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ABSTRACT

We present a technique for inferring the gravitational potential ®(r) of a hot stellar system from line-of-sight
velocity data, without any assumptions about the relative distribution of dark and luminous components. We
overcome the indeterminacy of mass estimates based on line-of-sight velocity dispersions by fitting the full
distribution of radial velocities. The phase-space distribution function f(E, I?) of the test sample is recovered
as well. Unlike parametric mass estimation methods based on the virial theorem or the core-fitting formula,
our technique does not require that the spatial distribution of the test sample bear any relation to that of the
matter determining the potential; that is, the mass-to-light ratio may be an arbitrary function of radius. The
technique also does not require binning, or the computation of velocity moments. Even for relatively modest
samples (N = 300), the technique places narrower constraints on the matter distribution than can be inferred
from the projected velocity dispersion and number density profiles alone. Strong, model-independent con-
straints on the form of the potential require somewhat larger samples, of order N = 10® or more.

We use our algorithm to infer, in a nearly model-independent way, the distribution of dark matter near the
center of the Coma galaxy cluster. We find that the core radius of the dark matter is very unlikely to exceed
about 500 kpc (H, = 100) but could be much smaller. The matter distribution at larger radii is poorly

constrained.

Subject headings: celestial mechanics, stellar dynamics — galaxies: kinematics and dynamics —

techniques: radial velocities

1. INTRODUCTION

The realization that most of the matter in the universe is
dark has led to renewed interest in techniques for estimating
the gravitational potentials of stellar and galactic systems. In
disk galaxies, the distribution of matter is well constrained by
the rotation curve, and, at least in regions near our Sun, by the
variation of stellar number density and velocity dispersion
with distance above and below the Galactic plane. As is well
known, data of the first sort provide strong evidence for dark
matter at large (2 10 kpc) distances from the centers of spiral
galaxies (Casertano & van Albada 1990), while data of the
second sort imply that little if any of this dark matter is present
in the immediate solar neighborhood (Kuijken & Gilmore
1989). Much less is known about the distribution of mass in
spherical or ellipsoidal systems. Dark matter is clearly present
in galaxy clusters, based on their high internal velocity disper-
sions and the high temperature of their intracluster gas (Rood
1981). Massive dark halos have been provisionally detected
around some giant elliptical galaxies using X-ray data (Fabian
et al. 1986); many dwarf elliptical galaxies appear to have
much higher dynamical masses than their stellar content
would imply (Pryor 1992). Galactic and globular clusters seem,
for the most part, to have masses consistent with their lumi-
nous components (Pryor et al. 1988). However, in none of these
systems has the distribution of gravitating matter been dynami-
cally well constrained. In the case of masses inferred from
X-ray data, the usual limitation is the lack of spatially resolved
temperature data, which prohibits an unambiguous calcu-
lation of the radial variation of the gas temperature. In the case
of masses inferred from kinematical data, the most serious
problem is the unknown form of the orbital distribution of the
observed sample, which makes it impossible to infer a unique
potential from line-of-sight velocity dispersions. As a result of
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these limitations, only crude constraints can currently be
placed on, for instance, the central density of dark matter in
clusters of galaxies, or the radial form of dark matter halos
around elliptical galaxies, or even the mass-to-light ratios of
globular clusters outside of their cores (e.g., Peebles 1984;
Merritt 1987; Pryor & Kormendy 1990).

The indeterminacy of current methods of mass estimation in
“hot” stellar systems may eventually be overcome by the
availability of new sorts of data. For instance, the next gener-
ation of X-ray observatories should provide enough spectral
information about the hot gas in galaxies and galaxy clusters
to yield very accurate measurements of their temperature pro-
files, and hence of their potentials. For relatively nearby
systems, such as Galactic and (some) globular clusters, proper
motions of individual stars will eventually provide two inde-
pendent components of their velocity ellipsoids. However, for
many stellar systems, data like these will probably never be
available; the only useful constraints on their gravitational
potentials will continue to be those derived from line-of-sight
velocities. The purpose of the present paper is to demonstrate
that such data can yield much more information about the
dynamical state of hot stellar systems than has heretofore been
widely appreciated.

The theoretical motivation for this paper is the result of
Dejonghe & Merritt (1992; hereafter Paper I) that, in spherical
nonrotating systems, the distribution function f(r, v,, v,) is in
principle known uniquely if the potential ®(r), the projected
densities, and the line-of-sight velocities are given exactly. In
the spirit of this result, we take the following approach: given a
discrete set of projected radii and line-of-sight velocities (r,, v,,),
we calculate the likelihood for observing the given values from
an underlying distribution function fin a potential ®, and then
maximize the likelihood with respect to f'and ®. (It should be
noted that f corresponds only to a luminous tracer population,
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but @ is the total gravitational potential; in other words, mass
and light are completely uncoupled.)

There are many schemes in the literature that try to extract
information on fand ® from projected densities and velocities.
The simplest of these are the virial theorem (which estimates
the total mass) and the core-fitting formula (which estimates
the central density), and a number of alternatives with better
statistical properties (e.g., Heisler, Tremaine, & Bahcall 1985;
Little & Tremaine 1987). Another approach is to assume some
functional form for f(E, I?) and fit the observed density and
velocity dispersion profiles, with ® derived from f via Poisson’s
equation (e.g., King 1966; Gunn & Griffin 1979; Kent & Gunn
1982; Bertin, Saglia & Stiavelli 1988). Yet another class of
methods (e.g., Newton & Binney 1984; Richstone & Tremaine
1984) starts by assuming ® and tries to find an f that fits the
projected profiles. Dejonghe (1989) adopts such an approach
and in addition varies the ® to achieve an optimal fit. While
useful, these methods suffer from one or both of two rather
serious disadvantages. The first is the need to make restrictive
assumptions, e.g., that mass follows light, or that the functional
form of f is known. For instance, the core-fitting formula is
valid only when the kinematical tracers are distributed like the
mass and have an isotropic velocity distribution everywhere
(Merritt 1988). The other disadvantage is that most methods
do not attempt to fit all the line-of-sight velocity data, but only
the velocity dispersions, and therefore f is not uniquely con-
strained even if @ is known exactly. Thus, even with an infinite
amount of error-free data, the methods in the literature would
require additional ad hoc assumptions (e.g., that f maximizes
the collisionless entropy; Richstone & Tremaine 1988) to
determine f or ® uniquely. Such methods are likely to have
limited usefulness in cases where the dark matter is distributed
differently from the luminous matter. At best, they can some-
times be used to rule out particular, extreme forms for @ (e.g.,
Merritt 1987), but they can never make statements about the
relative likelihood of different potentials that are consistent
with the data.

