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ABSTRACT

We present a comprehensive reevaluation of eight of the nine glitches observed to date from the Vela pul-
sar, and the postglitch relaxation following each glitch. All glitch data sets can be described in terms of three
distinct components of short and intermediate time scale exponential relaxation, followed by a long-term
recovery of the glitch-induced change in the spin-down rate that is linear in t, AQ (f) oc t. We interpret the
short and the intermediate time scale exponential relaxation, characterized by relaxation times of 10 hr, 392,
and 32¢ as the linear response of vortex creep in those regions of the pinned superfluid in the neutron star
crust through which no sudden vortex motion occurred at the time of the glitch. The long-term recovery is
interpreted as the nonlinear response of vortex creep regions. In addition, there are regions of the crustal
superfluid which cannot sustain a vortex density or vortex creep current, but which play a significant role in
determining the angular momentum balance. The tendency of glitches to leave permanent spin-up remnants is
explained as a discrete internal torque which in glitches, couples part of the crustal superfluid to the observed
crust. We find that, on average, the theoretically expected interglitch intervals agree quite well with the
observed intervals.

The same set of short and intermediate relaxation times, with similar values of moments of inertia for the
various components of the crustal superfluid, yield good fits for all postglitch data sets. Furthermore, these
relaxation times and moments of inertia are compatible with previous theoretical estimates. A moment of
inertia fraction of at least 0.024 is implied for the crustal superfluid. This result rules out neutron star models

based on soft equations of state.

Subject headings: dense matter — pulsars: individual (Vela) — stars: neutron

1. INTRODUCTION

Pulsar glitches (sudden frequency jumps of magnitude
[AQ/Q] ~ 107° to 10~ ¢, accompanied by jumps in the spin-
down rate, of magnitude [AQ/Q] ~ 10~3 to 1072) are now
established as common phenomena, probably experienced by
pulsars of all ages, but more frequently in younger pulsars. The
Vela pulsar, PSR 0833 —45, has been a particularly prolific and
interesting source of glitches, having supplied us with nine
large glitches with (AQ/Q) ~ 10~ ¢ and (AQ/Q) ~ 10~ 2 at inter-
vals of a few years since the glitch observation in 1969
(Radhakrishnan & Manchester 1969; Reichley & Downs 1969)
(for data fitting and references for the first six glitches see
Cordes, Downs, & Krause-Polstorff 1988; results for glitches
seven and eight are reported by Klekociuk et al. 1985a, b and
by Hamilton et al. 1989, McCulloch et al. 1990, Flanagan 1989,
1990a, b). The most recent, ninth, glitch (Flanagan 1991) is not
included in the present study. The Crab pulsar (Lyne & Prit-
chard 1987; Lyne 1991) and the recently discovered PSR
1737—30, whose age and glitch activity are comparable to
Vela’s (McKenna & Lyne 1990) are the two other young
pulsars to have experienced frequent glitches. The early
glitches of the Vela pulsar were detected typically with an
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uncertainty of a week or longer in the actual date of the glitch.
More recently, a continuous monitoring effort by Australian
and South African observers has resulted in uncertainties of
less than a week for the fifth glitch, and less than a day for the
sixth and seventh glitches (McCulloch et al. 1981, 1983; Ham-
ilton, McCulloch, & Royle 1982; Klekociuk et al. 1985a, b).
The eighth glitch actually took place during an observing
session (Hamilton et al. 1989; Flanagan 1989). The immediate
postglitch relaxation has been observed (Flanagan 1990a;
McCulloch et al. 1990) for this glitch. For the ninth glitch
unpublished timing data start 7 minutes after the glitch
(Flanagan 1991).

The evidence is now quite strong that pulsar glitches and the
subsequent changes in pulsar period (postglitch relaxation)
reflect changes in the angular momentum distribution inside
the neutron star. No systematic changes in the electromagnetic
signature of a pulsar were observed to correlate with glitches
up to the eighth glitch of the Vela pulsar. This is the only glitch
for which there may be evidence for a change in the dispersion
measure in one set of observations (Hamilton et al. 1989;
McCulloch et al. 1990), which might imply a glitch-induced
change in the structure of the magnetosphere and perhaps in
the electromagnetic torque. For microglitches, those glitch-
induced changes may result in pulsar timing noise (Cheng
1987a, b). The glitches and their subsequent relaxation there-
fore provide a valuable tool for probing the neutron star inte-
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! rior. We shall pursue the viewpoint that the glitches, at least
those of the large size (AQ/Q ~ 10~ %) and frequency (roughly
every 2-3 yr) observed in the Vela pulsar, are due to the sudden
unpinning and outward motion of large numbers (~ 10**) of
vortex lines in the crustal neutron superfluid which are pinned
there to the lattice of neutron-rich nuclei (Pines 1971; Ander-
son & Itoh 1975). The conservation of angular momentum in
the crustal neutron superfluid relates the observed increase
AQ, in the rotation rate of the crust (of effective moment of
inertia I ) to the decreases 6Q; in the superfluid rotation rate in
the various regions of superfluid, with moments of inertia I;,
through which unpinned vortices move at a glitch:

ICAQC =ZI,69, (1)

The effective crust moment of inertia I, denotes all parts of the
star that couple to the outer crust on time scales short com-
pared to the observational resolution of a glitch (<2 minutes
for the eighth glitch). I, includes the superfluid in the core of
the star (Alpar, Langer, & Sauls 1984c; Alpar & Sauls 1988)
and thus the bulk of the total moment of inertia, while Y, I,
was found to be 1072 to 10~ 3 of the star’s total moment of
inertia in previous work (Alpar et al. 1984b) as well as the fits
presented here.

Over the years, vortex creep theory, a model of the post-
glitch relaxation in terms of the rotational dynamics of a super-
fluid with vortex pinning inside the neutron star crust, has been
developed and applied to data from several pulsars (Alpar et al.
1984a, b; Alpar, Nandkumar, & Pines 1985; Alpar et al., 1988;
Cheng et al. 1988). In this theory the vortex-lattice interaction
is modeled in terms of thermally activated vortex motion over
discrete pinning configurations. The theory provides a means
of extracting information on the structure and temperatures of
neutron stars as well as detailed information on the physical
characteristics of the pinned crustal neutron superfluid (Pines
& Alpar 1985). In vortex creep theory, the response of a given
region of the star can be either linear or nonlinear, depending
on how close the lag, w, in the angular velocity of the pinned
crustal superfluid is to the critical lag, w.,, at which unpinning
will take place in that region; the theory also predicts an evolu-
tion in the nature of a pulsar’s dynamical relaxation in con-
junction with its thermal evolution (Alpar, Cheng, & Pines
1989). The linear response produces the various components of
exponential relaxation observed in the postglitch timing data,
while the nonlinear response is essential for explaining the long
time scale behavior and the angular momentum exchange
including the glitches. It is an attractive feature of the vortex
creep model that both types of observed postglitch behavior
are obtained as two regimes of the same physical model.

A different aspect of the interaction of vortex lines with the
lattice is the coupling of vortex motion and excitations with
phonons of the lattice (Jones 1990a, b, ¢, 1991; Bildsten &
Epstein 1989). This approach describes vortex motion with
respect to the lattice at temperatures that are too low for
thermal activation, and also the rapid scattering of unpinned
vortices during glitches (Epstein & Baym 1992; Jones 1992;
Henis & Shaham 1981), aspects of vortex motion that are not
treated by the vortex creep model. The exponential relaxation
part of the postglitch response (which we interpret as the linear

" response in the vortex creep model) has also been explained in
terms of vortex-phonon scattering (Jones 1990a, b, c, 1991,
1992), with vortices almost moving with the superfluid, at a
small velocity with respect to the lattice.
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The microscopic physics of vortex pinning is a difficult
problem with many uncertainties. We use estimates of the
pinning energy based on a comparison of superfluid conden-
sation energies inside and outside the nuclei (Alpar 1977;
Anderson et al. 1982; Alpar et al. 1984a). A Ginzburg-Landau
treatment (Epstein & Baym 1988) gave large pinning energies
implying energy dissipation rates in excess of observational
upper limits (Alpar et al. 1987). We believe this was an over-
estimation resulting from a problematic application of the
boundary conditions. On a different extension of the pinning
model, the effects of tension in vortex lines were taken into
account by Chau & Cheng (1991) and by Baym, Link, &
Epstein (1992), yielding effective pinning energies within the
same range as the initial estimates. The pinning energy enters
as a parameter in the dynamical model of vortex creep applied
in this paper. We model the pinning energy in terms of a lowest
order estimate with a scale factor to represent uncertainties in
the actual pinning strength.

The initial attempt to use vortex creep theory to analyze the
postglitch behaviour of the Vela pulsar (Alpar et al. 1984b) was
confined to data from its first four glitches; since there was
considerable uncertainty in the actual dates of these glitches,
the conclusions reached there (on the basis of calculations
which took only nonlinear response into account) were of
necessity more qualitative than quantitative. The fact that two
glitches have now been observed within minutes of the time of
occurrence (including glitch nine for which data have not been
published yet), while two others have been caught within less
than a day, brings sharply into focus the short-term response of
the pinned crustal superfluid to a glitch, and the observational
data on the four post-1984 glitches provide a much-needed
complement to that obtained for the first four glitches. The aim
of the present paper is to evaluate the postglitch relaxation
data following the first eight glitches of the Vela pulsar in a
consistent framework and to explore the long-term angular
momentum balance.

