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ABSTRACT

The stellar dynamics at the transitions between a strongly barred and rotating potential and a spherical and
dense central mass concentration is investigated in a model potential. Three different degrees of concentration
of the central mass are studied. The main families of three-dimensonal periodic orbit are found by numerical
means. The structure of phase space is presented by bifurcation diagrams and surfaces of section. ‘A large
region of instability develops near the inner Lindblad resonance (ILR) due to the strong bar potential. In such
a mass configuration the radial ILR is typically near the corresponding vertical ILR, consequently the insta-
bility of orbits is radial as well as vertical, helping the heating of disk stars into a bulge. These secular evolu-
tion processes from barred to unbarred and in the direction of increasing the bulge-to-disk ratio should affect

the evolution of galaxies over a Hubble time.

Subject headings: celestial mechanics, stellar dynamics — galaxies: evolution —
galaxies: kinematics and dynamics — galaxies: nuclei

1. INTRODUCTION

The structure of barred galaxies seems to exhibit a number
of subtleties that require further elucidation, including the
questions of why only ~30% of all galaxies have a detected
strong bar, why polar rings are not found in barred galaxies
(Bettoni & Galletta 1991), and whether galaxies can evolve
through bar dissolution to ovals or lenses (Kormendy 1979,
1982). In a recent study (Pfenniger & Norman 1990) it was
found that barred galaxies with significant central mass con-
centrations could resonantly heat disk stars sufficiently strong-
ly to populate a metal-rich rapidly rotating bulge, which, in the
Milky Way and nearby galaxies, is indeed observed (Mould
1986; Frogel 1988; Rich 1989). (“Bulge” here is as defined by
Gilmore, Wyse, & Kuijken 1990 and is really the inner, ~ 3-5
kpc wide bulge as opposed to the more extended spheroid.) In
this regard, the tendency of N-body bars to develop into box-
or peanut-shaped bulges when seen on edge (Combes &
Sanders 1981; Combes et al 1990) is to be connected with the
boxy near-infrared view of the Milky Way bulge (Hayakawa et
al. 1981; Habing et al. 1985; Kent et al. 1992). In the N-body
models the development of the peanut shape is due to a vertical
2:1 instability of the plane orbits which triggers a z-
asymmetric gravitational bending mode, as studied for barred
systems by Pfenniger & Friedli (1991) and Raha et al. (1991).
During the formation of this peanut-shaped bar-bulge there is
a substantial heating parallel and normal to the plane and a
corresponding increase of its central density. Since the gravita-
tional bending instability is then global to the bar, though
initiated by an orbital resonance, it is more effective than just a
resonant instability restricted to localized regions in space.

! Postal address.

A detailed theoretical study of stellar orbits in rapidly rotat-
ing triaxial galaxies in the presence of a central mass concen-
tration is an important step in understanding the shapes and
secular evolution of such galaxies, as well as in constructing
self-consistent models of the galaxy potential (Schwarzschild
1979, 1982; Pfenniger 1984b). A first approach to this problem
was made in an earlier paper (Hasan & Norman 1990, here-
after Paper I), where we examined the two-dimensional behav-
ior of the orbits in the galactic plane as the central mass grew
in mass. We found that as the central mass became larger the B
(or x,) family of orbits (in the notation of Athanassoula et al.
1983), which are the ones elongated along the major axis of the
bar and which are important in sustaining the bar, became
more and more unstable, and therefore surrounded by stochas-
tic orbits, until eventually the bar had to dissolve. This behav-
ior was associated with the appearance of an inner Lindblad
resonance (ILR) which gradually moved toward the minor axis
of the bar. An estimate of stochasticity was made by computing
the volume in phase space occupied by the stable B orbits. As
the central mass concentration was increased, the phase-space
volume decreased down to zero.

The perhaps overly ambitious hypothesis that has emerged
from these studies so far is that all galaxies tend to be barred
but the bar acts to sweep material into a central mass concen-
tration that then acts to dissolve the bar. At the same time,
considerable disk heating is occurring and the central bulge
(the inner bulge, not the spheroid) is forming or being added to
significantly. These slow secular processes (t ~ 10° yr) can be
thought of as acting to transform galaxies from one type to
another from barred to unbarred and in the direction of
increasing the bulge-to-disk ratio. Of course, other physical
processes are also occurring, including star formation and
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merging of both large and small objects, but here we will focus
on these slow secular continuous processes. Interesting
attempts at N-body work along these lines (Friedli, Benz, &
Martinet 1991; Pfenniger 1991, 1983; Friedli & Benz 1993)
show bar dissolution with central buildup of mass either by gas
accretion or by satellite merging.

Analyzing such self-gravitating systems completely is enor-
mously difficult owing to the large number of degrees of
freedom in interplay. In fact, typical N-body systems are expo-
nentially unstable and therefore generate much more chaos
than is classically expected from Chandrasekhar’s two-body
relaxation estimate (Gurzadayan & Savvidy 1986). As a conse-
quence, individual orbits in self-consistent N-body calculations
do not conserve their assumed integrals of motions well and
are “relaxed ” much faster than by two-body encounters. So
either the approach to model galaxies based on the collision-
less Boltzmann equation or the one based on studying orbits in
a fixed galactic potential has a limited scope of application in
actual galaxies and in N-body numerical systems. The fact that
the notion of an integral of motion is valid only for a restricted
time scale (=~ 108 yr) is also well documented observationally in
the Milky Way by the systematic increase of the star velocity
dispersion with age in both the radial and vertical directions
(Wielen 1977).

However, recognizing that the most robust structures of
phase space (after the equilibrium points) in a galactic potential
are the major periodic orbits (Pfenniger 1992), we shall use here
single-particle orbits in given potentials, hoping eventually to
achieve sufficient insight to attack the study of N-body models.
The importance of stable periodic orbits is, first, that they form
the underlying basis for the dynamical description of phase
space, since they summarize the six-dimensional single-particle
phase space, and, second, that they survive for much longer
times to conservative and dissipative perturbations than other
orbits. So even if the potential adopted below is approximate
or, if perturbative, conservative, or dissipative forces are
neglected, the basic motion in a real barred galaxy with a
central mass concentration has to be qualitatively similar, for
several orbital periods, to the one described in this study.