With a finite amount of data our approach also requires
additional assumptions, which appear as a finite set of basic
functions for f and some adjustable parameters in ®@; but the
size of the basis set and the number of adjustable parameters
can be varied according to the amount and quality of data
without any change in the method. Briefly, the advantage of
our new approach over previous work is that it uses all the
available information, and thus can discriminate between
models that are equally likely on the basis of velocity moments
alone, and does this without imposing unjustified constraints
on the form of ® or f.

In §§ 2 and 3 we describe the important features of the
technique, and is § 4 we present the results of extensive testing
of the algorithm with simulated data sets. Section 5 presents an
application of the technique to the Coma galaxy cluster, in
which we obtain the first, reasonably model-independent limits
on the central matter density in this system. Section 6 sums up.

2. OVERVIEW OF THE TECHNIQUE

Consider a system of stars (or other objects) distributed
according to a spherical and unchanging distribution function
f(E, I?), in a fixed spherical potential ®(r). (As usual, E is the
orbital energy and I? the orbital angular momentum squared,
both per unit mass; the potential will always be normalized to
zero at infinity.) Since the directly observable quantities are the
projected radius r, and the line-of-sight velocity v,, we define
the “projected dlstnbutlon function” v (r,, v,) such that v (r,,
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vy, is the surface density at r, of stars with line-of-sight
velocities in the interval v, to v, 4+ dv,. As shown in Paper I,
the relation between v,,, f, and @ is

Sy 1) =2 f ’d’ f J‘dv,Pdv,,f(E B,

where v,,, vy are orthogonal velocity components along the
polar coordinates {r,, 0} in the plane of the sky; the inner two
integrals are over all velocities for which f'is nonzero. Note that
® appears in equation (1) implicitly, through E = v2/2 + ®(r).

Now suppose that Ng,,, objects have been drawn from the
projected distribution function, i.e., Ny, palrs (rp, v,) have
been measured. The problem is to 1nfer the “most llkely ” fand
®, given these data. (For the moment, we ignore measurement
errors.) If the kinematical sample were very large—of order 10*
or 10° positions and velocities—it would be appropriate to
approximate the two-dimensional function v,(r,, v,) by con-
structing a histogram from the data, and to solve equatlon (1)
as an integral equation for f and ®, via numerical inversion.
The same approach might be justified if accurate, line-of-sight
velocity profiles were available at a variety of radii, from
deconvolution of integrated stellar spectra, for instance (e.g.,
Bender 1990). However, we are concerned here with the more
typical situation in which the kinematical data are limited to,
at most, several hundred discrete positions and velocities, too
few to permit an accurate reconstruction of v(r,, v,). We will
therefore not attempt to solve equation (1) dlrectly Instead, we
seek to maximize the likelihood &, where

Ndata

& = Un v,(rh, vh) ()

the product of the probabilities of observing each pair (r,, v,).
The “most likely ” functions ® and f may be defined as those
that maximize .%, subject to the constraint that f > 0 for every
E and I? allowed by ®@, and the constraint that the integrated
number corresponding to f'is N4,,,. The numerical problem we
are faced with is therefore not one of inversion, but rather one
of optimization. Furthermore, as optimization problems go,
this is a rather difficult one: first, because .# depends on f and
® through a triple integral; second, because the optimization
must be carried out subject to the constraint f > 0; and third,
because the functional forms of f and ® are unknown a priori,
especially in cases where dark matter is thought to be present,
which means that their numerical representations should
ideally be nonparametric.

Before describing a practical algorithm for solving this
problem, we need to ask whether the solutions are likely to be
unique, or whether there will always be a family of f’s and @’s
equally consistent with any given data set. There are really two
issues here. The first is a purely mathematical, but essential,
one. Are f and ® uniquely determined by the projected dis-
tribution function? The general answer to this question is,
unfortunately, unknown. In a specified potential ®(r), there is a
umque f(r, v,, v) corresponding to a given v,(r,, v,) (Paper I).
But it is conceivable that more than one ® could be consistent
with a nonnegative f that generates a given v,; if that is so, then
we can never hope to find a single, most 11kely, solution from
any observed sample, no matter how large. However, a number
of arguments suggest that the set of potentials consistent with a
given v,(r,, v,) is small, perhaps vanishingly so, especially if ®
is constrained to be derivable from a nonnegative and declin-
ing mass density. For instance, the requirement that the great-
est v, at every r, be less than the escape velocity atr = r, putsa
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strong lower limit on ® at every r (Dejonghe 1987). Among the
set of potentials for which all stars are bound, many functions
® will be in violation of the virial theorem, or its higher order
analogs (Kent 1991). Even potentials that satisfy some set of
these virial constraints may still be ruled out, if it can be shown
that the implied f is negative at some point in phase space
(Merritt 1987). Explicit construction of the “most extreme”
potentials consistent with a given set of velocity moment
profiles—that is, moments over v, of v,—suggests, in fact, that
the range of allowed potentials drops rapidly as knowledge of
v,{rp v,) increases (Paper I). Thus, although we cannot prove
uniqueness, it seems likely that the information contained
within the full set of line-of-sight velocity distributions is suffi-
cient to constrain the potential, and thus the distribution func-
tion, rather tightly, at least in a spherical system.