Our basic approach is the following:

1. We first examine the extent to which vortex creep theory
provides a consistent phenomenological description of the
observations following all eight glitches, using a “ minimalist”
phenomenological model which is subject to the constraint
that the nature of the physical response of a given pinning
region should be the same after each glitch.

2. We next consider the physical location of the distinct
pinning regions identified in the postglitch data (i.e., did vor-
tices pass through in a glitch, or not?), the character of the
dynamical response (linear or nonlinear?) to the glitch, and the
implications of these conclusions for the pinning character-
istics (strong, weak, or superweak?) of the region in question.
We demonstrate that vortex creep theory provides an answer
to many of these questions and so makes possible a consistent
physical picture of both where glitches occur, and of postglitch
behavior.

3. We then examine the extent to which glitches permit
pulsars to be used as cosmic hadron physics laboratories
(Pines 1991), that is, the extent to which the information on
postglitch behavior derived from observation can be used to
constrain microscopic calculations of the crustal neutron
superfluid energy gap, pinning energies, and the neutron star
equation of state.

We find that all eight postglitch data sets can be described in
terms of three distinct components of short and intermediate
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time scale exponential relaxation, characterized by relaxation
times of 10 hr, 392, and 32¢, followed by a long-term recovery
of the glitch-induced change in the spin-down rate that is linear
in time. We show that the short-to-intermediate time scale
exponential relaxation reflects the linear response of vortex
creep in regions of the stellar crust through which no sudden
vortex motion occurred at the time of the glitch, while the
long-term response linear in time represents the nonlinear
response of regions through which there is a sudden motion of
vortices at the time of a glitch. We demonstrate that there must
exist as well regimes of the pinned crustal superfluid which play
a significant role in determining the angular momentum
balance, despite the fact that the regions in question cannot
sustain a vortex creep current. We explain the tendency of
glitches to leave permanent spin-up remnants and find that, on
average, the theoretically expected interglitch intervals agree
well with those observed.

Our conclusion that the most likely physical origin of the
329 response is a region of superweak pinning in the vicinity of
the transition to a regime of linear creep enables us to con-
strain the magnitude and density dependence of the neutron
superfluid energy gap for the density region, 7 x 10!3 g
cm™3 < p 512 x 10 g cm™3, taking into account present
uncertainties in the estimates of pinning energies and the cri-
terion for the transition from weak to superweak pinning. We
find that for physically reasonable choices of pinning energies
and the transition criterion, a portion of the family of possible
gap functions obtained in the recent microscopic calculations
of Ainsworth, Pines, & Wambach (1989) is consistent with
these constraints. We are also able to obtain a firm lower
bound on the moment of inertia of the crust of the neutron
star; our fit to the largest glitch observed to data, that of 1978
July 3, requires that the inertial moment of the observed
pinned crustal neutron superfluid be at least 2.4% of the stellar
inertial moment. Since the total crustal moment of inertia must
be larger than this, our limit already serves to rule out neutron
star models built upon a soft equation of state for neutron
matter at densities comparable to or greater than that of
nuclear matter (Pandharipande, Pines, & Smith, 1976).

In § 2 we give a brief summary of vortex creep theory and
introduce the “minimalist” phenomenological model which
we show in § 3 is capable of providing a consistent fit to all
eight sets of postglitch observational data. Section 4 contains a
discussion of the physical basis for the linear response to the
glitch in the form of fast and intermediate time exponential
decays of part of the glitch, and the constraints this response
places on the description of the pinned crustal neutron super-
fluid. We consider the long-term behavior of the pinned crustal
superfluid in § 5, and discuss our conclusions in § 6.

2. SUMMARY OF VORTEX PINNING AND CREEP

In vortex creep theory it is assumed that there exist several
physically distinct regions of different pinning strengths
(Anderson et al. 1982; Alpar et al. 1984b.) Moreover, for a
particular region it is shown that depending on the tem-
perature, the thermal creep of vortices can be in either a linear
or a nonlinear dynamical regime (Alpar et al. 1989). The
pinning energy E,, is the gain in energy when a nucleus is inside
the normal matter core of a vortex line. It is estimated as

3 An A?n
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where A, Eg, and n are the gap, the Fermi energy, and the
number density of superfluid neutrons inside and outside a
nucleus, and V is the nuclear volume. When a vortex line is
pinned and moving with the lattice, pinning forces sustain the
velocity difference between the vortex line and the lattice. The
maximum (critical) lag, w,.,, between the rotation rates of the
superfluid and of the crust lattice that can be sustained by the
pinning energy E,, is
E
———p
O ==k @)

where p is the superfluid density, k is the vorticity quantum,
and r is the distance from the rotation axis of the star. The
distance between successive pinning sites along a vortex line,
which we denote by b, is an important parameter; it is of the
order of b,, the lattice spacing, in the “strong ” pinning regions,
but longer in the “ weak ” and “superweak ” pinning regions.

If E, exceeds the binding energy of a nucleus to its equi-
librium site in the lattice, we call this “strong pinning.” A
vortex line will then be able to dislodge nuclei and pin to a
nucleus in every unit cell of the lattice, so that the distance
between successive pinning sites along the vortex line is simply
the lattice spacing. Observational upper limits (Alpar et al.
1987) indicate that such strong pinning is not present in any
substantial parts of the crust superfluid. We shall therefore not
pursue the alternative of strong pinning.

When pinning forces are not strong enough for a vortex line
to dislodge nuclei, it is expected to pin only to those nuclei that
it encounters geometrically along its orientation in the lattice.
With the superfluid coherence length ¢ = (2/z) (Eg/kg A) defin-
ing the radius of the vortex line core, the distance b between
successive pinning sites along a vortex line is

b = b3/n*, @)

where b3 is the lattice volume per nucleus.

At higher densities in the inner crust, where the superfluid
gap decreases and the radius of vortex cores (the coherence
length £) increases, vortex cores become large enough to
include several lattice sites simultaneously. Hence at £ 2 b,/2,
the nature of pinning must change, because the pinning con-
figuration will now change only slightly if a vortex line is dis-
placed in the lattice; the effective strength of pinning may be
expected to diminish, probably by some large factor. We do
not at present have any way of estimating pinning parameters
in this “superweak ” pinning regime. In particular it is not
known whether the transition involves only an increase in the
distance b between pinnings along the vortex line, with each
effective pinning site providing the energy gain E, of one
nucleus, or whether there is also a reduction to an effective
pinning energy, E;, < E,. In § 4 we present a possible consis-
tent interpretation of the postglitch data with the response of
several superweak pinning regions. The observed relaxation
time scales we associate with superweak pinning are then used
to infer superweak pinning parameters.

Vortex creep theory models the dynamical coupling between
the crust and the pinned superfluid in terms of the thermal flow
(creep) of vortices. The observed spindown €, of the neutron
star crust obeys the equation

Ich =Next+Nint
=Nexl'—ZIiQi’ (5)
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where I, is the effective moment of inertia of the crust including
all parts of the star that couple to the crust on shorter than
observable time scales, N, is the external pulsar torque, and
N;,, is the total internal torque coupling various parts of the
crustal superfluid, with moments of inertia I; and spindown
rates Q;, to the crust. The internal torques depend on the char-
acteristic pinning energy scale E,, the temperature T of the
neutron star interior, and on the lag w = Q, — Q_ between the
rotation rate of the superfluid, Q,, and that of the crust, Q,
(Alpar et al. 1984a). This theory has a steady state solution
with Q, = Q_, achieved at some value w_, of the lag.

There are two different regimes of dynamical response. A
linear regime occurs when the temperature is sufficiently large
compared to the pinning energy that the steady state corre-
sponding to the external torque can be achieved with a small
lag. Each part of the superfluid that responds in the linear
creep regime will have a simple exponential relaxation as a
function of time, with an amplitude that is linear in the pertur-
bation of w affected by the glitch in that particular region. The
linear response from some region i of the superfluid will show
up in the postglitch perturbation AQ, (t) of the spin-down rate
as a term with an exponential decay time 7, ; characteristic of
that region (Alpar et al. 1989):

I; S (0)e ™M

Ty,i

AQ, (1) = — (6)
Here I, is the moment of inertia of the region i, I is the total
moment of inertia of the star, and dw(0) is the perturbation,
caused by the glitch, to the lag w = Q, — Q, in that region. In a
glitch, Q. - Q. + AQ, and, in those regions i where vortex
motion associated with the glitch reduces the local superfluid
rotation rate, Qyr) = Q; - Q; — 6Q,(0). The reduction in the
lag w; is then dw;(0) = 6Q(C) + AQ,. The characteristic decay
time 7, in the linear regime is related to pinning parameters and
temperature through

kT w,r E
=t Del o Zp 7
“=E, 4w, P kT @

where Q is the star’s rotation rate, and v, ~ 10" cm s~ is a
typical velocity of microscopic vortex motion.

