrained by the
extent of the survey. For each scale a, the grid of locations b
yields a two-dimensional square map. The resolution of the
maps varies from 256 x 256 pixels for the smallest value of a to
64 x 64 pixels for the three largest values.

Figures 1a—1c show the contour maps of the wavelet coeffi-
cients derived from the CfA slice for resp. a = 350 km s~ %,
a =700 km s~ !, and a = 1400 km s~'. The isopleths corre-
spond to significance levels of 1-3 ¢ with increment of 0.4 4.
The significant coefficients correspond to high-contrast struc-
tures with respect to their local neighborhood: for example a
3 o level corresponds to a density contrast p/p of ~10 (~5) for
scale a = 350 km s~ ! (resp. a = 700 km s~ !). The contours in
Figures 1a—1c show that visible structures and voids are effi-
ciently identified by the wavelet transform. The wavelet trans-
form provides in addition the location of the structures within
the survey, an important piece of information which is lacking
in classical cluster analysis methods and in global statistical
analyses. Note that structures are exhibited only at a wavelet
scale a corresponding to their characteristic size. The different
scales are thus clearly decoupled and can be analyzed sepa-
rately. The hierarchy of structures corresponding to a same
object can, however, be derived by comparing the coefficient
maps for different scales.
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One may wonder how the maps of Figures la-1c would
compare with maps of density inferred from the distance
between a given gridpoint and its nth nearest data point, using
varying values of n. Even if greater prominence would be given
to filaments because spherical symmetry is not enforced as in
our isotropic wavelet analysis, the main drawback of this other
approach is that different length scales are mixed. A character-
istic length scale can be associated to each value of n by con-
sidering the peak of the distribution of neighbor separations.
But the frequency distribution of these separations is not
Gaussian for small n’s due to small-scale clustering and the tail
at large distances prevents a narrow-banded scale resolution.

5. RESULTS AND DISCUSSION

For objective detection of the overdense and underdense
structures, we use the maps of confidence levels of the wavelet
coefficients with a threshold value of €, = 5 x 1073 (see § 3.1).
Figure 2 shows the corresponding isopleths for the overdense
structures detected at wavelet scales a = 250 km s !, a = 350
km s™!, a =500 km s~ !, and a = 700 km s~ '. The complex
organization of the high-density regions is clearly visible as
well as the multiple belongings of most of the objects.
However, the limits of our method appear clearly. The iso-
tropic wavelet used in this analysis is not suited for detecting
the highly anisotropic sheetlike structures delineating the
voids. Therefore, as far as the overdense regions are concerned,
the radial Mexican hat analyzing wavelet appears essentially
best designed for detecting structures on scales comparable to
or less than the thickness of the sheets, i,e, groups and clusters
of galaxies.

In order to describe the significant structures detected in the
CfA slice further, we fitted ellipses to the distribution of objects
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FiG. 2—Map of the significant overdense structures. The isopleths define
areas where there are less than 5 odds in 1000 of measuring in a random
distribution a higher wavelet coefficient than the observed positive value. The
four plotted contours correspond to wavelet scales a = 250 km s~ !, a = 500
kms™!, and a = 700 km s . For a given structure, the contours enclosing the
larger areas correspond to the larger wavelet scales.

Vol. 409

1.4 10*

1.2 10*

8000
6000
4000

2000

F1G. 3.—Map of the ellipses fitted to the significant structures. The dashed
line ellipses correspond to scale a = 700 km s, and the solid line ellipses
(with increasing thickness) correspond to scales a = 500 km s~ ! and a = 250
km s~*. The three Abell clusters included in the slice in addition to the Coma
Cluster are indicated by black stars.

around each maximum from the confidence level map accord-
ing to the method described in § 3.3. The local background
density is estimated for each structure from its radial density
profile, allowing to compute the excess of galaxies in each
ellipse. Figure 3 shows the fitted ellipses, displaying only those
associated to an excess of objects greater or equal to 3.

