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ABSTRACT

It is usually assumed that the line profiles (i.e., the distributions of stars over line-of-sight velocities) of ellip-
tical galaxies have Gaussian shapes, characterized by a line strength y, mean radial velocity V, and velocity
dispersion ¢. We relax this unnecessarily restrictive assumption and propose a decomposition of the line
profile into orthogonal functions: the Gauss-Hermite series. This series naturally leads to two extra parameters
that measure deviations of the line profile from a Gaussian: a parameter h; measuring asymmetric deviations
and a parameter h, measuring symmetric deviations.

Model calculations for the outer parts of spherical galaxies yield line profiles that can deviate significantly
from Gaussians. Even for models with only mild velocity dispersion anisotropy the rms deviations from a
Gaussian can be of order 10%. Approximating these line profiles by Gaussians yields systematic errors in the
estimates of the mean radial velocity and velocity dispersion of 10% or more.

The new method is used to derive line profiles for the elliptical galaxies IC 1459, NGC 1374, and
NGC 4278. All three galaxies have asymmetric line profiles on the major axis, similar to those found earlier in
galaxies with kinematically distinct cores. In addition we find evidence for symmetric deviations from a Gauss-
ian. By fitting Gaussians to these asymmetric line profiles the amplitude of the rotation curve can be overesti-
mated by 30% or more. The results for h; and h, are not strongly dependent on the spectral resolution of the
observations. The results confirm the notion that elliptical galaxies have complex structures, due to their
complex formation history. It is expected that accurate measurements of line profiles will provide additional
constraints on models of galaxy structure and formation.

Subject headings: galaxies: elliptical and lenticular, cD — galaxies: kinematics and dynamics — line: profiles

1. INTRODUCTION

Observed galaxy spectra are usually assumed to be the convolution of a suitably chosen template spectrum and a broadening
function. This broadening function corresponds to the distribution of stars over line-of-sight velocities, henceforth referred to as the
line profile. The line profile is usually assumed to be Gaussian. This gives a convenient fit to most observed spectra, in spite of the
fact that the infinite wings of a Gaussian line profile imply a system of infinite mass. A variety of methods exists to determine the best
fitting Gaussian broadening function, e.g., the Fourier quotient (Simkin 1974; Sargent et al 1977), the cross correlation (Tonry &
Davis 1979), the Fourier correlation quotient (Bender 1990), the Fourier fitting (Franx, Illingworth, & Heckman 1989a, hereafter
FIHa), and the direct fitting (Rix & White 1992, hereafter RW) method. Most of our current understanding of the dynamics of
elliptical galaxies (for a review see, e.g., de Zeeuw & Franx 1991) is based on estimates of rotation velocities and velocity dispersions
obtained in this way.

Unfortunately models of elliptical galaxies are not uniquely constrained by knowledge of rotation velocities and velocity
dispersions alone. For example, both tangential velocity dispersion anisotropy and the presence of a dark halo can cause the
observed velocity dispersion to remain more-or-less ‘constant out to one effective radius. Also, weak or rather face-on disks in
elliptical galaxies are very difficult to detect from knowledge of surface photometry, rotation velocities, and velocity dispersions
alone (Rix & White 1990). In cases like these, the different models can be distinguished by the shape of their line profiles.
Tangentially anisotropic models of the outer parts of elliptical galaxies have line profiles that are more flat-topped than those of
radially anisotropic models (Dejonghe 1987; Gerhard 1991; Winsall & Freeman 1993a). The presence of a disk leads to asymmetric
line profiles.

Several methods have been developed to test whether observed line profiles deviate from Gaussians (Franx & Illingworth 1988,
hereafter FI; Bender 1990; RW; Winsall & Freeman 1993b). Significantly non-Gaussian line profiles were reported in the cores of
several bright, nearby elliptical galaxies. The deviations from a Gaussian are in the sense that the line profile is asymmetric, with the
asymmetry changing sign upon going from one side of the nucleus to the other. These line profiles are well fitted with the sum of two
Gaussians, one component with low rotation and high dispersion, and one component with high rotation and low dispersion. These
components are tentatively identified with the main body of the galaxy, and with a more rapidly rotating core component
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(sometimes counter-rotating with respect to the main body of the galaxy), respectively. Such core components are most likely
produced by mergers or starbursts (FI; Balcells 1991).

Now that it is possible to detect deviations of line profiles from Gaussians, one should address the question how such deviations
are best quantified. A decomposition into two Gaussians is one possible approach, and seems the most logical thing to do if one has
an a priori reason to believe that two kinematically distinct components are present. If not, however, the results are difficult to
interpret, the more so since the errors in the six parameters of a two-Gaussian decomposition are highly correlated. From a
mathematical and physical point of view one would rather like to know, e.g., the (third and) higher moments of the line profile.
These can easily be compared to models, since they are calculable for any given distribution function. Furthermore they obey higher
order virial equations (Merrifield & Kent, 1990; Kent 1990), and can be used to constrain the shape of the potential (Dejonghe &
Merritt 1992). Unfortunately the higher moments of an observed line profile cannot be determined, since the wings of the line profile
are ill-constrained by the observations (broad wings are hard to discriminate from differences in continuum shape between galaxy
and template spectrum).

In this paper a new method is presented to parameterize the line profiles of elliptical galaxies. The observed line profile is
expanded as a sum of orthogonal functions in a Gauss-Hermite series. The approach exploits the fact that Gaussians are good
low-order approximations to most realistic line profiles, and naturally leads to two parameters describing deviations from a
Gaussian: a parameter h; describing asymmetric deviations, and a parameter h, describing symmetric deviations. The choice of an
orthogonal set of functions minimizes correlations between the errors in the parameters that describe the line profile.

In § 2 the parameterization and its mathematical background are presented. In § 3 some theoretical line profiles are calculated,
and it is demonstrated that they are well fitted by the proposed parameterization. In § 4 the parameterization is implemented in the
Fourier fitting method. In § 5 the new method is applied to long-slit spectra of the galaxies IC 1459, NGC 1374, and NGC 4278.
Conclusions are presented in § 6. Auxiliary formulae and results are presented in two appendices.

2. THE PARAMETERIZATION OF THE LINE PROFILE

In § 2.2 a new parameterization for the line profiles of elliptical galaxies is presented. This parameterization is discussed in the
context of the Fourier fitting method described in detail by FIHa. Note, however, that the parameterization can be used equally well
in the context of any of the other methods mentioned in § 1.

2.1. The Fourier Fitting Method

The observed galaxy spectrum %(4) and observed template spectrum (1) are rebinned linearly in the quantity x = In 1 (a relative
velocity Av implies a Doppler shift Ax = Av/c). A polynomial fit is made to the continuum of each spectrum. The continuum fit is
subtracted, and the spectra are divided by the average continuum level. It is then assumed that the logarithmically rebinned,
continuum-subtracted, normalized spectra G(x) and S(x) satisfy G(x) = B(x) o S(x), where o denotes convolution. The function B(x)
corresponds to the line profile (i.e., the line-of-sight velocity distribution) #(v), according to £ (v) = B(v/c), and is assumed to depend
on a finite number of parameters. The parameters are then determined that minimize the quantity

X = J[G(x) — B o S(x)]%dx . (1a)
According to Parseval’s theorem, y? is equal to the residual 32 in the Fourier domain
7= J[G(k) — B(k)S(k)I*[G(k) — B(k)S(k)]dk , (1b)

where F(k) denotes the Fourier transform of a function F(x). In the Fourier fitting method j? is minimized rather than ? (the latter
is done by RW). Methods based on x? or 3> minimization have a number of advantages over the traditional Fourier quotient
method; e.g., the error analysis is more straightforward (FIHa; RW).