The analysis of the problems discussed above could generate
many papers, but the problem we focus on here is that of
classifying the main periodic orbits for a three-dimensional
barred potential containing a central mass. In a previous work
(Pfenniger & Norman 1990) it was shown that for typical
galactic setups, a 2:1 vertical resonance in the galactic plane
and within the corotation radius cannot be avoided for direct
motion when the potential goes from spherical to flattened.
Therefore, the configuration studied is generic to barred gal-
axies with a central mass concentration, where the potential is
spherical at the center and is flattened outside the corotation
radius that is close to the bar end, and the resonances are
widened by the important bar perturbation. The two-
dimensional problem has been studied by Hasan & Norman
(1990) for the rapidly rotating bar. The orbits in a nonrotating
elliptical galaxy with a central density cusp has been studied by
Miralda-Escudé & Schwarzschild (1989), Martinet & Udry
(1990), and Udry (1991).

The principal qualitative conclusions of this work are that
the central mass concentration will dissolve the bar, consistent
with the previously studied two-dimensional case (Paper I),
and that vertical resonances could lead to heating of the disk
normal to the plane. The retrograde and anomalous orbit fam-
ilies, since they avoid the central region, remain stable.
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In § 2 we describe the potential used. In § 3 we study the
motion in the plane, and in § 4 we describe the motion outside
the plane, giving orbit analysis and bifurcation diagrams where
possible. Section 5 summarizes the principal conclusions.

2. POTENTIAL MODEL

Previous studies of barred galaxies (Athanassoula et al.
1983; Pfenniger 1984a) have shown us which parameters well
characterize the bar region of a barred galaxy in an approx-
imate, but tractable, galaxy model. Retrospectively, even crude
mass models (e.g., Contopoulos & Papayannopoulos 1980)
with negative density parts (cf. Petrou 1984) are perfectly able
to reproduce the main families of periodic orbits. As mentioned
in § 1, this is due to the fact that periodic orbits are the most
robust structures of phase space.

The choice of the potential parameters and pattern speed are
derived from previous studies (Pfenniger 1984a, b), where the
orbits of a similar barred galaxy model were considered and
shown to be able to reproduce the density model in a self-
consistent way (in two dimensions only). The main difference
here is the introduction of a spherical central mass of tunable
concentration.

Accordingly, the galactic potential is approximated by

Y=Y¥ +¥ +%¥n, 1)

where ¥, and W, represent the disk and central mass concen-
trations, respectively. The disk is modeled as a Miyamoto disk:

GM,
A g e 9

Here A, and B, are the parameters determining the shape of
the disk, G is the gravitational constant, and M, is the total
mass of the sphere. The central mass concentration is rep-
resented by a Plummer sphere, which is a special case of the

above potential with A, = 0. An inhomogeneous triaxial
Ferrers bar with density distribution

Y

_fpol—m)? ifm<1,
p‘% ifm>1, ®)
where
X2 y2 22
m? = F + b2 + c_z , 4

with a > b > ¢, is chosen to model the component ¥, of the
potential.

The potential parameters are chosen to have values close to
the “main” model of Pfenniger (1984a), the principal differ-
ences being due to the additional central mass concentration:
GM, = 0.075, b/a = 0.25,c/a=0.1,a = 6, GM, = 0915, A, =
3,B.=1,GM_, =001, B, = 0.1, 0.01, or 0.001. We choose
to modify B, rather than GM_,, in order to mimic an increase
of the central mass concentration at constant total mass within
the corotation radius.

The bar rotation speed Q,, is such that the corotation radius
Ry lies at the end of the bar major axis a, fixing the rotation
speed of the bar, Q, = 0.05471. It should be noted that a, the
major semiaxis of the Ferrers model, is the extreme distance
beyond which the density is axisymmetric, while a typical bar
length as derived from observation would be the characteristic
bar length, shorter than a by 10%—-20%.
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F1G. 1.—Ratios of the radial and vertical epicyclic frequencies to the excitation frequency. An ILR occurs when this ratio equals 2.

With G =1, a convenient set of units is 1 kpc for length,
2 x 10'* M, for mass, and ~ 1 Myr for time. Hence the veloc-
ity unit corresponds to about 1000 km s~ !,

The Hamiltonian (Jacobi integral), H, is given by

=3(X*+y* + ) + W(x, y, 2) — Q22 +y) (5

for the noncanonical variables (x, y, z, x, y, Z) in the rotating
frame of reference, or by

H =32 +p2+p) + ¥Y(x, y,2) — Q,xp, — yp)  (6)

for the canonical variables (x, y, z, p,, p,, p,), where p, =
x—Q,y, py,=y+Q,x, p, =z For any particular time the
momenta p,, p,, and p, are the velocity components in the
instantaneous inertial frame parallel to the rotating frame. We
shall loosely refer to the value of the integral H as the “energy ”
of the orbit.

The potential chosen here has no inner Lindblad resonances
in the absence of a central mass, as is seen from Figure 1, where
we have plotted the ratios of the natural epicyclic frequencies
over the excitation frequency, (Q — Q,). Here Q is the circular
frequency defined for an axisymmetric potential as Q%(R) =
Wr/R, where Wy is the first derivative of ¥ with respect to R
evaluated at z = 0. The radial epicyclic frequency, k, and verti-
cal epicyclic frequency, v, are defined respectively as k%(R) =
(Wrr + 3¥R/R), - and v}(R) = (¥,,),= o, Where Wgg, ¥,, are
the second derivatives of W with respect to R and z, respec-
tively. Since these quantities are defined for axisymmetric
potentials, we have approximated the bar potential, ¥,, for this
computation by an oblate potential which has a = b = 3 (the
geometric mean of a and b). When a central mass is introduced,
we see the appearance of an ILR in both the radial and the
vertical plane. The radial resonance is at R ~ 0.675, while the
vertical resonance is at R ~ 0.575. Since the radial and vertical
resonances nearly coincide (as discussed above, this is generic

to a spherical central mass concentration) and since the
appearance of a low-order resonance such as an ILR is associ-
ated in general with a pronounced stochasticity, we expect a
destabilization of motion in the galactic plane as well as close
to the plane. This chaotic motion in and out of the plane can
heat the bulge.

