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ABSTRACT

We present a simple approximation that permits us to obtain the axisymmetric two-dimensional supersonic
solution of a rotating radiation-driven stellar wind from the Friend & Abbott one-dimensional model of the
equatorial flow. Our solution predicts the formation of a dense equatorial disk if the rotation rate of the star
is above a threshold value, which depends on the ratio of the terminal speed of the wind to the escape speed
of the star.

Along the upper main sequence (earlier than B2), both the observed and theoretical values for this ratio
decrease monotonically toward later spectral types. For early O stars, the disk can only form if the rotation
speed is in excess of 90% of the critical (breakup) speed. For B2 stars, the disk forms at rotation speeds above
50%—-60% of the critical rotation speed, depending on the adopted terminal speed (observational vs. theoreti-
cal estimates). This corresponds to a rotation speed V,, > 230-300 km s~!. Later than B2, the theoretical
terminal speed ratio increases, and at B9 the disk forms when the rotation speed exceeds 73% of the critical
value. The change in the disk formation threshold as a function of spectral type qualitatively explains the
frequency distribution of Be stars and indicates a maximum probability around B2.

The disk is formed because the supersonic wind that leaves the stellar surface at high latitudes travels along
trajectories that carry it down to the equatorial plane, where the material passes through a standing oblique
shock on top of the disk. The ram pressure of the polar wind thus confines and compresses the disk. For Be
stars, the disk is predicted to be quite thin (*0°5 opening angle) and has a density enhancement p.,/p,0 ~
103. This compression is large enough to potentially explain the discrepancy between the inferred UV and IR
mass-loss rates of Be stars. Adjacent to the disk, the standing shock heats the flow that enters the equatorial
region to temperatures of 10°-10° K before the material finally mixes with the disk. This temperature is suffi-
cient to produce superionization in the winds of Be stars, and the shock location explains observations indi-
cating that C 1v is concentrated toward the equator. In addition, the shock temperature indicates that Be stars

will be EUV and soft X-ray emitters.

Subject headings: stars: circumstellar matter — stars: early type — stars: emission-line, Be —

stars: mass loss — stars: rotation

1. INTRODUCTION

Hot stars have radiatively driven stellar winds, which can
produce a relatively dense radiatively ionized circumstellar
envelope. At short wavelengths (typically UV), the spectral
lines often exhibit redshifted emission and blueshifted absorp-
tion (P Cygni line profiles), which is evidence of high-velocity
outflow from the star. At long wavelengths (typically far-IR
and radio), the envelope is optically thick, and free-free emis-
sion produces excess radiation in the stellar spectrum. In some
cases, the envelope is not spherically symmetric; consequently,
electron scattering produces intrinsic polarization of the stellar
spectrum. In particular, three classes of hot stars, Be, Wolf-
Rayet, and B[e], all exhibit optical polarization (Coyne &
McLean 1982; Schmidt 1988; Schulte-Ladbeck & Zickgraf
1988). On average, Be stars have higher v sin i values than
normal B stars (Slettebak 1982), and it is commonly believed
that the rapid rotation is the cause of the inferred asymmetries
in Be star envelopes. It has also been suggested that B[e] and
Wolf-Rayet stars are rapid rotators as well (Zickgraf et al.
1986; Poe, Friend, & Cassinelli 1989; Cassinelli et al. 1989).
Empirical modeling of each of these three classes of stars has
led to a two-component picture for the structure of their
envelopes: a slow dense equatorial disk component, and a fast
tenuous polar component over the remainder of the star. The
polar component is consistent with a radiation-driven wind;

however, the origin of the disk component is especially uncer-
tain, and it is this problem that is the focus of this paper.

1.1. Observational Background

The two-component picture of the extended atmosphere
around Be stars has been derived from observations over a
broad range of the spectrum. In the optical, a classical Be star
exhibits variable hydrogen Balmer emission lines (and often
times Fe 1) with widths of a few hundred km s~'. Many Be
spectra possess narrow absorption “shell ” features in the spec-
tral lines of the lower ionization stages. The Be stars are also
found to have surprisingly large excess continuum radiation,
due to free-free emission, in the near-IR (Gehrz, Hackwell, &
Jones 1974), far IR (from IRAS data, Coté & Waters 1987) and
radio (Taylor et al. 1987). Combining all of these observations,
one is led to the conclusion that there is a dense, low-velocity,
low-ionization stage component in the circumstellar envelope.
There is a good correlation between the IR excess, measured at
12 um, and the optical polarization (Coté & Waters 1987),
which indicates that this dense component is not spherically
symmetric. Since these stars are rapidly rotating, it is reason-
able to suppose that this material is contained in an equatorial
disk. In support of the disk hypothesis are the observations of
Be/X-ray binaries—the most common class of luminous X-ray
binaries among hot stars. The X-rays appear in one or two
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bursts per orbital period. This is consistent with the enhanced
accretion onto the neutron star companion that results from its
passage through the dense equatorial disk of the Be star (for a
review see van den Heuvel & Rappaport 1987).

Many empirical models of Be star disks have been developed
to interpret these observations (e.g., Pockert & Marlborough
1976). In particular, by modeling the IR excess versus wave-
length, Waters (1986) and Waters, Coté, & Lamers (1987) have
estimated the density structure for a number of Be star disks.
At the base of the disk (i.e., near the stellar surface), they obtain
a disk density, p,, on the order of 10712 to 10~ ! g cm 3. By
combining this model with the X-ray binary data, the terminal
velocity in the disk may be determined, since the X-ray lumi-
nosity depends, via the accretion rate, on the density and flow
speed in the disk. For most cases, this indicates an equatorial
outflow of 100-300 km s~ ! (Waters et al. 1988; Waters 1989).

In addition to the disk, Be stars also have stellar winds with
speeds ~10° km s~ !, which are detected by the presence of
asymmetric blueshifted absorption in the ultraviolet resonance
lines of C 1v (1550 A) and Si 1v (1400 A). The UV lines, as
analyzed by Snow (1981), indicate a mass-loss rate of about
107! to 107° My yr~'. A plot of the UV mass-loss rate
versus luminosity (Snow 1982) shows a strong power-law
dependence that is nearly an extrapolation of the law obeyed
by the more luminous O and OB supergiant stars, and is in
rough agreement with the theoretical mass-loss rate derived by
Castor, Abbott, & Klein (1975, hereafter CAK). This leads to
the suggestion that the UV line-producing portion of the wind
is radiatively driven in Be stars.

One of the most peculiar properties of Be stars is that the
mass-loss rate derived from the IR excess is a factor of 10>~10*
times larger than that derived from the UV (Waters et al. 1987),
and shows a much weaker dependence on stellar luminosity. In
addition, Ha line widths are on the order of a few hundred km
s~ 1; whereas, the UV edge velocities are about 1000 km s~ . It
is this disparity between the UV, IR, and optical results that
has led to the two-component picture for the outer envelope of
Be stars in which one component is a high-speed, highly
ionized, low-density, radiatively driven outflow in the polar
regions, and the second component is a low-speed, weakly
ionized, high-density outflow in the equatorial disk. In this
picture, the UV resonance lines are formed in the polar com-
ponent, and the IR excess and Ha emission are formed in the
disk component. The optical polarization then results from
scattering by the asymmetric distribution of electrons.

As noted previously, this picture is not unique to Be stars,
which are of luminosity classes III through V. The much more
luminous B[e] stars (sometimes called Be supergiants) also
show evidence for a two-component wind (Zickgraf et al. 1986).
This two-component model has also been applied to Wolf-
Rayet stars to explain the wind momentum problem of these
objects (Poe et al. 1989).

In apparent contradiction to the two-component model of
Be star envelopes is the evidence of a connection between the
equatorial and polar components. In studies of the time varia-
bility of 59 Cyg, the C 1v line, which is a “superionized ” state
in Be stars (higher stage of ionization than would be expected
for that spectral type), was seen to vary in conjunction with
changes in the Ha equivalent width, as well as with variations
in the V/R ratio (Doazan et al. 1985). This indicates that the
superionization and the equatorial disk are somehow linked.
In support of this, K. S. Bjorkman (1989) and Grady, Bjork-
man, & Snow (1987) and Grady et al. (1989) have found sta-
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tistical trends in the C 1v equivalent widths, edge velocities, and
presence of discrete absorption components verses inclination
angle and v sin i that are consistent with an equatorial concen-
tration of C 1v rather than a polar concentration. This has been
quite puzzling, since these results imply that, somehow, the
high-velocity superionized region exists at the same latitude as
the low-ionization-stage, low-velocity equatorial disk.

Superionization can be explained as a result of either col-
lisional ionization in a gas with temperatures higher than 10°
K, or radiative ionization by the Auger process following
K-shell absorption of X-rays in the envelope (Cassinelli &
Olson 1979). Either of these processes indicate temperatures far
in excess of the radiative equilibrium temperature around the
star. One mechanism for producing such temperatures is shock
heating of the material. Since the superionization appears to be
linked to the disk, one may speculate that somehow shocks
play a role in the formation of the disk.

1.2. Theoretical Background

All of the above properties form pieces of what is generally
called the “Be phenomenon.” There is, as yet, no theoretical
model that can simultaneously account for all the phenomena.
Clearly rotation is involved, as is a mechanism for driving a
stellar wind. Previous models of the wind from a rotating star
have mostly been one-dimensional models of the equatorial
flow versus the polar flow, although one two-dimensional
numerical calculation has been performed by Poe (1987). The
one-dimensional models of Friend & Abbott (1986, hereafter
FA) and Pauldrach, Puls, & Kudritzki (1986) examined the
equatorial flow using the CAK form for the radiation forces,
and they also included the correction for the finite angular size
of the stellar disk. However, the resulting mass-loss rates are
insufficient to produce the large densities and low velocities
required to match the observations of Be stars. To increase the
equatorial mass-loss rate, it was believed that additional forces
must play a role.

Friend & MacGregor (1984) examined the effect of adding
the Lorentz forces resulting from a rotating stellar magnetic
field. They generalized the Weber & Davis (1967) magnetically
driven wind to include radiation pressure resulting from line
opacity. Poe & Friend (1986) extended this model to include
the effects of the finite size of the stellar disk, and they derived
the properties of the outflow in the equatorial zone of a rapidly
rotating B star. With a rotation rate of 87% of the critical
value, which is higher than is typically observed in Be stars, the
Poe & Friend model can only produce a density contrast of
about a factor of 5 from equator to pole. It cannot explain the
Be phenomena, because the equatorial wind speed is too large
(~10° km s~ ! instead of the observed 10> km s~ !) and the
density in the equator is an order of magnitude too small.