For the sake of mathematical simplicity consider the following idealization:

(i) A perfectly matching template spectrum has been chosen, i.e., So(x) = yo S(x), So(x) being the unbroadened galaxy spectrum.
The factor y, allows for a difference in line strength between galaxy and template spectrum.

(ii) Information is available at all wavenumbers k.

(ii1) | S(k) |? = cst for all wavenumbers k.

The quantity j? is then proportional to
Yia = f [70 ZLov) — L)) dv, )

where £ (v) is the true normalized distribution of stars over line-of-sight velocities; i.e., by minimizing 3> one is merely least-squares
fitting a parameterized function to the true line profile.

In practice the above assumptions are never satisfied. There is always template mismatching. Instrumental broadening and noise
limit the accuracy of the information at high wavenumbers. Continuum subtraction limits the accuracy of the information at low
wavenumbers. Criterion (iii) is strictly satisfied only for spectra with one single absorption line and negligible intrinsic and
instrumental broadening. These points will be addressed in detail in § 4. For the moment let us restrict ourselves to the idealized
situation described by equation (2).
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2.2. The Line Profile as a Sum of Orthogonal Functions

The usual approach is to assume the line profile to be a Gaussian with free parameters line strength y, mean radial velocity V, and
velocity dispersion o,

L) = yuw)/o, w=@-V)o, )

where the function «(y) is the standard Gaussian

oy) = e Q)

To determine deviations of the line profile from a Gaussian a more general parameterization must be used. To obtain parameters

that are only weakly correlated we expand the line profile as a sum of orthogonal functions. Motivated by the fact that Gaussians
provide good low-order approximations to most realistic line profiles, we thus consider the Gauss-Hermite series

N
ZL(v) = [ya(w)/o] ;Oh,- Hiw), w=@-V)o, Q)

where the h, are free parameters, and the functions H,(y) are the Hermite polynomials, defined in Appendix A, that satisfy

® 1
H,()H,(0)e*()dy = == Sy - (6)
J‘ ) 2 \/7;

Each H((y) is a polynomial of degree ! in y. The polynomials H,,,, ,(y) of odd degree are antisymmetric in y, and therefore the odd
coefficients h,,,,; characterize antisymmetric deviations of the line profile from a Gaussian. Similarly the even coefficients charac-
terize symmetric deviations. The quantity yZ is minimized for

Voo = (2. /m) V7° f_w Lo0owH wdv, (1=0,...,N). )

The superscript indicates that this holds for any fixed (y, V, o).

A theorem by Myller-Lebedeff (1908) states that the series equation (5) with N = oo and the h; as in equation (7) converges to
Yo Zo(v), for any V and nonzero y and o, provided that Z4(v), as well as its first and second derivative, are finite and continuous, and
provided that lim, _, , ,, v*%,(v) = 0. These conditions are satisfied for realistic line profiles.

For any choice of (y, V, o) there is thus a Gauss-Hermite series of the form equation (5) that fits the data. This holds even for
choices that are far from the true line strength, mean radial velocity, and velocity dispersion. However, to obtain a series that
converges rapidly, so that the line profile is already well described by its low-order terms, one has to make sensible choices (y, V, o).
It seems natural to choose them such that the lowest order term of the series approximates the line profile as good as possible. This
implies setting the parameters (y, V, o) of the Gauss-Hermite expansion equal to the values (, V, 6) that define the best Gaussian fit
to the line profile. These quantities have the further advantage of being easy to obtain for real data. For this choice it follows from
equation (7) (using the definition of the best Gaussian fit) that the corresponding h, are equal to

ho=1, h =0, h,=0. (8a)

h=2/7) ’;—0 fw LoWaWH W), Ww=@-—V)s (=3). (8b)

In practice we find it more convenient to fix (hy, hy, h,) in equation (5) to (1, 0, 0), rather than to fix the parameters (y, V, o) to the
values corresponding to the best Gaussian fit. Thus functions of the form

N
L) = [W(W)/G]{l + Y hH ,-(W)}, w=(@-—V)o ®
j=3
are considered, and a simultaneous N + 1 parameter fit is done to find the values (y, V, 6, h3, ..., hy) that minimize 2. Henceforth

the symbol h, (I > 3) will denote quantities obtained in this way. In practice we restrict ourselves to the case N = 4, but extension to
higher orders is straightforward. The bottom panels of Figure 1 demonstrate the effect of nonzero h; and h, on the shape of Z(v).
Notice that the wings of #(v) can be negative, similar to what can happen if a positive function is approximated by the first few
terms of its Fourier series. Even though negative wings are unphysical this is no great disadvantage of our method. We wish to
extract from real data a number of well-defined parameters (the h;), which is independent of how one wishes to physically interpret
the fitting function equation (9).

In general the solution (y, V, o, hs, ..., hy) of the simultaneous N + 1 parameter fit of a function equation (9) to y, £ (v) is not
equal to (5, V, 6, hy, ..., hy). Let y=5(1 + &), V=V + 68V, 6 = 6(1 + d0), and h, = h, + Sh, (1= 3, ..., N). The theory of
linearized least-squares fits (e.g., Press et al. 1986, § 14) yields that, to lowest order, yZ is minimized for

Sy = L0 , (10a)
3V = J2AN + Dhyhyss , (10b)
56 = /NN + Dhy_ s hysr + /(N + DN + 2 hnhines s (100)
Shy =16V — 20k, + /20 + Dhyyy] + 06— Sl — Dh_y + ST+ DU+ Dhieal, (=3,...,N),  (10d)
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a(v)Hy(v)

£(v)

FIG. 1.—(Top panels) Lowest order members (I = 3, 4) of the orthogonal set of basis functions {a(v)H(v)},-3, ..  that is used in the present paper to describe
deviations of the line profiles of elliptical galaxies from their best-fitting Gaussian. The standard Gaussian «(v) is drawn as a dotted curve. (Bottom panels) The
function £(v) = a(v)[1 + hy H,(v) + h, H,(v)] that is used to parameterize the line profiles, for several combinations of h; and h,. The curves in the left panel have
h, = 0 and demonstrate the effect of nonzero h;. The peak of #(y) occurs at negative y for hy > 0, and vice versa. The curves in the right panel have h, = 0, and
demonstrate the effect of nonzero h,. The function #(y) is more centrally peaked than a Gaussian for h, > 0, and more flat-topped than a Gaussian for b, < 0.

where the ﬁj are defined by equation (8) for all j = 0, ..., co. The quantities dy, 6V, and do are typically of the order of one or two
percent. The &k, are only of order h;8q (j € {I — 2,1 — 1,1+ 1,1+ 2}, q € {V, a}). For most practical purposes these quantities are
thus negligible. Ordering the parameters as (y, V, o, hs, ..., hy), the correlation matrix of the simultaneous N + 1 parameter fit is, for
N = 4 and to lowest order in the /4, (I > 3),

1 2R, 5300+ 3/6h) $/6(—hy+/5hs) 4/6(—hy+3/30h)

1 2/3h, 2h, —2hy + /5 hs
R = 1 104 J15 kg . (11)
1 0
1
The only zeroth-order correlation is that between y and o, which is a known property of fitting Gaussians (Larsen et al. 1983). All
other correlations are at least of order A, (I {3, ..., 6}), and thus generally small for realistic line profiles (cf. § 3 and 4). This

constitutes a major advantage of the present parameterization over most alternatives, such as, e.g., a decomposition of the line
profile into the sum of two Gaussians.

