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ABSTRACT

Detailed comparisons are made between the Langmuir-wave properties predicted by the recently developed
stochastic-growth theory of type III sources and those observed by the plasma wave experiment on ISEE 3,
after correcting for the main instrumental and selection effects. Analysis of the observed field-strength distribu-
tion confirms the theoretically predicted form and implies that wave growth fluctuates both spatially and tem-
porally in sign and magnitude, leading to an extremely clumpy distribution of fields. A cutoff in the
field-strength distribution is seen at a few mV m™!, corresponding to saturation via nonlinear effects. Analysis
of the size distribution of Langmuir clumps yields results in accord with those obtained in earlier work and
with the size distribution of ambient density fluctuations in the solar wind. This confirms that the inhomoge-
neities in the Langmuir growth rate are determined by the density fluctuations and that these fluctuations

persist during type III events.

Subject headings: plasma — solar wind — Sun: radio radiation

1. INTRODUCTION

This paper is concerned with making detailed comparisons
between the Langmuir-wave properties predicted by the
recently developed stochastic-growth theory of type III source
regions (Robinson 1992b; Robinson, Cairns, & Gurnett 1992)
and those observed in situ by the joint TRW-JPL-Iowa
Plasma Wave experiment on ISEE 3 (Scarfet al. 1978).

In the standard model of type III bursts (e.g., Ginzburg &
Zheleznyakov 1958 ; Melrose 1990; Muschietti 1990; Robinson
1992b) Langmuir waves are generated via a beam instability of
electrons streaming outward from the Sun. Most waves gener-
ated at the head of the beam are absorbed by electrons further
back, thereby reducing the net energy loss to a level compatible
with the observed propagation of beams to 1 AU or more from
the Sun. When waves exceed the thresholds for three-wave
decay and coalescence, secondary Langmuir and ion sound
waves are generated, giving rise to radiation at the fundamen-
tal and second harmonic of the local plasma frequency. Inho-
mogeneous quasi-linear simulations (e.g., Grognard 1985)
indicate that the beam propagates in a state close to marginal
stability, in which wave growth just balances net losses. Such
simulations also reproduce the approximate form of the elec-
tron distributions observed at 1 AU (Grognard 1985).

The standard model suffers from two shortcomings. First,
observations have shown that ambient low-frequency density
fluctuations in the solar wind have a level sufficient to scatter
Langmuir waves out of resonance with the beam faster than
they can grow (Celnikier et al. 1983; Celnikier, Muschietti, &
Goldman 1987; Muschietti, Goldman, & Newman 1985).
Second, the model does not explain the extreme clumpiness of
the Langmuir waves, which show structure down to the short-
est scales resolved (Gurnett & Anderson 1976, 1977; Lin et al.
1981, 1986) and vary by several orders of magnitude in energy
density over periods of a second or less. A number of theories
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have been proposed to circumvent one or other of these prob-
lems, based on nonlinear instabilities (e.g., Lin et al. 1986, and
the references cited therein), local suppression or alignment of
density fluctuations (Muschietti et al. 1985; Melrose, Dulk, &
Cairns 1986; Melrose & Goldman 1987), or fluctuation-
dependent growth rates and growth lengths (Smith & Sime
1979). Robinson (1992b) incorporated some of these ideas into
a new model in which the beam propagates in a state close to
marginal stability, but both beam and waves are perturbed by
ambient density fluctuations. This leads to stochastic growth in
which the growth rate fluctuates between positive and negative
values and the logarithmic wave density undergoes a random
walk, with positive net growth in localized regions.

Robinson (1992b) showed that the stochastic growth model
can account for the presence of Langmuir waves, despite the
mean growth rate being negative, and (semiquantitatively in
his work) for the clumpiness and field-strength distribution of
the waves. More recently, Robinson et al. (1992) showed that
the stochastic-growth model implies that the Langmuir clump-
size distribution should be the same as that of the ambient
density fluctuations and confirmed this prediction by spectral
analysis of ISEE 3 wave-field data. It was also shown that
several relationships between the variations of type III source
parameters with distance from the Sun, predicted in part on
the basis of stochastic-growth theory, are consistent with those
actually observed (Robinson 1992a).

Given the initial successes of the stochastic-growth theory in
accounting for the properties of type III sources, it is of con-
siderable interest to test its predictions further. Data from the
ISEE 3 spacecraft have been used to study the predicted
clumping of the Langmuir waves (Robinson et al. 1992). These
data can also be compared with the predicted distribution of
field strengths. Such an analysis not only enables the
stochastic-growth theory to be tested, but allows us to add to
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the existing knowledge of bursts which have been studied from
other perspectives.

In §2 we briefly review Robinson’s (1992b) stochastic-
growth model of Langmuir waves in type III source regions
and generalize it to incorporate the existence of a nonlinear
saturation level. In § 3 we outline the ISEE 3 plasma wave
observations that are considered here, discuss our choice of the
specific type III events for analysis, and analyze the main
instrumental effects on the data. Detailed comparisons
between theory and observation are then made in § 4, focusing
on the distributions of field strengths and spatial scales.

2. STOCHASTIC GROWTH OF LANGMUIR WAVES

In this section we briefly review Robinson’s (1992b) stochas-
tic growth model and discuss its generalization to incorporate
both long-wavelength ambient density fluctuations with a
spectrum of length scales (Robinson et al. 1992) and saturation
of the growth via nonlinear interactions involving the beam
driven waves (e.g., three-wave decay).