Even if the mathematical problem has a unique solution,
there is another set of questions to be answered: namely, to
what extent does there exist a single pair of functions f and ®
that are “ most likely ” to have generated a finite sample drawn
from v,(r,, v,), and how easily can we recover these functions
numerically? The answer to these questions must depend on
the freedom that we allow for the numerical construction of f
and ®. Suppose, for instance, that our numerical algorithm is
capable only of representing a very restricted set of functions
f(E, I?). Such an algorithm might well single out one potential
as being most likely, only because the f corresponding to that
potential happens to be easily representable; another
potential—although equally consistent with the limited data—
might be judged less likely, because the algorithm has difficulty
representing the corresponding, most likely f. At the other
extreme, if f'is constructed from a basis set that is truly com-
plete, then the “most likely” solution will always be one in
which the projected density is very high (in fact, infinite) at the
observed points (r,, v,), and very low elsewhere; in other
words, the algorithm will start fitting the sampling noise. The
standard resolution to this common problem (e.g., Tapia &
Thompson 1978) is to allow great freedom in the construction
of the unknown function, but to somehow “penalize” solu-
tions that are not sufficiently smooth. Here, we take a slightly
different approach. Following Dejonghe (1989), we represent f
via a truncated set of basis functions. Retaining too few terms
in this truncation would lead to estimates of the potential that
are strongly influenced by the character of the terms retained.
Including too many terms would lead to solutions for f that are
unphysically unsmooth (and would also greatly increase the
complexity of the optimization problem). If the truncation of
the basis set used to represent fis done “correctly,” we would
expect to find that any finite data set is equally consistent with
a range of potentials, and that this range is not too strongly
dependent on the degree to which the basis set is truncated.
This is in fact what we find, as described below. Nevertheless, it
is important to keep in mind that nonparametric function esti-
mation is not always a well-defined procedure in the absence of
some a priori knowledge about the form of the functions to be
estimated, and that the range of potentials and distribution
functions found by the algorithm described here must be influ-
enced, to some degree, by the choice we make for the numerical
representations of f and ®@. (We note in passing that any of
the classical mass estimation formulae—including the virial
theorem, the “core-fitting” formula, the “projected mass”
method, etc—suffer much more strongly from this problem,
since they are all based on stringent, ad hoc assumptions about
the form of @ (e.g., mass follows light) and/or f [e.g., f = f(E)].
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In spite of these uncertainties, there are two reasons for
preferring the approach described here to previous ones. First,
by basing the estimation of fand ® on a likelihood function, we
avoid the need to bin the data or to compute moments. Func-
tional estimation based on maximum likelihood is well known
to be superior in almost every respect to estimation based on
moments, at least when the parameterization of the unknown
functions is suitably chosen, and the sample size is sufficiently
large; in particular, it is less sensitive to contamination.
Second—and more fundamentally—by using all the informa-
tion contained within a kinematical data set, we can greatly
reduce the mathematical indeterminacy associated with esti-
mates based on velocity dispersions (or any finite set of velocity
moment profiles) alone.

Our algorithm is most similar in spirit to that of Kuijken
(1991), who analyzed the matter distribution near the plane of
the Galaxy using the density profile and solar-neighborhood
kinematics of a sample of K dwarf stars. The spherical problem
considered here differs from the planar one treated by Kuijken
in two respects. First, our positional data are projected onto
the plane of the sky, while Kuijken had access to approximate
distances for solar neighborhood stars; and second, the dis-
tribution function of a spherical system is not fixed uniquely by
the potential and the density profile of a set of tracers, as in the
planar case, because of the extra integral of motion in a spher-
ical potential. These two factors make the spherical problem
somewhat more complicated than the planar one, as discussed
below. Furthermore, whereas Kuijken restricted the stellar dis-
tribution function to a particular family, we represent f in a
manner that is nearly nonparametric, in order to avoid biasing
the inferred ®. Finally, it is worth noting that the potential in
the planar problem can, in principle, be found from a simple
point-by-point measurement of the gradient of the stellar pres-
sure, without the construction of a complete dynamical model
(Oort 1932). No such approach is possible in the spherical
case: the observable moments of the stellar distribution func-
tion are insufficient, generally by a large margin, to determine
®(r). The only way to make progress in the spherical case is to
require at the outset that the observed velocities are chosen
from an f that solves Boltzmann’s equation, that is, to con-
struct a complete dynamical model. While Kuijken and most
earlier authors also followed this route, their motivations were
computational or statistical, and had nothing to do with the
need to render the problem mathematically determinate.

3. NUMERICAL IMPLEMENTATION

We found that the difficulties associated with numerical
implementation of the technique described above fell into the
following categories.

1. Representation of fand ®;

2. Computation of the v (rh, v});

3. Optimization of fand ®, subject to constraints.

We discuss these difficulties in turn.

1. Representation of f and & —We would like to choose a
parametrization of both functions that is sufficiently general to
include practically any form, yet sufficiently compact to permit
efficient optimization. One way to achieve this is by expanding
® and fin complete sets of basis functions ®@;, f,, ,:

() = Y a,040) ,

S, )=} cpnfunlk, L) . ©)
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The algorithm should then determine the most likely values for
the coefficients a; and c,, ,, given the data; retaining a suffi-
ciently large number of terms in the expansions guarantees
that the representations of ® and f, and hence v, will be essen-
tially nonparametric. However, it is well known that this
approach has limitations: if the number of coefficients
approaches or exceeds the number of data points, then the
optimal solution will be very unsmooth, with sharp peaks at
the observed values of r, and v,. Furthermore, maximization of
a function of many variables can be very time consuming. In
practice, we need to choose a number of coefficients that is
sufficiently large that a wide range of functions can be rep-
resented, but sufficiently small that the optimal solution
remains smooth and well-defined.

In what follows, we chose for the parametrization of f the
form first suggested (in the context of axisymmetric systems) by
Fricke (1952), and most recently employed by Dejonghe
(1989):

SunlE, B) = (—Ey' 121 4
Here it is assumed that ®(r) » 0 for r - + o0, so that f = 0 at

energies corresponding to stars that are just unbound. The
density profile v,, , generated by component f,, , in potential

d(r)is

Tm+ D00+ 3) 50 imss
Tatmey YO

and the one-dimensional, radial, and tangential velocity dis-
persions are

Vi, o1) = 27(2m)*"

— ()

—(m + 1)®(r)
m+n+2’° ’

208 _
o) = m+n+2

ai(r) = (6)
The distribution function (4) is valid for m > —1; the corre-
sponding density profile has finite integrated mass for
n > m + 3. We therefore restricted m and n to the (discrete)

values
m=0,1,2, ..., n=3,45 ..., N.