2.3. The rms Deviation from the Best-Fitting Gaussian
We define the rms deviation 2 of the line profile y, £ ,(v) from its best-fitting Gaussian jo(w)/é by the relation

2* = f [yo ZLolv) — )’a(V‘V)/f?]zdv/f [o(W)/61% dv . (12)
It follows from Myller-Lebedeff’s convergence theorem and equation (6) that
© 2 ©
SR =2 a<2y-> j (o0 dv (13)
ji=0 -

The rms deviation 2 is thus related to the A, (I > 3) according to

a-(35)". (14
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2.4. Relation to the Moments of the Line Profile
The kth-moment of the normalized line profile £ ,(v) is

My = f Lo)v — Vofdv . (15)
The mean velocity is V;, = [* , #,(v)vdv and the velocity dispersion is Oy = \/,u_z The coefficient of skewness &, = us/u3’* and the
coefficient of kurtosis &, = p,/u3 measure deviations of the line profile from a Gaussian (for which¢; = 0 and ¢, = 3). Note that the
hy are less susceptible to the wings of the line profile (which are ill-constrained by the observations) than are the y,, due to the factor
o(w) in equation (7).

Usually the true line strength y,, mean radial velocity ¥,, and velocity dispersion o, are estimated by fitting a Gaussian to the
data. However, if the true line profile is not a Gaussian, and if information (hs, hy) is available on the deviations of the line profile
from a Gaussian, it is possible to obtain better estimates. One should not simply calculate the moments of the fitting function £(v)
defined by equation (9). This yields unsatisfactory results because the wings of #(v) can be slightly negative (see Fig. 1) which
influences the moments disproportionately. Instead we consider the physically more meaningful function.

Z(v) = max [£(v), 0] . (16)
Given the parameters (y, V, g, hy, h,) returned by the Fourier fitting program, estimates (7, ¥, 6, &,, &,) of the true values of Yo, Vo,
69, ¢y, &,) are calculated from

j= Jw _?(v)dv, V= fw v[f”(v)/ﬂdv . 6% = f_w [(v— V)]Z[f(v)/ﬂdv, Ei

[ o myerazoma. an

The lowest order in h; and h,

F=wl+5/6h),  PaV+ 30k, Gxol+. /6h), & ~a/3h,, E&,~3+8./6h,. (18)

In practice these quantities are calculated numerically.? In § 3 it is demonstrated that for realistic line profiles (§, ¥, 6) are better
estimates of the true moments (y,, V;, 0,) than are the parameters (5, V, 6) that define the best-fitting Gaussian.

3. THEORETICAL LINE PROFILES FOR THE OUTER PARTS OF ELLIPTICAL GALAXIES

This paragraph addresses the question whether realistic line profiles are well fitted by the parameterization presented in § 2. We
have calculated some line profiles for the outer parts of spherically symmetric, anisotropic models for elliptical galaxies. Let the
relative potential of the system be ¥ = —®, and the relative energy of a star be & = W¥(r) — 4v? (cf. Binney & Tremaine 1987). The
relative potential is either assumed to be Keplerian, ¥ = GM/r, M being the total mass of the system, or logarithmic, ¥ = —V2Inr.
These potentials roughly correspond to the outer parts of the system, without or with a dark halo, respectively. First, nonrotating
models are considered in which the phase space distribution function of the stars (assumed to behave as test particles in the given
potential) is

f(&, L)y=L"*f&), 19

where L = r(v] + v3)"/? is the angular momentum per unit mass, and B < lis a constant. The mass-density of the stars is assumed to
follow a power law

p(r) = J‘L‘zﬁfo(é")d% =Cr ", (20)

where C is a constant. This equation defines f,(&), for given potential ¥. Distribution functions of the type equation (19) have the
property that 1 — a5/6? = B everywhere (e.g., Hénon 1973). For B = 0 the system is isotropic, in the limit f — 1 the system is built of
radial orbits only, and in the limit § - — oo the system is built of circular orbits only. For this model all the moments of the line
profile can be calculated analytically (Appendix B, § B1), and from these the line profile can be reconstructed (Appendix B, § B2).
Figures 2a and 2b, show the line profiles for t = 4 and various values of B. The line profile for f— — oo can be significantly
double-peaked. The line profiles become more centrally peaked with increasing f. The line profile for # — 1 diverges logarithmically
forv— 0.

Simple rotating models with the same mass density are obtained by reversing stellar velocities such that in every point a fraction {
of the stars has positive v, and a fraction 1 — { has negative vg. For the logarithmic potential and § = 0 the resulting line profiles are
particularly easy to calculate (Appendix B, § B3; see Toomre 1982 and Evans 1993 for related calculations). In Figure 2c the line
profiles are plotted for ¢ = 4 and various values of ¢, for the case that the system is viewed from within the equatorial plane.

Each of the line profiles in Figure 2 was decomposed into a Gauss-Hermite series. A Gaussian was fitted to obtain the parameters
(, V, 6). The parameters hy and h, were calculated from equation (8). The rms deviation 2 of the line profile from its best-fitting
Gaussian was calculated from equations (13) and (14). Improved estimates (5, 7, 6) of the true moments of the line profile (yo, Vo, 0,)

2 Formal errors (A7, AV, AG, AE 1» AE,) are calculated from the covariance matrix T returned by the Fourier fitting program. From the standard theory of
first-order error analysis it follows that the error in a scalar function f(y), y being a vector with elements Vi is Af = (f'TZf")'/2, where f’ is the column vector with
elements (0 f/dy,) and X is the covariance matrix of the y,.
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F1G. 2—Normalized line profiles £ (1) of models for the outer parts of spherical galaxies in which the stellar mass density is p oc r~*. In panels (a) and (b) the
models are nonrotating, the potential is either (a) Keplerian or (b) logarithmic, and the (constant) velocity dispersion anisotropy is = — oo (circular orbit model),
— 1,0 (isotropic model), £, or 1 (radial orbit model). The unit of velocity is the velocity dispersion o, which is thus different for each curve. In panel (c) the potential is
logarithmic, § = 0, and the models are rotating: in every point a fraction { of the stars has positive v, and a fraction 1 — { has negativev,. The line of sight is assumed
to lie in the equatorial plane. The unit of velocity is the rms projected line-of-sight velocity, which is ¥./2. For { = 0.75 the line profile has V,/g, = 0.36; for { = 1,
Vo/o o = 0.92. In all panels the standard Gaussian is indicated by the dashed curve. It coincides with the isotropic model in panel (b).

were calculated as described in § 2.4. Table 1 lists the results. Figure 3 shows for three specific line profiles the best Gaussian fit and
the fit if A5 and h, are included. We conclude the following:

(i) For the most extreme velocity dispersion anisotropies (8 - — oo or f — 1) the line profiles do not resemble a Gaussian at all.
For more modest (and more plausible) anisotropies, most of the total rms deviation from the best-fitting Gaussian is accounted for
by A, and A,. The parameterization equation (9) with N = 4 thus provides a good fit to realistic line profiles.