The Poisson noise depends on the signal. As a consequence,
we have examined the dependence of the detection of large-
scale structures on the small-scale clustering by using 100 pseu-
dorandom catalogs sampled from an underlying density field.
This density map is obtained from the first CfA slice catalog
using Dressler’s definition (1980) of the local density with the
third nearest neighbor. In practice, the third nearest neighbor
appears to be a good compromise between keeping highly con-
trasted structures and minimizing the small-scale noise. In each
simulation the wavelet coefficients are computed for scales
a=500kms ! a=700kms ! and a = 1000 km s~ ! at the
location of the structures previously detected, and the mean
values and r.m.s. fluctuations of these coefficients are calcu-
lated at each location. The mean coefficients are obviously
always smaller in absolute value than those computed from the
observational catalogue due to the smoothing. A measure of
the expected fluctuations caused by the small-scale clustering
of the data is given by the r.m.s. values. Each r.m.s. value can be
used for deriving a new estimate of the statistical significance of
the wavelet coefficient computed at the corresponding location
from the CfA data.

Most of the detected structures are found to be above the 3 ¢
level (~70% for a = 1000 km s~ !). Thus, one can deduce that
these large-scale features are still highly significant when the
noise caused by the small-scale clustering is taken into
account. The least significant structures are associated to a 2 o
level. They correspond mainly to galaxies which are located
inside the two largest voids of the first CfA slice (e.g., galaxies
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around 16", 7500 km s~ ). These structures are sparsely popu-
lated and the small number of objects (~5) yields a large fluc-
tuation with respect to the value of the wavelet coefficient
when the scale is greater than 500 km s~ *. The other marginal
detections (~25% detections between a 2.5 and 3 ¢ signifi-
cance level) are obtained for sparse groups containing a few
objects and for the large structures including two well-defined
components (e.g., structure at scale a = 700 km s~ ! around
9730, 7500 km s~ !). This example is a good illustration of the
importance of a detailed analysis of the significance level. In
this particular case, each of the subclumps is individually
detected at a small scale with a high level of confidence. But the
detection level of the larger structure which includes these
clumps is lowered due to the higher Poisson noise caused by
the subclumps. Ideally a real multiscale approach would be
required to fully address this issue. The use of the previous
Poisson hypothesis for detecting structures corresponds to a
scale-by-scale examination of the data where no information
on other scales but the linearity of the wavelet transform is
considered. Obviously this may not be sufficient in the case of
highly contrasted hierarchical structures with a Poisson noise.
Because we are using an isotropic wavelet, the sheetlike
structures are described by contiguous ellipses of size compara-
ble to the thickness of the sheets and corresponding to small-
scale clustering within the sheets. In particular, the three Abell
clusters included in the slice (Coma A1656 being removed) are
included in one of the significant ellipses. Hence this method
appears promising for the objective detection of clusters of
galaxies in redshift maps. In these maps, the elongation along
the line of sight and the projected size of the bounded and/or
relaxed structures are two physically different parameters. Use
of an isotropic wavelet prevents us from making the distinction
between these two quantities. A physically meaningful detec-
tion would thus have to be based on an anisotropic wavelet
elongated along the line of sight. The velocity dispersion and
the projected size of each detected cluster could be derived by
varying the two characteristic dimensions of the wavelet and
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choosing the values yielding the best detection level. As any
other method for detecting clusters in redshift maps, this aniso-
tropic wavelet analysis might still confuse sheets aligned along
the line of sight with dynamically elongated structures.

To test the ability of the wavelet analysis for detecting small-
scale clustering, we compared the maps of ellipses fitted to the
significant structures detected at scales a = 250 km s~ ! and
a = 500 km s~ ! with the catalog of groups extracted from the
CfA slice by Ramella, Geller, & Huchra (1989). In this catalog,
the groups are detected by treating separately the velocity
width and projected size of the structures. Figure 4 shows the
ellipses fitted to the significant structures detected at scales
a=250kms™ ! and a = 500 km s~ ! superposed on the groups
by Ramella et al. after restoration of the wedge diagram con-
figuration (the ellipses are slightly distorted due to the cone
geometry). The Great Wall (Geller & Huchra 1989) appears
clearly in Figure 4 as a continuous alignment of fitted ellipses.
Moreover, there is good agreement between the map of ellipses
and the map of groups: most of the dynamically elongated
groups are included at least in one of the fitted ellipses. In order
to quantify the agreement between the ellipses derived by the
wavelet analysis and the groups detected by Ramella et al., we
calculate the fraction of groups with their center included
inside the ellipses fitted to the structures detected on scales of
a=250km s™! and a = 700 km s~ !, of order of the typical
velocity dispersion of groups and clusters, respectively (see
Zabludoff, Huchra, & Geller 1990), The fractions are 53%
(resp. 68%) for groups with N = 2 members, 43% (resp. 71%)
for groups with N = 3-4 members, and 45% (resp. 90%) for
groups with N > 5 members. In addition the fractions of
groups included at least in one of the ellipses on scales ranging
from 175 km s~ ! to 500 km s ! are 88% for groups with N = 2
members, 89% for groups with N = 3—-4 members, and 83%
for groups with N > 5 members. The isotropic wavelet analysis
detects efficiently small-scale clustering because the projected
size of these small groups of galaxies is close to their velocity
dispersion.