The above axisymmetric resonances are only an approx-
imation of the real resonances in a barred potential. The actual
resonances will manifest themselves as gaps in the bifurcations
of periodic orbit families described in § 3. The shape of reso-
nances is not limited to a ring, as in weakly perturbed axisym-
metric potentials, but follows the shape of the periodic orbits
on each side of the resonance gap.

Figure 2 shows the circular rotation velocity of the azi-
muthally symmetrized models with increasingly concentrated
central masses. The models having central masses with B, ~ 1
and more can represent late-type galaxy rotation curves, since
their rotation curves are almost identically linearly rising,
while models with B, ~ 0.1 and less have steeper rotation
curves with a “bump ” typical of early-type galaxies. In only
these models will the effect of a central mass be significant. The
models with B, & 0.01 or less have a very steep initial rising
curve, reaching a high maximum within a small radius, that in
usual observations would be unobservable owing to the low
systemic rotation of stars in these central regions and also to
insufficient spatial resolution.

The equations of motion are solved numerically. The tech-
niques to compute surfaces of section (or Poincaré maps) to
determine the initial conditions of periodic orbits are sum-
marized in the Appendices.

3. MOTION IN THE GALACTIC PLANE

We shall analyze the stellar motion by examining the period-
ic orbits and their “families ” supported by the galactic poten-
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F16. 2—Circular rotation velocity in the axisymmetrized models, as the central mass concentration is increased from B,,, = o (no central mass) to B,,, = 0.01.
The interesting regime, examined in this paper, occurs when the rotation curve displays a secondary peak near the center, for B, < 1.

tial. The importance of periodic orbits lies in the fact that not
only do they determine the mass distribution and hence the
shape of the galaxy, but also they are robust structures that
survive finite conservative and dissipative perturbations the
longest. In order to see the effect of a central mass concentra-
tion on the galactic shape it is therefore important to find its
effect on the stability of different orbit families. A convenient
way of displaying the regions of existence and of stability of the
various orbit families is by computing bifurcation diagrams
and surfaces of section. We shall discuss each of these sepa-
rately.

3.1. Bifurcation Diagrams

Bifurcation diagrams or periodic orbit families have been
extensively used in galactic dynamics to summarize phase
space (e.g., Contopoulos & Papayannopoulos 1980; Athanas-
soula et al. 1983; Pfenniger 1984a, 1985; Teuben & Sanders
1985; Sparke & Sellwood 1987; Pfenniger & Friedli 1991).
While such curves provide a wealth of information to the
expert, they can often be bewildering to the uninitiated. It
therefore seems appropriate to give a brief qualitative intro-
duction to bifurcation (or characteristic) diagrams and orbital
stability in the context of the present discussion.

In three-dimensional space periodic orbits can be uniquely
represented by their set of initial conditions (xo, Vo, zo, Xo»
Vo» Zo)- To such a set of initial conditions corresponds a func-
tion H(x, y, z, X, y, Z) that remains constant along the orbit:
H(x05 Yo 20> ).CO’ j)O’ 20) = H(X(t), y(t), Z(t), ).C(t)’ .}.)(t)a Z(t)) = HO' If
we search for periodic orbits within a potential and plot any
one of the starting conditions (x,, Yo, o, X0, Vo, Z0) against the
corresponding H,, we will find continuous curves, the charac-
teristics in this two-dimensional projection of initial condi-
tions. Each characteristic on such a bifurcation diagram
corresponds to a family of periodic orbits.

Hence one glance at such a diagram gives us a complete
picture of the dynamical system in terms of the orbits that exist

in different regions of phase space. It is customary to search for
orbits starting in the galactic plane along one of the axes with a
velocity transverse to the axis. In the present study we plot the
characteristic diagram (H,, y,) for periodic orbits starting on
the y-axis with y, = 0 and x, computed from equation (5). The
dynamical region to which the orbits are restricted is bounded
on the characteristic curve by the “zero-velocity ” curve com-
puted from equation (5) by setting the velocities to zero.

Along a family the degree of stability varies continuously,
and eventually a stable part becomes unstable. At the tran-
sition locus, new families typically bifurcate. Different but not
exhaustive possibilities of bifurcations in Hamiltonian systems
have been described by Hénon (1965). The main families are the
ones which do not originate on another family of periodic
orbits (they can originate at a fixed point of the potential such
as the center). The bifurcating orbit takes on the stability char-
acteristic of the original orbit as the energy changes. The orbit
usually changes in shape and may even be accompanied by
period doubling. Bifurcations play an important role in deter-
mining the dynamics of three-dimensional systems (e.g., Conto-
poulos & Magnenat 1985; Contopoulos 1986), since they
herald the creation of new orbit families and are often accom-
panied by instability and chaos. It is these properties that are
of greatest interest to us here. ‘

The initial conditions for the bifurcating orbits may have
nonzero values for more than one of the phase-space vari-
ables. For example, in our case a bifurcation in y means that
(Hy, Yo, Vo) are nonzero and determine the value of x,,. In this
case it is important to draw the bifurcation diagram (H,, y,) as
well. In our problem, the only bifurcations that correspond to
three-dimensional orbits are the ones in z and z. There may be
further bifurcations off these new families, but we do not con-
sider these higher order bifurcations here, since these orbits
influence smaller and smaller regions in phase space and are
unimportant in determining the morphology of a galaxy.