When the temperature is sufficiently low compared to the
pinning energy E, a large steady state lag v, < o, is needed
for the superfluid to spin down at the steady rate appropriate
to the external torque. In this regime the response of the spin-
down rate AQ, ,(t) has a Fermi-function dependence on time
(Alpar et al. 1984a, b) and a nonlinear dependence on the
glitch-induced initial offset dw(0) from steady state. The typical
contribution of a nonlinear creep region k to the relaxation of

the observed perturbation in €, is

AQ, 4(1)

O (t) (nonlinear)

I, 1
=7 {1 T T+ [oxp (o g/tnn) — 1] exp (—rm,»} > @

where I, is the moment of inertia in that region of superfluid,
tox = 0wy (t = 0)/| Q| describes the initial postglitch offset in w,
and the relaxation time 7, is

KT oy
E, Q]

©®

Ty =
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Creep will be linear if 7, < t,, and nonlinear if 7, < 7, The
transition from linear to nonlinear response takes place at
1, = 1,, which occurs at a value of the pinning energy (Alpar et
al. 1989)

(E,/kT), = 35.5 + In(t; 6) + In(vo, ,/r¢) = 31, (10)

where t, ¢ = Q/2|]| denotes the spindown age of the pulsar in
units of 10°® years and the last equality gives a numerical value
for the Vela pulsar obtained by setting v, ,/rs to 1. This tran-
sition corresponds to 7, = 7, & 1000 days in the Vela pulsar.
Regions with weaker E, will respond linearly and those with
stronger E, will respond nonlinearly.

We emphasize that the classification of a particular part of
the pinned superfluid as having “weak” or “superweak”
pinning depends on the distribution of the pinning parameters
E, and b there and is independent of the classification of
dynamical response as linear or nonlinear creep; the latter
depends on a comparison of temperature, external torques,
and pinning parameters. A weak or superweak pinning region
can be in either of the linear or nonlinear creep regimes. As a
framework for discussing the different combinations of
response that give good fits to the data, we show in Figure 1
linear and nonlinear regime relaxation times for the Vela
pulsar based on weak pinning parameters (Alpar et al. 1989),
adopting for definiteness a temperature of 11 keV for the
neutron star interior. This temperature estimate is obtained

Log * (days)

p(10%gm /cm®)

FiG. 1.—The relaxation times for linear and nonlinear regimes of vortex
creep, calculated for a temperature kT = 11 keV for the interior of the Vela
pulsar, using weak pinning parameters with y = 0.5. Log [ (days)] is plotted
against the density p in units of 10'> g cm 3. The regime with the shorter
relaxation time prevails. For p < p*¥, the shortest relaxation time, ~ 1000¢, is
associated with the nonlinear response of a weakly pinned region. At
p* =8 x 10'* g cm™3, within the nonlinear creep region, a transition to
superweak pinning takes place; for p > p*¥, 7, = 32% For p > p“ = 8.6 x 10'3
g cm ™3, the creep becomes linear. The dashed lines give 7, and 7, for superweak
pinning schematically. These are obtained by choosing the effective pinning
distance b to give t, = 32 days at p**. The 10 hr, 3¢2, and 329 relaxation times
are to be associated with regions labeled with these relaxation times. The gap
function, A(p), used in these calculations is shown in Fig. 4a. p* is calculated
usingy’ = 1.
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from observational limits on the surface temperature (Ogelman
& Zimmermann 1989) assuming the surface-interior tem-
perature relation of Gudmundson, Pethick, & Epstein (1982).
Superweak pinning is treated only qualitatively in this frame-
work, and its parameters are chosen to give a 32¢ relaxation
time.

The combined nonlinear response from regions k, each of
which contributes a response determined by its particular
offset time ¢, ,, as in equation (8), depends on the distribution
of postglitch initial conditions ¢, , throughout the nonlinear
response regions of the superfluid. If ¢, , = 6w, (0, r)/|Q| is
uniform over a region with a total moment of inertia I 5, which
supported steady state vortex creep prior to the glitch, then for
times ¢t after the glitch less than ¢, ,, the nonlinear response
would be a constant shift in €,, AQ,/Q = I,/I, and this shift in
Q. would be recovered in a time interval of the order of t,
around to.x» Where 7, is the nonlinear relaxation time in region
B. If 6w,(0, r) varies Iinearly with position r in some parts of the
nonlinear response region with total moment of inertia I, so
that 0 < ¢, , < t,, where ¢, is the maximum offset time corre-
sponding to the maximum of 6(0,‘(0 r), then an initial shift
AQ,/Q = 1,/I is recovered linearly in time starting at t = 0
right after the glitch. This is because the moment of inertia that
has recoupled by time ¢, i.e., the moment of inertia of those
regions k with t, , < t, is increasing linearly with time ¢. Such
linear dependence of dw,(0, r) on r corresponds to a uniform
density of vortices unpinned and repinned at the time of the
glitch; it is a lowest order model for éw(0, r) that is motivated
by the long-term recovery of the Vela pulsar, in which AQ, has
a linear dependence on time. Note that many separate such
regions would collectively give a response also linear in time.
For this model of nonlinear response to give a simple AQ,(t) oc
t term, it is sufficient to have 7, < t,.

In the course of our 1984 analysis of the first four glitches of
the Vela pulsar, we proposed a “ minimalist ” model for a glitch
in which catastrophic vortex unpinning occurs in the vicinity
of a boundary between two distinct pinning regions, with vor-
tices moving outward after the glitch and repinning elsewhere
in the star. We shall see that this model, suitably interpreted,
contains all the elements required to explain the postglitch
behavior for all eight glitches. The proposed form of dw(0, r)
after the glitch is given in Figure 2. This corresponds to a
uniform vortex density which unpins from a region Al and
repins in a region A2. In between, there is (possibly) a region B
through which vortices move at the glitch, but no vortices
unpin or repin; then dw(C, r) is uniform through region B.
Figures 3a and 3b show the response in AQ, to such a pertur-
bation, if vortex creep operating in these regions prior to the
glitch was stopped as a result of the perturbation.

Integrating contributions from linear and nonlinear creep
regimes, we find that the general form of postglitch response is

AQ(1) fdl,(r) dw,(0)e "1/ fdl,,,(r)
Q ) I Q|7 + I

- : f+(+7)
I+ [exp (co/e) — T exp (—t/5)f T\1 T 1
% 6(t) — ITA ti 0Kt — 1) — (ITA + %)0@ —1). (11)

This equation gives the form of the model fits we have applied
to postglitch timing behavior after the eight Vela pulsar
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F1G. 2—A “minimalist” toy model of a glitch which indicates the relative
positions of the vortex unpinning regions A, and repinning regions A, labeled
jointly as regions A, and the vortex scattering (vortex depletion) regions B in
the crustal superfluid, together with the perturbation 6Q(0, r) to the superfluid
rotation rate produced by vortex motion at the time of a glitch. The distance
from the rotation axis increases to the right and the density to the left. The
positions of the various components of postglitch response, 1, 2, 3, A, and of
the transitions between superweak and weak pinning (at p*¥), and between
linear and nonlinear creep (at p*) are indicated. In “passive ” regions, through
which vortices do not move, the response of the superfluid to a glitch is set by
o = AQ,.. In the active region, vortex motion transfers angular momentum at
glitches, so that immediately after a glitch dw = 6Q(r, 0) + AQ,.

glitches to date. For reasons to become clear in the discussion
section, we have labeled the offset time f, associated with
regions A and B as t,. The response given in equation (11) is a
general form which allows for combinations of the different

A .
21 S2808(1) = 5 Q15 8(1)

/

t=tg
(b)

F1G. 3.—a) The form of the AQ(t) expected from the uncoupling and
recoupling of vortex creep in regions A but not in regions B. Such behavior is
observed after each glitch. (b) The expected form of AQ, (t) if vortex creep were
sustained also in regions B, uncoupling at a glitch and recoupling subse-
quently. Such behavior, characterized by the recoupling signature at t ~ t,, is
not observed.
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types of linear and nonlinear response of vortex creep that we
have developed and applied to the Vela pulsar and other glit-
ching pulsars. We do not expect all terms in this general model
to be present in a comprehensive fit to the eight Vela pulsar
glitches. It is our aim here to eliminate some of the terms and
so to reduce the response function to the simplest combination
that can be applied to all eight glitches using the same or
similar parameter values and at the same time allowing a con-
sistent physical interpretation.