Ambient density fluctuations have been inferred to scatter
Langmuir waves out of resonance with the beam at a typical
rate of =(1-10) s™!, whereas the largest growth rates for the
observed electron beams (time averaged over 64 s) are <(0.1-1)
s~! (Muschietti et al. 1985; Melrose et al. 1986; Robinson
1992b). Hence, under most if not all circumstances the waves
cannot grow uniformly in space. Robinson (1992b) showed
that the observed time-averaged growth rates are consistent
with peak growth rates of a few times 10 s™! in localized
clumps of ~ 100 km in size. Hence, at least in regions where the
scattering is not too large (e.g., where the gradient of the
plasma density is approximately parallel to the beam
direction), the beam-driven growth can overcome refraction of
waves out of the growth region in wave vector space.

In the stochastic-growth model, the beam propagates in a
state close to marginal stability, as implied by quasilinear cal-
culations (which are unaffected on average by clumping;
Melrose & Cramer 1989). Density fluctuations perturb the
waves, allowing them to grow effectively only in localized
clumps, while clumps of waves corresponding to unfavorable
density fluctuations are damped. This in turn leads to pertur-
bations of the beam (corresponding to spatial inhomogeneities
in the beam distribution function) about its average state of
marginal stability on time scales determined by the rate of
change of the density fluctuations (see below). The growth rate
thus fluctuates, while the space- and time-averaged effective
growth rate is zero at marginal stability. Under these condi-
tions waves in a given clump (defined to be simply a region of
space of characteristic scale size of order that of the density
fluctuations) C undergo a random walk in the logarithm of
their energy density until either they leave the clump or wave
growth saturates via nonlinear processes; this gives a character-
istic interaction time t, ~ I/v,, where v, is the group velocity of
the Langmuir waves and [ is the clump size. (In terms of the
electron speed V' and the beam speed v, one has v, = 3V?/v,.)
During a time ¢, electrons traveling at velocity v, reach
the clump C from distances up to v,t, away and traverse
~vyt,/I{I> clumps in transit, where (I) is the mean clump
size. Assuming these clumps have a characteristic lifetime
ts & {I>/vs, where vy is the ion-sound speed, a typical upstream
clump forms and disperses ~<t,)/ts times near a particular
location during the time t,. Each upstream clump formation
and dispersal “injects” a corresponding inhomogeneity into
the part of the beam that interacts with the given clump C
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during t,. Hence, a total number n,(]) of beam inhomogeneities
cross C during t,, with
vy t, {t vy Us !
() ~ Zb’g <_Q S A Sl (1)

RO O

A time t < t, into the evolution of the clump, a typical number
n(t) of inhomogeneities will have passed by, with

n(t) = t%q =5 )
(=320, ®
Up Vs

These estimates improve those of Robinson (1992b) and imply
n,(K1>)> 1 for typical parameters from Table 1, with vg=x
(1 + 3T}/ T,)*(m,/m;)*"?V in terms of the electron and ion tem-
peratures and masses.

The total number of e-foldings G undergone by a clump of
waves is the sum over individual increments AG ~ I't; as the
waves are encountered by each inhomogeneity in the beam,
where the net growth rate I" varies between inhomogeneities.
The mean and variance of G are thus related to the corre-
sponding quantities for AG by

{G)> =<AGH(t) =<T>t, G
oX(G) = cX(AG)n(t) = a*(D)t;yt , )

for t <t,. Typical values are obtained by setting t = t, and
n, =n,(<1>) in equations (4) and (5), which gives

(G = (AGyn, = ST ©
%(G) = 6X(AG)n, = givF%D_]ﬁ . )

Robinson et al. (1992) result I'(l) ~ I~ ! has been used in obtain-
ing the rightmost members of equations (6) and (7).

In terms of {G) and 6 {G) the spatially averaged probability
distribution of G is approximately

P(G) =

(G =<6 ] .

1
a(G)2n) 2 P [_ 26%(G)
via the Central Limit Theorem. The mean energy density in the

waves is obtained by averaging W ~ e® over the distribution
(8), using equations (4) and (5). This gives

(W) =exp {[<T') + 36* (D)t} ©)
for t < t,(Robinson 1992b). Hence, the effective growth rate is
Lo = <T) + 36*(D)t; . (10)

This result resolves the paradox of wave growth being
observed in the presence of a negative mean growth rate (I")
(Robinson 1992b) because I'; can be positive even for
(I") < 0. The distribution P(E) of electric field strengths E is
obtained from equation (8) by writing G = 21n(E/E,), where
E, is the characteristic initial field ; this gives

ene- (2]

N [21n(E/Ey) — (G)T?
~ G2 {_ 26%(G) } (th
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TABLE 1
PARAMETERS OF 1979 FEBRUARY 8, FEBRUARY 17, AND MARCH 11 EVENTS

Quantity Feb 8 Feb 17 Mar 11 Unit
7 x 10° 1.2 x 107 2 x 108 m~3
3.5 x 107 5 x 107 3.5 x 107 ms™!