Orbital stability is mathematically quantified in terms of
“stability indices” (Magnenat 1982 and references therein;
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Fi6. 3.—Bifurcation diagrams showing the initial conditions (H,, y,) for the main periodic orbit families and their first-order bifurcations for central mass
concentrations (a) B, = 0.1, (b) B,,, = 0.01, and (c) B,,, = 0.001. The main orbit families are indicated by heavy solid lines, while the bifurcating families are
represented by different line types are explained in the key at upper right. The bifurcation points of the z1 and z2 families for case I are represented by crosses.
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Appendix B of this paper). These indices have physical signifi-
cance for orbits in the galactic plane in the sense that they
correspond to perturbations transverse to the orbits, either in
the orbital plane or at right angles to it. The stability of period-
ic orbits is broadly classified as stable, simply unstable, doubly
unstable, and complex unstable. A more refined instability clas-
sification due to Broucke (1969) is given in Appendix B. Simply
unstable orbits are unstable to perturbations along one fixed
direction only, while doubly unstable orbits are sensitive along
two fixed directions. Complex instability is a distinct type of
instability that appears in autonomous systems with at least 3
degrees of freedom (Broucke 1969). Complex unstable orbits
are sensitive to perturbations within a plane of rotation in the
six-dimensional phase space. The consequents of nonperiodic
nearby orbits form a spiral structure in the four-dimensional
“surface” of section .Though mathematically well defined, the
effect of complex instability is conceptually more difficult to
visualize, as a higher than two-dimensional (ie., four-
dimensional) space needs to be considered. This phenomenon,
however, has important implications in galactic dynamics
(Pfenniger 1985; Martinet & Pfenniger 1987), some of which
will be mentioned later in the discussion.

Periodic orbits and their stability indices were computed in
the galactic plane by numerically integrating the equations of
motion and using a Newton-type method to obtain the initial
conditions for the periodic orbits (see Appendices). We shall
refer to the three cases considered here as case I (B, = 0.1),
case II (B,,,, = 0.01), and case III (B,,, = 0.001). Characteristic
curves are studied for those regions of the bar where the influ-
ence of the central mass is expected to be felt.

Bifurcation diagrams for the three cases (Figs. 3a-3c) show
that there are three major families of periodic orbits. The first-
order bifurcation of these families are also shown. The three-
dimensional periodic orbits are the ones bifurcating in z or z and
will be discussed in § 4. The diagrams are replotted in Figures
4a-4c, where stable orbits are represented by solid lines, while
unstable orbits are represented by broken lines.

A orbits—These orbits, also called x,, have an antibar
shape, so are elongated perpendicular to the bar and are more
rounded as we go deeper into the potential and are stable
along the entire characteristic. They give a round shape to the
regions surrounding the central mass concentration, but at
larger distance their shape is more and more antialigned to the
bar, tending to decrease the eccentricity of the bar.

B orbits—These direct orbits, also called x,, support the bar
because they are mainly elongated along the bar and are the
most important for bar existence. For case I the corresponding
characteristic is smooth and continuous with the orbit evolu-
tion shown in Figure 5. We see that while these orbits are
elliptical at large energies, as we get close to the central mass
they develop loops at the ends. For cases IT and III the charac-
teristics are repelled strongly from the interior regions of the
bar, with larger regions of instability. In the inner regions of
the bar, stable, almost axial orbits exist for case I between
H = —0.35 and H = —0.315, while for case II this region
shrinks to H = —0.35 to —0.33, disappearing completely for
case III. Alternating regions of stability and instability occur
all along the characteristic as the energy increases and starting
conditions for the periodic orbits move farther from the inte-
rior of the potential along the bar intermediate axis, y.

Birfurcations of the B orbits in y and y—There are several
bifurcations off the main family. The bifurcation in y which
forms a bubble (between points 1 and 2 in Fig. 6) contains
orbits which are largely oval and elongated along x but are
slightly stretched along the y-axis. The orbits bifurcating in y
(between points 3 and 4) form a loop along the x-axis at one
end.

Minor families of orbits.—There is one minor family of
largely unstable 3:1 direct orbits. One section of the character-
istic was found near the A family (Figs. 3a and 3b), and the
symmetric counterpart was found crossing the y-axis on the
characteristic plot at smaller values. The corresponding char-
acteristic curve for case I (Fig. 3a) is found between H = —0.22
and H = —0.28. At this point the characteristic continues onto
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FiG. 4—Bifurcation diagrams showing the stable (solid lines) and unstable (broken lines) regions of the main periodic orbit families and their first-order

bifurcations for central mass concentrations (a) B,,, = 0.1, (b) B,,, = 0.01, and (c) B,,, = 0.001.
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the retrograde side, bending down at H = —0.282, and again
bending back up at H = —0.229, following an S-shaped path
until it joins the main retrograde orbits R at H = —0.343.
These orbits are mainly unstable with two regions of stability
as indicated in Figure 3a. Examples of direct orbits along this
characteristic are shown in Figure 7a, while some retrograde
orbits are shown in Figure 7b. As concentration of the central
mass is increased, this characteristic undergoes significant

changes as seen in Figures 3b and 3c. These orbits do not have
an impact on the shape of the galaxy, because they are
unstable; their significance lies rather in the set of chaotic
orbits starting in the neighborhood of the central mass that
they represent.

The retrograde family R and its bifurcations—There is one
retrograde family. These orbits are mostly stable with regions
of instability between bifurcation points. They are nearly circu-

T T T
(H.y)=(~0.36,0.008)
(H.y)=(~0.3,0.05)
(Hy)=(-0.28,0.38)
(Hy)=(-0.25,0.77)
(H.y)=(~0.23,1.08)

| | \ |

-4 -3 -2 -1

1 2 3 4

F1G. 5—Evolution of B orbit family for case I. The starting conditions for each orbit are given in the key at upper right. The innermost orbit, which corresponds
to stars in the interior of the potential, is oval and elongated along the major axis of the bar. For larger values of H the orbit develops loops at the ends which open

out at still higher H-values, leading again to orbits elongated along the bar.
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Bifurcating y family — stable m
Bifurcating y family — unstable
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-0.260 -0.270 -0.280

H

F1G. 6—Expanded view of the section of the bifurcation diagram for case I containing the y and y bifurcations from the direct B family. This section of the
diagram is similar for cases II and III. Points of bifurcation in y are indicated by the numerals 1 and 2, while points of bifurcation for the y family are indicated by 3
and 4. Stable and unstable parts are indicated by solid and broken lines, respectively.

lar between H = —0.37 and H = —0.3, after which they start
getting elongated along the y-axis until they are oval toward
the end of the characteristics.