(ii) The estimates (§, ¥, é) of the true line strength y,, mean radial velocity V,, and velocity dispersion o, that are obtained by
fitting a Gaussian to the line profile, can be significantly in error. For example, for nonrotating models with modest anisotropies
(such as p = —1 or = 1), the estimate of the line strength is in error by ~3%, and that of the velocity dispersion is in error by
~10%. For radially anisotropic models § and 6 are underestimates of y, and o, whereas for tangentially anisotropic models they
are overestimates. For the rotating models discussed here the estimate of the rotation velocity can be in error by 10% or more.

(iii) The quantities (, ¥, 6) discussed in § 2.4 are generally much better estimates of (y,, V,, 0,) than are (§, ¥, 6). The quantities &,
and &,, on the other hand, were found not to be particularly accurate estimates of the true coefficients of skewness and kurtosis.
These quantities are thus not used any further.

TABLE 1
CHARACTERISTICS OF THE LINE PROFILES IN FIGURE 2

B ¢ $/vo v/ Vo 6/o, ﬁa ﬁ4 2 o V/Vo 6/og

Kepler Potential; p oc r ~*; Nonrotating System

—0 .eennn. 1.063 . 1.243 —0.194 0.369 1.041 1.105
-1 ... 1.037 1.139 —0.094 0.108 1.011 1.028
[ 1.015 1.058 —0.027 0.028 1.001 1.003
05 ........... . 0.984 e 0.956 0.044 0.062 1.011 1.050
) . 0.876 . 0.715 . 0.204 0.279 0.986 . 0.982

Logarithmic Potential; p oc r~*; Nonrotating System

— 00 ieeninn 1.071 1.271 —0.228 0.478 1.052 1.130
-1 ... 1.031 1.112 —0.083 0.105 1.006 1.008
[ 1.000 1.000 0.000 0.000 1.000 1.000
05 ........... 0.956 0.858 0.085 0.099 1.006 1.014
| S . 0.791 e 0.458 e 0.253 0.386 0.913 . 0.659

Logarithmic Potential; p oc r~*; Rotating System

(VN 0.75 0.970 1.195 0.906 —0.040 0.064 0.090 1.007 1.015 1.023
0. 1.0 0.971 0.900 0.897 0.086 0.039 0.117 0.987 1.016 0.935

* The parameters f§ and { define the velocity structure of the model, as described in the text. The quantities(y,, V,, 0,)
are the true line strength, mean radial velocity and velocity dispersion. The quantities (§, ¥, 6) are estimates of these
quantities obtained by fitting a Gaussian to the line profile. The quantities A, h,, and 2 (egs. [8, 14]) measure
deviations of the line profile from a Gaussian. The quantities (7, ¥, 6) are improved estimates of (y,, V,, 6,), obtained as
described in § 2.4.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...407..525V

>y
I}

S I o4077752

Agd

No. 2, 1993 IDENTIFICATION OF NON-GAUSSIAN LINE PROFILES 531
Kepler potential logarithmic potential logarithmic potential
a) i . b) -4 . c) -4 L, .
p «< r ; non-rotating p «< r ; non-rotating p < r ; B=0; rotating
L L T o
6 (— line profile 8=-1 PR ) line profile 8=0.5 L line profile ¢=0.75 _|
R Gauss fit || e Gauss fit || e Gauss fit
——— Gauss fit + h, 4 ~—— Gauss fit + h, ——— Gauss fit + hzh,
4 -
~
N
Nt
o
N

FIG. 3—Three selected line profiles from Fig. 2, one from each panel. Shown are the best Gaussian fit and the fit if h, and A, are included. In all three panels
inclusion of A, and f, decreases the rms deviation between the line profile and the fit from ~ 10% to ~5%.

(iv) In the above nonrotating models knowledge of h, directly yields information on the anisotropy of the stars in the outer parts
of the galaxy. This anisotropy contains clues on how the galaxy formed. Knowing the anisotropy, the behavior of the velocity
dispersion as a function of radius gives constraints on the presence of a dark halo (see also: Gerhard 1991). On the other hand, even
if h, could be determined with enough accuracy, far enough out in the galaxy, a number of questions remain to be answered, e.g.: (i)
to what extent can the results derived here for the limit of large radii, be used to model data at, say, one effective radius?; and (ii) to
what extent do the results for the models presented here, differ from other possible models, in which, e.g., the velocity dispersion
anisotropy of the stars changes with radius? These questions are beyond the scope of the present paper. The line profiles calculated
here merely serve to demonstrate the usefulness of the parameterization introduced in § 2.

4. TESTS OF THE METHOD

The parameterization presented in § 2 was implemented in the Fourier fitting method. The linearized least-squares fitting
algorithm described in Appendix A of FIHa is used to determine the (y, V, o, hs, h,) that minimize 3> (eq. [1b]), for £(v) as in
equation (9). This algorithm returns the best-fitting parameters, their formal errors, and the covariance matrix of the fit.

The determination of line profile shapes requires spectra with high signal-to-noise (RW). For the observations in the Mg b triplet
region presented in § 5, we found that a S/N of at least 50 per A was required to obtain useful estimates of h; and h,.

The quantity j? is evaluated over a finite range of wavenumbers k. The use of an upper cutoffk;, is motivated by the fact that there
is no information in the highest wavenumbers, due to the finite spectral resolution of the instrument. For the observations presented
in § 5 this resolution was typically between 0.2 and 0.5 times the velocity dispersion of the galaxy (Table 3). For these data the results
of the Fourier fitting program were insensitive to the choice of k. There is also no great dependence of the results on spectral
resolution, as will be demonstrated in § 5.

Low wavenumber information that remains after the continua of galaxy and template spectrum have been subtracted cannot be
trusted and is filtered out of the Fourier transformed spectra. An inverted cosine-bell filter is used, i.e., zero from wavenumber zero
to some user defined wavenumber k;, and then smoothly rising to 1 at 2k,. The particular choice for k; is more or less arbitrary
within a factor of 2 or so; k;, = (70 A)~* was adopted. For a Gaussian line profile with dispersion g, in velocity space and
corresponding dispersion o, in Fourier space, this implies that no information is available at wavenumbers k S 0.50,(c(/300 km
s~ 1). Information on the wings and the moments of the line profile is thus missing (the kth moment of the line profile is proportional
to the kth derivative of its Fourier transform at wavenumber zero), the more so for larger k; and g,. The results of the Fourier fitting
program can therefore depend weakly on the choice of k,, especially if the parameterization of the line profile does not provide a
good fit. To study the dependence of h; and h, on k;, simulated spectra were created by convolving an observed stellar spectrum
with the line profiles calculated in § 3, setting o, ~ 300 km s~ . The Fourier fitting program was then applied with k, = (70 A)~?,
and the same star as template. The differences between the results for h; and h, and the values listed in Table 1 were small, typically
between —0.02 and 0.02. For real data it was found that h; and h, typically change by an amount between —0.03 and 0.03, ifk; is
varied within the plausible range. These changes tend to be the same at all radii along the slit; that is, the typical effect of varyingk;,
is to introduce a small constant offset in the profiles h;(r) and h,(r), r being the distance along the slit.