We shall see that the simplest good fits with consistent
parameters for eight glitches have the following features:

1. The integrated linear response in the first term of equa-
tion (11) is replaced by a sum of three simple linear response
terms involving regions through which no vortex motion
occurs. Two of these, the 10 hr and the 392 response, corre-
spond to regions of superweak pinning through which no vor-
tices move; we assume that all eight glitches originate in
regions of similar density, and ask whether these two regions
respond in the same way, i.e., with the same inertial moment and
the same relaxation time, after each glitch. Comparing the
results of independent fits to the separate postglitch data set
with fits requiring the same response after each glitch we find
that the goodness of fits of the latter type (“ consistent ” fits) is
comparable to the best fits with different relaxation parameters
after each glitch, and thus conclude that it is indeed tenable to
assume that there are two regions of the star that respond the
same way after every glitch (to correspond to regions of super-
weak pinning through which no vortices move). The third
linear response term can likewise be fitted with the same relax-
ation time 75 = 32¢ after each glitch, while it is not possible to
find a good fit with the same inertial moment in this com-
ponent after each glitch. We associate this response with a
region which lies close to the boundary separating the super-
weak and weak pinning regimes. Because the exact location of
the catastrophic vortex unpinning varies from one glitch to the
next, the magnitude of the inertial moment which characterizes
this 32¢ response changes from one glitch to the next.

2. Nonlinear response exhibiting the full Fermi function
behavior is not present, so the second term in equation (11)
depicting a combination of such Fermi function responses is
not warranted (other than giving rise to a term proportional to
t, which, as we discuss below, is interpreted as a particular
combination of nonlinear Fermi function responses).

3. The remaining terms depicting the long time scale non-
linear response in the form of an offset in éc and a gradual
recoupling linearly in ¢ are present, but they have a particularly
simple form in terms of the moments of inertia I, and Ig.
Figures 3a and 3b depict possible forms of the long-term
response. We find- that a simple and consistent interpretation
of all Vela glitches is obtained if the regions B contribute only
to sudden vortex motion and angular momentum transfer at
the time of a glitch, but not to any offset in Q_ (see Fig. 3a), a
situation which occurs when the regions B do not participate
in vortex creep either before or after glitches. In such regions B,
vortex motion can occur only as a consequence of sudden
unpinnings at glitches. Since these never contribute to €,
through a continuous internal torque, they will not appear in
equation (11), though they will contribute to the angular
momentum balance and to the observed glitch magnitude AQ,.
Thus the long time scale nonlinear response is represented only
by regions A in which vortex creep uncouples at the time of a
glitch, producing a sudden decrease in ,(t) which then recov-
ers as a linear function of time.

Vol. 409

With this model, the angular momentum balance, equation
(1), reads

the factor 3 appears with I, because for the regions A, 5Q
increases linearly, 0 < dQ(r) < 6Q, so that it is represented on
the mean by 16Q. Recall that I, is almost the total moment of
inertia of the star.

3. METHOD OF DATA FITTING

In the last section we discussed various possible modes of
response within the framework of the vortex creep model. In
the absence of a firm understanding of the physics of pinning,
we look to the data for hints about the nature of pinning. Our
method of model fitting involves minimizing the sum of the
squares of the residuals (the y?) between the model curve and
the data points, defined as

AQ,(t = t;, ay, ay, ...
X2=Z|: 1 2

i O;

where AQ,(t;, &y, ... , ay) is the theoretical value of the change
of the rotation rate at t;, «; (j =1, 2, ..., N) are the model
parameters which can be determined via the minimization
process, AQ, ; is the observed change of rotation rate at t;, and
o, is the error bar of the observed AQ,(t;). Where measurement
errors are dominated by timing noise, as in the timing fits of
Cordes et al. (1988), we adopt the amplitude of the timing
residuals as representative of the overall error bars. A program
for nonlinear least-squares fitting was written in C Language of
IBM PC. (The C program and user guide are available from H.
F. C. on request.) In the program, three algorithms are provid-
ed: the Gauss method; the Levernberg-Marquardt method,;
and the method of steepest descent. (For the theory of fitting,
see Press et al. 1987.) Fits were performed for postglitch data
sets of individual glitches, as well as for the entire data sets. The
comparison of the different fits and the model parameters are
discussed below.

The procedure of finding the best parameters goes through
several steps:

, y) — AQc,i]z , (13)

1. Make an initial guess of the parameters.

2. Use the Gauss method and the Levernberg-Marquardt
method to find the best values of the parameters.

3. Improve the parameters by using the method of steepest
descent.

Making the initial guess can be done by trial and error. A set of
good initial parameters not only makes the program converge
to the best fit faster, but also helps it avoid getting trapped in
some local minimum of the complicated N-dimensional para-
metric manifold. The rough values of some parameters can be
obtained by doing “prefits” for subsets of the data. For
example, at late times, we know that the long time scale com-
ponent dominates in the fitting function. Thus we simply fit
this term to the latest data points at late times after the glitch
to obtain a reasonable guess for some parameters of the entire
fitting function (ie., I ,/It;). In many cases, inspecting the data
by eye, one can tell that there is a fast relaxation component. It
is easy to obtain this short characteristic time by fitting a
simple exponential function. We can also guess at likely values
of the parameters from theory. For example, the moment of
inertia of the pinning regions must be around 10*?-10*3 g cm?
with all reasonable equations of state.

In § 2, we have discussed possible modes of postglitch relax-
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ation within the framework of the vortex creep model. On the
shortest time scales, a simple exponential relaxation with 7, ~
10 hr is required by the data following glitch 8, when analyzed
in short spans (Flanagan 1990a, b). For glitch 8, information
on the earliest relaxation following the glitch is available, as
this glitch occurred during an observing session. The shortest
time scale relaxation for all glitches is assumed to be represent-
ed by that observed after glitch 8. The 10 hr time scale from
Flanagan’s data fits was adopted as the shortest time scale
response. Although the fifth and sixth glitches were also caught
within 1 day (McCulloch et al. 1981, 1983; Hamilton et al.
1982) the postglitch data fits do not have the resolution to fit
for time scales of order 10 hr.

At the longest time scales in all postglitch data sets, the
relaxation has the form AQc(t) ~ t. In addition, two interme-
diate time scales of relaxation are present in the data. Attempts
to fit all postglitch data sets with the same model indicate that
combinations of simple exponentials yield equally good fits
when compared with integrals like the first term in equation
(11), which describes a composite response in the linear regime,
or with nonlinear response terms like equation (8) to account
for the intermediate time scales ~30° For simplicity we
looked for the best fit with the minimum number of exponen-
tial relaxation terms, plus the long-term response AQ,(f) ~ t.
Independent fits to the individual postglitch data sets yielded
two components of intermediate time scale exponential relax-
ation, with relaxation times t, ranging between 3¢ and 3¢5, and
7, ranging between 29¢ and 399, Requiring the same values of
7, and 75 in all postglitch data sets gave best-fitting values of
1, =392 and 15 = 32%7. The best fit with a common set of
parameters for all postglitch data was found by trial and error
in the parameter space common to the range of best fits to
individual postglitch data sets.

In the fits to AQ,(t) the coefficients of the exponential relax-
ation terms a; exp — t/t; have the form a; = I,/I[AQ,(0)/z; exp
— A/z;] describing the response of a region with moment of
inertia I; and relaxation time 7; through which no vortex
motion occurred at the glitch, so that the response is to the
crust’s observed spin-up AQ_(0) at the glitch. The parameter A
(days) is the time of the first postglitch observation from the
unknown occurrence time of the glitch. For the later glitches
the maximum uncertainty A_,, in the glitch occurrence time is
small, with A =A_,, =0 for glitch 8, while for the earlier
glitches there is considerable uncertainty, A < A_,, (see Table
2). The exponential relaxation with ¢, = 10 hr is observed only
in glitch 8 and we assume I,/I has the same value for all
glitches. The amplitude a, of the relaxation with 7, = 392 gives
I,/I for the eighth glitch since A = 0 for that glitch. It turns out
that fitted values of a, for the other glitches allow the same
value of I,/I for all glitches with corresponding choices of
A < A, for the individual glitches. This does not prove pos-
sible for the I;/I once the A values are chosen to have a single
I,/1 value for all postglitch data. Thus the hypothesis that the
same moments of inertia I,/I and I,/I are involved, represent-
ing the same responding regions after each glitch is tenable but
may be an artifact of the uncertainty in glitch date in the earlier
glitches. The variability of I,/I is interpreted as showing that
this is the region where vortex motion starts, and its location
changes from glitch to glitch. Thus in our fits it is 7, and 75 that
can be fitted directly with the same values for all postglitch
data sets (7, being chosen from the fit to glitch 8 alone). In
Table 1 we compare the fits produced by the best-fitting all-
glitch choice of the ’s with the individual best fits to the
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separate postglitch data sets. 2 values for the best fit and the
consistent fit are given for the individual postglitch data sets,
together with the number of degrees of freedom for each data
set. We note that the consistent fit compares well with the best
fit in each data set. Now adding the important point that the
consistent fit parameters 7, = 392 and 7y = 3297 actually
compare well in independent fits to all postglitch data sets, we
see that our hypothesis that the same relaxation times 7, = 392
and 15 = 32¢7 are present after all glitches is consistent with
the observational data. Confirmation of the same statement for
7, and for the moments of inertia requires analysis of data from
glitch 9 and future glitches that are caught at the time of
occurrence (A = 0). Table 1 also shows, for both the best indi-
vidual fits and the consistent fit, the amplitudes q; = I;/I
AQ,(0)/z; exp —A/z; for the exponential relaxation as well as
the slope AQY/| Q| and intercept AQ (0) (long term)/ | Q| of the
long-term response AQ, oc t. Table 2 gives the parameters of
the consistent fit, and Figures 4a—4h show this consistent fit on
the individual postglitch data sets.