The total number of basis functions corresponding to a given

N is then Ny, = 2(N 2)(N — 1). This restriction in allowed
values of m and n is clearly permissible when describing an f
whose series expansion contains only powers of E and I? from
the restricted set. However, many simple and reasonable forms
for f cannot be so expanded, for instance, f = (—E)® exp~ %
On the other hand, there is a theorem of Weierstrass (Rice
1964) that any continuous function in a finite interval can be
approximated by means of a polynomial. Accordingly, we
fitted the above function in (E, I?) space, via a least-squares
algorithm, with small sets of terms from our basis. We found
that both f and v, could be very well approximated by only
approximately five terms, and that the goodness of fit increased
rapidly with N. In what follows, we generally took N,,.;, = 10
(corresponding to N = 6).

The choice of a power-law basis for f was made for two
reasons: first—as emphasized by Dejonghe (1989)—because
the resulting distribution function is smooth and analytical,
unlike in most earlier treatments that approximated f by dis-
crete “lumps” in integral space (e.g, Schwarzschild 1979;
Richstone & Tremaine 1984); and second, because such a basis
considerably simplifies the computation of v,(r,, v,), as dis-
cussed below. However, it is well known (e.g, Dahlquist,
Bjorck, & Anderson 1974) that the use of polynomials to

n—3,
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approximate functions has certain limitations, and these limi-
tations certainly affect the behavior of the algorithm discussed
here. For instance, functions with sharp rises followed by
weakly curved stretches are not well suited for approximation
by polynomials. Furthermore, since power-law basis functions
are not orthogonal, the “ best-fit ” coefficients in a polynomial
expansion can be strongly interdependent, a fact which compli-
cates the optimization. Finally, restriction of the basis set to
positive powers of I? means that radially anisotropic f’s must
be represented, inefficiently, by a sum of terms with alternating
signs. In future work, it would be worthwhile to explore other
ways of representing f, e.g., via splines.

We note that f appears linearly in equation (1). This means
that the dependence of v(r,, v,) on the parameters (m, n) will
also be linear; thus, for a given potential, one need compute
v,(r,, v,) only once for each of the f,, ,, which greatly reduces
the amount of computation during the optimization of f The
same simplification is not possible for the potential, since v,
depends nonlinearly on ®. Furthermore, as discussed below
we found it computationally most convenient to perform the
optimization in two stages, by fixing ® and finding the
optimum f for that @, rather than solving simultaneously for
the optimum f'and ®. For these reasons, a completely general
parametrization of ® was not deemed necessary or desirable.
Instead, we typically represented ® as a function, chosen on
physical grounds, with at most two undetermined parameters
{ay, a,}. By trying a number of such functlons, one could, in
principle, find the single, “ most optimum ” form.

2. Computation of the v(r},, vi)—In a given potential @(r),
the projected distribution function may be written

vp(rp’ vp) = Z Com,n vp,,.,,,(rp, vp) s (7)

m,n

where v, is the contribution to v, from the distribution func-
tion component f,, . Using equations (1) and (3), we find

( ) r2m dr?
v, (r,,v,) =773 —
pma\ p> Up) T on+1]2 2 m

—20(r)—vp
X f [—v® —vZ —20()]" '/ dv?
0

1 rﬁ.x(vp)

2n
X j [v? cos® 6 + (v cos ¢ sin § — v, sin $)*]™d0 . (8)
0

Here sin ¢ = r,/r, cos ¢ = (r* — r2)'/*/r, and r,,, is the greatest
radius at which a star could have the line-of-sight velocity v,
thus @(r,,,) = —3v2. The choice of a power-law dependence of
Son.non IZ can now be seen to be a felicitous one from a compu-
tational point of view, since the final integral in equation (8)
can be expressed in terms of elementary functions. For any ®,
evaluation of v, for each data point r,, v}, thus required a
two- d1mensnonal mtegral to be done numerlcally We found
that Gauss quadrature on a 12 x 12 grid was sufficiently accu-
rate. Computation time for the v, , was generally found to be
comparable to the time requlred to optimize f(E, I?) in that
potential.

3. Optimization of f and ® subject to constraints.—At each
iteration in the optimization of f and ®, one must recompute
the predicted v,(r,, v,) at each of the observed points (r}, v}), in
order to calculate the current value of the hkehhood 2.
Because of the linear dependence of v, on the c,, ,, one need
carry out this computation only once (for each of the basis
functions f,, ,, at each of the data points r}, v}) for each poten-
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tial. If computing time were not a factor, one could imagine
' simultaneously optimizing f and ®, a procedure that would
require recomputation of the v, ’s at every iteration (i.., for
every new ®). We chose mstead to carry out the optimization
of fand ® separately: that is, we first chose a set of values for
the parameters (typically only two) that defined the potential;
next, we computed the v, in this potential; next, we found the
set of coefficients c,, , that "maximized the likelihood; and then

we repeated the procedure with a new ®. As long as the basis
we choose to construct f is essentially complete, we are then
fully justified in making statements about the relative likeli-
hoods of the different potentials examined. We cannot,
however, claim to have found in this way the single most likely
potential, unless we try a very large number of different forms
®(r). In practice, however, this is not a severe limitation, since
modest data sets are not likely to define a unique ®.