6 x 10* 2.1 x 10* 4 x 10* K
1.7 x 10° 1.5 x 10° 2 x 103 K
1.6 x 108 1.5 x 10° 1.7 x 108 ms™!
5.3 x 10* 4 x 10* 5.1 x 10* ms~!
22 x 10° 1.4 x 10° 2.6 x 10° ms™!
1.5 x 10° 20 x 10° 8.2 x 10* s7!
3.5 x 10° 3.5 x 10° 4.8 x 10° ms™!
0.1-0.2 0.3 0.1-0.2 ..
25 %1073 40 x 1073 50 x 1073 Vm!
2.7 x 1073 48 x 1073 53x1073 Vm™!
38 100 26
04 0.6 0.3 s
0.011 0.006 0.013 s
4.2 2.8 4.5
0.7 0.3 0.9
57 37 68 s™!
—8.8 —-38 —-10
—0.2 —0.04 —-04 ..
—10 -3 —13 s7!
3x1073 4 x 1073 6 x 1073 Vm™!
3x1073 5x 1073 27 x1073 Vm!
1.3 x 1073 1.3 x 107* 8.5 x 107° Vm™!
35%x107° 2.8 x 1074 24 x 1073 Vm™!
1.7 1.5 1.75
23 3.0 2.5
0.4 0.8 0.6 st

NoTes.—Most parameters are from Lin et al.’s (1981, 1986) papers, or from
the National Space Science Data Center’'s OMNI database. No estimate of T,
for the 1979 February 17 event was available, so we have used a typical value
of 1 AU. Note that / = 200 km is assumed in the evaluation of {I'(/)) and
<o[I'()1),and {I) = 90 km is assumed in evaluating t, and ;.

The stochastic growth theory therefore predicts a parabolic
shape for In [E P(E)] when plotted as a function of InE. In § 4
we show that this theoretical prediction is consistent with the
observational data. (Note that the form of the distribution [11]
is valid only for fields above the thermal level. This implies that
the normalization should be adjusted accordingly. However,
the thermal level, estimated below, turns out to be far below
the observed fields, implying that this is a relatively small cor-
rection. Since, in addition, the absolute normalization is not
investigated in the present work, we do not make this refine-
ment here.)

Stochastic growth leads to arbitrarily high wave levels in a
vanishingly small proportion of clumps, a situation that is pre-
vented by the existence of a nonlinear saturation mechanism. If
the highest wave levels saturate via three-wave decay (or, more
generally, via some other nonlinear process [see, e.g., Cairns
1984, 1986; Lin et al. 1986; Robinson, Willes, & Cairns 1993]),
the distribution of G will fall off rapidly beyond the point G,
corresponding to the threshold field E, for decay. Dynamically,
the energy density of those waves that exceed the threshold
decreases suddenly as product waves are generated, falling to
an asymptotic level that is an exponentially decreasing func-
tion of the extent to which the threshold was exceeded
(Robinson 1992c). In order to calculate P(G) near the three-
wave threshold we approximate the threshold as an absorbing
boundary (Robinson 1992c) and solve the diffusion problem in
G for the half-interval G < G,. This is most easily done by the
method of images in which a symmetrically placed distribution
of opposite sign, centered at 2G, — {G), diffuses in the half-
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interval G, < G. After normalizing the unit total probability
the result is

m®=Pmmmma(%é§§ﬂ“

(6 =GP
X {exp I:— 20‘2(6) :|

(G, — (G — GY?
me [‘ 26%(G) ]} ’

for G < G, and P(G) = 0 for G > G,. Figure 1 shows the dis-
tributions (8) and (12) and illustrates the effect of the decay
threshold. The electric-field distribution is obtained from dis-
tribution (12) by using G = 21n(E/E,), as before.

Robinson et al. (1992) found that values of G can be
described as being spatially distributed in clumps of width [
and (without loss of generality) unit height. The probability
distribution Pg(l) of the clump size was found to have the
approximate form

(12)

I, Lh<l<l,,,
P ~ max
oh {z*b v lam<l<ly, (13)
which gives the mean values
b—1
B~ 5= hoin» (14)
b—1
12 ~ lbj-l a—-bj3—a
< > 3 —a 'min lO lmax H (15)

where some small terms have been neglected for the case rele-
vant to the solar wind, which has a~ 15 and b~ 25
(Robinson et al. 1992). In the solar wind [, is the smallest
fluctuation size consistent with observation (Celnikier et al.
1983, 1987) and with moderate to weak dissipation of Lang-
muir waves. These constraints give 0.4 km < [ ;, < 30 km in
general and 2 km < I,;, < 30 km for beam-driven waves, for
which [,;, must also exceed the wavelength 2nv,/w, (Robinson
et al. 1992). The maximum scale [, is determined by the

FiG. 1.—Theoretical distribution P(G) with and without the presence of a
three-wave decay threshold as given by eqs. (8) and (12) (solid and dashed
curves, respectively).
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distance that the Langmuir waves can remain in resonance
with the marginally stable beam, giving

3rV2Av,
~
max "~ 3 )
2v;,

l

(16)

where r is the distance from the Sun and Av, the spread in
beam velocities (Melrose et al. 1986; Robinson et al. 1992).

Using [, =5 x 10* km, I, * 4 x 10® km, and [_;, = 30 km
fora = 1.5and b = 2.5, we find

> ~90 km, (17a)

(?y ~ (700)* km? . (17b)

Robinson et al. (1992) found the result G oc n, where n is the
density fluctuation and, hence, predicted the distribution P,(])
of ambient density fluctuations to satisfy

P,() = Pg() . (18)

This result was verified to within the observational uncer-
tainties in their work.

The time t for which a clump is detected at a spacecraft is
proportional to its width, with ¢t = l/v,,,, where vy, is the solar
wind speed. The observed time history of G (or of log E) is the
sum of contributions from individual clumps. If we assume
these clumps are uncorrelated, the total power spectrum S(w)
is the integral, weighted by Pg(t), over the spectra S(w; t) of
individual clumps of characteristic duration t. This gives
(Robinson et al. 1992)
wa—3 ,

Cl)b_3 ,

w < w,,

19
0o <, (19)

S(w) oc {
with wyty = wly/v,, = 1; this result is independent of the
shape of the clumps. The spectrum plateaus for w < 1/¢,,,, and
depends on the shape of the clumps for @ = 1/t,,.