4. DISCUSSION

4.1. The Fast and Intermediate Time Scale Response

In the Vela pulsar, as in other relatively young pulsars, the
faster components of postglitch relaxation can reflect com-
binations of linear and nonlinear creep response (Alpar et al.
1989). As noted above, a combination of three linear regime
terms (simple exponentials) is adopted as it is the simplest
among comparably good models (in conjunction with long
time scale behavior to be discussed below) that give good fits
with the same model parameters to all eight postglitch data
sets.

The 392 relaxation common to all glitches and the 10 hr
relaxation time resolved after glitch 8 establish unambiguously
the presence of two time scales associated with the linear
regime. Were the response with © = 10 hr or t = 392 in the
nonlinear regime, even the minimum offset time ¢, =
AQ,./|Q| ~ 10° would give a typical Fermi function behavior
with no recoupling until ¢ is within 7 of ¢, ; such behavior is not
observed. The regions responsible for this short time scale
response can also be identified; the response reflects the relax-
ation of vortex creep in those superfluid regions through which
no vortex motion occurred at the time of the glitch. To see this,
we note that the amplitudes of the exponential relaxation
terms in AQ () have the general form (I/I) 6wf0)/z;. For
regions where no vortex motion occurred, éw,(0) = AQ,, and
the amplitude is (I;/I) AQ./t;. On the other hand, if vortex
motion did occur, (I;/I) dw{C) ~ (I,/I) 6Q(C) ~ AQ,, on making
use of the angular momentum balance conditions, equation
(12). Since the former case, with the much smaller amplitude
(I;/1) (AQ,)/z; is observed for both the short time scales, we are
able to conclude that these must be associated with regions
through which no vortex motion occurred.

We next consider whether the intermediate 32¢ time scale
reflects a linear or a nonlinear region of vortex creep. Suppose
it represents a region i in which the creep is nonlinear. If so, the
region must be one where no vortex motion occurred at the
glitch, for which t, = AQ_/|Q|. [Had vortex motion occurred,
to would be equal to 6Q,(0)/| 2|, which would imply a wait of
several years before any recoupling, or a gradual recoupling as
in the long-term relaxation AQ,(t) ~ t.] We can therefore set
to = AQ./|Q| ~ 104 Since 7 = 329, t, < 1, and the nonlinear
response terms in equation (11) formally reduce, to accuracy
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TABLE 1

OBSERVED PARAMETERS OF THE GLITCHES AND THE PARAMETERS OF THE BEST FITS FOR THE INDIVIDUAL POSTGLITCH DATA SETS AND OF THE CONSISTENT FIT,
IN WHICH THE SAME SET OF RELAXATION TIMES 7, = 10 HR,7, = 392 AND 7; = 327 ARE ADOPTED FOR ALL THE POSTGLITCH DATA SETs

GLITCH DATE

PARAMETER 1969 Feb 28 1971 Aug 29 1975 Sep 9 1978 Jul 13 1981 Oct 10 1982 Aug 10 1985 Jul 12 1988 Dec 24
[AQ.0)/Q.] ¢ --covenvnennn 235 2.05 1.99 3.06 1.14 2.05 1.3 1.81
[AQ0/Q Ty oeeeeeenn.... 1.3 18 1.1 18 09 20 L5 16.

Best Fits
[AQ.0)/QT" 5 ceveenenn. 7.08 7.25 7.1 6.48 6.39 6.1 6.51 432
[AG /19, |1 _¢d ™" ......... 441 5.24 6.93 4.77 10.5 3.85 6.7 299
34 34 3.0 33 34 3.0 34 35
34.6 32.6 30.3 38.8 325 30.0 31.1 29.0
0 0 0 0 0 0 0 2.11
a,(10"3rads %) .......... 1.98 6.13 1.64 4.77 392 5.8 4.71 6.8
a; (1073 rads™?) .......... 2.85 3.03 2.02 7.17 0.74 6.17 2.8 452
22 (best) ..o.eviiiiiiinan., 3.61 2.02 191 3.59 2.05 1.44 2.87 5.59
Degrees of freedom ......... 7 11 S 9 6 13 16 7
Consistent Fit with 7, = 10 hr, 7, = 392, 7, = 327
[AQ, 0/ 1" 5 ceveennnn. 7.08 7.23 7.19 6.58 6.28 6.0 6.49 4.65
[AG /19,11 _¢d™ " ......... 4.36 5.26 6.94 4.8 10.2 4.04 6.68 327
a, (1073 rads™?) .......... 0.001 0.0002 0.0 0.0004 0.48 0.26 0.89 2.11
a,(10"3rads™?) .......... 191 5.94 1.57 4.88 3.76 5.89 4.64 6.90
a, (1073 rads™?) .......... 29 32 2.18 6.99 091 6.05 291 4.31
x%(constant) ................ 4.89 248 3.67 7.31 2.15 3.02 429 7.21

Note—a, = (I,/I) AQ,(0)/z; exp —(A/z) denotes the amplitude of the exponential relaxation exp —t/1; in the fit to AQ,(¢), given in units of 10! rad s™2

[A©,(0)/9, 1" denotes the part of the jump in spindown rate associated with the long-term recovery, that is the intercept at t = 0 of the long-term straight line fit
AQ, oc t. ACY/ | Q| is the slope of the long-term recovery AQ, o t, given in units of 10716 rad s~2d " !. 7, (hr), 7, (d), 7, (d) are the best-fitting relaxation times for each
postglitch data set for the consistent fit, the values of a;, AQ_ (0) (long term) and A€3,/ || are given. For a comparison with the best fit on each postglitch data set, the
12 (consistent) and x2 (best) should be compared at the given number of degrees of freedom. The consistent fit gives a reasonable x? on all postglitch data sets with

the same parameters 7,, 7;.

TABLE 2
OBSERVED AND DEDUCED PARAMETERS FOR EIGHT VELA PULSAR GLITCHES ACCORDING TO THE CONSISTENT FIT

GLITCH DATE

PARAMETER 1969 Feb 28 1971 Aug29  1975Sep28 1978 Jul 3 1981 Oct 10 1982 Aug 10 1985 Jul 12 1988 Dec 24
[AQO)Q.] g vvr-n. 2.35 205 1.99 3.06 1.14 2.05 1.30 1.81
[AQO)YD.T_ 5 ......... 13 1.8 1.1 1.8 0.90 20 1.5 16
[AG./[Q]]_ed™! ... 436 526 6.94 438 102 404 6.68 327
A ( 7 14 5 23 0.81 098 32 0.00
Ad) ... 5 09 50 28 0.5 09 02 0.00
(/D _,y 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59
U1y 15 1.5 1.5 1.5 15 15 15 15
Uy 58 6.4 51 10.0 32 12.1 9.0 9.5
/D_, 7.1 7.2 72 6.6 6.3 6.0 6.5 47
Ug/D_s 8.4 8.8 12.4 15.2 122 8.4 79 8.2
an_, 23 2.5 2.7 34 24 29 2.6 2.5
Q) _, ... 19 16 12 1.6 0.73 1.7 12 17
t, (days) 1624 1375 1036 1371 616 1485 972 1422
tp (days) .....ocoee.... 912 1491 1009 1227 272 1067 1261 907

Note—The first four rows give the observed parameters: the jumps in rotation rate and spindown rate; the slope AC3./|Q, | of the long-term recovery in
spindown rate, and the uncertainty A_,, in the time of each glitch. There are three exponentially relaxing components with relaxation times 7, = 10 hr, 7, = 392,
and 75 = 32¢7 which yield good fits to all postglitch data sets. The moment of inertia fractions in these three components are (I,/I), (I,/I), (I,/I). The amplitudes of
these exponential relaxation terms in €, are directly obtained from the fits and have the form a; = (I,/I) (AQ,(0)/z;) exp —(A/;), where A is the time when the
postglitch observations start, measured from the actual date of the glitch. A values can be chosen to allow the same values of I,/I and I,/I after each glitch. This is
not possible for I,/1. Best-fit values of A (days) are given in the fifth row. I /I and I /I are the fractional moments of inertia of the superfluid regions responsible for
the glitches, and in the case of I ,/I also for the long-term recovery. I,/ is the sum of the fractional moments of inertia [(I,/I) = (Y. {I,/I) + 1, + I)]; it provides a
lower bound to the fractional moment of inertia of the neutron star crust. 6Q/Q is the fractional decrease in superfluid rotation rate at a glitch, and ¢, the
theoretically expected time to the next glitch. The last row gives the observed time to the next glitch.
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F1G. 4.—Observations of the spindown rate following each glitch, together with the consistent model fits, following each of glitches 1 to 8
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to/7, to a simple exponential of the same form as in the linear
regime,

hm Aﬂc(t)/QnonIinear = (II/I)(tO/T) eXp (— t/T) .

to<t

(14)

Thus, the observed 32¢ exponential relaxation can reflect non-
linear response or linear response. It is not possible to test for
these alternatives in the data as the accuracy of our multi-
component fit cannot distinguish a true nonlinear response for
this component, or search for the higher order corrections to
equation (14); using the full nonlinear response model yielded
comparably good fits. We think it likely that the 32¢ response
is from a superweak pinning region in the nonlinear regime,
but this is not a definite conclusion of the data analysis. As
discussed in earlier work (Alpar et al. 1989), nonlinear relax-
ation times from weak pinning regions in the Vela pulsar are of
the order of 1000%. Therefore, if the 32¢ response is to be non-
linear, it must come from a superweak pinning region.