The only bifurcation in y for case I is due to the minor family
of orbits already discussed. For case II there are two bifur-
cation points in y (Fig. 3b), the orbits along these character-
istics being unstable, oval and elongated along the intermediate
axis. For case III there is one bifurcation in y and one in y (Fig.
3c). The orbits bifurcating in y and y are 1:1 and are elongated
along the y-axis.

3.2. Surface of Section

Surfaces of section (see Binney, Gerhard, & Hut 1985 for an
introduction) were computed in the galactic plane for a
number of Hamiltonian values for case I, and some of them are
collectively plotted in Figure 8. The equations of motion were
solved for each Hamiltonian value for particles starting on the
positive y-axis with a positive x and all other starting values set
to zero. Every time the orbit crossed the positive y-axis with a
positive X a point in the surface of section (or consequent) was
obtained.

Surface-of-section plots complement the information
obtained from characteristic curves. While the latter give start-
ing conditions for periodic orbits, the former show at a galance
a cut of the phase space supported by the periodic orbits. A
smooth curve, called the invariant curve (IC), formed by conse-
quents represents a stable quasi-periodic orbit, while chaotic
orbits are represented by apparently random points in an area
bounded by the zero-velocity curve. The right-hand side of the
plots in Figure 8 represents the stable direct orbits, while the
left-hand side represents the stable retrograde orbits. The
invariant curves representing the stable orbits are symmetric in
y. As we go from H = —0.24 to H = —0.34, the area bounded
by the zero-velocity curve, and hence the corresponding
surface of section, shrinks in size.

We can see from Figure 3a that there are only stable periodic
orbits for H = —0.34, hence the surface of section at this
energy contains smooth curves on both the direct and the
retrograde sides. The situation is similar for H = —0.32. For
H = —0.3, the B orbits become unstable and the correspond-
ing invariant curves dissolve. The stable A orbits are represent-
ed by the IC near the zero-velocity curve. On the retrograde
side we see, in addition to the R orbits, some islands formed by
ICs formed near resonances. For H = —0.28 we find a small
region of stable B orbits and some islands of higher orders of
resonances. On the retrograde side we see the appearance of a
small IC arising from the minor family already discussed. The
main family of B orbits disappear for H = —0.26 and
H = —0.24, although there are still some islands of higher
order resonances corresponding to the orbits which bifurcate
off the main family in the characteristic diagram.

4. MOTION OUTSIDE THE GALACTIC PLANE

Periodic orbits which have a motion outside the galactic
plane are represented in the characteristic diagram by the
bifurcations in z and Z from the main families in the plane.
These orbits seem to be more affected by the strength of the
central mass than those bifurcating in y or y (Figs. 3a-3c). They
are also interesting because they indicate the possibility of the
existence of stable three-dimensional orbits which can influ-
ence the bulge shape of the galaxy or can attract dissipative
gas.

There are two bifurcating z-families, one family bifurcating
close to H = —0.31 and the other at H = —0.296 for case I
and close to H = —0.25 for the other two cases (the exact
points could not be found because of numerical problems). The
corresponding (H, z) characteristics are shown in Figure 9. We
shall refer to these as families z1 and z2, respectively. These
particular 2:2:1 orbits have been shown (Combes et al. 1990;
Pfenniger & Friedli 1991) to be responsible for the box shape
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F1G. 7.—Evolution of minor B orbit family for case I: (a) Direct orbits; (b) retrograde orbits. The starting conditions for the various orbits are given in the key at

upper right. The direct orbits change in size as we go to higher energies, but essentially maintain their shape. The retrograde orbits have three loops which change in
size as we move along the orbit characteristic, but otherwise maintain their basic structure.
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FIG. 8.—Surface-of-section plots for families of orbits in the galactic plane for a series of values of H for case I. Values of (, y) for the orbit at the point where it
crosses the y-axis with x > 0 are plotted. Surfaces of section for successive H-values have been plotted on the same scale and are displayed here by overlapping them
in such a way that the center of each section is displaced with respect to the previous section by —0.1 in y, while the displacement in  varies from —0.4 to —0.2 in
steps of —0.05. The main regions of interest are the right-hand sides of the plots, which show the direct orbit families. The invariant curves representing the B family

disappear as the value of H increases from H = —0.32to H = —0.3.

of typical N-body bars. The stability of these orbits explains
why the bending instability observed in N-body simulations
(e.g., Raha et al. 1991) saturates at this amplitude and location.
The evolution of the z1 family in the x-y plane for case I is
shown in Figure 10a, while Figure 10b shows the correspond-
ing motion in the x-z plane. As for the main B family, in the
interior of the potential the z1 orbits in the x-y plane are
elongated along the x-axis and are 2:1 shaped. These loops
open out as the value of H increases and the orbits are almost
elliptical. For case I the z1 family is stable over the entire range
of H-values considered. For cases II and III the characteristic
is repelled from the interior of the potential for H-values lower
than —0.282, and no z1 orbits exist below this value. Between
H = —0.25 and —0.282, unstable z1 orbits exist close to the
interior of the potential (around y = 0 to y = 0.1) as indicated
in Figures 3b and 3c, respectively. In the x-y plane they make a
figure of 8 about the x-axis at the lower end of the character-
istic, while as we move along its parabolic bend they become
elliptical with loops at the ends as for case I. The orbits along

the stable branch of the characteristic are almost elliptical and
elongated along the x-axis as for case I. The motion in the x-z
plane indicates that these are not simple tilted orbits.