3. OBSERVATIONS AND INSTRUMENTAL EFFECTS

In this section we briefly discuss the choice of type III events
analyzed in this work. Instrumental effects resulting from filter
responses, antenna projection effects, and other sources are
then discussed.

3.1. Data Selection

The data used in this work were obtained from the joint
TRW-JPL-Iowa plasma wave instrument on ISEE 3 (Scarf et
al. 1978), which was located in the solar wind 1.6 x 10° km
(259Rg) upstream of Earth where Ry, is the radius of the Earth.
The data consist of time series of electric field strengths mea-
sured over 0.5 s intervals and sampled simultaneously in each
of 16 frequency channels. These channels cover the frequency
range 17.8 Hz to 100 kHz, 4 per frequency decade. Each
channel up to 5.6 kHz has a characteristic full bandwidth of
30%, while the bandwidths of the remainder are 15%.

Three type III events are considered below: (1) 1979 Feb-
ruary 8 from 06:30 UT to 08:00 UT, (2) 1979 February 17
from 19:30 UT to 22:00 UT, and (3) 1979 March 11 from
11:00 to 12:00 UT. The reason for the choice of these particu-
lar events is that they have previously been studied in detail
from other perspectives involving both particle and wave mea-
surements (the first and third by Lin et al. 1986, and the second
by Lin et al. 1981). Hence, the present study can both make use
of an extend existing knowledge of these events.
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3.2. Filter Rolloff Effects

In § 4 we are concerned with data from pairs of channels
bracketing the plasma frequency during type III events, either
the 10 kHz and 17.8 kHz channels, or the 17.8 kHz and 31.6
kHz channels. These channels respond both to Langmuir
waves near the plasma frequency and to the electromagnetic
waves that form the type III radio burst.

For narrow-band waves at a frequency flocated between the
central frequencies f, and f; of the channels immediately above
and below f, respectively, the measured fields in the two chan-
nels are related to the true field E , on the antenna by

E,= EAlor(f/fa) ,
E, = EAIOr(f/fb) ,

(20a)
(20b)

where r(p) is the filter response function. Thus, if E,, E, and r
are known, f and E, can be calculated. Figure 2 shows the
measured form of r(p) for filters used in the ISEE 1, ISEE 2,
and CRRES plasma wave instruments (R. R. Anderson 1991,
private communication); filters of the same design were used in
the ISEE 3 instrument (E. W. Greenstadt & R. R. Anderson
1991, private communications), but calibration data for the
actual filters flow on ISEE 3 are currently unavailable (E.
Greenstadt 1991, private communication). The true field and
frequency can be approximated by

E,~ 13(E,E)'? , 1)
fIf, ~ 1 — 0.043In(180E,/E,) . 22

Figures 3a and 3b show E,/E, and f/f,, respectively, as func-
tions of E,/E,. Solid curves are obtained numerically from the
measured response function, while dashed curves are from the
approximations (21) and (22).

3.3. Projection Effects

The field E, detected by the ISEE 3 antenna is the com-
ponent of the true field E projected onto the antenna direction
a. Since the exact direction of E is unknown, it is not possible
to correct individual data for this effect. However, it is possible
to estimate the effect on the overall statistical distribution of
fields and show that it can be neglected in the cases of interest
to us. This is the approach we follow here.

0.0

-1.0

r(f/fa)

-2.0

e

F1G. 2.—Measured filter response (rolloff) function r(p)
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F1G. 3.—Parameters corrected for rolloff effects. Solid curves show results using the measured response, while dashed curves show approximate results. (a) E JE.
vs. Ey/E,, with the dashed curve from eq. (21). (b) fIf, vs. E,/E,, with the dashed curve from eq. (22).

During its rotation (period ~ 3 s) the antenna’s angle 6,
relative to the interplanetary magnetic field B sweeps through
almost the full range 0° < 0, < 360°, because the field lies close
to the (ecliptic) plane in which the antenna rotates. Since the
strangest Langmuir fields lie approximately in the direction of
B, the measured field will underestimate the true ones by large
factors when |cos 6] is small. If we approximate the relative
directions of B and a as being distributed uniformly in 6,
between fixed values of azimuth relative to B, the probability
distribution P (E,) of E, is determined by the distribution
P(E) of true fields having E > E ,. This gives

" dp P<5> , (23)
u

P A(EA) = J L

0
where E, = uE .

The integral in equation (23) can be evaluated analytically
for the predicted distribution (11) by making the change of
variable u = 21n . This yields

1 4x + o*(G) 2x + a*(G) :
E,P(E,) = 3 exp [—8 ] erfc [—26 G2 } , (29

2 2
~ 2x21 fg()G) a(G)(127r)”2 cxp [_ %(G)] > (29)
with
x =2In(E/E,) — {G) . (26)
The approximation (25) is valid for
2x + 0%(G) 2 20(G)/2, (27)

a condition that is found to be satisfied by the data discussed in
§ 4 [6(G) ~ 4, x = 0]. Comparison of equation (25) with equa-
tion (11) shows that the two distributions are the same except
for the factor 26%(G)/[2x + 6*(G)], which is of order unity for
the parameters of interest in § 4. Thus o(G) will be essentially
unaffected, a result that is valid even in the case in which there
is no correlation between the antenna direction and B. Simi-
larly, the number of observations at high E will not be signifi-
cantly reduced, because the change in normalization is of order
unity. One effect that should be noted and corrected for when
analyzing data is the offset of the peak toward the left as o(G)

increases, as seen in Figure 4, which shows E,P(E,) for
a(G) = 0.5, 1, 2, and 4. The distribution E P(E) for ¢(G) = 2 is
also shown (dashed) for comparison, demonstrating that the
shape of the high-E distribution is unchanged by projection
effects and that the approximation (25) is adequate where (27)
is satisfied.