The presence of a torque which varies linearly in time is a
strong argument in favor of this assignment. Such a torque is a
signature of a nonlinear regime; as we have noted earlier, it is
understood as arising from the superposition of many small
regions, k, in which déw,(0, r) varies linearly with r, provided
their nonlinear relaxation times 7, satisfy 1, < t, = 6Q/|Q|,
the maximum offset time of these nonlinear regions, through
which vortices moved. Since 7, in a weak pinning region is
~1000¢, this condition can be met only if the region in ques-
tion is one of superweak pinning. Thus it is consistent to
assume the 329 relaxation is nonlinear. In this picture the same
kinds of physical regions, involving superweak pinning and
nonlinear response, are responsible for both the 32¢ exponen-

A(MeV)
|

0.8

06

p(10°gm/cm®)
FiG. 5a
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tial relaxation and the long-term behavior AQ, ~t. Put
another way, there are two separate contributions of this non-
linear response to postglitch behavior: (1) superweak pinning
regions through which vortices have not moved give rise to a 32¢
exponential relaxation; and (2) superweak pinning regions
through which vortices have moved give rise to an internal
torque which varies linearly in time. This situation arises natu-
rally if the physical location of the vortex unpinning in a glitch
resides within that part of the star in which the pinning is
superweak and the response is nonlinear, as shown in Figure 2.

The weak-to-superweak pinning transition takes place at
one specific density layer in the crust superfluid (Alpar et al.
1984b). According to the above reasoning, this critical density
p™™ lies within the nonlinear response regions, so that it
explains the 329 relaxation time as a nonlinear relaxation time
for the superweak regime. This assignment is only a consistent
assumption. The transition density above which creep becomes
linear is somewhat higher, p'* > p**. A model calculation,
shown in Figure 5, gives p™¥ =8 x 10'* g cm™? and
p' = 8.6 x 10'3 gcm ™3, Associating the 32¢ exponential relax-
ation and the nonlinear creep response AQ(t) oc t with this
density range means that the fractional moment of inertia (/1
+ (I,/I ~ 1072 must reside at p** < p < p". The regions 4,
are responsible for storing excess vortex density and releasing
this stored density dn at each glitch. For simplicity, we assume
that the moment of inertia of these regions is large compared
to the moment of inertia of the vortex repinning regions 4,,
I,~1, »1,, The unpinned vortices then scatter outward,
through the regions B. The moment of inertia I 5 must therefore
reside at densities p < p**, in nonlinear creep regions with
weak pinning. The density p** must be (and is, in our model
calculation) large enough that I;/I ~ 10~2, the largest moment
of inertia in our fits. This constraint, that the extent of the
crustal superfluid with p < p** be large enough to have an

A(MeV)
20

0.5

0 05 1.0 15 ke(n)(fm™)

F1G. 5—Some possible constraints on A(p) obtained from our identification of the presence of regions of superweak pinning in the nonlinear creep regime. The
criteria for the transition from superweak to weak pinning (with ' = 1) and for the transition from nonlinear to linear creep (with y = 0.5) are plotted in the A — p
plane, together with a band of gap functions, A(p), calculated by Ainsworth, Pines, & Wambach (1989), delineated by the bold curves, and shown below as Fig. 4b. We
model this family of A(p) curves as A(MeV) = A, — 2.63 k. (fm~*), with 3.5 MeV < A, < 4 MeV, in the density range displayed. For the above choice of y and ¥/,
A(p) curves which are above the point C and which pass through the shaded triangle are the only curves which are compatible with superweak pinning in the
nonlinear creep regime. For these curves, p** and p** obtained from the intersection of A(p) with the critical lines for superweak to weak pinning and nonlinear to
linear creep transitions satisfy p** < p*. This selection is illustrated for a particular A(p) curve, traced in long dashes, corresponding to A, = 3.73 (MeV). This curve
was also used to calculate the relaxation time displayed in Fig. 1. (b) The gap A(MeV) as a function of k{fm ~!), taken from Ainsworth, Pines & Wambach (1989).
The density range of interest, studied in Fig. 5a, is the range of higher density where A decreases with p. (The relation between p and k; is p(10'® g cm™3) =

5.64 [k (fm~Y)]3)
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inertial moment 1072 is satisfied for most neutron star
models. A second consequence of our identification of the non-
linear time scale 7, = 329 is a determination of the effective
distance, b, between superweak pinning sites. With equations
(3) and (9), we find b =~ 2500 fm ~ 8C b, for the superweak
regime.

Having interpreted the 329 time scale with superweak
pinning in the nonlinear creep regime, at p*¥ < p < p", the 392
exponential relaxation time scale is naturally interpreted as a
time scale representing linear creep regions (with superweak
pinning) at densities p > p'. As the linear creep relaxation time
t; depends sensitively on E,, the presence of one (or a few) time
scales in linear creep response must reflect a typical scale of
pinning energies E, in the superweak regime. At the transition
to the linear creep regime at density p“, 7, =1, and E, =
(E,/kT), kT = 0.34 MeV, using equation (10) at the tem-
perature kT =11 keV. If we assume the relatively slowly
varying nonlinear relaxation time t, has roughly the same
value at p'* as at p*, 7, = 1, ~ 329, then the 392 linear creep
relaxation time implies

32d
E,(3.2d) = E(32d) — kT In <3—22> ~0.32 MeV  (15)
using equation (7) for 7, The remaining, 10 hr, time scale re-
flects the regions with minimum pinning in the superweak
linear creep regime and corresponds to the shortest time scales
that could be resolved observationally. This time scale implies

32¢
10 hr

E,(10 hr) = E (32%) — kT1n< > ~0.29 MeV . (16)

These estimates are based on the assumption that the variation
in the observed linear creep relaxation times reflect small varia-
tions in E,, rather than changes in the effective pinning dis-
tance b. Ast,oc b™ ' exp E ,/kT, the latter possibility, which we
consider unlikely, would require b to increase by a factor of
32%/10 hr ~ 80, to b ~ 6500 b, within the linear creep regions,
a factor comparable to the increase in effective b at the weak to
superweak pinning transition.

The pinning energies we infer are similar to plausible values
for the weak pinning regime. Pinning energies for individual
nuclei are not expected to be very different in the superweak
pinning regime. To put this another way, a transition that
substantially rescales the pinning energies would give a much
larger factor between the linear creep relaxation times. For the
Vela pulsar, equation (7) shows that at kT = 11 keV a jump by
only 75 keV in E, leads to a change in the relaxation times by a
factor of a thousand, rendering it impossible to diagnose such a
transition from a pair of relaxation times in the observable
range.

The interpretation that the 32¢ relaxation time reflects the
presence of superweak pinning in the nonlinear regime places
several constraints on models for the pinned crust superfluid:

1. The weak to superweak transition should fall within the
nonlinear creep regime, that is, the critical density p** for this
transition should be less than the critical density p* above
which linear creep prevails (see Figs. 1 and 2).

2. The nonlinear relaxation time for superweak pinning
(p = p*¥)is 32¢.

3. The densities p** and p' should not be very different so
that (as our fits indicate) the moment of inertia associated with
the 32¢ linear relaxation, as well as the moment of inertia I ,,
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where T ~ 329 < t, is needed, is a small fraction of the moment
of inertia in the crust superfluid, while p' should be “large
enough” that most of the crust superfluid moment of inertia is
in the nonlinear regime, as we discuss in the next subsection.
Whether these constraints can be satisfied depends in turn on
the superfluid gap as a function of density, the pinning energy
as a function of the gap, and the ratio of £ to b,, which deter-
mines the criterion for the transition from weak to superweak
pinning.

Since none of these quantities is known to, say, 20% accu-
racy, we parameterize all three in order to get an idea of the
range of parameters which are consistent with the above con-
straints. We take as a representative superfluid energy gap the
recent calculations of Ainsworth et al. (1989). They find a
family of possible gap functions, whose behavior at densities of
7-12 x 10'3 g cm ™3 may be parameterized as

A(MeV) = —2.63k(fm 1) + Ay(MeV) , 17)

where A, varies between 3.5 and 4. We parameterize the
pinning energies, given in equation (2), as
3 A’n
E,=y——V
» =78 Ex °
where y < 1. (An early calculation [Alpar et al. 1984b] yielded
y ~ 0.1-0.6 at the relevant densities.) Next, the uncertainty in
the criterion for superweak pinning may be parameterized as

(18)

Cow 2 V'(b,/2), (19)
where y > 1. This condition can be written as
26kg(fm 1)
A, (MeV) < ————=
w(MeV) < =20 (20)

Using equations (18) and (10) with kT = 11 keV, we find that
at the linear-nonlinear creep transition,

0.625

A =
"’(MCV) ,yl/ZkF(fm - 1)1/2

21

We show in Figure 5 the critical curves for the superweak-
weak pinning and nonlinear-linear creep transition in the A-p
plane (eqs. [20] and [21]), for ' = 1 and y = 0.5, together with
the family of actual A(p) curves calculated by Ainsworth et al.
(1989).