The evolution of the z2 family for case I is shown in Figures
11a and 11b. Interestingly, except for the innermost example
shown, this family is unaffected by the strength of the central
mass, because it avoids the neighborhood of the central mass.
The characteristic is alternatively stable and unstable between
H-values: —0.3 - —0.297(stable) > —0.292(unstable) —
—0.288(stable) — —0.258(unstable) — —0.226(stable) —
—0.22(unstable). As we can see from Figure 11a, the innermost
orbit in the x-y plane is elliptical with loops at the ends, while
as the energy increases the orbits first become elliptical and
then gradually become rectangular. In the x-z plane the orbits
make two oscillations per turn and so are close to a vertical
inner Lindblad resonance. An example of the time evolution of
a z-unstable nonperiodic orbit for the potential model of case
III is shown in Figure 12. This orbit starts close to the galactic
plane in the chaotic region around the horizontal and vertical
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Fi1G. 9.—Bifurcation diagrams showing the initial conditions (H,, z,) for the z1, z2, and retrograde z families for central mass concentrations (a) B,,, = 0.1, (b)
B,,, = 0.01, and () B,,, = 0.001. We can see here that as the central mass increases in strength the curves representing the z1 orbits bend, reflecting the fact that these
orbits take the more energetic stars from the potential interior out of the galactic plane.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...409...91H

HI

k!

A 2 1409; 1]

1903

r

GALACTIC BARS WITH CENTRAL MASS CONCENTRATIONS 103

z1 family

z2 family

lIIIl

Retrograde z family

|

LIIIIIIIIIIIII('III'III

Lindblad resonances. As is apparent from the diagrams, the
orbit soon moves away from the galactic plane, taking stars
well out of the plane. _

For the retrograde orbits there are two bifurcations for case 1
(z and z in Fig. 3a). The orbits bifurcating in z are unstable and
nearly circular, while those bifurcating in z are stable and oval
elongated along the y-axis. These are the “anomalous ” orbits,
but they do not bifurcate from the z-axis as in the study of
Heisler, Merritt, & Schwarzschild (1982). This is due to the fact
that the radial orbits along the z-axis are completely complex
unstable because of the central mass (Martinet & Pfenniger
1987). There is a counterpart of the z on the direct side. The
orbits are unstable. The corresponding characteristic diagram
is shown in Figure 13.

5. SUMMARY OF RESULTS AND DISCUSSION

We have computed characteristic curves for three-
dimensional stellar orbits in a barred galaxy with a mass of
varying concentration embedded at its center, and have classi-
fied the main orbit families. Three different concentrations
were considered for the central mass. In each case we found
two main families of direct orbits in the equatorial plane (the A
family of nearly circular orbits in the potential interior, which
become oval and elongated along the bar intermediate axis,
and the B family of orbits, which are elongated along the bar
major axis and are the most important ones for the bar
existence), one of retrograde orbits (these do not play a major
role in bar stability), and one minor orbit family. Several bifur-
cating families, some of which could lead to motion out of the
equatorial plane, were found off the main families. The main
effect of increasing the strength of the central mass was to
destabilize the B orbits in the potential interior. Another orbit
family significantly affected was the z1 family bifurcating off
the B family. This family of stable orbits developed regions of
instability in the potential interior.

This study indicates that, as the concentration of the central
mass is increased, there will be no stable orbits present in the
region where the bar potential competes in strength with the
central mass potential, especially around the region of the
inner Lindblad resonance. The effective length of the bar
reaches a distance of about 4 along the x-axis, as seen in Figure
5 by the B orbits which are sufficiently elongated to support
the bar. The ILR, on the other hand, reaches a distance of
about 2 along the x-axis, as can be inferred from the bifur-
cation diagram (Fig. 3a). Therefore, increasing the central mass
concentration (widening the ILR resonance gap) has an impor-
tant effect at a distance much larger than the effective central
mass radius and about half as large as the bar. A vertical
Lindblad resonance is also created by the increase of the
central mass. In the region where the central mass successfully
competes with the bar (as for the horizontal ILR, this corre-
sponds to a distance of about 2), many stars will leave the
plane. This generalizes earlier work (Paper I) in which we con-
sidered the problem in two dimensions and were able to
predict, based on phase-space volume computations, that
above a critical central mass the bar would dissolve. The disso-
lution of the bar progressively decreases the width of the reso-
nances. Until the bar is completely dissolved, the resonances
can act, so their effect is not immediately suppressed.

The fact that the vertical Lindblad resonance occurs nearly
in the same energy range as the radial Lindblad resonance is an
important aspect of the problem. This coincidence is not for-
tuitous, since its origin lies in the spherical shape of the central
mass potential. From this it follows that the three-dimensional
periodic orbits have a banana shape, which in turn influences
the three-dimensional shape of the bar. Since this study
describes the orbits in a fixed potential, it cannot predict
exactly how a global instability will develop, but periodic
orbits are essential in complex dynamical systems for explain-
ing why some instabilities can start and where they can satu-
rate. In self-consistent three-dimensional N-body studies
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FiG. 11.—Evolution of 22 orbit family for case I (a) x-y projection; (b) x-z projection. The starting conditions for the various orbits are given in the key at upper
right. In the x-y plane the orbits are aligned along the major axis of the bar. The innermost orbit has loops at the ends which open out as the energy increases, and the

orbit gets first oval and then almost rectangular. In the x-z plane the orbits make two oscillations per turn.
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F1G. 12.—Perspective “tube ” view of a z-unstable nonperiodic orbit for the
model of case III. The orbit starts close to the galactic plane, showing the time
evolution in space. The trihedron has the dimensions of the maximal excur-
sions of the orbit in x, y, and z: +1.65, +1.0, and + 0.6, respectively. The initial
conditions are x, = 0.2, y, = 0.0, z, = 0.003, x, = 0.0, y, = 0.37157, and z, =
0.0 (H = —0.28). They correspond to an orbit within the chaotic region
around the horizontal and vertical Lindblad resonances. At first (0 < t < 50)
the trajectory remains close to the plane; it takes amplitude in z (up to +0.6
kpc) in the range 750 < ¢ < 800; and it remains essentially three-dimensional
later on (800 < ¢).
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stellar bars have been shown to adopt a final peanut shape,
precisely because the stable orbits that exist before and after
the instability starts are banana-shaped (Combes et al. 1990;
Pfenniger & Friedli 1991).