A mechanism that does produce a slow dense wind is the
bi-stability of radiation-driven winds, which was discovered by
Pauldrach & Puls (1990) in their study of the slow massive
wind from the hypergiant P Cygni (Bl Ia*). This star has a
mass-loss rate of about 1073 M yr~*, which is not unusual
for such a very luminous star; however, the terminal velocity of
the star is only about 200 km s~ !. In contrast, supergiants of
the same spectral class usually have winds with speeds of
greater than 1000 km s~ !. Pauldrach & Puls found that, for a
star with a temperature of 15-18 x 10 K, if the mass-loss rate
is large enough to be optically thick in the Lyman continuum
(they vary the surface gravity to achieve this), then the wind
shifts to a lower ionization state and the dominant driving lines
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for the wind shift from being the strong EUV resonance lines
to being the weaker but more numerous iron lines in the
Balmer continuum. The wind that is driven by these lines is
slow—in agreement with the P Cygni wind.

Recently, Lamers & Pauldrach (1991) suggested that this
bi-stability could be operating in the winds of rapidly rotating
stars with temperatures like those of P Cygni, such as Be and
B[e] stars. Suppose that in the polar region of a rapidly rotat-
ing star, where the ionizing flux is large (due to the von Zeipel
effect), the wind is optically thin in the Lyman continuum. This
results in a high-ionization-state, fast, low-density flow. On the
other hand, suppose that in the equatorial zones, which have a
low surface gravity and a low flux of ionizing photons, the
wind is optically thick in the Lyman continuum. Then the
equatorial flow will be dense and slow with a low-ionization
state—like the wind of P Cygni. Using the expected scaling
laws for the effective temperature and mass-loss rates verses
latitude, Lamers & Pauldrach have found that for B[e] stars,
the polar flow is optically thin and the equatorial flow is opti-
cally thick in the Lyman continuum; therefore, the bi-stability
mechanism may possibly explain the two-component nature of
the luminous B[e] stars. However, for Be stars the mass-loss
rate at the equator is too small to ever be optically thick in the
Lyman continuum. They conclude, therefore, that there must
be some other mechanism to further enhance or compress the
equatorial outflow.

The discovery of spectral line features that can be inter-
preted as arising from nonradial pulsations (Vogt & Penrod
1983; Baade 1984) has led to the suggestion that nonradial
pulsations may play an important role in driving an enhanced
equatorial mass loss in Be stars. In a rapidly rotating star, the
amplitude of the pulsation is largest for zones near the equator.
Hearn (1988) has suggested that the high density of the Be star
disks could perhaps arise as a consequence of the enhanced
equatorial amplitude of nonradial pulsations present in rapidly
rotating stars. In his picture, the pulsation gives rise to a depo-
sition of wave energy in the subsonic portion of the flow, which
increases the mass-loss rate. The line radiation pressure in the
supersonic portion then produces a slow, and hence dense,
equatorial outflow. The model is related to the work of Pijpers
& Hearn (1989) on the production of wave-driven winds from
red giant stars. Initial indications are that, for a high enough
acoustic flux, the model can increase the mass-loss rate by a
factor of 100 times the CAK mass-loss rate, while maintaining
a terminal speed of about 150 km s ! (Koninx & Hearn 1991).
Unfortunately the model has the unacceptable property that
the acoustic wave amplitude is greater than the speed of sound
(J.-P. Koninx 1991, private communication). Details have yet
to be worked out, but even if the model is not able to achieve
the density concentration that is inferred for Be stars, the basic
idea of accounting for the acoustic wave momentum deposition
may be important.

Instead of employing a mechanism that increases the equa-
torial mass-loss rate, another mechanism that increases the
equatorial density is the convergence of the polar flow toward
the equator which results from the rapid rotation of the star.
This approach requires a full two-dimensional axisymmetric
model of the structure of the wind. Poe (1987) developed such a
model for rotating stars, but focused primarily on the fast line-
driven winds of the hotter O stars. In addition, he was only
able to examine cases for which the rotation speed was less
than 60% of the critical value. His results demonstrated that
the streamlines converge toward the equator before turning
radially outward, but the degree of convergence was small for
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the stars that he studied. This is because, for hotter stars, the
radiation forces dominate; therefore, the radial component of
the outflow is large compared to the meridional component.
As a result, the density enhancement of the equatorial zone was
too small and the corresponding terminal velocities were too
large to explain Be stars—a conclusion which basically verified
the results of the one-dimensional equatorial versus polar
models. Although Poe’s model does not reproduce the obser-
vations of the cooler B stars, it has, nonetheless, brought useful
insight into the two-dimensional flow patterns and the degree
of convergence which results from rotation.

1.3. Synopsis

In this paper we consider the two-dimensional flow pattern
originating from the B stars and discover an additional mecha-
nism that leads to the formation of a dense equatorial disk. In
this mechanism, the disk arises as a result of the confluence of
the flow from high latitudes as it converges into the equator.
To study this process, we have developed an analytic approx-
imation for the supersonic region of the flow. This supersonic
approximation has the property that we may obtain the global
two-dimensional axisymmetric outflow directly from the one-
dimensional equatorial solution. Employing our approximate
solution, we are able to explore a different region of parameter
space than that explored by Poe (1987). When we match the
observational constraints on the terminal velocities in the
winds of Be stars, our model leads to the formation of shocks
above and below the equator. These shocks compress the flow
and provide a previously unknown mechanism for forming a
dense equatorial disk, which may resolve the disagreement
between the observed IR and UV mass-loss rates. The model
predicts the observed v sin i thresholds for the onset of Be
phenomena (Waters 1986; Grady et al. 1987, 1989). It also
predicts the correct degree of superionization and explains the
presence of C 1v in the equatorial region.

The outline of this paper is as follows: In § 2 we introduce
the supersonic approximation and the process for obtaining
the two-dimensional solution from a one-dimensional equato-
rial solution of the equations of motion. In § 3 we discuss the
imlications of the model for producing a dense disk, and we
derive estimates of the density and thickness of the disk as well
as estimates of the shock temperature. Section 4 presents the
application of the model to Be stars, and we discuss the link
between the dense disk and the superionization of the wind.

2. ROTATING WIND MODEL

2.1. Fluid Equations

A stellar wind consists of circumstellar low-density gas that
has been accelerated by some external force such as radiation
pressure or stellar magnetic fields. For an inviscid Newtonian
fluid element of mass, m, volume, 7, density, p, pressure, P, and
velocity, », the fluid equations that we require are the contin-

uity equation,
om ap
— = —+V- =0, 1
= j [ o+ (pv)]dr (1)
and the momentum equation,

o(mv) d(pv) .
o5t J; I: or +V (pv@v):|d‘l:

= J (=VP + pfydr, )]
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where 6/0t is the Lagrangian time derivative (see, e.g., €gs.
[3.1.9]-[3.1.11] in Batchelor 1967), ® denotes the tensor
product (thus » ® » has components v; v;, see Schutz 1980), V is
the covariant derivative, and f** is the total external force per
unit mass on the fluid element. Note that the usual differential
form of the fluid equations may be obtained by noticing that
the volume element, t, is arbitrary, which implies that the inte-
grand of equation (1) vanishes and that the integrands of equa-
tion (2) must be equal.

In the energy equation, the radiative heating and cooling
terms dominate, so the temperature of the wind is determined
by the condition of radiative equilibrium. Klein & Castor
(1978) have calculated the non-LTE temperature distribution
in a stellar wind and find ihat the electron temperature is
approximately constant with radius and is slightly less than the
stellar effective temperature (cf. Cayrel 1963; however, see
Drew 1989). Therefore, for simplicity, we make the usual
assumption that the wind is isothermal with a temperature
equal to the effective temperature of the star. In this case, we
replace the energy equation by the isothermal equation of
state,

P=a%p, 3)

where a is the isothermal speed of sound in the wind.

We wish to model the wind from a rotating hot star. Since
we are interested in the case where rotational effects dominate
the flow, we cannot assume the usual spherical symmetry, but
instead assume steady-state axisymmetric flow. We are inter-
ested in the luminous early-type stars, so we assume the wind is
driven primarily by continuum plus line radiation forces
(including the FA finite disk correction factor). With these
assumptions, in spherical polar coordinates (radius, r, polar
angle, 0, and azimuth, ¢), the differential form of the continuity
equation (1) becomes

12
r sin 0 00

10 .
= 5 (%00 + (sin 0 pvg) =0, @

and the r-, 6-, and ¢-components of the momentum equation
(2) are, respectively,

a a 2 2 Za
o Ot WA a0 e
o r 06 r p Or
vy vy 0V DDy v;  d’dp
v’6r+r66 —COtar__rpal?’
1 5 an .
rsin9<v' 6r+ . 60)(r sin 6 vy) =0. 5)

For a spherical star of mass, M, radius, R, luminosity, L, and
electron scattering continuum opacity, o,, the sum of the gravi-
tation and radiation forces is

GM o,L 1 dv,\*

- [1 +fk<ae PV dr) :| ’ ©
where f is the finite disk correction factor, given by equation
(50) of CAK—see also FA. The CAK force multiplier con-
stants, k and o, are determined by the number of optically thick
lines as a function of line opacity (for appropriate values, see
Abbott 1982). Abbott uses the normalization of k correspond-
ing to selecting hydrogen for the characteristic Doppler width;
therefore, v,, = (2kT/my)'/%. Note that the external forces are

fext —
r
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all central forces, which implies, with the additional assump-
tion of axisymmetry, that the angular momentum about the
rotation axis is conserved along a given streamline (see the
¢-component of the momentum eq. [5]).

2.2. Supersonic Approximation

Equations (4), (5), and (6) comprise the equations for the
wind of a rotating hot star that we wish to solve. Poe (1987)
solved these equations numerically. However, using a numeri-
cal model, it is difficult to predict the response to changes in the
various parameters. For this reason, we seek an approximation
that permits us to develop an analytic solution to the model
equations. For a spherically symmetric stellar wind model,
such as the CAK model, gas pressure forces are unimportant in
determining the fluid streamlines in the supersonic portion of
the wind. A similar situation also holds in the two-dimensional
momentum equation (5). As can be seen later in § 2.5, conser-
vation of angular momentum implies that the scale of both v
and v, is set by V,,, R/r. Thus we see that each of the momen-
tum terms within equation (5) are either of O(v?), O(v, V,,,), or
O(V2), whereas, the pressure terms are of O(a?). In early-type
stars V,,, > a; therefore, whenever v, is also >a, the pressure
terms are unimportant, as long as the density gradient is not too
large (and r is not much greater than R). Thus, in the super-
sonic region, the momentum equation (2) reduces to

to) _ f of s (> 1), %)

where the sonic point, r,, is defined by v,(r;) = a. Equation (7) is
nothing more than Newton’s law of motion for free particles.
In other words, when the pressure terms disappear, we effec-
tively have a gas of noninteracting particles. Therefore, the
solution to the fluid streamlines is a set of free particle trajec-
tories determined by the external forces: gravity and radiation
pressure. To determine an approximate solution for the
streamline in the supersonic portion of the wind, we first need
the initial conditions at the sonic point. Then, in principle, we
merely need to integrate the Newtonian equations of motion
for a particle to find the fluid streamline. In practice, however,
we employ a one-dimensional solution of an individual stream-
line and adapt this solution to the particular initial conditions
of each streamline.