Given this simplification, the numerically most taxing aspect
of the optimization was found to be the imposition of the
constraints f > 0. One avenue would be to include in the objec-
tive function a quantity, such as the Boltzmann entropy, that
goes strongly negative as f approaches zero at any point. This
approach is used, for instance, by Richstone & Tremaine
(1988), but was avoided here since it amounts to imposing an
additional constraint on f whose physical justification is doubt-
ful. (Such an approach is also inconsistent with our philosphy
of inferring f and ® from the data alone) Our method for
ensuring that f > 0 was simply to test the distribution function
on a grid in phase space {E;, L?}; that is, we required

Z cm,nfm,n(Eja L]%) >0 for all j, k

(Dejonghe 1989). While these constraints are linear in the ¢, ,,
the likelihood (2) is not. Thus, standard linear- or quadratic-
programming routines—which require objective functions that
are linear or quadratic functions of the parameters—will not
work. Instead, an attempt was made to perform the opti-
mization using a general, “nonlinearly constrained
minimization” routine (NCONF of IMSL, based on the
routine NLPQL of Schittkowski 1985). In general, this routine,
and a similar one in the NAG subroutine library, did not
perform well: both refused to give solutions when the number
of {E, I?} grid points on which the constraints were imposed
exceeded about 100—an insufficient number with which to
ensure positivity of f. Attempts to improve the performance of
the routines by rescaling, changing variables, etc., were unsuc-
cessful. Much greater success was achieved using a standard,
unconstrained maximization routine (BCONF of IMSL), with
the positivity constraint enforced by an “exterior penalty
function ” designed to “penalize” solutions in which fis any-
where negative (e.g., Martin 1971). The quantity to be maxi-
mized is then

Ndata . .
‘Zl lOg I:Z cm,n vp,,.,,,(rlw U;:)il - ;‘l]’,k H(.fj.k)fjg,k ’ (9)
i= m,n Js

with
f]k‘ z Cmnfmn(Ej’L )

the value of f at the grid point (E;, L), and

0, ¢g=0
H(q)—{l, 4<0,
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the step function. The 4;, are positive scaling factors, chosen
so that different points in phase space contribute roughly
equally to the penalty. Note that, for solutions with >0
everywhere, the penalty function does not appear in the objec-
tive function. However, in practice, the optimum solution
always contained at least one phase-space point at which f = 0.
Because of this, the optimum solution always depended some-
what on the choice of penalty function. In most of the tests
described below, the penalty function was computed on a
50 x 50 grid spaced uniformly in E and L/L (E), where L (E) is
the angular momentum of a circular orbit of energy E. Once an
optimum solution was obtained, f was computed on a finer
grid (typically 100 x 100) to check that the nonnegativity con-
straint was well satisfied ; if not, the penalty function was made
more stringent, and the optimization repeated.

We note that no nonlinear optimization routine is guar-
anteed to locate a global maximum in every case. We found
that, when the number of basis functions was small (<6), the
optimum solution returned by the routine was very insensitive
to the starting vector; while for larger Ny, ., it sometimes
happened that the routine terminated at a local—not global—
maximum. Two techniques were found to be effective in dis-
tinguishing local from global maxima: first, repeating the
optimization from different starting vectors; and second,
observing the behavior of the optimum solution as N, was
increased.

4. PERFORMANCE OF THE ALGORITHM

4.1. Estimation of f Given ®

In a specified potential ®(r), the projected distribution func-
tion v,(r,, v,) determines the intrinsic distribution function
f(r,v,, v,) uniquely (Paper I). Here we evaluate the ability of our
algorithm to recover ffrom a discrete data set, assuming that @
is known. We note in passing that there may be circumstances
where estimation of f with @ fixed is justified: for instance,
when the potential can be determined independently, through
hydrostatic arguments, or when direct measurement of the
stellar mass function is possible and dark matter is not believed
to be present.

We generated simulated data from two distribution func-
tions:

Model 1:
f(E, I2) = (—E)"2I2 , (10a)

Model 2:
fo(E, I2) = (—E)"2e L8 | Lo =05, (10b)

in the Plummer potential

1

N (1

The first distribution function generates a model in which
tangential motions dominate radial ones, with constant veloc-
ity anisotropy, o(r) = 202(r). This distribution function is, in
fact, a member of our basis set (4), with n = 4 and m = 1. The
density profile is rather peculiar: according to equation (5),
v1.4(r) cc P2/(1 + r?)3, so that the central density is zero. The
second distribution function generates a radially anisotropic
model, with a density profile that is strongly centrally peaked.
It cannot be exactly represented using the basis (4). Note that
both distribution functions imply density profiles different

o) = —
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FiG. 1.—Monte Carlo data samples generated from distribution functions f; and f,, with N,,, = 1000, in the Plummer potential. (@) model 1; (b) model 2.

from that required to generate the Plummer potential (11).
Thus “mass does not follow light ” in these examples.

We generated Monte-Carlo data sets containing Ng,, =
100, 300, and 1000 projected positions and velocities from each
distribution function, and carried out the optimization of f
with a variety of choices for the number of basis functions
Nyp.is- Figure 1 shows the 1000 particle data sets generated
from the two distribution functions. Figure 2 illustrates the
ability of the routine to determine f given data generated from
model 1, with Ny, = 10. Even with 100 data points, the algo-
rithm recovers the number density and velocity dispersion pro-
files reasonably well, except near the center where the density
of particles falls to zero. The distribution function is less well
reproduced with this small sample, but the fit improves con-
siderably as N increases from 100 to 1000. Interestingly, even
though f, was chosen from the basis set (4), the optimal solu-
tions were not found to be strongly peaked around m =1,
n=4; in fact, the coefficient c¢; , was often negative. This
behavior is common when solving integral equations with
basis-function expansions, particularly when the basis set is
not orthogonal (e.g., Miller 1974; Turchin, Kozlov, & Malke-
vich 1971), and does not necessarily imply that the basis set is
poorly chosen. Figure 3 shows that the algorithm has a slightly
harder time recovering the distribution function f,. Again, the
qualitative features of the phase-space distribution are repro-
duced already for Ng,, = 100, but the optimum solutions
approach the correct one more slowly as Ny, is increased.
Nevertheless the agreement for Ng,, = 1000 is quite good.
Note that, in this case, the agreement is best at small radii/low

energies, presumably because the density profile places most of -

the stars there; the algorithm shows no tendency to converge
on the correct solution outside of r &~ 5, where the number of
“stars” is extremely small. Although we do not illustrate it
here, comparison of the optimal solutions for N, = 3, 6, 10,
and 15 suggests that the goodness of fit—as measured, for
instance, by the likelihood—increases only slowly for Ny, =
10. Thus, in most of what follows, we will restrict outselves to
10 basis functions.