The discussion in § 2 assumes that integrals can be evaluated over the range — oo < v < 0o, which requires information at all
wavenumbers. As a consequence of the fact that this information is not available, the Hermite polynomials cease being strictly
orthogonal. The correlations between the errors in the parameters of the fit are in practice therefore slightly larger than given in
equation (11).
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TABLE 2°
RESULTS OF TESTS WITH SIMULATED DATA

Type [Fe/H] Star <hsy Opy Chyy Op, <ngd>

HD 51219 0.04 0.02 0.06 0.03 1.72

HD 125968 0.03 0.02 0.04 0.03 1.75

HD 170829 0.01 0.01 0.04 0.02 1.68

HD 81192 0.00 0.02 0.00 0.03 1.19

0.32 HD 72324 —0.01 0.01 0.00 0.02 1.54

0.10 HD 85503 0.00 0.01 —0.02 0.01 1.09

KOII .......oeeeeen. —0.65 HD 102224 0.00 0.01 0.00 0.01 1.35
K4l ...t e HD 93102 0.00 0.01 —0.02 0.01 1.05
MIII ................. HD 84542 0.00 0.01 —-0.09 0.01 7.35

# Results of tests to assess the influence of template mismatching on h, and h,, as described in the text.

The process of deriving deviations from a Gaussian line profile from observations is sensitive to mismatch between galaxy and
template spectrum (RW). Table 2 describes the results of tests to assess the influence of template mismatching on h; and h,. Simulated
galaxy spectra were created by convolving observed spectra (spectral resolution ¢ = 60 km s~ !) of stars of different spectral types
and metallicities with a Gaussian of width ¢, = 250 km s~ *. Of each resulting spectrum 30 copies were made, and to each copy a
realization of Poisson noise with S/N of 75 per A was added. These spectra were then analyzed with the Fourier fitting program
using the KO III star HD 56224 as template. Listed in Table 2 are for each input stellar spectrum the mean {h,» and dispersion oy, of
the 30 output values of k5 and k,. Also listed is the mean (yZ4) of the reduced y>-values (being defined as the ratio of the y2 returned
by the fit and the y* expected for pure Poisson noise and no template mismatch). This quantity is a measure for the amount of
template mismatching. The input stars were compiled from the lists of Cayrel de Strobel et al. (1985) and Pickles (1985a). Half of the
light from elliptical galaxies at 5500 A (~ 55%) comes from G and K giants (Pickles 1985b). However, other spectral types such as M
giants (few percent), G subgiants (~25%), and G dwarfs (~15%) also contribute. Table 2 thus suggests that typical systematic
errors in hy and h, due to template mismatching are —0.02 < Ahy < 0.02 and —0.03 < Ah, < 0.03. The stars that produce the
highest systematic errors also have high y2,, which is very significant at this S/N. The worst effects of template mismatching can
thus be avoided by selecting the template that produces the lowest x24. In practice, repeated application of the Fourier fitting
program to the same galaxy data using different plausible stellar spectra as template yields the same profiles h4(r) and h,(r), but
slightly offset with respect to one another. The absence of a dependence on r is what should be expected in the absence of large
stellar population gradients. The offsets are typically between —0.03 and 0.03, consistent with the results in Table 2. We have not
pursued the approach of RW to use a linear combination of different stellar spectra as template and fit template and line profile to
the data simultaneously. This approach has the advantage of improving the fit to the observed galaxy spectrum, but also gives the
fitting program the possibility to incorrectly choose a particular spectral mix, to mimic what in reality is a non-Gaussian line profile.

In an equilibrium stellar system, the line profiles at diametrically opposed points are expected to show reflection symmetry. For
slits centered on the nucleus, h;(r) should thus be an odd function of r, and h,(r) should be an even function of r. Any artificial
constant offset in the profile /;(r) returned by the Fourier fitting program can thus be determined. For the data discussed in § 5 and
plotted in Figure 4, the offsets in h;(r) are small, between —0.02 and 0.02. Since h4(r) should be an even function of r, any artificial
constant offset in h,(r) is likely to remain undetected as such. The profiles h;(r) and hy(r) plotted in Figure 4 are (discarding the
offsets in h;), indeed odd and even functions of r, respectively. This, together with the small sizes of the offsets in h;, provides extra
confidence in the validity of these results.

To summarize, profiles hy(r) and hy(r) can be determined from observations with sufficient S/N. The profile h,(r) can only be
determined up to a small constant offset (usually between —0.03 and 0.03), due to the filtering required at low wavenumbers and the
problems associated with template mismatching. In practice it must always be checked to what extent the results of the Fourier
fitting program depend on the choice of the template spectrum. The dependence of the results on the choice of k;, can, at least in
principle, be corrected for by subjecting model line profiles that one wishes to compare to the data to the same filtering that was
applied to the data itself.

5. APPLICATION TO REAL DATA: IC 1459, NGC 1374, AND NGC 4278

Long-slit spectra, centered on the Mg b triplet, were taken of three elliptical galaxies: IC 1459 (E4), NGC 1374 (E0), and
NGC 4278 (E1). The data were taken by MF, in collaboration with Garth Illingworth, using the 4 m telescopes of the CTIO and
KPNO. They form part of a more extensive survey on which we intend to report in a future paper. Characteristics of the data are
listed in Table 3. The data were wavelength calibrated and reduced using standard IRAF tasks. The results of the Fourier fitting
method are plotted in Figures 4a—4d. Spectra were, if necessary, summed along the slit until a S/N of at least 75 per pixel were
reached. The KO III star HD 56224 was used as template.

IC 1459 and NGC 4278 have emission lines of [O 1] 4959 A, [O m] 5007 A, and [N 1] 5200 A. These lines were interpolated
over by replacing the galaxy data on and around the emission lines by the best-fit to the galaxy spectrum returned by the Fourier
fitting program. This procedure was iterated a few times to make sure that the final results were not influenced by the presence of the
emission lines.