In a distribution like (24) that decreases steeply at large E,
projection effects do not make much difference to the highest
field E,,, observed in a set of N observations. This field is
determined by the condition that less than one even higher
field is statistically likely to be observed in the N measure-

ments, i.e. by
o0
N J
E 4 max

The exponentially rapid fall-off in P(E) large E implies that the
change of order unity in normalization between the high-E
distributions (11) and (25) has only a slight effect on E,_,,
(reducing it E , ,,,) because even a large fractional reduction in

dE,P(E)=1. (28)

-10 0 10

F1G. 4—Projection effects on the distribution, showing E, P(E ,) vs. x (with
x =2In(E,/E,) — {G)) from eq. (24) for 6(G) = 0.5, 1, 2, and 4, as labeled. The
true distributions are Gaussians of the form (11) centered at x = 0, one of
which is shown (dashed curve) for a(G) = 2.
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the probability of observing a very high field is compensated
for by a slight decrease in the lower bound of the integral in
(28) where P(E ) is relatively large. We can estimate this effect
by noting

f * dE,P(E,) - r dEP(E) . (29)

max

Upon substituting equations (11) and (25) and using the
asymptotic form for the error functions that result from the
integrals, equation (29) yields

E O'Z(G) + 2xA max 52(G)/(2x A max)
N [ e , (30)

max

X
E A max

where x4 .. 18 the value of x corresponding to E, ... The
estimate (30) is verified for a(G) = 2 by comparing the dashed
curve in Figure 4 with the corresponding solid curve.

3.4. Other Effects

The automatic gain control (AGC) used for each of the 16
channels in the main ISEE 3 filter bank has a rise time 6t ~ 10
ms, a decay time of order 50 ms, and a mean settling time
comparable to the sampling interval of 0.5 s. Clumpy fields
with scales small compared with the distance the solar wind
travels during the rise time (i.e., with I < v, 0t ~ 4 km) will
therefore be seriously underestimated. If a significant fraction

‘E 4 T T T T T T T

5 o3l () |
E L i
& 9L _
g+ ]
o1k .
€3]

S ~ -
%D 0 | | | 1 L 1 !

- -7 -6 -5 —4 -3

log,o F (V m™1)
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of fields have scales smaller than 4 km, this will result in an
underestimation of the highest fields and a reduction in their
apparent probability; however, this appears unlikely since the
shortest scale length for beam-driven waves is at least 2 km, as
discussed following equation (15). Moreover, since each AGC
ideally settles during the 0.5 s sampling interval and the rise
and decay times are much smaller than 0.5 s, the electric field
and clump distributions derived here should be unaffected by
AGC effects. Our analyses are, in any case, necessarily
restricted to scales greater than the resolution limit of 200 km
(ie., l/vg, ~ 0.5 s). Information on scales <200 km must await
analyses of data from the Ulysses, Galileo and ISTP missions.

4. COMPARISON WITH OBSERVATIONS

In this section we analyze the data from the 1979 February
8, February 17, and March 11 events and compare the results
with the theoretical predictions from § 2. In particular, we are
concerned with the statistical distributions of field strengths
and Langmuir clump sizes.

4.1. Field-Strength Statistics

Before commencing detailed analysis of fields corrected for
instrumental effects, we first consider the raw data from one
event to provide a baseline against which to judge the effects of
rolloff corrections. Figures 5a and 5b show the time series from
the 17.8 and 31.6 kHz channels, respectively, for the 1979 Feb-

-2 T T T T T T T

(b) |

w
T

[\
T

—
T

log,o EoP(E,) (arbitrary units)

| o
-~

log;o £ (V m™1)

F1G. 5—Raw data from the 1979 February 8 event. (a) E, vs. t in the 17.8 kHz channel. (b) E, vs. t in the 31.6 kHz channel. (c) E, P(E,) for the 17.8 kHz channel. (d)

E, P(E,) for the 31.6 kHz channel.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...407..790R

796 ROBINSON, CAIRNS, & GURNETT Vol. 407
0 T T T 1 T é 4 T
—~  t (a) - 2o | i
g 5 3f .
2L a e
> CHE 7
= a2t -
<
Eq/ - |
< gl :
R L ]
2
ED 0 1 ! ! L 1

UT
0 —

—~ _1 B 7
<

Eq/ - —
Gy

T 21 7
S L |
20

)]
— “_3 [ ]

_4 | Il 1 | 1 | |

6 -5 -4 -3 2
log,g E4 (Vm™1!)

Fi1G. 6.—Data from the 1979 February 8 event, corrected for rolloff effects.
(a) E , vs. t. (b) E , P(E ) (solid curve) and fits from eqs. (11) and (12) (upper and
lower dashed curves, respectively). (c) Cumulative distribution function.

ruary 8 event. The characteristic highly impulsive nature of the
Langmuir waves is visible in both channels, indicating that the
plasma frequency f, lies between them, in accord with the esti-
mate f, ~ 24 kHz obtained from the in situ density measure-
ment (Lin et al. 1986). Smoothly rising electromagnetic
emission is seen in the 31.6 kHz channel, beginning at approx-
imately 06:55 UT. The probability distributions of raw electric
field strengths P(E) in the 17.8 and 31.6 kHz channels (E, and
E,, respectively) are shown in Figures 5¢ and 5d, respectively,
in the form E P(E). Both plots show large peaks toward the left,
corresponding to signals at or near the instrumental threshold
and, in Figure 5d, to electromagnetic waves. The remainder of
the curves, which show the statistics of Langmuir waves
detected above both the threshold and the electromagnetic
background, have the characteristic approximately parabolic
shape expected from (11) and (25).