FiG. 4—Comparison of the ellipses fitted to the significant overdense structures detected for scales a = 250 km s~ ! and @ = 500 km s~ ! with the groups identified
by Ramella et al. (1989). Dots, triangles, and squares correspond to groups with n = 2, n = 3-4, and n > 5 members, respectively. The ellipses appear distorted due to
the cone geometry. Note that only structures beyond ¥, = 1635 km s~ ! can be detected due to the anamorphosis (see text).
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To avoid the difficulty mentioned above in detecting elon-
gated structures by means of an isotropic wavelet, one can also
consider the sheetlike structures in the CfA slice as the counter-
parts of the voids. The isotropic analyzing wavelet is best
suited for detecting the nearly spherical voids of the slice.
Moreover, in our analysis of this sample, the underdense
regions are the most significant structures for wavelet scales a
greater than 1000 km s~ !, which is twice the typical FWHM
thickness of the sheets (cf. de Lapparent et al. 1991). The coher-
ence of sheetlike structures like the Great Wall is indeed likely
to be geometric and not dynamical (de Lapparent et al. 1988).
We can thus consider the voids as the physical units of the
distribution, and the network of walls is then uniquely defined
by a map of the voids indicating their sizes and relative
positions.

Figure 5 shows the map of confidence levels for the negative
wavelet coefficients obtained at scales a = 350 km s~! and
a = 700 km s~ . The contours correspond to a threshold value
of ;=15 x 1073 (see § 3.1). Figure 5 shows that the wavelet
method is able to detect, locate, and decouple voids existing at
different scales. The need for such a decoupling is illustrated by
the fact that a structure can be significant at a given scale but
not at higher and/or lower scales. To derive relevant physical
parameters for the voids, we fit to each detected void an ellipse
according to the procedure described in § 3.3 and we compute
its deficiency in galaxies with respect to the local background
density from its radial density profile. The influence of the
small-scale clustering on the detection of the underdense struc-
tures has been tested for scales a between 700 km s ~* and 2000
km s~ ! in a similar fashion as for the overdense structures. All
the detected voids have a confidence level above the 3 ¢ limit
with the two largest voids at scales a = 2000 km s~ ! reaching
values close to 6 and 9 g.
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F1G. 5—Map of the significant underdense structures. The isopleths define
areas where there are less than 5 odds in 1000 of measuring in a random
distribution a lower wavelet coefficient in absolute value than the observed
(negative) value. The two plotted contours correspond to wavelet scales
a=350 km s™*! (light contour) and a = 700 km s~' (heavy contour). The
wavelet method can locate voids, whatever their typical size.
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Our goal is to produce a catalog of the significant under-
dense regions in the CfA slice which could be used for follow-
up investigation of the properties of these structures. To this
purpose we must further process the list of fitted ellipses
because some of the corresponding voids are artifact and
others are redundant with larger voids. First, one can notice on
Figure 5 that isolated clouds of galaxies and sharp sheets gen-
erate on small scales significant underdense regions which
cannot be identified with genuine voids—they are part of
larger voids and most of them are delineated by overdense
structures only in a sector <7. This occurs because the wavelet
analysis detects all density variations. To remove these arti-
facts we use a density threshold criteria designed to detect
strong anisotropies in the local density contrast of the regions
surrounding the detected voids. We compute the density
angular profile of each structure using a 45° resolution and
including only objects which lie in the shell defined by the fitted
ellipse and the ellipse derived from the former by a similarity
with a factor 1.5. Then the density of the 135° sector centered
on the position corresponding to the maximum value of the
angular profile is divided by the mean value over the other
sectors. The corresponding structure is subsequently with-
drawn from the final catalog if the density ratio exceeds a value
of 5, thereby indicating a large anisotropy—unless part of the
ellipse contour crosses the boundaries of the map.