2.3. Flow in the Equatorial Plane
FA have numerically solved the fluid equations (4) to (6) in
the equatorial plane (f = n/2 and v, = 0) of a rotating star;
thus, their solution provides us with an appropriate one-
dimensional solution for an individual streamline. FA give the
following convenient fits to their numerical model as a function
of rotation speed, V,,:

V.. \”
= 1] — ,
va) CUeSC( V )

crit

R\f
v,=vm<1—-—> ,
N

R
U¢ = V;ot 7) H

. Vo)
M=§MC‘“‘<1 - V) ’

C

®
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with (=x~220/(1 —a), f=08, y=035 ¢=—-043. We
obtained the value for £ by fitting Figure 4 of FA, and we have
ignored the weak dependence on escape velocity, v, in the
equations for the terminal velocity, v, and mass-loss rate, M,
which is really the equatorial mass flux multiplied by 4nR2.
M.k is given by equation (46) of CAK, and the critical rota-
tion speed, V., is defined by V., =[GM( — I/R]'? =
Veso/2'/?, where T = o, L/4ncGM.

Note that in the definition of V,,,, FA have ignored the
effects of rotation on the shape of the star [including the rota-
tional distortion decreases the true critical speed by the factor
(2/3)"/7]. Since it is not clear how to fully correct the FA model
for this effect, we must also ignore the effects of rotation on the
shape of the star. At low rotation speeds, this is not a signifi-
cant problem, since there is significant distortion of the star
only when the star is rotating quite fast. However, one must
keep in mind that when we report the ratio of a rotation speed
to the critical speed, Q = V,,,/V.,;,,» We are in general using the
critical speed for a spherical star. Later we will estimate a
partial correction, to these reported values of Q, that accounts
for rotational distortion.

Although the critical point of a radiatively driven flow may
occur some distance from the star, the sonic location is just
above the stellar surface at r, ~ R. From equation (8), we
obtain the following initial conditions at the sonic point in the

equator:
r~R,
0=m/2,
v,=a, ©)
=0,

vy~ V,

rot °

Note that the result v, = 0 is a result of assuming that the flow
is symmetric under reflections about the equatorial plane.

2.4. Solution in the Orbital Plane

Given that the flow in the equator is given by equation (8)
with initial conditions (9), we now construct the approximate
two-dimensional supersonic solution from the one-
dimensional equatorial solution. Consider a fluid streamline
originating at the point (r = r,, 0 = 6,). The particle trajectory/
streamline is determined by gravity and radiation forces, both
of which are central forces. Therefore, just as in the Kepler
problem, the motion of the particle will be confined to an
“orbital” plane, perpendicular to the angular momentum
vector, L, which is conserved. The initial conditions for this
streamline determine the orientation of the orbital plane, since
the unit vector normal to the orbital plane may be obtained
from

f=—0ocrxvl._,,,
(L §
where the prime denotes the coordinate system of the orbital
plane.
We next determine these initial conditions at the sonic point.
The initial position is

(10)

(11a)
(11b)
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The r-component of the velocity is, by definition, the isother-
mal speed of sound,

(11¢)

and the ¢-component of the velocity is determined by conser-
vation of the angular momentum per unit mass about the
rotation axis, that is, L, = RV, sin 8(R) = rv, sin 6(r). Since

the sonic point occurs close to the stellar surface, we will
assume that 6(R) = 6,. Solving for v, at the sonic point yields

v R) sin” 9,
Yo % Veo\ U ) Gin 6(r)

~V

rot

=a’

(11d)

Note that this azimuthal velocity is the same as at the stellar
surface.

Determining the 6-component of the velocity is more diffi-
cult. In the subsonic region of the flow, hydrostatic equilibrium
dominates the forces. It is perhaps plausible (but by no means
certain) that the subsonic flow will be primarily along the gra-
dient of the pressure. Ignoring the rotational distortion of the
isopressure surfaces, this direction will be primarily radial.
Based on these arguments we will assume that v, < vy atr =r,,
in which case the effective boundary condition on the 6-
component is

sin 6, .

(11e)

From equation (10), we see that, as long as v, < v, the unit
vector perpendicular to the orbital plane is

vp=0.

P RFy X g . (12)
This implies that the orbital plane is inclined by the angle
.om
== 0o » (13)

with the line of nodes along the y-axis (see Fig. 1).

Using this orientation of the orbital plane (eqs. [12] and
[13]) we transform the initial conditions at the sonic point (11)
to the orbital plane coordinate system, which gives

r~R,

0 =n/2,

v=a, (14)
vp =0,

v, =V,

rot

sin 6, .

These initial conditions for an arbitrary latitude, equation (14),
are identical to the equatorial initial conditions, equation (9),
except for the modification of v,. Note, however, that this
modification to v, is equivalent to choosing a different stellar
rotation rate.

We now know the initial conditions to employ at an arbi-
trary latitude when we determine the location of the stream-
lines. Next, we must determine how to adapt the equatorial
solution (8) to find the solution of the inclined orbit. Note that
given equivalent initial conditions and forces, the particle tra-
jectory in the inclined orbit will be identical to the trajectory in
the equator. We have already seen that, as long as we choose
the appropriate rotation rate, the initial conditions are the
same. The external forces consist of gravity and a density-
dependent radiation pressure. If we assume that the stellar
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F1G. 1.—Orientation of the “orbital ” plane for streamlines originating at polar angle 6,. The orbital plane is inclined by an angle i about the y-axis. The dashed
line shows the direction of the initial velocity vector, v,. The streamline labeled (a) denotes a case where the rotation speed of the wind is high, and the streamline
labeled (b) denotes a case with a low rotation speed. Note that in case (a) the streamline crosses the equator at an azimuth ¢’ = n/2.

surface is nearly spherical and that the density diverges with
distance approximately like the equatorial solution, then the
forces due to radiation and gravity will be the same in both the
inclined orbit and in the equator. Therefore, subject to the
approximations above, the inclined trajectory will be the same
as the equatorial trajectory. Thus, we may obtain the solution
in the inclined orbit directly from the equatorial solution (8) by
merely replacing V,,, — sin 0, V,,, which yields

. Vet Y
V(00) = (vl 1 — sin 6, v s

crit

o(r, Bg) = vm(o(,)(l - 5>ﬁ ,
r (15)

R
U:ﬁ(r’ 6,) = sin 90 Vrot(?) ’

. 1. . Ve
M@, = 3 Mcaxl 1 — sin 6, v )
where M(6,) is the mass flux multiplied by 47R2.
To find the trajectory in the inclined orbit, we can obtain a
differential equation for the trajectory by dividing v, by v}
which gives

2 B
dr | _valOo) 0 RY (16)
d¢’ R |[sin 6,V,, r
This has the solution
1 [sin 6,V,, R\!7#
== | —= B . 17
¢ l—ﬂ[ 0.100) ](1 r) 17

Note that as r — oo, the particle trajectory becomes radial with
an asymptotic value for ¢’ of

oo [sin 0, V]
m ST B ve00) |

An important consequence of this asymptotic behavior is the
possible existence of two classes of trajectories (shown in Fig.
1), which are distinguished by large versus small ¢;,,,. Case (a)
trajectories cross the equator and have a large value for ¢,,,,
while case (b) trajectories are mostly radial and have a small

(18)

’

value for ¢;,.,. We can see from equation (18) that there are
four possible ways to obtain large versus small values of ¢,,,:

1. Different rotation speeds, V,,,. For small V, ,, the trajec-
tory (labeled b) initially curves outward and up from the
straight line trajectory (dashed line) and has a small value for
¢.ax- For large V,,, the trajectory (labeled a) curves inward
and down from the straight line, and has a large value for ¢, ,,.

2. Different values of the initial latitude, 6,. Trajectories
originating near the pole, where sin 6, is low, will be mostly
radial (trajectory b); whereas, trajectories originating at low
latitudes, where sin 6,, is large, may deflect down toward the
equator (trajectory a).

3. Different values of v,. Large terminal speeds correspond
to trajectory (b), and low terminal speeds correspond to trajec-
tory (a).

4. Different values of the velocity law exponent, f. Slow
velocity laws (large f) correspond to case (a) trajectories, and
fast velocity laws (small ) correspond to case (b) trajectories.

The physical cause of the behavior associated with equation
(18) will be discussed laterin § 3.1.

2.5. Transformation to Stellar Coordinates

Given the location of the streamline in the orbital plane,
equation (17), we can transform back to stellar coordinates.
From the spherical triangle in Figure 2a, we obtain the follow-
ing coordinate transformation:

cos 0 = cos 0, cos ¢,

. sin ¢’
sin ¢ = — s
sin 0 (19)
tan 6,
cos ¢ = tan 0 °

and from Figure 2b, for the velocity transformation we obtain
v, =1,
V... R sin? 0,

Vg = U} COS Y = —— —
$- "¢ r sinf’

(20)
V,

rot

R sin 6, cos 6, .
si

bo = Uy Sin Y = r sin 0

n ¢’ .
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(b)

F1G. 2.—(a) Spherical triangle used for obtaining the coordinate transformation from the orbital plane (primed) coordinates to stellar (unprimed) coordinates at
the point P. The dotted region indicates the orbital plane. (b) Velocity transformation from orbital to stellar coordinates. Note that the orbital plane (dotted region) is

perpendicular to the page.

Note that the scale of both v, and v, is set by V,,, R/r. This is a
consequence of the conservation of the total angular momen-
tum, and is brought about by a combination of Coriolis and
centrifugal forces.

2.6. Wind Density

Using our knowledge of the fluid streamlines, we can obtain
the density in the wind from the continuity equation. Consider
the stream tube shown in Figure 3. Mass conservation requires
that

M(6,)
4

—2°sin 0 6o d = po, r* sin 0d0de . 1)

F1G. 3.—Stream tube used for obtaining the density in the wind. Note that
rotational invariance implies that d¢ = d¢,; however, df is not constant in
general.

Rotational symmetry implies that the streamlines are invariant
under a rotation by d¢, about the z-axis; therefore, dp = d¢,.
Solving for p then gives
M@y
dnr*v(dy/dp,)

where p = cos 6. We may evaluate du/du, by starting with
equation (19), from which we get

22

du . d¢’

—— =cos ¢ — g sin ¢’ —,

dy, ¢~ bo dpg
cos? 8, d¢’

=cos ¢’ + ¢ . (23)

sin 0, d(sin 6g)

From equation (17) we find
_dy ¥ T,
d(sin 6,) sin 6,

and from equation (15) we obtain

dlnv
—si — = 24
sin 0 d(sin 90)] ’ @4

din Vo _ -7 Vrot/ Vcrit (25)

d(Sil’l 00) - 1 - Sil’l 00 V;ot/V::rit

Inserting equations (25) and (24) into equation (23) we finally
find

sin 0o Vou/ Veri
1 —sin 90 V;ol/Vcrit

d
LE _ cos ¢’ + cot? 00<1 +
duo

>¢’ sin ¢’ .
(26)

This equation in conjunction with equation (22) provides the
wind density.