IC 1459 has a counter-rotating core (FI; FIHa). It is included here because large deviations from a Gaussian line profile were
detected earlier by FI. They found that the line profiles on the major axis are asymmetric, that the asymmetry changes sign upon
going from one side of the nucleus to the other, and that the tail of the line profile is away from the direction of rotation (as in Fig. 5
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Fic. 4—Kinematical quantities for our program galaxies. Line profiles of the form eq. (9) were fitted to the data, yielding parameters (y, V, o, h3, h,). From these
quantities improved estimates (7, ¥, &) for the true line strength, mean velocity, and velocity dispersion were derived as described in § 2.4. The quantities 7, &, h5, and
h, are plotted as solid circles in the four panels of each figure. Plotted for comparison as open circles (without error bars) in the panels for ¥ and 6 are the estimates
for the mean velocity and velocity dispersion as obtained by fitting a Gaussian line profile to the data. Positive radii lie to the east. Plotted for comparison as open
squares in the right two panels of Fig. 4a are the results of applying our new method to the old data for the major axis of IC 1459 presented previously by FI. Notice
that the results agree well, even though the old data were taken with a different telescope, at lower spatial and instrumental resolution.
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TABLE 3

CHARACTERISTICS OF THE DATA ACQUISITION AND REDUCTION

Characteristic IC 1459 NGC 1374 NGC 4278
Date ..ot 1988 Nov 1988 Nov 1991 Feb
TIESCOPE - ettt e s CTIO 4 m CTIO 4m KPNO 4m
SPECLrograph ........oouiiiiii i RC Spectrograph RC Spectrograph RC Spectrograph
Exposure time (Minutes) ...........cooeevuivieiiiiiiiiiiiieiineiiean.. 30 45, 50 90
Seeing FWHM ... 1’5 079 1"-1"5
Dispersion (A Pixel 1) ........viiiiieiiiii e 14 14 0.9
Scale (arcsec Pixel ™) ... iuiei i 0.73 0.73 13
Spectral resolution (6) (kms ™1) ...ttt 60 80 100
Slit position angle ...............ocoiiiiiiiiii 39° 110°, 20° 19°
Major axis position angle® ................cocoiiiii 35° 120° 16°
Wavelength range used in Fourier fit (A) ..................cc..eeeen... 4767-5496 4767-5496 4919-5374

 The major axis position angles for IC 1459 and NGC 4278 are those at a galactocentric distance of 10, as taken from the CCD surface
photometry of Franx et al. 1989b and Peletier et al. 1990, respectively. The major axis position angle of NGC 1374 was taken from
Lauberts & Valentijn 1989.
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F1G. 5—Major axis line profile of IC 1459 2" east of the center. The solid curve is the line profile derived from the high-resolution data presented here. The dashed

curve is the line profile derived from the low-resolution data presented previously by FI. The dotted curve is the line profile derived from the low-resolution data by
F1, using a modification of the CLEAN algorithm. The curves agree well. The normalization is arbitrary.

below). The large amplitude of h; (~0.14) in Figure 4a confirms these results. The higher order terms hs and hg were also
determined. The resulting profiles (not plotted here) are noisy, but clearly have lower amplitude than k5. This again justifies the use
of only the first few terms in the series expansion equation (9).

We have also reanalyzed with our new method some major-axis data for IC 1459 presented previously by FI. These old data were
taken with the ESO 2.2 m telescope at lower spectral resolution (¢ &~ 100 km s~ !) and lower spatial resolution (178 pixel ~!) than the
data presented here (compare Table 3). The results for 3 and h, for the old data are plotted as open squares in Figure 4a. It is
comforting that the results for the two data sets agree so well. The h; profile has a somewhat smaller amplitude in the old data due
to the poorer spatial resolution. Figure 5 plots the major axis line profile 2” east of the nucleus. The solid curve is the line profile
derived from the new data, the dashed curve is the line profile derived from the old data. The latter line profile has more stars at
higher velocities, as a consequence of the poorer spatial resolution. Plotted for comparison as a dotted curve is the line profile
derived from the old data by FI, using a modification of the CLEAN algorithm known from radio astronomy. Comparison of the
two line profiles derived from the old data suggests that the CLEAN method has erroneously assigned some of the power at low
velocities to the wings of the line profile. The method presented here is thus to be preferred over the CLEAN method, also because
the error analysis is much more straightforward.

NGC 4278 has a peculiar rotation curve discussed before by Davies & Birkinshaw (1988) and Illingworth & Franx (1989), and
confirmed here (Fig. 4b). Beyond a galactocentric distance of ~ 30" the rotation curve drops to zero, or even changes sign. This
might be related to the large isophote twist in NGC 4278 (Peletier et al. 1990). The line profiles on the major axis are asymmetric.
The h, profile has an amplitude of ~0.11, and reaches its maximum far from the center, at ~15”. The quantity h, rises by ~0.05 at
~7". This is at approximately the same galactocentric distance, where the rotation curve stops rising and the velocity dispersion
stops falling.

Also NGC 1374 has asymmetric line profiles on its major axis (Fig. 4c). However, the amplitude of h; (~0.08) is smaller than in
IC 1459 and NGC 4278. On the minor axis (Fig. 4d) h; ~ 0, as it should be. The profile of h, on the major axis has a maximum at
~2".

For all three galaxies the amplitude of &5 is too large to be due to the effects of projection along the line-of-sight (stars well in front
and behind the tangent point tend to add a low-velocity tail to the line profile), see, e.g., the calculations by Bender (1990).
Consequently, either a kinematically distinct subcomponent must be present, the distribution of stars over azimuthal velocities v,
must be significantly skew (as is the case in the simple rotating models discussed in § 3), or both. Such kinematical signatures can
arise in a variety of scenarios (e.g., FI; Balcells 1991), and contain information on the structure and history of these systems.

Plotted for comparison as open circles in Figures 4a—4d are the estimates of the rotation velocity and velocity dispersion obtained
by fitting Gaussian line profiles to the data. Clearly these estimates contain a variety of systematic errors. The true amplitude of the
major axis rotation curves are overestimated by 30% or more due to the asymmetry of the major axis line profiles (compare eq.
[18]). The estimates of the velocity dispersion are influenced by trends in h, with radius. For example, upon fitting Gaussian line
profiles to the major axis of NGC 1374 (Fig. 4c; open circles), one would conclude that the velocity dispersion at ~2”is ~50 km s~ !
lower than in the center. This, however, is incorrect, and is only a consequence of the maximum in h, at ~2”, which causes the
velocity dispersion at ~2” to be somewhat underestimated with respect to the central velocity dispersion (cf. eq. [18]). Indeed 6(r)
(solid circles), which is a better estimate of the true velocity dispersion, falls off much more smoothly away from the center.

Variations of h, with radius are uninfluenced by artificial constant offsets like those discussed in § 4. They can arise through
variations of the coefficient of kurtosis of the line profile with radius. However, other effects can also contribute. First, in the galaxies
with a steep central rotation velocity gradient, seeing smearing will tend to make the central line profile more flat-topped. Second, in
a galaxy with a kinematically distinct subcomponent (assumed to have higher rotation and lower dispersion than the primary
component), the line profile will become more flat-topped as the relative velocity between the two components increases. Detailed
modeling of these two effects, that both tend to decrease h,, is required to fully understand the results for IC 1459 and NGC1374. In
NGC 4278 seeing cannot cause the central depression in h,, as the rotation curve is not particularly steep. It is thus more likely due
to a real variation of the kurtosis of the line profile with galactocentric distance.
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6. CONCLUSIONS

To interpret long-slit spectra of elliptical galaxies it is usually assumed that the line-of-sight velocity distribution, or line profile, is
Gaussian. In the present paper a new parameterizaton is proposed, the Gauss-Hermite series (eq. [9]), which expands the line profile
as a sum of orthogonal functions. This approach exploits the fact that Gaussians provide good low-order fits to observed line
profiles. The use of orthogonal functions minimizes correlations between the errors in the parameters of the fit. This constitutes a
major advantage of our parameterization over most alternatives. Our method yields estimates 7 of the line strength, ¥ of the mean
radial velocity, and & of the velocity dispersion, as well as two extra parameters, h; and h,, that describe asymmetric and symmetric
deviations of the line profile from a Gaussian, respectively. The new parameterization can easily be built into existing programs for
the interpretation of long-slit spectra.