The goal of the second processing applied to the list of
remaining ellipses is to eliminate redundant voids. Although in
the sheetlike topology of the CfA slice most voids have a well-
defined edge, a void of average radius a, might induce detec-
tions at wavelet scales a < a, (see § 3.4). We thus apply the
following inclusion criterion to the ellipses: starting with the
largest voids, smaller ones are included in the final catalog if
the position of their center is not inside a void which already
belongs to the catalog. Figure 6 displays all the significant
underdense regions selected as real voids by the above treat-
ment. Note that the two small voids around a ~ 13" and
V ~ 7,500 km s~! correspond to the region left artificially
empty by the removal of the Coma Cluster from the sample.
The ellipses plotted in the wedge diagram of Figure 6 are evi-
dently distorted because they were fitted in the anamorphosed
space. A direct fit in the wedge diagram configuration would,
however, be biased by the varying density of objects with
velocity. The center of all these ellipses corresponds to a
wavelet coefficient with a confidence level greater than 99.5%.
Table 1 gives the “elliptical” parameters and the density ratio
inferred from the angular profile for all ellipses except those
two which are artificially created by the removal of Coma,
ordered by increasing velocity of the center of the void after
restoration of the real geometry of the data. The shape param-
eters are the distances in the pie diagram map between the
extrema of the major (minor) axis obtained in the anamor-
phosed space. These distances take into account the scaling of
the right ascension by the cosine of the average declination of
the slice.

Given the poor sampling of the structures for velocites larger
than 10,000 km s~ !, the edge effects, and the limits of our
analysis (isotropic detection, second-order moments descrip-
tion of structures, lack of local reconstruction) this catalog of
objective void provides a fairly complete list—from visual
inspection—of the voids with diameter larger than about 1000
km s~ ! in the slice. Similar analyses applied to larger catalogs
than the CfA slice should allow to derive a spectrum of void
sizes. The requirement for reliable derivation of this spectrum
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FiG. 6.—Map of the significant voids detected by means of the wavelet technique in the pie diagram of the slice. The ellipses fitted to the significant underdense
structures after removal of the artifacts and redundant structures is superposed on the galaxy distribution.

is that the size of the largest voids in the map be significantly
smaller than the extent of the map itself. The spectrum of void
sizes is of cosmological interest because it puts tight constraints
on N-body models for the formation of large-scale structures.
In the standard gravitational instability picture, the diameter
of the largest existing structures is limited by the upper limits
on the cosmic microwave background anisotropy via the
Sachs-Wolfe effect (see, for instance, Blumenthal et al. 1991).
Given the observational limits (cf. Smoot et al. 1991), the exist-
ing cold dark matter models have difficulties generating voids

larger than ~55 h~! Mpc in diameter (White et al. 1987).
Voids with diameters of ~50 h~! Mpc are detected in the CfA
slice and detection of larger voids will require well-designed
larger surveys (de Lapparent et al. 1991).

6. CONCLUSION

The extension of the Center for Astrophysical Redshift
survey redshift has suggested that at large scale galaxies gather
along sharp sheetlike structures and delineate vast regions
devoid of luminous objects. Here we propose an algorithm

TABLE 1

CATALOG OF ASTROPHYSICAL VOIDS

Scale® A A4 B*
Number (km s™!) RAP (kms™ ') (kms™!) (kmsY) Ellipticity" PA® Lack® Ratio!
1o........ 1400 13432 3035 4670 1165 4.0 170° —-21 *6.17
2. il 2000 10 45 4695 3370 2740 1.2 75 -31 1.45
3 1000 917 5460 1765 1440 12 55 -7 3.61
[ SO 2000 15 49 6060 6355 2105 3.0 95 —-10 *8.34
Seeeiiii. 350 855 7440 870 710 12 35 —4 5.00
[ 700 11 28 7495 1955 865 23 95 —4 229
Tt 1400 15 43 7540 3965 2445 1.6 85 —62 1.45
8.t 700 13 06 8290 1660 1585 1.0 145 —6 1.30
[ P 1000 10 25 8340 3020 2145 14 145 —16 222
10......... 500 11 33 8550 1125 835 13 100 -6 0.77
11......... 700 13 57 9405 2355 1820 13 60 —12 1.38
12000, 1400 12 37 10960 6220 3205 1.9 170 -8 3.70
13......... 350 14 43 11090 1370 1100 12 35 -3 1.67
14......... 1000 15 20 12195 6175 3055 2.0 5 —-10 2.12
15......... 350 11 01 12200 2100 1285 1.6 160 -3 5.00

* Wavelet scale used for the detection of the voids.

b Right ascension of the center of the fitted ellipse.