2.7. Model Summary

Our model for the approximate two-dimensional supersonic
flow from a rotating star consists of equations (15), (17), (19),
(20), (22), and (26) which provide the position, velocity, and
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density of a streamline originating at 6, parameterized as a
function of radius. One may thus construct the entire two-
dimensional supersonic approximate solution by mapping the
streamlines [6(r), ¢(r)] for successive values of the starting
polar angle 8, (although an individual streamline does not lie
at constant azimuth ¢, employing rotational symmetry elimi-
nates the ¢-dependence of the global solution). Alternatively,
given a location (r, 6), one must iteratively solve equations (17)
and (19) to first find 6, of the streamline passing through that
location prior to evaluating the velocities and density.

3. MODEL RESULTS

We wish to investigate the geometry of the supersonic
streamlines predicted by our model and the implications for
the winds from rotating hot stars. The behavior of the stream-
lines is quite sensitive to the ratio { = v_/v,,.. If this ratio is
large, the flow velocity increases rapidly and the effects of rota-
tion are small. On the other hand, if { is small (near unity), then
the flow velocity increases slowly and the effects of rotation can
be quite pronounced. Unfortunately, theoretical values of v,
(and hence {) do not agree with the observational values for B
stars. Reasonable values for the CAK parameter « are about
0.5 for B stars (Abbott 1982); this implies a theoretical value of
{ =~ 2.2 (see eq. [8]). Figure 4 shows the observed values of { for
main-sequence stars. These values of { range from about 3.5 for
early O stars to less than one for late B stars. Thus, for B stars,
the value of { is significantly below the theoretical value. Given
the interesting dynamical effects associated with the observed
values of {, we have decided to treat { as a free parameter in
our model.

In the following three subsections, we first discuss the
geometry of the streamlines in the wind, which leads to the
formation of an equatorial disk under certain circumstances.
Then we estimate the physical properties of this disk, and

4 T T T T
%o
0, O - O Dwarfs
O8go V - BeSilv
@ vV -BeCIV
3 N
o -
. P
>° o 80 v
~ 2} (o] .
> © w ¥
gg vVev
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1k vV 4
'v v ¥ v |
v w%ggv_
v
w¥§ v YV Vi
v v'v¥' v
ol 1 L v v ¥ v
05 BO B5 A0

Spectral Type

FIG. 4—Observed values of the ratio of terminal wind speed to stellar
escape speed, { = v,,/v,,, Vs. spectral type. Note the rapid increase in going to
stars earlier than B2 which means that these earlier-type stars are less likely to
have an equatorial disk. (For O stars we used the estimates of the terminal
speed from Prinja, Barlow, & Howarth 1990, and for the Be stars we used the
edge-velocities from K. S. Bjorkman 1989. The escape speeds are from Table 1.)
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finally we discuss the connection between the formation of the
disk and the presence of superionized elements.

3.1. Wind Properties

To map the entire two-dimensional flow we first selected a
grid of initial polar angles, 6, for the streamlines. We then
stepped through a radial grid from 1 to 10 stellar radii to map
each of the streamlines. As we stepped through the radial grid
we evaluated the position, velocity, and density of the fluid at
that point.

Figure 5 shows the streamlines originating at 5° intervals on
the stellar surface for selected values of Q = V,,/V,;, with { =
Uo/Vesc = 1. To suppress the azimuthal motion we plotted only
the z and w coordinates of the streamlines, where z is the height
above the equator and w is the distance from the rotation axis.
Rotational symmetry thus implies that the flow originating at
0, lies in the surface of revolution (about the z-axis) generated
by the associated curve in Figure 5. Therefore, these surfaces of
revolution are the “flow sheets” from the star. Note that for
large V,,, the streamlines originating near the equator even-
tually cross the equator; whereas, those streamlines originating
near the pole never cross the equator. These are the two char-
acteristic solutions alluded to earlier in reference to Figure 1.
Furthermore, note that for low rotation rates, only the non-
crossing streamlines exist; however, above some threshold
rotation rate, both equator-crossing and noncrossing stream-
lines exist.

Let us now explore the physical origin of the equator-
crossing streamlines. To deflect the fluid towards the equator,
there must be a zone near the star where there is a physical
force (in the nonrotating reference frame) which has a down-
ward component towards the equator (in the —£ direction).
The only physical forces acting in the supersonic approx-
imation of our model are gravity and radiation pressure, both
of which are radially directed. Therefore, the only way a net
force with a negative z-component can result is if gravity
exceeds the radiation force, which implies that the equator-
crossing streamlines can only arise when this situation occurs.

We can see this behavior illustrated in Figure 1 where we
changed the rotation rate. For small V,,, the noncrossing tra-
jectory, case (b), initially curves outward and up from the
straight line trajectory. This positive curvature indicates that
the net physical force points outward, which in turn implies
that the radiation forces must initially exceed gravity. For large
V.oi» the equator-crossing trajectory, case (a), initially curves
inward and down from a straight line. This negative curvature
indicates that the net physical force initially points inward,
which implies that the radiation forces are initially smaller
than gravity. Note that there can still be an outward motion
because of centrifugal forces.

In our model, we do not directly deal with the forces, but
instead we are using mathematical curve fits to the FA model.
Therefore the mechanism whereby gravity can exceed the radi-
ation force (in the supersonic region) is obscured. To discover
the mathematical origin of this behavior in our model, recall
that v,(r) oc v,,, which implies that the sum of the forces in the
rotating frame, f,4 + fyray + foenss € dv,/dt oC v, dv,/dr oc vZ. By
arbitrarily changing {, and hence v, or by changing the cen-
trifugal force, f,.,,, we implicitly change the radiation force in
such as way as to maintain this scaling relationship. One
concern with arbitrarily reducing { to match the terminal
speed of B stars is the validity of this implicit mathematical
scaling of the radiation forces in relation to the gravitational
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o/R

FiG. 5—Streamlines for various values of the rotation rate Q = V, ,/V,;, for a B2 star where { = 1. The streamlines originate at 5° increments in latitude, thus the

crit

separation between streamlines is an indication of the density in the wind. Note that the ¢-component of the motion is not shown in this figure, thus the flow sheet
from a given latitude is the surface of revolution of the appropriate curve in this diagram. Note also that for Q > 0.4 the streamlines cross the equator, and for larger

Q, the streamlines from a larger fraction of the star cross the equator.

force. Since we are not actually solving the full set of fluid
equations using a set of CAK parameters which give a low
value of {, we cannot be certain that the radiation force
actually scales in this fashion.

To determine that the implicit scaling relationship is plau-
sible and to verify that, in fact, gravity can exceed the radiation
force in the supersonic region of a rotating wind, we modified
the FA model to include the dependence of the CAK force
multiplier, M(t), on n,/W (Abbott 1982). Including this depen-
dence accounts for changes in the ionization balance which
affect the force multiplier and results in a lower terminal speed
of the wind (see Kudritzki et al. 1989). This allows us to obtain
a reasonably low terminal speed with realistic CAK param-
eters (we will present the results of this modification in a future
paper). With this modification, the force multiplier (the second

term inside the brackets in eq. [6]) is given by

1
M0~ )

where f is the finite disk correction factor, n, is the electron
number density, W = 0.5{1 — [1 — (R/r)*]*/?} is the dilution
factor, and t = o, pvy(dv,/dr)~! is the optical depth parameter.
The FA model is reproduced by choosing é = 0 (cf. eq. [6]).
For a B star with T, = 20,000 K we get (after fitting a power
law to k over the range of n,/W) from Table 2 of Abbott (1982)
that k = 0.6, = 0.5,and 6 = 0.17.

Using these CAK parameters and the modified force multi-
plier (27), we solved the r-component of the momentum equa-
tion (5) in the equatorial plane. For a zero rotation rate case,

27
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¥16. 6.—Forces vs. radius in an equatorial one-dimensional rotating wind
model that has v /v, = 1.4. Note that in the nonrotating case, Q = 0, the
radiation force exceeds gravity once the pressure support is lost, which occurs
near the sonic point. In the rapidly rotating case, Q = 0.75, the radiation force
does not exceed gravity until the centrifugal support is lost.

the large value of 6 reduces the terminal speed ratio to { = 1.4,
which is relatively close to the observed value of { = 1. The
mass-loss rateis M = 3.6 x 1071° M, yr~*, which agrees with
mass-loss rates derived by Snow (1981). The corresponding
forces are shown in Figure 6 as a function of radius for the
nonrotating case as well as rapidly rotating case. Note in the
nonrotating case that the radiation force exceeds gravity at a
radius of 1.01R, which is the sonic point in the wind (as evi-
denced by the rapid drop in the gas pressure); however in the
rotating case, gravity exceeds the radiation force out to a
radius of about 3R, which is well beyond the sonic point. Thus
gravity can in fact exceed the radiation force in the supersonic
region and produce a net component of the force towards the
equator. To maintain a smoothly accelerating flow in the non-
rotating case, the radiation force must support the flow once
the gas pressure disappears; this is why the radiation force
exceeds gravity in the supersonic portion of the flow. In the
rotating case, however, the centrifugal force can support the
flow to much larger radii than can the gas pressure (which
effectively disappears at the sonic point), and it is only after the
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centrifugal support is lost that the radiation force must support
the flow. Therefore if the star is rotating rapidly enough that
the centrifugal force provides a major component of the
support, then gravity will exceed the radiation force in the
region between the sonic point and the point where the cen-
trifugal support is lost. If this region is sufficiently large, then,
in the nonrotating reference frame, the fluid will experience a
net force toward the equator for a long enough duration that
the streamline will cross the equator.

The centrifugal support is largest at the equator and
decreases with increasing latitude. For this reason, if the rota-
tion rate is large enough that there are equator-crossing
streamlines, the equator-crossing streamlines will originate in a
zone of latitudes centered about the equator. Of the equator-
crossing streamlines, the streamline which crosses the equator
closest to the star is the streamline that originates at 6, =
n/2 — €, where € is infinitesimal. An important aspect of the
equator-crossing solutions is that the radius at which the first
streamline crosses the equator is not the stellar surface, but
rather a finite distance away from the star. We call this initial
crossing radius the convergent point, since most of the stream-
lines cross the equator just beyond this location. To determine
this location, note that when a streamline intersects the
equator, ¢’ = m/2 (see Fig. 1). Solving the trajectory equation
(17) for r at ¢’ = =/2 for the streamline originating at 6, = /2

— e gives, in the limit € — 0,

Teon nf(l — Bl — Vrot/Vcrit)y]l/(l *ﬁ)} -1
RV . @8
R { [ \/E th/Vcrit ( )

Figure 7 shows the convergent point location verses rotation
rate, Q, for several values of the terminal speed ratio, {. Note
that for a specific value of {, the location of the convergent
point starts at infinite radius and moves inward as the rotation
rate is increased above the threshold rotation rate. Conversely,
for a specific value of Q, changing the value of { changes the
disk location.
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FiG. 7—Convergent point location vs. rotation rate for several values of
the terminal speed ratio { = v, /v,,.. For each {, note that as the rotation rate is
increased above the threshold rotation rate, the convergent point moves
inward. This implies that the detached disk forms closer to the star at higher
rotation rates.
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F1G. 8.—Velocity components of individual streamlines for two values of the rotation rate, Q, with { = 1. The curves are labeled according to their initial polar
angle 6,. The curves terminate when the streamline crosses the equator (§ = n/2). Note that the termination point marked 90 on the abscissa corresponds to the

convergent point.