These results are relevant to the study of the structure of
galaxies. The slow-feedback effect of bars building up central
mass and then dissolving once this mass reaches a critical value
is a self-limiting process that may explain why only ~30% of
all galaxies are strongly barred. It is interesting to note that
from morphological reasoning Kormendy (1979, 1982) has
proposed that barred galaxies may in fact dissolve into ovals
and lenses. As discussed in § 1, these slow secular processes can
be thought of as tending to transform galaxies from one type to
another from barred to unbarred and in the direction of
increasing the bulge-to-disk ratio.

Many questions concerning the secular evolution of disks
remain unanswered. From galaxy catalogs we can infer that
disk galaxies are about a third of the time strongly barred,
about a third of the time weakly barred, and less than about a
third of the time axisymmetric. What is not clearly specified is
how frequent the changes are from one type to another, and
also what the precise conditions are that could rebuild a bar.
Among the weakly barred galaxies, are there features allowing
us to distinguish between the bar-forming and the bar-
dissolving galaxies? High-resolution N body studies including
an adequate description of gas (e.g., Friedli 1992) are required
to simulate such possible secular changes properly.
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0.40[ T T T T ]
r - z family 1
r ———— Retrograde z family :1{
0.30 — T —
- L i
- . i
- ~. i
- ~. i
L ~.. i
L o .
B N ]
e~ 0.20 P . —
e R N . -
- ~<. R N .
- AN . -
— N . -
A \
- \ . -1
- \ \ -
- \ N -
- \ ‘\ -
0.10— \ -
- \ \ |
L \ 3 i
- \ \ ]
. \ \ = |
L \ : .
L ' \ ]
- \ !
N I \ ]
- \ B j
0.00 | 1 [ ] L \ L 1
-0.22 -0.24 -0.26 -0.28 -0.30 -0.32 -0.34 -0.36

FiG. 13.—Bifurcation diagrams showing the initial conditions (H,, z,) for the z and retrograde z families for case I. The corresponding diagrams for the other two

cases differ little from this one.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...409...91H

No. 1, 1993 GALACTIC BARS WITH CENTRAL MASS CONCENTRATIONS 107

APPENDIX A
COMPUTATION OF POINCARE MAPS

An efficient method for computing the intersection of orbits with a surface is necessary to be able to determine not only the
location of periodic orbits as described in Appendix B but also the stability of the periodic orbits found. We use a special case of a
not widely known but elegant trick due to Hénon (1982), applicable to more general problems than the one discussed here.

Suppose that the system of N differential equations

Z—: =Fx, 1), where  F = {F(x), F5(x), ..., Fy(x)}, x ={X{, Xz, ..., X5} (A1)
is integrated numerically with an adaptive, self-starting integrator for particular initial conditions x,. The specific integrator
retained in this paper is a Runge-Kutta-Fehlberg integrator of order 7-8 (RK78) (Fehlberg 1974), satisfying a specified relative error
at each time step on each component. Suppose that we want to find the next intersection with the plane xy = 0, with xy > 0, where
xy is chosen for convenience as the last component of the vector x. First we have to detect between which discrete points x; the
trajectory crosses the plane, which is found by a change of sign along the successive xy, provided by the integrator. To find the
solution exactly at xy = 0, a common method is to interpolate between the x;. This should be done with the same accuracy as
provided by the integrator, i.e., a high-order interpolation algorithm should be used. Instead, Hénon propose to make a change of
independent variable from ¢ to x. The system (A1) becomes

&_f_l ﬁ_ﬂ ___de‘l__FN*1 ﬂ___l_. (A2)
dxy Fy dxy Fy 77 dxy Fy “dxy Fy
Starting at x; (or x;, ,, whichever is the closest to the plane xy = 0), we solve this new system of N differential equations with the
same integrator (here RK78), taking as suggested integration “time” step Axy = —xy, (or Axy = —Xxy,, ,, respectively). Usually the

integrator provides the desired intersection point and intersection time in a single step. Sometimes (e.g., where the orbit is nearly
tangent to the section plane) the integrator shortens the suggested step in order to keep the prescribed accuracy, and then a second
step is necessary.

To compute a Poincaré “surface” of section (with more than 2 degrees of freedom; more appropriately called a Poincaré map),
orbits of a given Hamiltonian H in the plane xy = 0 with a given sign of Xy (say xy > 0) are computed, and the successive
intersections with the plane x, = 0 with the same sign of x are found with the above method. This defines a discrete map of N — 2
variables, since xy is zero, and a further variable can be eliminated by the integral of motion H. In a Hamiltonian system, one
eliminates the conjugate momentum to xy. We note this map Tg(p), where y = {x,, x5, ..., Xy_,}. This map is volume-preserving
(see, e.g., Siegel & Moser 1971, § 22) and is a discrete analog of a continuous Hamiltonian system.