Model calculations for the outer parts of spherical galaxies yield line profiles that deviate significantly from Gaussians. Even for
models with only mild velocity dispersion anisotropy the rms deviations from a Gaussian can be of order 10%. By fitting Gaussians
to these line profiles one obtains estimates for the rotation velocity and velocity dispersion that can be in error by 10% or more. The
quantities ¥ and & obtained with the new method are indeed much better estimates of the true mean radial velocity and velocity
dispersion.

The new parameterization was built into the Fourier fitting program described by Franx et al. (1989a), and applied to long-slit
spectroscopic observations of IC 1459, NGC 1374, and NGC 4278. For these intermediate spectral resolution, high S/N observa-
tions, h; can be satisfactorily determined. The profile of h, along the slit can only be determined up to a small constant offset due to
the problems associated with continuum subtraction and the choice of template spectrum. Variations of h, with galactocentric
distance are unaffected by these problems. Results for k5 and h, on the major axis of IC 1459 obtained with different telescopes and
spectral resolution agree well.

All three galaxies have asymmetric line profiles on their major axis, with the asymmetry changing sign upon going from one side
of the nucleus to the other (such that the tail of the line profile is always away from the direction of rotation). In IC 1459 the
asymmetry is related to the counter-rotating core component (Franx & Illingworth 1988). Due to the asymmetry of the line profiles
for these galaxies, the amplitude of the rotation curve is overestimated by 30% or more, if the line profiles are assumed Gaussian. In
all three galaxies also symmetric deviations from a Gaussian are present that vary as a function of radius. In NGC 4278, for
example, h, increases by ~0.05 at 7” from the center, approximately the same distance as where the rotation velocity stops rising
and the velocity dispersion stops falling. Varying symmetric deviations from a Gaussian can be due to real variations of the
coefficient of kurtosis of the line profile, to seeing smearing, or to the presence of a kinematically distinct subcomponent. Estimates
of the velocity dispersion based on Gaussian line profiles can contain systematic errors that vary with radius. In NGC 1374 the
assumption of Gaussian line profiles incorrectly yields that the velocity dispersion increases by ~50 km s ! in the inner 2”. Our new
method demonstrates that this is not correct: h, has a maximum at ~2”, and the velocity dispersion falls smoothly away from the
center.

Elliptical galaxies clearly show a great variety in their line profile shapes. Modeling of observed line profiles might ultimately lead
to a better understanding of their shape, structure, formation history, velocity dispersion anisotropy, and mass-to-light ratio.

The authors thank Tim de Zeeuw for discussions throughout this project, and the referee, Herwig Dejonghe, for useful comments.
Garth Illingworth collaborated in collecting the data presented in § 4. R.vdM. acknowledges support from the LKBF and NWO,
and the hospitality of the CfA. M. F. was supported by Hubble Fellowship grant HF-1016.01-91A from the Space Telescope Science
Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

R.vdM. wishes to dedicate this paper to his mother, who died 1992 June 2. Her smile lives on in everyone who knew her.

APPENDIX A
HERMITE POLYNOMIALS

This appendix discusses some properties of Hermite polynomials. A more detailed treatment on these polynomials and orthog-
onal polynomials in general can be found in, e.g., Abramowitz & Stegun (1965). There exist two types of Hermite polynomials. In the
present paper these are discriminated by the use of different symbols. Note that our normalization of the Hermite polynomials
differs from that of Abramowitz and Stegun.?

Let the function a(y) be the standard Gaussian

aly) = —= e~ (A
T

We define the first type of Hermite polynomials, 5# (), by the relation

(— %) ) = /1A () (A2)

3 The Hermite polynomials H# (y) and H (y) defined here are related to the Hermite polynomials s, [Abr.](y) and H,[Abr.)(y) defined by Abramowitz and
Stegun through ¢ (y) = Jf,,[Abr.](y)/\/ﬁ and H|(y) = H,[Abr.](y)//1'2".
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The function #,(y) is a polynomial of degree [ in y. The # . (y) are orthonormal with respect to the weight function «(y), i.e.,

" A (9)H )Ny = S (A3)

We define the second type of Hermite polynomials, H,(y), by the relation
H(y) = #(3/2) - (A4)

The first five Hermite polynomials of this type are

1
Hoy) =1, Hy() =127 Hz(y)=ﬁ(2y2—1), Hiy(y) = f@ﬁy—?)\f »),

1
Hy(y) = —= (4y* — 12y> + 3)..

From the identity a(y) = «[y/2]/x/2% and equation (A3) it follows that

jw Ho () Ho ) () = 2‘7 S (A6)

The H/(y) are thus orthogonal with respect to the weight function a?(y). The Fourier transform of H (y)a(y) is (Gradshteyn & Ryzhik
1980, eq. [7.376.1])

r H(y)(y)e> " dy = \/2ni*H/Q2n f)a2nf) . (A7)
APPENDIX B

LINE PROFILES FOR THE OUTER PARTS OF ELLIPTICAL GALAXIES

B1. PROJECTED VELOCITY MOMENTS FOR NONROTATING MODELS

Projected velocity moments are calculated for the nonrotating models for the outer parts of elliptical galaxies described in § 3.
Line profiles such as those in Figures 2a and 2b can be reconstructed from these moments using the Gram-Charlier series of type A,
discussed in § B2. The line profiles for the case f — — oo (circular orbits only) and § — 1 (radial orbits only) plotted in Figures 2a
and 2b were calculated analytically in a manner similar to Appendix C of Merritt (1987).

Let (r, 0, ¢) and (R, ¢, z) be the usual spherical and cylindrical coordinates, respectively, with the z-axis toward the observer. The
projected line-of-sight velocity moments are [v"]. The overbar denotes the local average over velocities. The open brackets denote
the mass-weighted projection along the line of sight. Since f(v) = f(—v), [v"] = 0 for odd n. Henceforth n is assumed to be an even
integer. The moment [v%] is the quotient of the line-of-sight projection of pv} and the line-of-sight projection of p. By assumption
p(r) = Cr~'eq.[20]), and thus
sin’~2 0 v(r = t/sin 6)d0
28— D25
where 7 is the projected galactocentric distance of the observations, and 4(;, -) is the Beta function. Since v, = v, cos 6 — v, sin 6,
and since vl v} ' = 0 for odd i, the binomial theorem yields that

o7y =1 (B1)

_ n/2

=Yy <n > cos?* 0 sin" "2k @ pZn~ 2k (B2)
z 2k
where
v = fvf"vgjf(é”, L)dsv/J (&, Lyd®v . (B3)

Upon substitution of (&, L) from equation (19) the integrals in this definition can be evaluated by defining spherical coordinates in

velocity space. The result is

2 — ) Bli + (1/2),j — B+ 1] [Z,. Jo(ENY — 6) /"2 Fag
@ A(1/2), =B + 1] [Grin JAENE — PP dg

where &, is the minimum binding energy for which a star is still bound to the system (&, = 0 for a system of finite mass, and
& .in = — oo for a system of infinite mass).*