Figure 8 shows the r-, 6-, and ¢-components of the velocity
for two typical rotation rates for which there are equator-
crossing streamlines. The velocities are plotted as a function of
radius with each curve corresponding to a given streamline,
labeled according to its initial polar angle, §,. The curves ter-
minate when the streamline crosses the equator, so the velocity
of the fluid entering the equator may be determined from the
locus of termination points. Note that, for Q = 0.75, the flow
entering the equator has a maximum value of v,/V,, X 3,
which occurs atr =~ 1.1R.

Figure 9 shows the density in the wind for the same cases as
Figure 8. Again, the locus of termination points provides the
density of the wind as it enters the equator. Note that near the

equator, the wind density can be a factor of 10 larger than at
the pole. Also note that, in the pole, the density is lower than
the equivalent zero rotation rate model. We know that the
equatorial flow must remain in the equator (by symmetry);
therefore, as the streamlines cross the equator, the specific
volume of the fluid goes to zero, implying that the density
diverges (note that we have terminated the streamlines at the
equator, so this divergence is not seen on the plot in Fig. 9,
except in the region near the convergent point). The large
density implies that the pressure terms will dominate the
momentum equation, and our approximate solution breaks
down in the equatorial region at the convergent point and
beyond.
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F16. 9—Density along individual streamlines (short dashed lines) for two
values of the rotation rate, Q, with { = 1. Again the curves terminate when the
streamline crosses the equator. The density of a zero rotation rate model is
shown for comparison (medium dashed line). Note that using zero rotation rate

model for the polar flow is not very accurate. The solid line gives the density of
the disk (from Fig. 17).
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3.2. Disk Formation

We now investigate the consequences of the situation in
which the streamlines cross the equator and our approx-
imations break down. Streamlines cannot cross each other
since the large density creates a pressure which will ultimately
turn the flow. Above some threshold value of the rotation rate,
the component of the flow velocity perpendicular to the
equator, v, = —Uplg—n/2, iS supersonic for some streamlines
and subsonic for others as they enter the equatorial region;
whereas, the r-component is supersonic everywhere. If the 6-
component is subsonic, then an ordinary pressure gradient will
suffice to turn the flow parallel to the equator. However, if
both the r- and 6-components are supersonic, then the infor-
mation that the flow must be parallel to the equator will no
longer to be able to propagate upstream. In this case, a stand-
ing oblique shock must develop to turn these streamlines.
To determine the radial location of these shocks, we must
therefore determine which streamlines have a supersonic
0-component of the velocity as they cross the equator. Note
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that although the initial location of the shock is determined by
the 6-component, it is the slope of the shock that determines
the actual mixture of the - and §-components that are reduced
across the shock.

From the locus of termination points in Figure 8, we see that
the §-component of the fluid velocity can only be supersonic
beyond the convergent point, which implies that r@® > r_
where 73" is the minimum shock radius. Hence, it is only
somewhere beyond the convergent point that the standing
shock first forms, and it is thus detached from the star. Fur-
thermore the wind originates in both the northern and
southern hemispheres of the star; thus, the equatorial flow will
be bounded by standing shocks above and below the equator
(see Fig. 10). We call the compressed flow in the region between
the shocks the “equatorial disk,” and the flow in the region
outside the shock the “stellar wind.”

To form the disk, the rotation rate must be large enough that
some streamlines “cross ” the equator. The condition for some
streamlines to cross the equator is ¢,,,, > n/2 for at least some
range of 6,. Solving equation (18) for the required rotation rate
for the streamline originating at 6, gives the crossing condition

Voot © {1-8) . Veot \
ot & 5 — 9, —t)
V. > \/5 sin 0, 1 —sin 6, (29)

Since sin 6, <1, a lower limit to the threshold velocity
required for crossing the equator may be obtained by choosing
0, = n/2, giving the equator-crossing threshold,

) =i )
<Vcril th \/5 C( ﬂ) Vcrit
Equation (29) implies that, for any rotation rate above this
threshold, some of the wind will attempt to cross the equator
and thereby be added to the disk. Note, however, that the
threshold for forming the standing shock and dense disk will
be somewhat higher than that given by equation (30), since, as
we noted earlier, the shock will form only if the velocity com-
ponent perpendicular to the equator is supersonic for at least
some of the equator-crossing streamlines. Figure 11 shows the
threshold rotation rate as a function of terminal speed ratio, ¢,
using the equator-crossing threshold (eq. [30]—Hfilled circles)
and using the supersonic requirement (filled diamonds). Note
that the supersonic condition only requires a threshold rota-
tion rate, Q,, about 0.04 larger than the crossing threshold.
Therefore, equation (30) is a fairly good approximation to the
disk formation threshold.

So far, we have been ignoring the effects of rotational distor-
tion; however, we can estimate the correction to the rotation
threshold that arises from rotational distortion. First, we note
that the mass flux and terminal speed for any streamline are
mostly determined by local conditions at the stellar surface, so
for each streamline we replace the distorted star by a spherical
star with identical mass and luminosity, but whose radius
matches the photospheric radius of that streamline. Now the
rotation threshold is determined from the equatorial stream-
lines, and the equatorial radius as a function of rotation rate is
given by

crit

(30)

R

Req(Qd) = 1 _ (1/3)93 )

G

where Q, is the ratio of the rotation speed of the true, that is,
distorted star, critical speed. Note that R., = (3/2)R at the
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Polar Wind

Polar Wind

Standing Shock Streamlines

Superionization Zone

F1G. 10.—Diagram of the dense disk produced by the standing shock in the wind, where { = 1 and Q = 0.5. The shock turns the flow parallel to the equator (see
inset), thereby preventing the streamlines from crossing at the equator. Note that the disk is detached from the star, and the shock temperature is responsible for the

superionization zone.

critical speed, Q; = 1. Dividing Q, by the spherical star thresh-
old rotation ratio, Q,;, gives

Qi Mo/Veida _ [B/2R
ch B (I/rol/l/::rit)lh - Req(gd) ’

and solving for Q; we obtain the distorted star correction to
the disk formation threshold

[P
%= JTrape

Note that since this expression ignores gravity darkening and
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F1G. 11.—Disk formation threshold vs. the ratio of terminal speed to escape
speed. Note that the supersonic threshold (shock formation) is only slightly
higher than the equator crossing threshold. Also note that for higher terminal
speed ratios, the star must rotate more rapidly to form a disk.

its effect on the radiative flux and terminal speed, it must only
be considered a partial correction to the rotation threshold.

If the star is rotating faster than the disk formation thresh-
old, only some fraction of the total mass loss will be added to
the disk. The material which is added to the disk (see Fig. 10) is
the wind that arises from the equatorial zone on the star which
has polar angles in the range

T A0, <0y <=+ Ab, . (34)
2 2
We find, from the crossing condition equation (29), that
n {1 — ﬁ)( th>y
cos Ay =——==—-—=|1—cos A8, = . (35)
0 \/i I/mt/l/::rit 0 V::ril

Thus, the fraction of the stellar surface whose streamlines form
the disk is the solid angle of this zone (given by eq. [34])
divided by 4z. This yields sin Af,. This fraction is shown in
Figure 12 as a function of rotation rate for several different
values of the terminal speed ratio. Note that for rotation rates
slightly above the disk formation threshold that approximately
half of the stellar wind goes into the disk.

The total mass-loss rates into the equatorial disk and the
polar wind can be obtained by integrating the mass-loss rate in
equation (15) over the two appropriate zones on the stellar
surface. This gives

. 1 . 2] Vm ¢
Md=5MCAKf (1—\/1_#21/_') du,

0 crit

L1 ! ( 5 Vm)f
M,=-M 1—J/1—p>=>)du,
2 cAx J;d K ‘/crit #
where u, = cos (n/2 — Af,) = sin Af,. Hereafter a sub(super)-
script d denotes the disk, and a sub(super)script w denotes the
polar wind. In deriving this equation we have assumed that the
mass-loss rate from the star is unaffected by the presence of the
disk. This is justified since the flow entering the disk is super-

(36)
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F1G. 12.—Fraction of the stellar surface, sin Af,, whose streamlines enter
the disk vs. rotation rate (shown for several values of {). Note that,for{ = 1,a
rotation rate Q = 0.42 (barely above the disk formation threshold) is large
enough that half of the stellar mass loss enters the disk.

sonic and information about the disk cannot travel back
upstream from the shock.

3.3. Disk Properties

We next discuss some of the dynamics of the disk so that we
can make order of magnitude estimates of the disk properties.
The disk turns out to be quite thin, so we describe the disk with
a one-dimensional model where we assume that the disk vari-
ables are only a function of w. The purpose of the shock/
pressure gradient in the equator is to turn the flow that enters
the disk parallel to the equator, so we will assume v = 0.
Although we will not present a complete solution of the model
of the disk dynamics in this paper, we can make some useful
estimates of the disk properties from the equations of such a
model. Consider the differential volume element in Figure 13.

>
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Balancing each component of the forces acting on the volume
element with the momentum fluxes entering/leaving the
element leads to the following three conclusions:

1. z-component. The pressure in the disk, P,, must balance
the z-component of momentum flux entering the disk; thus

d
Pd = {Pw + pr:Uz2 - vm( ZSh>:|}
dw

where zg, is the height of the shock above the equatorial plane
and the slope of the shock, dz,/dw, is related to the shock
angle, o, by dz, /dw = tan o, The wind pressure, P, density,
p.,» and velocity components, v, and v,, are evaluated imme-
diately prior to the shock.

2. ¢-component. The ¢-component of the disk velocity is
governed by conservation of angular momentum in the disk
after accounting for the angular momentum deposited by the
wind. One interesting consequence is that the rotation velocity
of the disk will initially decrease faster than 1/r (the usual
assumption based on angular momentum conservation in the
equator). This is because material with lower specific angular
momentum is added to the disk from the wind. Eventually, at
large radii, material is no longer added to the disk, so the
rotation speed asymptotically approaches a 1/r falloff. Note
that this behavior may have observational consequences in the
shape of the Ho emission-line wings.

3. w-component. The equatorial radial momentum equation
(7) of FA must be extensively modified. First, there is addi-
tional radial momentum deposited by the wind. Second, the
density dependent radiation forces must be modified, since the
density is determined by equation (37) instead of falling as 1/r?
as FA assumed. Last, since the ¢-component of the disk veloc-
ity is different from that assumed by FA, the centrifugal forces
arising from the ¢-component of the motion change as well.