4.2. Estimation of f and ®

Next we evaluate the ability of our algorithm to choose the
correct form of the potential. For each of the six data sets

described above, we computed the most likely distribution
function in a two-parameter grid of assumed potentials:

L U
J1+r2jad’

Figures 4 and 5 are contours of constant % in (a,, a,) space.
These figures were constructed by recording the % corre-
sponding to the most likely distribution function for each
choice of a; and a,; thus, each contour may be interpreted as
the projection of a 12-dimensional, constant-likelihood region
(10 basis functions for f, plus two parameters for @) onto a
plane. Figures 4 and 5 have a number of features in common.
Each exhibits an extended region where the likelihood is
roughly constant; outside of this plateau, the likelihood falls
off, either gradually—in directions where the potential is
becoming deeper; or rapidly—in directions where the potential
is becoming shallower. The rapid decrease in likelihood toward
shallower potentials is just a consequence of the finite escape
velocity; clearly, the likelihood of a potential in which vﬁ >
—2d(r,), for any single particle, is zero. We interpret the
plateau as the region in which there exists a distribution func-
tion f whose projected value v,, at the Ng,, points (r,, v,), is
essentially the same for each (a,, a,) within the region. That is,
there appears to exist a range of potentials in which one can
construct a nonnegative f which has nearly the same projected
value at each of the data points. Because our algorithm is not
completely flexible—that is, because the number of basis func-
tions defining f is not infinite—we always expect to find a
single, most likely potential (indicated by the dots in Figs. 4
and 5); nevertheless, it is clear that this maximum is ill-defined,
standing out only slightly from the surrounding region of
parameter space.

As discussed above, the structure in Figures 4 and 5 must
depend, to a certain extent, on the selection of basis functions
used in the numerical representation of f. Basis functions with
much more flexibility would result in plateaus that are larger
than the ones found here. In the limit that the basis set consist-
ed of delta functions in (E, L) space, the corresponding project-
ed densities would also be divergent; thus, every potential
(among the subset for which all the observed stars are bound)
would permit a distribution function whose projected value

O(r; a5, a)) = — (12)
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F1G. 2—Ability of our algorithm to recover f given samples generated from
distribution function f,, assuming perfect knowledge of the potential &(r).
Right panels are gray-scale plots of the optimal f; the darkness is proportional
to log [1 + f(E, I))E~*?], where the E factor was included to give a better
representation of the number density in (E, L)-space. Left panels show low-

o order moments, intrinsic and projected, of the optimal f analytic profiles (solid
-1 -0.5 0 curves); intrinsic () and projected ([J) densities; intrinsic radial (©) and
tangential (@) velocity dispersions; and projected ([J) velocity dispersions. (a)
E Exact solution; (b) Ny, = 100;(c) Ny, = 300;(d) Ny,,, = 1000.
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FiG. 4—Contours of constant likelihood in the space of parameters (a,, a,)
that define the potential, for three samples generated from distribution func-
tion f,. The cross identifies the correct solution (a, = 1, a, = 1), and the dot is
the most likely solution found by the algorithm. Heavy curves denote the
approximate 50% and 90% confidence regions, as defined in the text. (a)
Ngaa = 100; contours are separated by one in log #; (b) N4,,, = 300; contours
are separated by two in log #; (¢) Ng,, = 1000; contours are separated by
fourinlog ..

was very large at some of the (r,, v,), implying a divergent
likelihood. Our hope—as in all nonparametric estimation
problems—is that, for “reasonably ” smooth representations of
£, the likelihood contours in Figures 4 and 5 are fairly indepen-

dent of the precise representation of f. The amount of computa-
tional time required to construct Figures 4 and 5 (several
hundred hours per figure on a Sparcstation 1) discouraged us
from pursuing this question very far. Nevertheless, the fact that
the regions of highest likelihood remain centered on the correct
solution as the number of particles is increased suggests that
our algorithm is estimating likelihoods correctly; if the algo-
rithm were strongly limited in its ability to represent f, we
would expect the “most likely ” potential to be one for which
the corresponding f is easily represented by the code, rather
than the correct one, even for very large data sets. Further-
more, we verified that using 15 basis functions, rather than 10,
made very little difference in the form of Figure 4b. Our tenta-
tive conclusion—which ought to be checked more carefully,
using a radically different representation of f, if possible—is
that our algorithm is doing a fairly good job of delineating the
range of “most likely” potentials, rather than simply those
potentials for which the corresponding distribution function is
well suited for approximation by our particular basis func-
tions.

The estimation of confidence regions for our problem is
complicated by the nonnegativity constraints on f. The most
secure approach would be to repeat our analysis for many
different samples drawn from the same distribution functions,
then compute the mean and variance of the potential param-
eters derived for the different realizations. The available com-
puting resources precluded this approach. Instead, we used the
approximate method advocated by Eadie et al. (1971), valid in
the limit of large samples: the true potential lies within the
region defined by log £ > log £ ., — 3x2(®) with confidence
C =1 — o, where p is the number of degrees of freedom. The
heavy contours in Figures 4 and 5 define the 50% and 90%
confidence regions, so defined, for a, and a,. For N,,, = 100
and 300, these confidence regions appear to be somewhat too
large, based on comparison with the actual errors in a; and a,
for the four samples. For Ng,,, = 1000, the confidence regions
appear more reasonable. The area corresponding to these
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FiG. 5.—Like Fig. 4, for samples generated from distribution function f,

regions appears to be roughly the same for the two, Ng,, =
1000 samples, although the shapes of the constant-likelihood
regions are quite different.