Correction of the data in Figures 5a and 5b for filter rolloff
effects yields the time series of E, shown in Figure 6a, where all
fields below the bound imposed by the instrumental threshold
and electromagnetic background have been omitted. Figure 6b
shows the corresponding function E , P(E ,) together with least-
squares fits to the theoretical expressions (11) and (12). Figure
6¢ shows the cumulative distribution function

cdf (E,) = J “PE)E 31)

E

—6 -5 —4 -3 -2
log,o Ea (Vm™1!)

as a function of log E,. This function gives the fraction of
observations with fields greater than E,. In terms of the
cumulative distribution function, equation (28) becomes
cdf (E4 nax) = 1/N where N is the number of data points.

From Figure 6 we find the following main results, which are
summarized in Table 1:

1. The parabolic shape of the function E P(E) is strong evi-
dence that the stochastic growth theory correctly describes the
generation and characteristics of type III Langmuir waves.

2. The relevant values 6(G) = 4.2 (from the numerical fits)
and 0 < x < 5.3 imply that the inequality (27) is satisfied in the
region shown and, hence, that projection effects do not signifi-
cantly affect the shape of the tail of P(E).

3. If we choose I = 200 km to correspond to the resolution
of the ISEE 3 measurements and use the other parameters
listed in Table 1, equations (6) and (7) imply 6(AG) ~ 0.7 and
o[T(D] ~ 57 s~*. This value of ¢[I'()] is consistent with the
observed values of the mean slopes of type III beams, because
the latter, averaged over 64 s, do not reflect the instantaneous
values of I'. Robinson (1992b) showed that the observed mean
slopes are consistent with o[I'()] of a few times 10 s~! for
I ~ 100 km, as found here.

4. If marginal stability is assumed on average (. = 0),
equation (10) implies {G) = —d*G)/2 ~ —8.8. Using equa-
tion (6) we find <I'(D> ~ —10 s~ %, and (AG> ~ —0.2 for the
same parameters as in point 2, above. Since o[I'(l)] ~ 57 s !
from point (3) above, we find o[T'(])] > | <T({)) |, which implies
that there is instantaneous growth of Langmuir waves in
nearly half the plasma. (Note that the value o[T())1/<T'())> =
—2(vy/v,)*/6(G) ~ —6 is independent of 1.) However, clumps
in which net growth is positive for more than a few t; are rare,
consistent with the highly inhomogeneous qualitative nature of
the observed waves. The waves in a given clump typically grow
or damp by less than one e-folding for each beam inhomoge-
neity that passes by. For ¢[T'()] = 57 s~! and <I'()) = —10
s~ !, the maximum instantaneous growth rate is ~100 s~
consistent with Robinson (1992b) and Melrose & Goldman
(1987).

5. The characteristic measured field strength is the field
at the peak of the distribution, E_,. The numerical fit gives
E i ~ 13 pV m~'. After correction for the offset illustrated
in Figure 4 with o(G) = 4.2, the corresponding true field is
E,~35uVm .

For comparison, the thermal level of Langmuir waves with

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...407..790R

No. 2, 1993 CLUMPY LANGMUIR WAVES 797
0 r7 117 17T 1T T T T T T 7177 é 4 T T
-~ r (a) - = | i
! s 3+ 4
: Z
> = T .
S— 5
< — 2 .
. <
E St -
2 o1k -
— — Lﬂ B |
_6 I O S N T Ny | %B Il | | | [l I 1
19:30 22:00 - —6 -5 —4 -3 -2
uT log,o Ea (Vm™!)
0 T mates of the rate of electromagnetic emission at the second
B ] harmonic of the plasma frequency, which involves coalescence
of two Langmuir waves.
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F1G. 7—Data from the 1979 February 17 event, corrected for rolloff effects.
(a) E 4 vs.t. (b) E,, P(E ;) (solid curve) and fits derived from eqs. (11) and (12) that
neglect and include the nonlinear cutoff E, (upper and lower dashed curves,
respectively). (c) Cumulative distribution function.

k < 0.2k}, (the point at which strong damping cuts in, even in
the absence of a nonthermal tail) can be estimated from

0.2k, \3
€o E%h ~ kg E(#) > (32)

where Eq, is the rms thermal field strength. Equation (32) gives
Er, ~0.08 uV m™!, which is much less than E_,. This is in
accord with our picture of type III events in which the head of
the unstable electron beam drives Langmuir waves to high
levels before attaining marginal stability in a very short period,
after which the waves evolve according to stochastic-growth
theory, with negative mean growth.

6. The highest field seen was E,,,, 2.5 mV m~!, ~4
times higher than the highest detection in a single channel (see
Fig. 5 and Lin et al. 1986). Equation (30) then gives E,,, ~ 2.7
mV m ™!, Effects such as the finite AGC rise times, mentioned
in § 2 but not considered here, could raise E,,, further if
intense wave packets with | <4 km are present. However,
detection of such packets with the ISEE 3 instrument is
unlikely owing to both their small size and the relative infre-
quency of the highest field strengths.