; (37

2Z=2Zsh

These three conclusions imply that the disk dynamics are sub-
stantially different from the usual one-dimensional equatorial
models. Therefore, to determine the velocity structure of the
disk will require a new numerical model which includes the
modifications listed above.

T'min Tcon

\
\

min
I'sh

A
z
Qsh P
\,,_/' Shock Surface
A/\/k/
Pa
A
—> 0
—F r
Pl dzgp,
— - -
Vy ——)/—) Vg +dVy
-H//G—dm
T [0}
Py

FIG. 13.—Differential volume element (hatched region) used for obtaining fluid equations for the disk. Also shown are the ad hoc curve used for the disk surface in
the preshock region (dashed line) and the shock location (hatched line). Note that the leading edge of the shock occurs within the disk at a location beyond the

convergent point.
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To estimate the postshock density, we assume that the
shocked material quickly cools until it is in radiative equi-
librium and that the disk equilibrium temperature is also the
same as the wind equilibrium temperature, that is, we employ
the isothermal wind approximation. Substituting the isother-
mal equation of state (3) into equation (37) gives

i [HIRH 6 )]

The disk density, equation (38), is determined from conser-
vation of momentum in the disk. Next, we consider mass con-
servation. One usually uses the continuity equation to
determine the density in the fluid; however, in this case, the
disk density is already fixed by the z-component of the momen-
tum equation. Instead, the differential form of the continuity
equation determines the slope of the shock. This implies that
the thickness of the disk is determined by the total mass-loss
rate in the disk, that is, the shocks adjust their separation to
accommodate the accumulated flow in the disk, M (m). The
accumulated flow in the disk consists not only of the original
equatorial mass loss from the star, but also additional mass
added to the disk from the wind interior to the current loca-
tion, w. This may be obtained by first finding the initial polar
angle of the streamline entering the disk at this point, 8 (@, z,),
and then integrating the mass-loss rate of equation (15) from
this polar angle up to the equator, which gives

(38)

2= 2Zsh

. 1. Ko Voo \°
Md(w)=—MCAKf (1 —-J1-p ﬂ) du, (39)
4 0 V;:rit
where p, = cos 0y(w, z,,). Note that this is the flow in the upper
half of the disk; the total flow is twice this value.
The integral form of the continuity equation for the disk is

M (w) = 2nm? tan A8 p, o8, (40)

where M () is given by equation (39), and A@ is the half-width
(half opening angle) of the disk, that is, tan Af = z, /m. Note
that A6 is a function of radius, so the disk does not have a
constant opening angle. Unfortunately, to find A6, one must
first solve the radial momentum equation to obtain v%, which
we cannot obtain within the context of our present model.
Instead, we will make an estimate for the slope of the disk
surface (note that this will cause various inconsistencies in the
description of the disk—usually in one of v, z,, or dz/dw).
Assuming that the slope of the disk surface is continuous, we
see that when the disk first forms in the equator, its surface
must initially be perpendicular to the radial direction. The disk
is quite thin, so for simplicity we let the disk surface be param-
eterized by a hyperbola with the appropriate opening angle.
For the minimum radius of the hyperbola, we have used the
midpoint between the convergent point and the stellar surface.
This is to account for the density gradient which turns the flow
in the region inside the convergent point, that is, before the
shock forms. What we are really doing here is balancing the
z-component of the momentum flux entering this hyperbola
(disk) with the pressure at the equator. This hyperbola is
merely a mathematically convenient surface to use in the inte-
gral form of the fluid equations and is not necessarily a shock.
Specifically we have chosen

zgq = tan (A0)/w? — 12, ,

where 1, = (R + 7¢on)/2.

1)
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The shock first forms within the disk at @ = r%". The shock
starts in the equator as a strong (subsonic downstream) shock
normal to the flow in the disk since the flow already in the disk
does not need to be turned. The shock then turns as it merges
with the disk surface and becomes a strong oblique shock
which is responsible for turning the flow entering the disk.
Eventually it becomes a weak (supersonic downstream)
oblique shock since, far away from the star, the flow only needs
to be deflected by a small angle.

Figure 13 illustrates our assumed geometry for the shock.
The dashed line, starting at r,;,,, is the hyperbolic surface of the
disk in the region prior to the shock. The shock (solid line with
cross hatching) starts at 73" and merges with the hyperbola to
become the disk surface. Note that the discontinuity in the
shock slope as it merges with the disk surface is an artifact of
our assumptions.

We still need an estimate of the disk opening angle, Af, to
use in the ad hoc shock surface equation (41), so consider the
following order of magnitude argument. The polar wind mass
loss is given by

M (r) = 2ar*(1 — sin AB){p,, v, , 42)

where 2 = w? + z%, and {p,) is the solid angle averaged
density in the polar wind. We see in Figure 5 that the separa-
tion between streamlines is approximately constant at latitudes
outside the equatorial region. This implies that the average
density in the wind is approximately the same as the density at
the pole, that is, (p,,> & p,. Using this approximation, divid-
ing equation (40) by (42) and solving for Af under the assump-
tion that the disk is thin gives

=)
Mw Pa Uy

To make a rough approximation, note from Figure 8 that
for rotation rates somewhat above the threshold for disk for-
mation, sin Af, ~ 0.5, which implies M, * M. Hence, equa-

tion (43) reduces to
Ag ~ pgole (&
pa J\V)

Since this equation depends on the velocity in the disk, we will
have to rely on observations to make this estimate of the disk
opening angle. Once we have this estimate, we will then use our
ad hoc curve for the disk surface to estimate the slope of the
shock.

43)

(44)

3.4. Postshock Zone and Superionization

We have obtained estimates of the density and thickness of
the disk, and next we turn our attention to the interface
between the disk and wind. Initially, the wind is heated by the
shock. The shock temperature is (Krolik & Raymond 1985)

T, = 1.4 x 10° K( L 45)

2

100 km s~ ‘) ’
where vy, is the component of the fluid velocity perpendicular
to the shock, so the shock temperature also depends on the
slope of the shock. The temperature is typically on the order of
a few 10° K. At these temperatures, the shocked material cools
primarily via EUV continuum recombination and O 1v line
radiation at a wavelength ~200 A (see Fig. 3¢ of Kato 1976). If
we assume that the entire excess internal energy of the shocked
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material is released radiatively in the EUV, then (since we
know the mass-loss rate through the shock) we can estimate
the EUV luminosity from

Lgyy Md CUT,— T, (46)

where Cy is the specific heat per unit mass in the wind. The
large shock temperatures will collisionally produce local super-
ionization as the wind enters the disk and cools. Since the
parallel velocity component is unchanged by the shock, the
velocity of the thermally ionized species will be near the ter-
minal velocity; furthermore, they will be strongly concentrated
toward the equator. Note that our geometry for the disk super-
ionization zone (see Fig. 10) is qualitatively similar to the sce-
nario proposed by Marlborough, Snow, & Slettebak (1987),
although our superionization mechanism is entirely different.
The shock temperature depends on the stellar rotation rate;
therefore, if the superionization is in fact produced thermally
by the shock, we predict that the observed maximum stage of
ionization will correlate with the stellar rotation rate. Note
however, that we cannot calculate the shock temperature for
the initial portion of the shock that occurs within the disk.
Since the inner disk radius moves inward with increasing rota-
tion rate (see Fig. 7), it is reasonable to assume that the velocity
of this portion of the shock will decrease with increasing rota-
tion rate. If it turns out that this portion of the shock domi-
nates the production of the superionization, then the highest
stage of superionization will be anticorrelated with the rota-
tion rate.

If the shock temperature is large enough (i.e., when the rota-
tion rate is near critical), then the resultant X-ray flux may be
large enough to be observed with ROSAT; also the spectrum
may be hard enough to produce superionization via the Auger
effect (Cassinelli & Olson 1979). Since the mean free path of the
X-rays is large in the polar regions, superionization will occur
not only at the edge of the disk, but also in the polar regions.
Therefore, in this scenario, there will be a much less pro-
nounced equatorial concentration of the species than in the
pure thermal case.

The disk is not the only mechanism for producing shocks
and superionization in the wind. As is well known, radiatively
driven winds are unstable (e.g., Owocki & Rybicki 1984) and
this instability leads to the formation of reverse shocks which
travel outward from the star (Owocki, Castor, & Rybicki
1988). These shocks are generally believed to be the source of
the superionization in the rapid O star winds, and it is possible
that shocks also exist in the slower winds of early B stars
(MacFarlane & Cassinelli 1989). However, the shock strength
must scale with the terminal velocity of the wind; therefore, we
expect that the wind instability shocks will decrease in relative
importance for the later spectral types. Note also that the
instability produces these shocks regardless of whether or not
the star is rotating. This implies that these shocks will be
present to the same degree in both rotating and nonrotating
stars and, therefore, cannot be used to explain the excess level
of superionization present in Be stars versus normal B stars
(Grady et al. 1987). Grady et al. indicate that the excess C 1v
equivalent width may be attributed entirely to the presence of
blueshifted discrete absorption components (DACs). Further-
more, it is the presence of these DACs and not C 1v itself that
indicates a rotation threshold of v sin i > 200 km s~ !. This
suggests that the underlying C 1v profile is produced by the
wind instability shocks, while the DACs are produced by the
disk.
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In addition to superionization, the increased density of the
disk (after it cools subsequent to the shock) will significantly
enhance the IR free-free emission as well as the Ho emission
produced by the star. An interestng facet of the Ha profiles
observed in Be stars is that they exhibit double-peaked emis-
sion profiles rather than P Cygni profiles. This indicates that
the expansion velocity of the flow in the disk is low (on the
order of 10 km s~ ! or less). Since our model indicates that the
initial shock is perpendicular to the equator, the shock is ini-
tially a strong shock, and as a result the postshock velocity is
initially subsonic. This is near the location where the disk com-
pression is a maximum, so we expect the disk expansion veloc-
ity to be subsonic in the region that contains the highest disk
densities; therefore this subsonic region should dominate the
Ha formation. Beyond the region of maximum compression,
the density rapidly falls as the ram pressure of the wind
decreases and the expansion velocity of the disk increases.
Although our model does not address the details of the radial
expansion in the disk, it does qualitatively appear that the
model will predict double-peaked Ha emission profiles.