A set of mutual constraints relating y, y’ and the gap function
A(p) follow from our interpretation of the Vela pulsar data as
requiring that p* < p'. Requiring that equation (20) be satis-
fied at a lower density than equation (21) brings in a consis-
tency check for the gap result, equation (17). We find that for a
range of parameters, the gap results given in equation (17) give
consistent solutions. For given y and y’, the intersection of the
two critical curves, equations (20) and (21) defines a critical
point C in the A — p plane, shown for y =0.5 and y =1 in
Figure 5. The location of this point C in relation to a given
family of gap function curves A(p) determines whether p**¥ < p'f
is possible with those A(p). If C is below the range of A(p)
curves, then all A(p) will allow p** < p'. If C is above the range
of A(p), there is no gap model within that family of A(p) that
will accommodate p** < p'. If C falls within the range of A(p),
then only those gap curves A(p) above C lead to p™ < p".
Using the parameterization of equation (17) to characterize the
gap curves A(p), and taking the lattice spacing b, = 40 fm, we
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find that p*¥ < p'* requires

0.63 ,
P13 > ((y’)”"‘ + 2.55(y )2/3>
where Ag(max) = 4 MeV for the family of A(p) curves calcu-
lated by Ainsworth et al. (1989). Thus, consistency with the
APW results requires y > 0.5 with y’ = 1, while taking y < 1,
for the definition of y to be meaningful (see eqgs. [2] and [18])
means that y" < 1.6, which in turn means the transition to
superweak pinning takes place when the coherence length is
not more than 0.8b,. Applying restrictions on the allowed
range of y and 7’ in turn introduces constraints on A(p) curves
that allow p** < p'. The definite requirement y <1 means
Ay(max) 2 3.2 MeV; so that a gap function peaking at kg ~ 0.8
fm ™! must have a peak value of at least about 1 MeV, ruling
out gaps A(p) that are significantly lower than the APW values.
Gap functions that are much larger than the range calculated
by Ainsworth et al. (1989) would be required only if one had an
independent argument that y’ is relatively large; for example
y" > 2 would require a peak gap value of at least 2.4 MeV. It is
rather striking that our interpretation of the Vela pulsar data
with the requirement p** < p'* leads to a remarkable consis-
tency with recent calculations of the gap functions A(p) and to
constraints relating the pinning parameters y and 7’ to A(p)
that yield plausible values for y and y’ while arguing against
very low gap values.

To summarize, consistent fits for the short time scale relax-
ation following the eight glitches of the Vela pulsar examined
here require the linear response regime of the vortex creep
theory, while the intermediate 32¢ time scale exponential relax-
ation is interpreted as the response of a superweak pinning
region that is in the nonlinear creep regime. All short and
intermediate relaxation time scale (t; = 10 hr, 7, = 392, 75 =
329) lead to a range of acceptable pinning energies, which are
consistent with estimates of pinning parameters based on
current energy gap calculations (Ainsworth et al. 1989). The
uncertainties in the latter are such that these calculations do
not, at present, yield a unique set of parameters. Nevertheless,
the present interpretation of the Vela data does require that the
gap function A(p) must not be much weaker than the A(p)
calculated by Ainsworth et al. (1989). Indeed, we can argue
more generally that ps™ < p*, even if the 324 response comes
from the linear regime. The long time scale response AQ oc t
must be in the nonlinear regime and with a relaxation time
14 < t,, the time between glitches. Weak pinning relaxation
times are long, 7, ~ 1000¢ ~ t,. Therefore the long time scale
response indicates the presence of superweak pinning in the
nonlinear regime. Now, if 13 = 329 is associated with linear
response, it cannot be very different from 1, < 1000¢ associ-
ated with the long time scale response in the nonlinear regime,
so the corresponding pinning energies and therefore p' and p*%
must also be close to each other. Thus the above conclusions
for the superfluid gap are likely to hold even if the 32¢ response
is not assumed to belong to the nonlinear regime.

Ay(max)’ 22)

4.2. The Long-Term Behavior

After the short and intermediate time scale exponential
relaxation is completed, the remaining AQ,(¢) settles to a slow
recovery that is linear in t. This behavior is observed after each
of the eight Vela pulsar glitches and persists until the arrival of
the next glitch. The basic question here is whether the entire
spin-up introduced by the glitch relaxes back in the course of
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this slow recovery, or whether a portion of the spin-up
remains. In other words, does a glitch heal before the next one
comes along? Does relaxation trigger the next glitch or do
unrelaxed remnants of spin-up from each glitch form part of
the long-term dynamics?

A glitch at time ¢t = 0 will have completely relaxed at some
later time ¢ if the integrated negative offset in the spindown rate
compensates exactly for the initial frequency increase:

AQ,(t) = AQ,(C) + J A0t = 0. 23)
(1]

Without integrating to test for this condition, one can examine
the spindown rate directly to see if the relaxation process is
completed, in which case the spindown rate will have a con-
stant equilibrium value, apart from a small second derivative
of the rotation rate due to the pulsar braking torque. In vortex
creep theory this equilibrium would be reached when vortex
creep has restarted in all perturbed nonlinear response regions.
Completion of the relaxation towards equilibrium should
involve an increase in the slope of AQ,(t) or even a steplike
positive change, indicating the “ Fermi-function ” response of a
large nonlinear creep region, as parts of the superfluid where
previous vortex creep was stopped by the glitch restart to allow
vortex creep and thereby recouple to the crust’s Q,. A search
for such signatures was emphasized as an indicator of the rela-
tion between the healing of one glitch and the occurrence of the
next (Alpar et al. 1984).

No signs of change in the long-term postglitch relaxation
with AQ,(t) oc t were seen prior to the occurrence of the next
glitch in a study of the first six glitches (Cordes et al. 1988). This
was also the case for the seventh and eighth glitches. The ques-
tion can be posed in model-independent fashion (Blandford
1990) by comparing the extrapolation with timing parameters
prior to the first glitch, assuming no glitches have occurred,
with the observed rotation frequency at a later epoch after
several glitches have occurred. Making the comparisons
between the extrapolated rotation rate and the observed value
just before the sixth glitch, one finds that the first five glitches
leave a collective remnant spin-up of a part in 105, after their
observed (partial) relaxation. This remnant spin-up is indeed a
significant portion of the sum of the initial frequency increases
from these glitches. Thus the glitches contribute a net spin-up
to the crust against the dominating background of spindown
by the external torque and have the same spin-up signature as
the continuous internal torques of vortex creep (equation [5]).
This means that the unrelaxed part of the glitches is simply a
discrete complement to the continuous creep torque between
the interior and the crust (Alpar 1992; Pines & Alpar 1992).
The continuous outward creep of vortices is supplemented by
occasional unpinnings of large numbers of vortices whose
sudden outward motion is manifested as the glitches.

The single observed long time scale component of AQ,(t)
between glitches persists with a linear dependence on t until the
next glitch. We interpret this term as a gradual recoupling of
regions of nonlinear creep whose initial offset (decrease in
superfluid rotation rate) at the last glitch, 6Q(r), translates into
a succession of recoupling times t,(r) = 6Q(r)/|Q2] and an
increase in the recoupled superfluid moment of inertia. To the
extent that 6C(r) increases linearly with r in these regions, this
increase is linear in time until the total moment of inertia I,
has recoupled at a time t,. The maximum offset defines the time
scale t, = 6Q/| Q| (also labeled ty or t, in previous work) which
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characterizes the time to the next glitch as we demonstrate
below. In this model (Alpar et al. 1984b) the observed slope AQ
of this term is

AQ I,
et U 24
Q| I, @4)

The contribution of vortex motion through the regions A at a
glitch to angular momentum balance is 31,69, since the
average 0€Q(r) is 6Q/2. In addition, there will be regions whose
moment of inertia we have denoted by I, through which a
large number N of vortices move at a glitch, leading to a
constant 6Q in these regions; this behavior is to be contrasted
with that of the regions A, where the density of vortices that
move at a glitch is constant while their total number and hence
the associated 6Q(r) is incremental, until reaching the
maximum JXQ in the adjacent regions B as depicted in Figure 2
(Alpar et al. 1984b; Cheng et al. 1988). Adding the contribu-
tions of regions A and B, the angular momentum balance in
equation (12) is obtained.

We need a third equation to solve for I /I, Iz/I and 6Q in
each postglitch fit. This is the equation describing the effect of
the glitch-associated vortex motion through regions A and B
on the crustal spindown rate A, since the vortex motion and
the consequent 6Q(r) will stop vortex creep and result in a AQ,.
Since the regions A are observed to be recoupling, we postulate
that they must have been stopped from creep immediately after
a glitch, and thus contributed a term I /I to the initial offset
AQ,/Q of the crust’s spindown rate. Figure 3a shows the con-
tributions of our model regions A to AQ, at, and after, a glitch.