The value of E_,, found here is ~4 times higher than that
estimated from either channel alone. This gives an order of
magnitude higher energy density than previously recognized to
drive potential nonlinear processes such as three-wave decay
and wave collapse and will cause a ~250 fold increase in esti-

mated energy density relative to single-channel estimates is
possible when rolloff effects are accounted for (depending on
1,/f.), corresponding to a (1-4) x 10*-fold increase in harmonic
emission. A more typical value of the underestimation relative
to the highest single-channel field can be obtained by averag-
ing E3/max (E2, E?) over the range 0.56 < fJf, < 1. Using the
approximations (21) and (22), this gives

N ~ 33 33)
max (E2, E})/ ~ 7~

and a corresponding ~ 1000 fold increase in theoretical esti-
mates of harmonic emission.

7. The probability distribution falls more rapidly at high E
than the fit made using equation (11), which does not allow for
the presence of a cutoff due to nonlinear processes. A better fit
is obtained using equation (12) with E,, =3 mV m™!, as
shown by the lower dashed curve in Figure 6b. We note that
this faster-than-Gaussian fall-off in P(E) strengthens the sta-
tistical case for E, .., = E,..., since there are even fewer high
fields available to be projected down to E, = 2.5 mV m~!. We
find E, ~ 3.3 mV m ™~ from equation (30).

The nonlinear process that appears most likely to determine
E, is three-wave decay of Langmuir waves into product Lang-
muir and ion-sound waves. The strongest pieces of evidence in
favor of this mechanism are, first, the observation of burst of
ion-sound waves at approximately the correct frequency simul-
taneously with the strongest bursts of Langmuir waves (Cairns
1984; Lin et al. 1986), and second, the close correlation
between the amplitudes of the two waves (Lin et al. 1986;
Muschietti 1990). We consider this process and its competitors
(e.g., nonlinear wave collapse) in detail in a later paper in which
stochastic-growth theory is extended to incorporate nonlinear
processes (Robinson et al. 1993).

8. The cumulative distribution function shown in Figure 6¢
has a sharp step at the threshold field implied by instrumental
limits and electromagnetic emission, reflecting the large
number of fields below this level. Above this point
logyo [cdf (E,)] is approximately parabolic when plotted
against log;, E 4, as would be expected from integration of the
asymptotic form (25).

Figures 7a and 8a show the time series of E, for the 1979
February 17 and March 11 events, respectively, while Figures
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Fi1G. 8.—Data from the 1979 March 11 event, corrected for rolloff effects. (a)
E, vs. t. (b) E,P(E ) (solid curve) and fits from eqs. (11) and (12) (upper and
lower dashed curves, respectively). (c) Cumulative distribution function.

7b and 8b show the corresponding probability distributions,
and Figures 7c¢ and 8¢ show the cumulative distribution func-
tions. The parameters obtained from fitting this data with the
theoretical expressions are given in Table 1. In most respects
the results for the three events in Figures 6-8 are similar.
Several points worth noting are:

1. The peak of the parabolic distribution in Figure 7b lies
well clear of the lower bound imposed by the instrumental
threshold and electromagnetic background. This confirms the
predicted parabolic form of the statistical distribution more
strongly than the results in Figure 6, but the cutoff is too
high to reveal the relatively flat behavior seen at small E, in
Figure 4.

2. The values of E, ., and E, are similar for all three
events, at a few mV m~', despite E 4, being a factor of 10
higher in Figure 7b. This implies that the saturation mecha-
nism cuts in at a characteristic level, independent of the
strength with which the Langmuir waves are driven. The con-
sequences of this are investigated in detail elsewhere (Robinson
et al. 1993). Figure 7b shows the effects of the nonlinear cutoff
most clearly with a ~5 fold difference between the simple
parabolic fit (11) and the actual distribution at E,,,,. The
cutoff field is not well determined from Figure 8b and may be
somewhat higher than our estimate of 7mV m ™1,

3. The results in Figures 7 and 8 confirm |(AG)| < 1 and
imply that many beam inhomogeneities must interact with a
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given clump of Langmuir waves for significant net growth to
occur. Large values of |G — (G)| are correspondingly rare
because of fluctuations in the sign of I'. However, in each case
the ratio o[I'())]/|<T'())> | is large, implying that instantaneous
positive and negative growth rates are approximately equally
common, regardless of the scale size I.

4.2. Clump-Size Distribution

The time series in Figures 6a, 7a, and 8a are extremely
impulsive and clumpy (Gurnett & Anderson 1976, 1977; Lin et
al. 1981; 1986). Robinson et al. (1992) argued that the length
scales of the fluctuations in G should have the same probability
distribution as the underlying density fluctuations (eq. [18]). In
order to test this prediction they Fourier transformed the time
series from individual channels to obtain the power spectra of
G, using a Monte Carlo method to remove instrumental effects.
Their method is

1. Construct a Monte Carlo distribution of the form (13)
using rectangular clumps of unit height.

2. Calculate the mean and standard deviation of the Monte
Carlo distribution.

3. If the observational cutoff occurs a certain number of
standard deviations from the observational mean of log E, cut
off the Monte Carlo distribution at the same point in terms of
its own mean and standard deviation. (N.B. This step must be
iterated until it converges, with the mean and standard devi-
ation being those of the cutoff distribution itself.)

4. Fourier transform both the observational and (cutoff)
Monte Carlo time series and adjust the Monte Carlo param-
eters a, b, and w, until the two spectra match when equiva-
lently normalized. Uncertainties in the parameters of the best
fit can be determined at this point.