4. APPLICATION TO Be STARS

As an application of our model, we turn to the class of hot
stars which seems to exhibit the largest effects of rotation upon
the stellar wind, namely Be stars. Our model appears to natu-
rally account for many of the discrepancies in the observations
of these stars and may provide a basis for a unified interpreta-
tion of the results in many different spectral regions. For the
remainder of the discussion, we will choose parameters for a
typical B2 star: M =83 Mg, R=4.5 Ry, T =23,000 K
(Popper 1980; Hayes 1978). This gives a critical rotation rate
V.iw=590kms™ !,

4.1. Threshold Rotation Speed

In the context of our model, we interpret the Be phenomena
as being associated with the formation of the disk in the wind
of a rotating star. To form the disk, we saw in equation (30)
that there is a threshold rotation rate which depends on the
terminal velocity of the wind. Observationally, one measures
the edge velocity of UV resonance lines. Assuming that the
edge velocity is representative of the terminal velocity of the
wind, we have for B2e stars that the ratio of terminal velocity
to escape velocity is { &~ 1; whereas, for O6 stars { ~ 2.7 (see
Fig. 4). The threshold rotation rate from equation (30) is

Vot _ {0.75 06 stars

0.37 B2 stars’ “7)

crit

and when we require that v, be supersonic at the equator we
get (see Fig. [11])

Vit N {0.79 O6 stars @)

V... (041 B2stars '

Estimating the correction for the rotational distortion from
equation (33), we find

h N {0.84 O6 stars

V.. 1048 B2 stars

Using the true critical rotation rate V,,;, = 480 km s ! gives a
Be star rotation threshold of V,,, > 230 km s~ *. For a uniform

distribution of inclination angles, (sin i) = n/4 so the observed
threshold should occur at {v sin i) > 180 km s~!. This is

49)
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TABLE 1

Disk FORMATION THRESHOLD OBTAINED FROM THE OBSERVED VALUE OF THE TERMINAL SPEED FOR VARIOUS

MAIN-SEQUENCE SPECTRAL TYPES

EQUATORIAL DISK FORMATION

Spectral T ® R® Me Vesc it Viodin

Type ® Ry (Mo (kmsh)  kmS)  ofen Q. (kms')
O3........... 49000 14 55 850 600 (490) 3.6 0.87 (0.91) 520 (450)
065 ......... 40000 10 29 940 660 (540) 2.7 0.78 (0.84) 520 (450)
BO ........... 32000 6.6 15 910 640 (520) 1.4 0.53 (0.61) 340 (320)
B2 ........... 23000 4.5 8.3 840 590 (480) 1.0 0.41 (0.48) 240 (230)
B5 ........... 15000 33 45 720 510 (420) 0.8 0.33 (0.39) 170 (160)
B9 ........... 10000 2.6 2.6 620 440 (360) 0.75 0.31 (0.37) 140 (130)

* Values are smoothed values from Hayes 1978.

445

b The values for O stars are from Howarth & Prinja 1989 and for B stars they are smoothed values from Popper

1980.

¢ The masses for O stars are obtained from the effective gravity given by Kudritzki & Hummer 1990. See also
Kudritzki et al. 1992. For B stars they are smoothed values from Popper 1980.
4 The numbers in parentheses are the true critical rotation speed (i.e., accounting for the rotational distortion of

the star).

¢ Values for v, are spectral type averages, and for O stars are obtained from Prinja et al. 1990. For B stars they

-are edge-velocities from K. S. Bjorkman 1989.

f The numbers in parentheses are calculated using the rotational distortion correction eq. (33). These numbers
are presented to give an estimate of the uncertainty due to rotational distortion.

lower, but it agrees approximately with the threshold value of
v sin i for the onset of IR excesses in Be stars (Waters 1986). A
similar (but somewhat lower) threshold has been observed for
the presence of discrete C 1v absorption components as well as
for the presence of narrow absorption cores in Si 11 (Grady et
al. 1987, 1989). Other models for Be stars that increase the
equatorial mass-loss rate to achieve the high densities required
for the disk (e.g., Poe & Friend 1986) generally require unreal-
istically high rotation rates.

In going from B2 toward earlier spectral types, we see from
Figure 4 that there is a rapid rise in terminal velocity of the
wind. From Figure 11 we see in turn that this implies that
earlier spectral types must rotate faster to form a disk. Using
the observed values of the terminal speed, we calculated the
rotation threshold as a function of main-sequence spectral
type, and the results are summarized in Table 1. Presumably,
the higher the rotation threshold, the less likely a star will
rotate fast enough to form a disk. Thus the dependence of the
terminal speed on spectral type naturally explains why the
frequency of Be stars is large at B2 and decreases toward
earlier spectral types (which also explains why there are very
few Oe stars). However, in our model, the decrease in frequency
of Be stars later than B2 must be explained in a different way.
This is because the terminal velocity inferred from observa-
tions slowly decreases later than B2, which implies that the
frequency of Be stars should slowly rise instead of falling as
observed. However, this discrepancy may be explainable in the
following way.

One problem with using the measured edge velocity for the
terminal speed in B stars is that the line profiles become quite
weak, especially for the later spectral types. Thus determining
the edge velocity (where the line profile returns to the
continuum) becomes quite difficult and may in fact be system-
atically underestimated. For this reason we have also investi-
gated the theoretical behavior of the terminal speed verses
spectral type. As we mentioned earlier in § 3.1, to obtain realis-
tic values for the terminal speed of the wind, we must include
the dependence of the force multiplier on the ionization
balance in the wind by including the parameter 6. Non-LTE
calculations of k, «, and & have been made for O stars
(Pauldrach et al. 1990); however, these calculations have not

been performed for main-sequence B stars. For that reason we
must use the values determined by Abbott (1982), which
assume optically thin geometrically diluted ionizing radiation.
Although these assumptions break down for the massive O
star winds (see Pauldrach 1987 for a detailed discussion),
Abbott’s calculations should be more reliable for the much
weaker B star winds. Table 2 lists our adopted values for k, a,
and 4. Note that for the B stars, we interpolated the values of k
and a versus n,/W from Table 2 of Abbott (1982). We then
obtained J by fitting a power law to k over the range of n,/W
for each spectral type. The mass-loss rate, terminal wind speed,
and n,/W were determined using the “cooking recipe ” of Kud-
ritzki et al. (1989). Figure 14 shows the comparison of the
observed and theoretical values of the terminal speed. Note
that for early spectral types the agreement is reasonably good,
but at late spectral types there is large disagreement. An inter-

4 .
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n ®
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FiG. 14—Ratio of terminal speed of the wind to stellar escape speed vs.
spectral type. The solid curve is obtained from the theoretical values of the
terminal speed, listed in Table 2, and the dashed curve is obtained using the
terminal speeds from the observations shown in Fig. 4. Note that the theoreti-
cal terminal speed ratio has a minimum at spectral type B2.
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FiG. 15—Ratio of the rotation speed to critical speed required for disk
formation verses spectral type. The dashed lines are obtained assuming no
rotational distortion of the star, and the solid lines are obtained using eq. (33)
to estimate the rotational distortion correction. Note that when using the
theoretical values of the terminal speed, the threshold has a minimum value
near B2, the spectral type at which Be stars are most prevalent.

esting feature of the theoretical curve is the minimum exhibited
at B2. This implies that the disk formation threshold would
also have a minimum at B2. Figure 15 shows the disk forma-
tion thresholds using both the observed and theoretical values
of the terminal speed verses spectral type, and the correspond-
ing rotation speeds are shown in Figure 16 (the numerical
results are summarized in Table 2). We see from these figures
that if we accept the theoretical values of the terminal speed
verses spectral type, then our model predicts that the
maximum frequency of Be stars should occur near B2 and
(depending on spectral type) the threshold rotation velocity is
around 300 km s !,

4.2. Disk Density

To find the disk density verses radius, we must first make an
estimate of the disk opening angle, Af, to use in the disk
surface equation (41). At a rotation rate of 75% of the critical
speed, the maximum shock compression occurs at about 1.1R

Spectral Type

F1G. 16.—Disk formation threshold rotation speed vs. spectral type. Curves
are shown with and without the rotational distortion correction. The thresh-
olds are calculated using either the observational or theoretical estimates of the
terminal speeds. Also shown for reference is the critical rotation speed.

where v, has its maximum value of 0.5V, (see Fig. 8). If we
assume the slope of the shock is small (since the shock turns
out to be quite thin), then we get, from the disk density equa-
tion (38), a compression ratio of

Pa

2 2
<§) ~1 <L> ~ 200 .
Pw a 4\ a

From Figure 9, we see that the wind density at the equator,
p,, (i.e., just before it passes through the shock), is about a
factor of 4 higher than the density at the pole. Thus the density
compression from pole to disk is

Pa

ppole

(50)

~ 800 . (51

In addition to the density ratio, we also need to know the
velocity ratio, for which we rely on observations. Observations
of Ho as well as of Be X-ray binaries (Waters et al. 1988)
indicate that the terminal velocity in the disk is v¢ ~ 150 km
s~ 1. UV spectral lines indicate that v, ~ 1000 km s~' (Snow

TABLE 2

Disk FORMATION THRESHOLD OBTAINED FROM THE THEORETICAL VALUES OF THE TERMINAL SPEED FOR VARIOUS
MAIN-SEQUENCE SPECTRAL TYPES

Ty Spectral n/W Me (U

4 Ty K @ & @m ) Moy ) a0 (msY)
50000 ........ 03 0.017 0.74 0.115 10'3 9.1 x 107° 3.81 0.89 (0.92) 540 (450)
40000 ........ 06.5 0.060 0.68 0.067 102 3.1 x 1077 3.59 0.87 (0.91) 580 (490)
30000........ BO 0.159 0.60 0.118 10t 2.7 x 1078 227 0.71 (0.78) 460 (410)
20000 ........ B2.5 0.609 0.51 0.166 10°%-* 3.6 x 1071° 1.43 0.53 (0.61) 310 (290)
15000 ........ BS 0.220 0.51 0.018 108 9.8 x 10712 2.08 0.64 (0.71) 330 (300)
10000........ B9 0.427 0.52 0.038 107- 1.3 x 107*2 2.09 0.66 (0.73) 290 (260)

2 Approximate spectral type for the temperature given.

b Values for O3 stars are from Kudritzki et al. 1992. For O6.5 stars they are from Pauldrach et al. 1990, and for B stars they
are from fits to the CAK parameters verses n,/W given in Table 2 of Abbott 1982.

¢ Mass-loss rates and terminal speeds (with no rotation) are obtained using the “cooking recipe ” of Kudritzki et al. 1989.

4 The numbers in parentheses are calculated using the rotational distortion correction eq. (33). These numbers are presented
to give an estimate of the uncertainty due to rotational distortion.
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1981). Using these observational results for the velocity ratio,
equation (44) gives a disk opening angle of

AB ~ 1072 ~ 0°5 . (52)

Combining IR excesses with optical polarization data,
Bjorkman & Cassinelli (1990) have shown that there are two
thicknesses of disks which are consistent with the data: either a
thick disk Af = 50°, or a thin disk A < 15°, (typically a few
021). Our model is consistent with the disk alternative.