An ambiguity arises as to the extent of the regions B that
were creep regions decoupled by the glitch, waiting to recouple
at the offset time t,. Formally, the question is what combi-
nation of Iz/I and I A/I is responsible for the observed AQ,. In
previous work (Alpar et al. 1984b; Pines 1991) regions B were
assumed to be creep regions decoupled by the glitch and there-
fore contributing fully to the initial AQ,/Q.. If this were the
case, the contributions of regions B to Q, at and after a glitch
would be as shown in Figure 3b. As we discussed above, this is
not the case, for two reasons. First, we never observe any signs
of sudden recoupling around a time ¢, after the glitch; second,
we do not see the integrated effect of a constant negative AQ,
due to such regions B, which, if operative for a time ¢, after
each glitch, should cancel the spin-up contribution due to
vortex motion through B, so that there would be no remnant
spin-up contributions from the glitches. Thus, from the obser-
vations, we conclude that the regions B contribute to the
angular momentum transfer at the time of the glitch, because
unpinned vortices rapidly move through these regions, but
they do not have the signature depicted in Figure 3b that
would be expected if they were temporarily decoupled creep
regions. We identify regions B as regions that cannot sustain a
local vortex density and vortex current; they do not decouple
from creep, because they never sustained vortex creep before or
after a glitch; their only mode of coupling to the crust is by the
discrete angular momentum transfer through sudden vortex
motion at the glitches. We had already noted the presence of
such regions and their role in glitches in earlier work (Cheng et
al. 1988). With this identification, we arrive at a very simple
form for our equation of the glitch-induced change in Q,

JXORLE I
(-

c
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where the superscript, “It,” indicates that the contributions of
the short and intermediate time scale linear response discussed
in the previous subsection have been subtracted from AQ_/Q,.
A first report of this interpretation of the Vela pulsar’s
dynamics was given by Pines & Alpar (1992).

The values of 1,/1, I/1, (6Q/Q), and ¢, obtained by solving
equations (12), (24), and (25) are given in Table 1 for each of the
eight glitches. It is remarkable that, in addition to the consis-
tent ranges of these parameters after independent fits to the
separate sets of postglitch data, the calculated times ¢, are on
the average close to the observed times to the next glitch. A
large discrepancy, by a factor ~2, is observed only after
glitches 1 and 5. The total of ¢, calculated for the first eight
glitches agrees remarkably well with the sum of the observed
interglitch time intervals; thus we find

Z 99014

(26a)

8
Yt = 8146%. (26b)
i=1

The discrepancy between these sums is 21%, while the rms
deviation of the t!,, from their mean is 33% of the mean. The
discrepancy between t; and ti,, probably reflects the fluctua-
tions in the number of vort1ces that unpin at each glitch. As the
total number of glitches M increases, we would expect the
fractional discrepancy between the average t, and t,,, over a
sample of M glitches to decrease as (M/M)!/2, Note that on the
average the glitch regions B spin down at the rate {0Q/t,,,>
and this is simply <{&6Q/t,> =|€Q| in the long run, as
{teps) = (t,; ie., in the long run the glitches permit the
regions B to spin down at the same rate as the rest of the star.
The glitches are simply the discrete events coupling those regions
of the crustal superfluid that physically cannot sustain contin-
uous vortex creep. The mechanism that triggers these discrete
events is still not known.

5. CONCLUSIONS

We have evaluated eight of the nine glitches and postglitch
relaxation observed for the Vela pulsar to date with a com-
prehensive model involving the vortex dynamics of the pinned
superfluid in the neutron star crust. Independent fits to each set
of postglitch data produced sets of parameters for the crust
superfluid which are both plausible in the light of theoretical
estimates and remarkably consistent for all the postglitch data
sets.

There is some uncertainty in our estimate of the moment of
inertia (I3/I), which is associated with an uncertainty in our
interpretation of the 32¢ relaxation time. The model we have
proposed associates the 32¢ relaxation with a region of super-
weak pinning and nonlinear response, region 3, where no
vortex motion takes place at a glitch. This means I,/I =
a5 t/AQ,. A much smaller value of I,/I = a5 t/6Q is obtained if
the 32¢ relaxation time is alternatively associated with a region
through which vortices move at the time of a glitch (such a
region is necessarily a region of linear response). Here 6Q is the
mean decrease in superfluid rotation rate in region 3 produced
by vortex motion through this region. In this case 0Q is of the
order of 6Q and can be obtained by using equation (12), modi-
fied to include the angular momentum transfer I; 0Q, together
with equations (2.4) and (2.5). The values of (I5/I) and (I,/I)
which result from this alternative interpretation are given in
Table 3.
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TABLE 3
DEDUCED PARAMETERS FOR EIGHT VELA GLITCHES BASED ON THE INTERPRETATION THAT VORTICES PAss THROUGH REGION (3) AT THE TIME OF THE GLITCH

GLITCH DATA

PARAMETER 1969 Feb 28 1971 Aug 29  1975Sep28 1978 Jul3 1981 Oct 10 1982 Aug 10 1985 Jul 12 1988 Dec 24
Us/D) g 0.14 0.16 0.16 0.37 0.10 0.28 0.20 0.20
177 U 177 171 217 241 2.06 1.67 1.65 151

NoTe.—We list only the values of the two parameters affected by this alternative interpretation, (I3/I) and (I, I).

In terms of neutron star structure, our fits yield the impor-
tant constraint that the moment of inertia in the crust superfluid
is at least 2.4% of the star’s total moment of inertia. To get
neutron star models with a thick enough crust to satisfy this
constraint requires a neutron matter equation of state that is at
least “moderately stiff” (Pandharipande et al. 1976; Pines
1991; Datta & Alpar 1993).

Our fits show that postglitch response in the Vela pulsar
comes in two categories. The short time scale response (z =
094, 392, represents the prompt response of regions of the
superfluid through which no vortices move at the time of a
glitch. These regions respond only to the increase in the crust
rotation rate, i.e., to the observed glitches. As noted above, the
392 response may also be of this kind, or alternatively, may be
associated, in part, or entirely, with a region through which
vortices move at the time of the glitch.

It is in the long-term response that we see the interplay
between glitches and postglitch response. The long-term
response in Vela comes from nonlinear creep regions that are
affected by sudden vortex motion at the time of the glitch.
From an analysis of the postglitch data to date, it seems clear
that an initial decrease in Q, followed by a recovery that is
linear in time, AQ, () = AQ,(0)[1 — (t/t,)] is the only long-term
signature of interglitch ), once the prompt postglitch expo-
nentials have relaxed. We ascribe this long-term recoupling to
nonlinear vortex creep regions which act as vortex unpinning
and repinning reservoirs and which supply the vortex
unpinnings that are observed as glitches. The subsequent
reduction in creep rate translates to a decrease in Q. (an
increase in the absolute value of the spindown rate) which
gradually heals as vortices start to creep and refill these
pinning regions. This interpretation of the long-term AQ(f)
was already invoked in our earlier work (Alpar et al. 1984b;
Pines 1991). In the present work we have added to this general
framework the interpretation that the regions through which
vortices move macroscopically during a glitch (regions B), in
distinction from the unpinning and repinning regions (regions
A), can never sustain vortex creep at interglitch epochs. They
therefore do not contribute to the sudden change in Q, associ-
ated with the glitch. These vortex depletion regions, whose

physical origin we had discussed earlier (Cheng et al. 1988),
spin down only in discrete lumps of vortex transfer, at the time
of the glitches, which are now seen as the discrete component
of the spin-up internal torques coupling the crustal superfluid
to the crust. The major part of the spin-up at glitches is simply
the long-term coupling of these vortex depletion regions to the
overall spindown of the star under the external torque; it there-
fore does not relax back. We thus see the glitches and inter-
glitch creep as two components of the same process of vortex
motion coupling the crustal superfluid to the crust. The reason
for the particular size of glitches (or number of vortices
unpinning at each glitch) for the Vela pulsar is a subject to be
taken up in subsequent work, along with the evolution of glitch
activity and the size distribution of glitches as a function of
pulsar age.

We expect the behavior discussed here to be seen in the data
following glitch 9, and after future glitches. Most of the initial
AQ of glitch 9 should decay exponentially with a time scale 7,
of about 10 hr, possibly shorter, depending on the resolution of
the earliest timing data, as this time scale, observed only after
glitch 8 previously, is likely to be the minimum observationally
resolvable relaxation time of linear creep with superweak
pinning. We expect exponential relaxations 7, = 392 and 7, =
32¢ with I,/I and I,/I similar to the values found in this work.
These components of postglitch relaxation should be followed
by a long-term response A€, (t) oc t. The I ,/I and I/I extracted
from an analysis of glitch 9 should likewise give values in the
range found for the previous eight glitches, I1,/I ~ 10”2 and
Ig/I ~ 1072, yielding a total I,/I <3 x 10~2. Finally, we
expect the agreement between the average estimated and
observed times from one glitch to the next to persist.
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