APPENDIX B
COMPUTATION OF PERIODIC ORBITS AND THEIR STABILITY INDICES

In a Poincaré map Ty, a periodic orbit is a fixed point. So determining a periodic orbit is equivalent to determining the fixed
points y, in the map T, ie.,

TH(y*)zy*s Where TH={TH1, TH;""’ THM} > y={y1a Y25 eees yM} ’ (Bl)
or the roots y,, of F(y) = 0, where
Fy)=T0p)-y. (B2

Multidimensional nonlinear root-finding methods are usually based on Newton’s algorithm, where, starting with an initial estimate
Yo, successive refinements are found by

Yur1 =Yu— (VO 7'(y,) - Fy,) . - (B))

The iterations are stopped when || y,., — y, | is sufficiently small. Provided that the Jacobian matrix VF exists and is invertible, this
algorithm converges quadratically in the neighborhood of a root; in other words, at each iteration the number of significant digits
doubles. One can express VF as VT — I, where I is the identity matrix. If an invertible matrix § diagonalizes VT, ie., Vy =
SDS ™!, where D is a diagonal matrix, then |VF| = |S||D — I|| S|~ ! = | D — I|. This determinant is small whenever an eigenvalue
of VT, is close to unity; in this case the inversion of VF is numerically badly conditioned. To avoid round-off errors, we adopt the
following approach. Instead of inverting VF in equation (B3), we minimize in the least-squares sense the Euclidean norm

I VEY)ns1 — ) + FOI | - (B4)

For each value y,, we compute F(y,), VF(y,), and then solve in the least-squares sense for §y = y, ., — y,, from which y, ., = dy
+ y,. We have the robust least-squares algorithm HFTI of Lawson & Hanson (1974), which can handle any degeneracy. Whenever
VF(y,) is degenerate, or is close to being degenerate, it provides among the infinite number of possible solutions dy the one which
minimizes the Euclidean norm || 8y||. Therefore, the differential corrections dy are guaranteed not to diverge arbitrarily. If VF(y,) is
invertible, the results of HFT1 is equivalent to or better than that of a matrix inversion algorithm.
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To compute the Jacobian matrix,

0Ty, 0Ty 0Tq
by, 0y, o
0Ty, 0Ty, . 0T,
VI, = o v o |, (B5)
OTay OTay ... 9Ty
0y, 0y, Oyym

we approximate it by finite differencing, i.e., at each iteration,

orT T s Vas ooes Vi + AYi oot - T
a_;= 1{V1> V2 y Ay%’ Yu)) H(y)+0(Ay,-). (B6)

So computing the Jacobian requires at least computing the map Ty M + 1 times. For particularly unsuitable orbits one computes

a&= TH({.YD Y2545 yi+Ayi’ M yM})_ TH({yl’ Y25 -0 .Vi—Ayi’ cce yM})
0y; 2Ay;

+ 0(Ay?) . (B7)

This alternative approximation is more precise than the previous one (eq. [B6]) but requires 2M + 1 evaluations of T.

In symmetric potentials many periodic orbits have some degree of symmetry, and it is not necessary always to search the roots
over all the coordinates. The program used in this paper allows us to choose any combination of variable and fixed coordinates. In
this case the Jacobian and the least-squares evaluation are computed only for the variable coordinates. This speeds up the finding of
periodic orbits correspondingly.

When a periodic orbit y, is found, the Jacobian VTy(y,) calculated for all the M coordinates is also the linear approximation of
the map phase space around y,, since

Tu; + Ay) = Ty,) + VTu(v,) - Ay + O(IAp|?) . (B8)

In this paper the potentials are three-dimensional, so phase space has six dimensions, and the map T has four dimensions. The
four eigenvalues of VTy(y,) can easily be computed, owing to its special Hamiltonian (or symplectic) structure (see, e.g., Siegel &
Moser 1971; Pfenniger 1987). If we note a;; the elements of the matrix VTg(p,), then the characteristic polynomial has the form

M+ald+pA2+ad+1=0, (B9)
where
4 3 a4
x= = Zaii > B= Z Z a;aj; — 4,;4a;; - (B10)
i=1 i=1 j=i+1

To solve the quartic (B9), it is convenient to compute the following quantities:
A=o>—48+8, by =—1a+ /D, by=—%a—./A. (B11)
The coefficients b; appear when equation (B9) is rewritten as
A+ b A+ 1A% +b,A+1)=0. (B12)

It follows that the eigenvalues A; are the roots of A2 + b, A+ 1 = 0and A> + b, A + 1 = 0.
Following the position of the eigenvalues in the complex plane, the motion around a periodic orbit can have seven distinct
qualitative behaviors (Broucke 1969).

1. The periodic orbit is stable if the eigenvalues form two pairs of complex conjugate eigenvalues of modulus 1 in the form
{4 A, 1}, 14| =1, || = 1. In this case A > 0 and | b;| < 2. Neighboring trajectories rotate around the periodic orbit, i.e., they are
quasi-periodic.

2. The periodic orbit is complex unstable if the four eigenvalues form a quadruplet of pairs of reciprocal and conjugate complex
numbers not on the unit circle, in the form {4, A, 1/4,1 /A},1 4] # 1. In this case A < 0. Neighboring trajectories simultaneously rotate
and diverge exponentially from the periodic orbit.

3. The periodic orbit is even semiunstable if one pair of distinct eigenvalues is real and positive and the other pair is on the unit
circle, in the form {4, 1/4, u, i}, A > 1,| u| = 1. Neighboring orbits diverge exponentially in one direction.

4. The periodic orbit is odd semiunstable if one pair of distinct eigenvalues is real and negative and the other pair is on the unit
circle, in the form {4, 1/, u, i}, A < —1,| u| = 1. Neighboring orbits diverge exponentially in one direction. The difference with the
previous case is that the diverging consequences in a Poincaré may appear alternatively on both sides of the direction of instability.
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5. The periodic orbit is even-even unstable if two pairs of distinct eigenvalues are real and positive in the form {4, 1/, y, 1/u},
A> 1, u > 1. Neighboring orbits diverge exponentially in two directions.

6. The periodic orbit is odd-odd unstable if two pairs of distinct eigenvalues are real and negative in the form {4, 1/, p, 1/u},
A < —1, u < —1. Neighboring orbits diverge exponentially in two directions.

7. Finally, the periodic orbit is even-odd unstable if two pairs of distinct eigenvalues are real, one positive and one negative, in the

form {4, 1/A, u, 1/u}, A > Lu< —1.
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