Using our estimated disk opening angle in the disk surface
equation (41) we can make an estimate of the shock slope.
Employing this slope in the disk density equation (38), a more
refined estimate of the disk density is shown in Figure 17 for
three values of the rotation rate. From measurements of the IR
excess, Waters et al. (1987) estimate typical base densities of the
disk to be po~ 107> to 107! g cm ™3, which is in good
agreement with our maximum disk densities. This is an indica-
tion that perhaps our model provides enough compression;
however, the measured densities are model dependent. For
example, in the IR excess model, Waters et al. assumed that A6

7
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FiG. 17—Shock temperature and disk density as a function of radius for
three values of the rotation rate, Q. The maximum temperatures are sufficient
to produce superionization and EUV radiation. Note the increase in the
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had a constant value of 15°. For a constant opening angle, the
measured base density scales as p, oc 1/(A8)*/%. Our model pre-
dicts an opening angle 30 times smaller than that assumed by
Waters et al.; however, our disk does not have a constant
opening angle, and the radial dependence of the density is quite
different as well; therefore, we must really perform the calcu-
lations of the IR excess and UV line equivalent widths predict-
ed by our model to know for certain whether our model can
explain the discrepancy between the UV and IR mass-loss
rates.

We should also mention that any mechanism which
increases the equatorial mass-loss rate (e.g., acoustic waves or
the bi-stability mechanism) may be invoked in addition to our
model to raise the disk density even further.

4.3. Shock Structure

We next examine the structure of the standing shocks adjac-
ent to the disk and its implications for UV spectral lines. To
obtain the shock temperature, we must know the velocity of
the wind perpendicular to the shock, which again requires an
estimate of the slope of the shock. Our previous estimate, equa-
tion (41), consisted of an ad hoc curve whose minimum radius
was inside the convergent point; however, the shock forms
outside the convergent point. To account for this, we have used
our ad hoc curve, but only calculated the shock temperature at
those locations where the velocity component perpendicular to
the shock is supersonic. This does not, however, account for
the portion of the shock that occurs within the disk which, in
any case, cannot be calculated since we do not know the disk
velocity. The results of the shock temperature calculation are
shown in Figure 17. With a rotation velocity of 300 km s ~*, the
shock temperature is

T, ~ 105 K (53)

at the radius where the shock compression is a maximum.
Combining this shock temperature with a typical UV mass-
loss rate of M = 1071 M, yr ™! (Snow 1981), we find an EUV
luminosity from equation (46) of

Lgyy = 102 ergs s ' = 1077-8L,; . (59

Because of the low temperature, this is far below the detection
threshold of the Einstein satellite, but may have been detected
by ROSAT for high rotation rate, low hydrogen column
density cases (Cassinelli et al. 1993).

The standing shock temperature is also too low to produce a
significant X-ray flux at the K-shell edge of C and the K-shell
and L-shell edges of Si (except at the highest rotation rates);
therefore, the superionization seems to occur as a result of
thermal ionization in the postshock material. At rotation rates
just above the disk formation threshold, the shock temperature
does coincide with the maximum abundance of C 1v and Si 1v
(Shull & Van Steenberg 1982), and both are common wind
diagnostics in Be star spectra. A plot of the frequency of Be
stars that exhibit N v versus spectral type shows a strong cutoff
at about B1 and N v is only rarely observed at later spectral
types (see Fig. 1 of Marlborough & Peters 1982). At about this
same spectral type, the terminal velocity in the wind is rapidly
decreasing (see Fig. 4). This cutoff may, therefore, be due to the
decrease in the strength of the wind instability shocks and at
later spectral types N v will only be present if the disk shock is
strong enough, that is, if the rotation rate is large enough. The
maximum abundance for N v occurs at log T = 5.3; therefore,
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we expect that N v should only be present if ¥, > 400 km s 1.
This might explain why, in later spectral types, N v is only
rarely present in Be star spectra; whereas, C 1v and Si 1v are
more common.

The shocks are adjacent to the disk; therefore, C 1v and Si 1v
should be observed to be concentrated toward the equator.
This agrees with observations of K. S. Bjorkman (1989) and
Grady et al. (1987, 1989), who find statistical trends of the C 1v
properties with inclination angle and v sin i which indicate that
C 1v is concentrated toward low latitudes. As we explained in
the Introduction, this has been quite puzzling. A primary
reason for this belief is that no mechanism was known which
could account for a high-velocity flow in the same latitudes as
a low-velocity equatorial disk. Our model neatly explains this
discrepancy in the following way: First, since the shock occurs
at r%i" < r < o0, and since the parallel velocity component is
unaffected by the shock, C 1v will be present at velocities up to
the terminal velocity in the wind. Second, since the C 1v is
produced in the postshock region, the C 1v will be enhanced at
low latitudes. Third, the standing shock turns the high velocity
flow to parallel the disk. This permits the existence of a high
velocity component adjacent to the low-velocity disk (at essen-
tially the same latitude since the disk is so thin).

It might seem that the disk could be accelerated to the same
speed as the wind, since the material added to the disk will
inevitably mix (due to viscosity). However, although the wind
adds momentum to the disk, most of the material and momen-
tum is added at small r before it has been accelerated to the
terminal velocity of the wind (see Fig. 5, particularly the high
rotation rate cases). The terminal speed that the disk obtains
will then depend crucially on how the radiation forces are
affected by the resulting increase in density. Because of this, we
conclude that we may not rule out the possibility that the disk
will remain at a slow speed, consistent with the Ha observa-
tions. There are several mechanisms which encourage us to
believe that it may be possible that a model of the disk
dynamics will predict a low-velocity disk. First, the radiation
force term depends inversely on the density, so a high-density
disk should be accelerated less than the polar wind; conse-
quently, the disk will have a lower terminal velocity than the
wind. Second, the shock is initially a strong shock which
implies that the velocity in the disk is subsonic and will have to
accelerate through a second critical point. Because of the
velocity decrease, the material interior to the shock will
“shadow” the disk, thereby reducing the radiative acceler-
ation.

4.4. Variability

Our model is a steady state model, and we have made no
attempts to explain the notorious variability of Be stars. Since
the variability of Be stars is such an important facet of their
behavior, we are compelled to examine our model for either
sources that may induce variability, or phenomena arising
from variability in the stellar mass-loss mechanism. We present
our speculation concerning three such items here.

First, the disk location depends quite sensitively on the value
of the terminal speed of the wind. From Figure 7, we see that
for rotation rates just above the threshold rotation rate, a small
change in the terminal speed, that is, a change in {, will cause a
large change in the disk location, perhaps even causing the disk
to disappear. Of course any change in the disk location will
change the disk density and resulting observable phenomena.
One prediction from this idea is that some Be stars would be
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more variable than others; in particular, those rotating at rates
just above the disk formation threshold would be the most
variable. Changes in the terminal speed might be brought
about by changes in the ionization balance in the wind. An
example of such a change is the bi-stability mechanism of Paul-
drach & Puls (1990). If the change in ionization stage is like a
phase transition (e.g., recombination of hydrogen when the
optical depth becomes large in the bi-stability mechanism), the
change in disk properties may be quite large and abrupt. A
possible origin for changing ionization properties might be
changes in the photospheric temperature associated with non-
radial pulsations.

Second, we note that the shock that forms the disk is not
attached to the star, but is instead free-standing. As such, the
stability of its location depends on the shock velocity exactly
balancing the flow velocity. It is not clear whether there is a
feedback mechanism that regulates the shock strength to
accomplish this balance. It is quite conceivable, therefore, that
the shock location is in fact unstable. If so, perhaps the disk is
actually made up of a series of shocks shed from the con-
vergent point, that is, a “shock train.” A similar phenomena is
the latitudinal location of the disk, which is determined by
balancing the ram pressure of the flow from the northern hemi-
sphere with that from the southern. Perhaps the disk moves up
and down in latitude in response to variations in the mass-loss
rates between the two hemispheres.

Finally, we consider that perhaps there is an instability in
the driving mechanism that occasionally causes blobs of
material to be ejected. These blobs may subsequently move out
through the wind and then enter the disk. Poe, Owocki, &
Castor (1990) show that if the mass-loss rate in the supersonic
portion of a wind is too large, then as the material flows
outward, the velocity decreases back to the sonic value; subse-
quently, the material would presumably fall back onto the
stellar surface. Suppose that occasionally enough material
were ejected to “overload ” the disk. At that time, the outflow
in the disk would cease and the disk would collapse. This infall
of the disk might then be used to explain the V/R variations
seen in Be stars (see Dachs 1987). In a similar scenario, one
might envision the possibility that only the inner portion of the
disk is “overloaded,” due to the addition of ‘most of the
material at small radii, and exhibits infall. On the other hand,
the outer portion of the disk has only a small amount of
material added to it, so it may flow outward. Thus there might
be a stagnation point in the disk such that, interior to the
stagnation point, the material recirculates back on to the star,
and exterior to the stagnation point, there is outflow in the
disk. In this scenario, changes in location of the stagnation
point will change the relative amount of material flowing
outward versus inward and perhaps might be the explanation
of the V/R variations.

5. CONCLUSIONS

We have developed a model of the supersonic portion of the
stellar wind from a rotating star. In the supersonic limit, the
fluid equations are Newton’s equations of motion for free par-
ticles. The orbital plane of each streamline is inclined with
respect to the equatorial plane by the initial latitude of the
streamline, thus orbital dynamics inevitably leads to an equa-
torial concentration of the wind. If the rotation rate is large
enough, the orbits attempt to cross the equator, and a standing
shock must develop to turn the flow. The ram pressure of the
wind compresses and confines the equatorial material, and
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creates a dense equatorial disk. We thus call our model the
wind-compressed disk model.

Owing to the small ratio of the terminal velocity of the wind
to the escape speed for B2 stars, the onset of disk formation
occurs at a rotation speed of about 50% of breakup (V,,, > 250
km s~ '); whereas for early O stars, the disk can only occur for
rotation speeds in excess of 90% of breakup. The theoretical
values of the terminal speed of the wind qualitatively explains
the frequency distribution of Be stars, and predicts a maximum
likelihood near B2.

The disk is quite thin (A6 ~ 0°5) and has a density enhance-
ment p../p,. ~ 10°. In addition, the standing shock heats the
boundary flow to temperatures 10°~10° K before mixing with
the disk. The shock cools radiatively by continuum recombi-
nation as well as line radiation with peak emission in the EUV
and total luminosity Lgyy ~ 10%° ergs s™! ~ 107 7-8L,,. The
shock temperature is inadequate to produce superionization
by the Auger effect; but the temperature is large enough to
collisionally ionize the shocked material. At this temperature
the C 1v and Si 1v abundances are at their maximum. Since the
shock temperature depends on the stellar rotation rate, we
predict that highest observed stage of superionization produced
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by the disk should correlate with stellar rotation rate. Since the
shock is adjacent to the disk, we also predict that the discrete
absorption components of the superionized lines (such as C 1v)
will be concentrated toward low latitudes with more or less the
same velocity structure, v,(r), as the polar wind.

The next task is to attempt to develop a model of the disk
dynamics. An important theoretical test of our wind-
compressed disk model will be whether the model of the disk
dynamics permits a low-velocity disk that is consistent with the
Ha observations. Finally, we would like to focus attention on
what our model implies is the key element in forming an equa-
torial disk. To produce a disk at a reasonable rotation rate, our
model required the observation that v /v, = 1 in the winds of
Be stars.
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