2: 21_ 21+](

(B4)

* The expression for o7 implied by eqs. (B2) and (B4) could alternatively have been arrived at starting from eq. (A11) of Dejonghe (1987).
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In an elliptical galaxy that has no dark halo, the potential in the outer parts is approximately Keplerian, i.e., ¥ = GM/r, where M
is the total mass of the system. For this potential &,,,;, = 0 and, with the use of equation (20),

8 fo&)Y — &)U 7Pds  Tli+j+(3/2)—p1  TE—28+1)
I3 fol &)Y — &P 7Pds — T[32)—F] Te+i+j—2p+1)
Evaluation of the integral in equation (B1) then yields after substitution of equations (B2), (B4), and (B5)

(GM/r)i+i . (BS)

. <n )2"/2 B0t — 1+ (n/2) + n—2k], 1/2) + k} (n — 2k — D! Bk + (1/2), (n/2) — k — B + 1]
[oz] = kgo 2k BL(1/2)( — 1), (1/2)] (n — 2k BL(1/2), —p + 1]
M2+ 3/2)—p1  Te—-28+1 (B6a)
G2 -4 Tle+@m2)—28+11°
where ./GM/z, the circular velocity at radius 7, has been introduced as unit of velocity. For n = 2 this expression reduces to
—._ t—1 I(t/2) }ZI: (1 —p)+1 ]
[:] = 2t +1) {F[(t +02]f [20-B)+@—-1]° (B6b)
and forn = 4to
%] = =1 (1=BG2e+He+3)]1+1—-AHIG/2c+ D+ +9 (B69)
T 2+ 4 41— PP + (4t — 201 — p) + tt — 1) ‘

For t = 5 these equations reproduce the results for the anisotropic Plummer models of Dejonghe (1987) in the limit of large radii.
In an elliptical galaxy in which the potential in the outer parts is dominated by a dark halo, it is more appropriate to adopt for ¥

the logarithmic potential ¥ = — V2 Inr. For this potential &,,;, = — o and, with the use of equation (20),
[20 So ¥ — 8D Pdg  TTi+j+(32) — B ( v ) 7
[To LlEXF — 0P Pds ~ TIGD-F \-28) ®7
Evaluation of the integral in equation (B1) then yields after substitution of equations (B2), (B4), and (B7)
=1 2 ( n> BLA/2(t — 1+ n —2k), (1/2) + k] (n — 2k — D! B[k + (1/2), (n/2) —k — p + 1]
[oz] = ,‘;) 2k BL(A/2)( — 1), (1/2)] (n — 2k)!! BL(1)2), —p + 1]
L)+ G3/2)—-p1( 2 \"*
TGP - A (t - 2ﬁ> - %

where V, has been introduced as unit of velocity. For n = 2 this expression reduces to

— 1|@-pe—-1+1
el =?[2(1 —p+ —2)]’ (BS0)

and forn =4 to
[0?] = 1 (=BG — D+ D]+ (1 = AHIG/2) — D + 5] +9
T At + 2) 1=PB2+1=p)t—2) + (1/4 —2)? ’
In Figure 6 the velocity dispersion g, = l[v—f]]”z, and coefficient of kurtosis ¢, = [[E]}/[[E]]Z are plotted as function of f for the

case t = 4, for both the Kepler and the logarithmic potential. Since radial motion in the outer parts is predominantly perpendicular
to the line of sight the velocity dispersion decreases with 8, whereas the coefficient of kurtosis tends to increase with f.

(B8c)

B2. THE GRAM-CHARLIER SERIES OF TYPE A

The so-called Gram-Charlier series of type A is a useful tool in reconstructing a function for which all the moments are known.
Criteria sufficient for convergence are given by Kendall & Stuart (1943). For a normalized line profile £ ,(v) with mean velocity V,
and velocity dispersion g, the series is

L) = [o00)/ou] 3 dyH ool w0 =0 = Voo (B9%)
4, = J " L0 (woldv (B9b)

where a(y) is defined in equation (4) and the # . (y) are Hermite polynomials as defined in Appendix A. The first five coefficients are

do=1, dy=0, dy=0, dy=¢//6, di=( 324, (B9c)

where ¢, and ¢, are the coefficients of skewness and kurtosis defined in § 2.4. Note both the resemblance and the difference between
the Gram-Charlier series of type A and the parameterization employed in the present paper (§ 2.2).
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FiG. 6.—Plotted are the velocity dispersion o, (left panel) and coefficient of kurtosis &, (right panel) as a function of log [1/(1 — B)] for nonrotating models for the
outer parts of spherical galaxies in which the stellar mass density is p oc r~*, the potential is either Keplerian (solid curves) or logarithmic (dashed curves), and B is the
(constant) velocity dispersion anisotropy. The velocity dispersion o, is given in units of the circular velocity at the galactocentric distance of the observations. The
short horizontal dotted lines indicate asymptotic values for § - —co and § — 1.

B3. LINE PROFILES FOR SIMPLE ROTATING MODELS

Consider a nonrotating model for the outer parts of elliptical galaxies in which the relative potential is logarithmic, ¥ =
— VZInr, the stellar mass density is p oc r %, and the stellar velocity distribution is isotropic. The distribution function of the stars is
then

f(&) oc [1/20(V,/2)2]32e51Ve* (B10)
where & = ¥(r) — $v*. This is a special case of the models discussed in § 3 and § B1. By reversing stellar velocities such that in every
point a fraction { of the stars has positive v, and a fraction 1 — { has negative v, the mass density remains unaltered, but the
distribution function becomes
2[1/2n(V,/2)* ]IV (vy = 0)
201 = 1/20(V./2)]¥2e1V22 (v, < 0)

The observed line profile £ (v) is obtained by first integrating over the velocity components perpendicular to the line of sight, and
then along the line of sight. Assuming that the system is viewed from within the equatorial plane this yields

2 4 ®© 1/2)y2
\/12.7; e~ (W2 {1 + ¢ — 1)<n\/2_n>L e (/2w l:arctan <§> + 1—_'(_0(%)/)}7]@} , (B12)

where V,/2 has been introduced as unit of velocity. In Figure 2c this line profile is plotted for several values of {. Similar results can
be derived for the case in which the mass density of the stars is, e.g., p oc ¥~ 3.

f(8, v) { (B11)

Zolv) =

After submission of this article we found out that Gerhard (1993) had independently used the Gauss-Hermite series to describe the
line profiles of theoretical models for elliptical galaxies. He discusses quantities s, that are obtained from equation (7) upon
subsitution of s, for h;, 1 for y,/y, and the true dispersion of the line profile for . The difference in our approaches thus lies in the
“scale” o of the Gauss-Hermite expansion equation (5): we use the dispersion of the best Gaussian fit to the line profile, whereas
Gerhard uses the true dispersion of the line profile. The former quantity is better defined observationally, the latter quantity is easier
to calculate for theoretical models. For data analysis the method presented here has the advantage that the error analysis is
straightforward. There is no simple relation between our k; and Gerhard’s s;, but for any given theoretical line profile both are easily
calculated. For real data one way to estimate the s, is to first determine (7, V, 6) as described in the present paper, and then fit a
function of the form of equation (5) to the data, with (y, V, o) held fixed to (§, V, ).
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