A more intuitive understanding of the shapes of the likeli-
hood contours is provided by Figures 6 and 7. In these figures,
contours were plotted in terms of the more physical quantities
a;a, and 3a,/4ma?, which are the total mass and central
density, respectively, of the matter producing the potential.
The solid curves are the relations between a, and a, implied by
the virial theorem: that is,

) = (rd®/dry
= a,a,{r?/(a3 + r?)*?) (13)

where brackets indicate averages weighted by number. It is
clear that our algorithm for inferring the potential “ respects ”
the virial theorem: in both cases, the contours of constant
likelihood bend in such a way as to follow the virial constraint,

1.2

0.9

9

0.7
T

0.6

0.5

and the best-fit solution always lies close to the virial theorem
curves. Of course, the virial theorem itself gives no clue about
where along these curves the most likely solution lies.

It is hardly surprising that the curves of constant likelihood
have very different shapes for samples generated from the two
distribution functions. However, this fact makes it difficult to
estimate the sample size required to give an estimate of, say,
the central density with a specified degree of confidence.
Roughly speaking, Figures 6 and 7 suggest that samples con-
taining a thousand positions and velocities yield estimates of
the central density that are accurate to within a factor of a few,
at least when the unknown potential is characterized by only
two free parameters. These are substantially tighter limits than
can be set using only the virial theorem, or the number density
and velocity dispersion profiles (Paper I).

1

Total Mass

Central Density

F1G. 6.—Contours of constant likelihood in the space (a, a,, 3/4na,/a2) for
the Ny,,, = 1000 sample generated from distribution function f,. Solid curve is
the locus of points consistent with the virial theorem, as discussed in the text.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...409...75M

No. 1, 1993

Total Mass

0.1 1
Central Density

FiG. 7—Like Fig. 6, for the N,,,, = 1000 sample generated from distribu-
tion function f;.

5. THE COMA CLUSTER

The algorithm described here is best suited to systems in
which accurate velocities exist for every object identified as a
member, i.e., in which all the useful information is contained
within the kinematical sample. Galaxy clusters fall into this
category, since membership in a galaxy cluster is determined
largely through velocity. (Higher surface brightness objects,
such as globular clusters, generally do not, since velocities are
often available for only a small fraction of those objects that
are known to be members. In these cases, one should impose
the additional constraint that f reproduce the known density
profile.) Here we apply our algorithm to the Coma galaxy
cluster. The data, shown in Figure 8, are taken from the com-
pilation of Kent & Gunn (1982). They comprise 296 galaxies
with measured velocities within 3 degrees of the cluster center;
membership criteria are those of Kent & Gunn (1982). In what
follows, the unit of length is 50 minutes of arc, or 1.0 Mpc for a
Hubble constant of 100 km s~* Mpc™?; the unit of velocity is
103 km s™!; and G = 1. We investigated three parameterized
forms for the cluster potential, corresponding to three func-
tional forms for the (presumably dark) matter density. The first
potential corresponds to a matter density that is slightly more
centrally concentrated than the galaxies, whose number
density falls off roughly as r 3 at large radii:

a r2\ 2
- 3 1+ 2 >
27'“12 a2

G
d,(r)= — 91 a1 <L> .
r a,

Figure 9a shows contours of constant likelihood in (a,, a,)
space. The most likely potential from this family has

a, ~4.0,

corresponding to a total mass of 1.5 x 10'> M and a central
density of 5.5 x 107 * M, pc™3. The core radius of the matter
determining the potential—defined as the radius at which the

pi(r) =
(14)

a,~03,
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FiG. 8—Coma Cluster data, from Kent & Gunn (1982)

projected mass density falls to half its central value—is r, ~
375 + 100 kpc (90% confidence). This is somewhat greater
than the core radius as determined by the distribution of bright
galaxies (e.g., Kent & Gunn 1982), though the two values are
consistent given the respective uncertainties.

One undesirable feature of the potential just considered is
that it becomes unphysical when the central scale length a, is
too small, since equation (14) then implies a divergent mass at
small radii. This fact led us to consider the second potential:

a, r2\ 1
3 1+_2 ) rsr05
na3 a3

4
=0, r>rg,

G
D)) = — 1 l:l — % gap-t <L)
a, r a,
1 1+ r2/a3
+5log (1 +ral) |

Ga,|ro a r
——2=Ztan (2], r>r.
as r r a,

Here r, is a radius beyond which the mass density is set to zero.
We chose r, = 4 Mpc, well outside of the region in which most
of the galaxies in our sample are likely to lie. According to
Figure 9b, the most likely potential from this family has essen-
tially a zero core radius, a, < 0.05 =~ 50 kpc, with a, ~ 4.0a,.
In other words, the most likely potential is close to that of a
singular isothermal sphere:

pa(r) =

[

r<roy,;

(15)

(16)

The likelihood of this potential is nearly the same as that of the
most likely potential from ®,. Thus, although very small dark-
matter core radii are consistent with the data, we are unable to
determine whether they are more or less likely than a core
radius similar to that of the bright galaxies.
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F1G. 9—Contours of constant likelihood in the space of parameters (a,, a,)
that define the potentials fit to the Coma Cluster data. Heavy curves denote
the approximate 50% and 90% confidence regions. (a) Potential 1; (b) potential
2;(c) potential 3.

Our third family of potentials contains elements of the first

two:
2\ —1 2\ -1

a, r r

1+— 1+ ,
4na;< ) ( " )

2
arg a, _(r
o= B[00 (1)
3 az(ag - i‘%) r a,

o fr 1 r(z) +r?
——t —]—=1 —_—].
r an (r0> 2 8 <a§ +r? (17

Here r, < a, is the central core radius, set to 20 kpc. At small
radii, p, approximates a singular isothermal sphere; at large
radii, the density falls as r~%. The most likely potential from
this family (Fig. 9¢) appears, once again, to be the singular

ps(r) =

Vol. 409

r J

0.15 0.2
T

)

0.1

0.05
T

0 0.2 0.4 0.6 0.8 1
9

FiG. 9

isothermal sphere: the likelihood tends slowly toward a
maximum as a, and a, increase, such that

2
aro
—3—z4.0,

a;
corresponding to a density law

1 0.
S~ =, (18)

r r

w

onN

a

/r>(r)=4 d

Nw

1
na
the same result obtained from family 2. However in this case,
mass models with a, as small as ~0.7 fall within the 90%
confidence region, corresponding to a density that falls as r~2
within about 700 kpc (H, = 100), and as r~* outside.