¢ Recession velocity of the center of the fitted ellipse.
9 Major axis of the fitted ellipse.

¢ Minor axis of the fitted ellipse.

f Ellipticity of the fitted ellipse.

£ Position angle of the major axis of the fitted ellipse increasing from the line of sight to the east.
f‘ Deficiency in galaxies with respect to the local background density.
! Density ratio inferred from the angular profile. A star indicates that part of the ellipse contour crosses the boundaries of

the galaxy map.
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based on the wavelet transform to objectively detect and char-
acterize the voids and the high-density regions in the large-
scale galaxy distribution. The wavelet transform provides a
space-scale analysis in which over- and underdense structures
are detected according to their typical size. Applied to bidi-
mensional discrete data like galaxy catalogs, the wavelet trans-
form yields for each scale a wavelet coefficient image. We then
compute for each value of the wavelet coefficient the probabil-
ity to observe a higher value with respect to a Poissonian
process with uniform density using the associated distribution
function. We define the significant structures as the connected
areas where this probability is greater than the specified detec-
tion threshold. High-density regions are identified by a value of
the distribution function close to unity while voids correspond
to values close to zero. We finally calculate morphological
parameters for the detected structures by fitting an elliptical
Gaussian model to the local galaxy distribution.

We then apply the wavelet transform to the first slice of the
CfA redshift survey projected onto a constant declination
surface. Many significant over- and underdense structures are
detected using a 99.5% confidence level threshold. The algo-
rithm does detect significant clustering at the location of the
Abell clusters other than the Coma Cluster (removed from the
sample) included in the slice. We also find good agreement
between the significant structures detected at small scale by the
wavelet analysis and the groups of galaxies indentified by
Ramella et al. (1989). Because we are using an isotropic analyz-
ing wavelet, the large-scale sheetlike structures are detected as
alignments of contiguous smaller structures. We also detect the
various voids present in the CfA slice as strongly significant
structures. We perform a selection based on an inclusion cri-
terion in order to restrict the void hierarchy to the astro-
physically interesting structures, and we calculate the elliptical
parameters for each void in the resulting catalog. The wavelet
analysis allows for the first time to objectively detect and locate
the voids in the CfA slice and to replace the often used subjec-
tive criteria with quantitative parameters.

This preliminary wavelet analysis of the CfA redshift survey
data suggests several directions for further statistical descrip-
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tion of the large-scale clustering. First, the isotropic analyzing
wavelet used here is not well suited to the detection of struc-
tures dynamically elongated along the line of sight like groups
and clusters of galaxies, and to the detection of highly asym-
metric structures like filaments and walls. Specific processing
appears necessary for these objects. We are hence currently
investigating the use of an anisotropic wavelet transform, and
it appears promising for the objective detection of dynamical
clustering from redshift maps. We are also examining the pos-
sibilities offered by local reconstruction of the distributions
from significant data—using only the significant wavelet coeffi-
cients. Both the anisotropic wavelet and the local reconstruc-
tion will be important tools for comparing observational data
with numerical simulations. The hierarchical clustering of the
overdense regions is also clearly exhibited due to the ability of
the wavelet transform to decouple structures. One should thus
be able to calculate the local fractal dimensions directly (cf.
Martinez, Paredes, & Saar 1991), as well as to investigate the
relationships between high-order and low-order structures.

Because the wavelet method can disentangle complex hierar-
chical features, detect significant clustering and voids as well as
line-of-sight dynamical elongation, this statistic might provide
a complete description of the observed galaxy distribution. In
particular, the range of voids sizes can put tight constraint on
the theoretical models. Because of the small number of voids
contained in the CfA slice (15), it is at the moment premature
to attempt a derivation of the spectrum of void sizes from this
catalog. However, larger redshift surveys are currently under
completion and should be available within the next years: for
example the other slices of the CfA survey (see Geller &
Huchra 1989) and deep pencil-beam surveys (de Lapparent et
al. 1989b; Broadhurst et al. 1990). In those of these surveys for
which data is already available, structures qualitatively in
agreement with the patterns detected in this first CfA slice are
observed. Because they intersect a large number of voids,
application of the wavelet analysis to the deep pencil-beam
surveys should provide better quantitative constraints on the
typical and maximum size for the voids.
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