5. Determine the true underlying spectrum by Fourier
transforming the original Monte Carlo time series (without
instrumental cutoffs) for the best-fit cases.

Here we carry out this procedure for time series that have been
corrected for rolloff effects in order to obtain improved esti-
mates of the parameters a, b, and w,, in equation (19).

Figures 9a-9¢ show the raw spectra and corresponding
Monte Carlo fits for the 1979 February 8, February 17, and
March 11 events. The parameters of the fits, listed in Table 1,
are consistent with those found by Robinson et al. (1992), with
a=15-1.75b = 2.3-3.0, and w, = 0.4-0.8 (with uncertainties
of +0.1 in a and b and +0.2 s™! in w,). The corresponding
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g B 7 S. DISCUSSION AND SUMMARY
= 4 -
s i We have extended the stochastic-growth theory of Lang-
b muir waves in type III source regions (Robinson 1992b; Robin-
5 B son et al. 1992) to incorporate the existence of a nonlinear
— - saturation level and have compared its predictions in detail
% 2 | with ISEE 3 observations corrected for the main instrumental
= B and selection effects. The predictions and observations are
& found to be in good accord, thereby confirming the main
- I~ results of the theory for the field-strength distribution and
- clumping of the Langmuir waves.
0 Analysis of observed field-strength statistics indicates:
—4

logjgw (s71)

F1G. 9—Frequency spectrum S(w) (solid curve, arbitrary units) of the
rolloff-corrected Langmuir fields E ,, smoothed over a range 5% either side of
the nominal frequency for plotting. Dashed curve shows the corresponding
Monte Carlo spectrum. (a) 1979 February 8 event. (b) 1979 February 17 event.
(c) 1979 March 11 event.

underlying spectra corrected for instrumental effects are shown
in Figures 10a-10c.

Only Celnikier et al. (1983, 1987) have independently deter-
mined the spectra of ambient density fluctuations in the solar
wind for these time scales, unfortunately for two periods in
which type III bursts were absent. They found spectra
described by equation (19) with a = 1.2-1.5, b = 2.05-2.7, and
o = (0.4-1.0) s~ . The shapes and parameters of the spectra
found here are thus consistent with the corresponding density
spectra to within their uncertainties, particularly given the con-
siderable range of values seen, the small number of events
considered here and in the analyses of ambient density fluctua-
tions, and the absence of type III events during the density
measurements. The results obtained using fields corrected for
filter rolloff effects thus confirm our earlier conclusions
(Robinson et al. 1992): Ambient solar-wind density fluctua-
tions persist during type III events and determine the clumping
of Langmuir waves and the consequent nonuniformities in the
electron beam. Moreover, regions in which growth occurs are
principally determined by alignment of Vn with the beam

1. The predicted function form of the field-strength prob-
ability distribution implied by the stochastic-growth theory
result (12) is correct.

2. The mean wave growth/damping per interaction between
a Langmuir wave clump and an inhomogeneity in the electron
beam is (G) ~ —0.1, and the standard deviation satisfies
d(AG) < 1. Many interactions are thus required to achieve sig-
nificant growth or damping, and this only occurs in a small
fraction of clumps, consistent with the highly impulsive nature
of the waves observed. Nonetheless, the result o(I') > |<T")|
implies that growth is positive in almost half the plasma
volume at any instant. Energy lost by damped waves is
approximately balanced by energy gained by growing waves to
yield approximate marginal stability overall.

3. A nonlinear cutoff exists at a field strength of several mV
m~ !, apparently independent of the characteristic Langmuir
field E .

4. The estimated fields after correction for rolloff effects are
necessarily higher than the raw single-channel fields. This
implies that previous theoretical estimates of fundamental and
harmonic electromagnetic emissivities based on raw fields
must be revised upward and that higher energy densities than
previously thought are available to drive other nonlinear pro-
cesses such as wave collapse.

Remaining open questions regarding the field strengths
include determining the form of the probability distribution at
low E 4 and using a higher sampling rate to resolve short-scale
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F16. 10.—Monte Carlo frequency spectrum S(w) (arbitrary units) corrected
for instrumental thresholds and smoothed over a range 5% either side of the
nominal frequency for plotting. (a) 1979 February 8 event. (b) 1979 February
17 event. (c) 1979 March 11 event.

wave clumps. In addition, further generalization of stochastic-
growth theory to incorporate the dynamics of nonlinear pro-
cesses is necessary to determine the saturation mechanism
responsible for the nonlinear cutoff mentioned in point 3 above
and to calculate fundamental and harmonic emissivities. It is
also of interest to determine why the magnitudes of ¢(I') and
(T") have the observed values and whether these values are
typical of weaker type III events than those considered here.

6 I I I I I I T
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|
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Analysis of wave clumping using rolloff-corrected fields here
has refined the earlier analysis by Robinson et al. (1992). The
results are in accord with that earlier work and imply that the
Langmuir clump-size distribution is consistent with the size
distribution of ambient density fluctuations in the solar wind,
as predicted by the stochastic-growth theory (Robinson et al.
(1992). Specifically, the probability distribution is found to be
of the form (13) with a =1.5-1.75, b = 2.3-3.0, and w, =
04-0.8s71,

Open questions regarding wave clumping chiefly involve
determining the clump-size distribution at the shortest scales,
down to I;,. A sampling rate of ~ 103 s~! would be necessary
to be sure of resolving all structures that are theoretically pos-
sible. More observations of the density scale-size distribution,
particularly at short scales and within type III sources, would
also be useful to improve our knowledge of the density spec-
trum, its variation with time, and its degree of correlation with
the Langmuir clump-size distribution.
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