These two distinct, “ most likely ” models for the potential of
the Coma Cluster have rather different associated distribution
functions for the cluster galaxies. The f corresponding to @,
(i.e., large core radius) has a velocity distribution that is radi-
ally biased inside of ~1 Mpc and approximately isotropic
outside. The f corresponding to ®, and ®; (zero core radius)
has a nearly isotropic velocity distribution inside of ~ 500 kpc,
and a tangentially biased distribution outside.

A number of other attempts have been made to constrain the
Coma Cluster dark matter distribution using this kinematical
sample or similar ones (e.g., Rood et al. 1972; Bailey 1982;
Kent & Gunn 1982; The & White 1987). All of these studies
were based on a comparison of models with number density
and velocity dispersion profiles of the galaxies, and thus, for
the reasons outlined above, cannot in principle distinguish
between very different models for the potential. While some of
these authors claimed to find “most likely” forms for the
potential, in every case the existence of an apparently preferred
® can be traced to the use of restricted forms for f or its
moments. Merritt (1987) used the global velocity distribution
of the Coma galaxies as a means of distinguishing between
some rather extreme models of the potential; the present study
supersedes that work. Hughes (1989) placed limits on the
Coma dark matter distribution using X-ray data from a
number of satellite observatories. His results were quite similar
to ours: while he could place no useful lower limit on the dark
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matter core radius, values as large as ~20 arcmin ~400 kpc
(H, = 100) were consistent with the existing X-ray data.

Our analysis of the Coma data affirms that a sample of a few
hundred positions and velocities is sufficient to place usefully
tight constraints on a potential characterized by only two free
parameters. When the form of @ is completely unknown a
priori, however, we have found that rather different potentials
can be equally consistent with kinematical samples of this size.
Our results demonstrate the importance of allowing great
freedom when constructing dynamical models of hot stellar
systems, and the need for caution when claiming to have found
a preferred model. The strongest statement that we feel com-
fortable making about the distribution of dark matter in the
Coma Cluster is that its core radius is unlikely to be greater
than about 500 kpc (H, = 100), or its central density less than
about 2 x 1073 My pc™3. However, smaller core radii, and
higher central densities, are equally consistent with the avail-
able data. Larger numbers of radial velocities will be needed to
improve these constraints.

6. DISCUSSION

The approach to potential estimation outlined here differs in
two ways from previous work. The more fundamental differ-
ence is that we view the data as an approximation to the
projected distribution function v (r,, v,), rather than as a set of
numbers from which the surface density and velocity disper-
sion profiles can be estimated. As discussed in Paper I, it is only
through using the additional information contained within the
line-of-sight velocity distributions that one can hope to elimi-
nate the generally extreme indeterminacy associated with low-
order velocity moments. The less fundamental difference is our
particular algorithm for finding the most likely @ and f. The
algorithm described here is suited to cases where velocities
exist for nearly every object identified as a likely member.
Examples of such data sets are galaxies in galaxy clusters, as
discussed above; systems of planetary nebulae around individ-
ual galaxies (e.g., Ford et al. 1989); or the OH-IR stars in the
Galactic bulge (te Linkel Hekkert 1990). Qualitatively different
sorts of data would most naturally be analyzed with modified
versions of the algorithm discussed here. For high surface
brightness objects such as elliptical galaxies, it is possible in
principle to calculate v,(r,, v,) directly, by deconvolving inte-
grated spectra (e.g., Bender 1990). Estimation of f in this case
would involve a straightforward inversion of the integral equa-
tion (1), rather than a maximum likelihood technique.
However such data are likely to be available only in the central
regions of galaxies, where sky subtraction is not a serious
problem. Another class of data would be obtained from a
galaxy or star cluster where the velocity data are discrete, but
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where the density profile of the population from which the
kinematical sample was drawn is independently known. One
example is the system of globular clusters surrounding the
giant elliptical galaxy M87: here, the radial distribution of
clusters is very well determined, through background-
subtracted counts (Harris 1986), while accurate radial velo-
cities exist for only ~45 objects (Mould et al. 1990). Similarly,
in individual globular clusters, the sample of stars from which
the surface density profile is determined is generally much
larger than the sample for which radial velocities are known
(e.g., Meylan & Mayor 1986). Clearly, an analysis based on
only those stars with measured velocities would be ill-advised;
instead, one should accept solutions only if they yield the
known density profile as well. The proper approach in these
cases is to represent f through a much larger number of basis
functions—say, as a histogram—and to require any solution to
reproduce the known number density profile at a set of radial
points.

Finally, we discuss the possibility of generalizing our
approach to nonspherical systems. We note at the outset that
there do not yet exist proofs, like the one for spherical systems
(Paper I), of the correspondence between projected and intrin-
sic distribution functions for axisymmetric or triaxial systems.
In the absence of such proofs, it is difficult to answer questions
about the uniqueness of solutions, even when the potential is
completely specified. In a (fully integrable) axisymmetric
system, the distribution function generally depends on three
orbital integrals, f = f(E, L2, I,), one more than in the spherical
case. However, the projected distribution function is also a
function of three variables:

Vp = vp(xp’ Yps Up) s

where x, and y, are the projected coordinates on the plane of
the sky. Thus it seems feasible that the axisymmetric problem is
“as constrained” by the data as the spherical one, except for
uncertainties about the orientation, and the fact that more
velocities are required to specify a three-dimensional function
than a two-dimensional function. In practice, however, it will
not be easy to handle the nonclassical integral I5; short of a
completely numerical approach, one could imagine approx-
imating the integrals via perturbation theory (Gerhard & Saha
1992). A good place to apply an axisymmetric algorithm might
be the Galactic bulge, as traced by OH/IR stars (te Linkel
Hekkert 1990), or dwarf spheroidal galaxies. Triaxial systems
would be rather more difficult due to the need to test different
assumptions about the intrinsic axis ratios and orientation.

This work was supported by NSF grant AST 90-16515. We
benefited from conversations with H. Dejonghe and J. Sell-
wood.
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