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ABSTRACT

We consider a model in which galaxy formation occurs at high peaks of the mass density field, as in the
standard picture for biased galaxy formation, but is further enhanced by the presence of nearby galaxies. This
modification is accomplished by assuming the threshold for galaxy formation to be modulated by large-scale
density fluctuations rather than to be spatially invariant. We show that even a weak modulation can produce
significant large-scale clustering. In a universe dominated by cold dark matter, a 2%-3% modulation on a
scale exceeding 10 h~! Mpc produces enough additional clustering to fit the angular correlation function of
the APM galaxy survey. Such an effect might be detectable as a small (about 0.2 mag rms) spatial modulation
of the characteristic scale in the galaxy luminosity function or as an apparent dependence of large-scale clus-
tering on luminosity or distance in flux-limited samples. Although such effects are not necessarily present in all
simple versions of the model, they could provide an observational indicator for cooperative galaxy formation.
We discuss several astrophysical mechanisms for which there are observational indications that cooperative
effects could occur on the scale required. Although the importance of such effects is highly uncertain, it would
clearly be rash to exclude the possibility that large-scale power in the galaxy distribution is a consequence of
the physics of galaxy formation. There is thus no compelling reason to reject the density fluctuation predic-
tions of the simplest inflationary models.

Subject headings: dark matter — galaxies: formation — large-scale structure of universe

1. INTRODUCTION

Recent measurements of galaxy clustering on large scales
have provoked a great deal of interest and controversy
(Maddox et al., 1990; Efstathiou et al. 1990; Saunders et al.
1991). Using a variety of data, these studies all reveal rms
fluctuations of order ~50%, within spheres of radius 20 h~!
Mpc.? Relative to nonlinear clustering on scales ~5 h~! Mpc,
these amplitudes are 2-3 times stronger than predicted by the
standard cold dark matter (SCDM) model. As a result, the new
data have been widely interpreted as ruling out this model. The
present paper focuses on the connection between the statistical
properties of the galaxy and mass distributions, in order to
explore whether, in the absence of a detailed theory for galaxy
formation, the mass distribution predicted by the SCDM
model (or any other model) can safely be excluded on the basis
of observed large-scale clustering.

Our work is motivated by the realization that the galaxy-
mass connection is a particularly uncertain ingredient of the
standard model, and one that belongs in a completely different
category from its other assumptions. We shall argue that we

! Currently at Max-Planck-Institut fiir Extraterrestrische Physik, Karl-
Schwarzschild-Strasse 1, Garching bei Miinchen, D-8046, Germany.
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3 We write the Hubble constant as H, = 100 hkm s~ Mpc™'.
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know so little about the details of star and galaxy formation
that model predictions for the galaxy distribution must be
treated with caution. In particular, we will show that plausible
modifications of the standard high peak model can substan-
tially change the predicted pattern of large-scale clustering. We
do not aim to argue for any particular biasing model. Unfor-
tunately, our understanding of the relevant processes is too
incomplete for any such argument to be convincing. Rather, we
show that the range of possibilities is much broader than has
previously been recognized. The implication, of course, is that
even such a well-specified theory as the cold dark matter model
has less predictive power than one might have hoped. Never-
theless, although aspects of the galaxy distribution are uncer-
tain, a number of tests of the theory depend almost solely on
the mass distribution: microwave background fluctuations,
large-scale streaming motions, abundance of massive clusters,
structure of galaxy halos, and so on. These are not affected by
the uncertainties we discuss in this paper.

Let us recall the four basic tenets of the SCDM theory: (1)
the dark matter consists of weakly interacting elementary par-
ticles which had a low velocity dispersion at early times; (2) the
universe has the critical density, Q = 1, and an expansion rate
given by h = 0.5; (3) primordial density fluctuations are of the
type predicted in standard inflationary models of the early
universe: Gaussian, adiabatic, and scale-invariant; (4) the dis-
tribution of galaxies is related to the distribution of mass by
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the “high-peak ” biasing model. The first three assumptions
are motivated by fundamental, even if speculative, physics.
Particles with the appropriate properties arise, for example, in
supersymmetric theories; a critical density and the assumed
type of primordial fluctuations are generic predictions of infla-
tionary models of the early universe; a low Hubble constant is
needed to get an acceptable age for any flat universe. The final
assumption is motivated by considerations of a different kind.
In a universe with critical density, galaxies must be more
strongly clustered than the underlying mass up to scales at
least as large as the Local Supercluster; otherwise dynamical
analyses imply Q < 1. This requirement does not single out
any specific form for the bias; the high-peak model is just a
particularly plausible and convenient prescription.

It is fair to ask whether there is any observational support
for the assumptions of the SCDM model. As yet, of course,
there has been no direct experimental evidence for elementary
particles of the required type. For the first time there is now
some direct evidence in favour of a high mean cosmic density.
New dynamical determinations have been made possible by
all-sky redshift surveys of IRAS galaxies. Assuming these to be
representative of the underlying mass density, one can predict
the peculiar velocity field in regions of space where there are
independently measured peculiar velocities for other galaxies
(including our own). Unless IRAS galaxies are substantially
less clustered than the mass, all recent determinations favor a
value of Q near unity (Strauss & Davis 1989; Rowan-Robinson
et al. 1990; Bertschinger et al. 1990; Kaiser et al. 1991). On the
other hand, recent measurements of the Hubble constant con-
sistently prefer values larger than h = 0.5 (Pierce & Tully 1988;
Jacob, Ciardullo, & Ford 1990; Tonry 1991). Testing assump-
tion 3 is more difficult because it refers to properties of the mass
distribution which are not readily observable;* inferences from
the corresponding properties of the galaxy distribution
require, in addition, assumption 4 (but see Moore et al. 1992;
Weinberg 1992).

In principle, there is tremendous predictive power in the first
three of the above assumptions. With only one free
parameter—the initial fluctuation amplitude—one can specify
the mass distribution accurately at all times on scales larger
than individual galaxies. This is most easily done using N-body
simulations (see Frenk 1991 for a review). Unfortunately, there
are only a handful of observables which probe the mass dis-
tribution directly, the most readily accessible of which are the
mass distributions in galaxy halos and in rich galaxy clusters,
the peculiar motions of galaxies, the abundance of rich clusters,
and the spatial structure of the microwave background radi-
ation. Further predictions are possible only by resorting to
assumption 4. With this assumption, the SCDM model has
been singularly successful in accounting for many observed
properties of galaxies and their distribution out to scales ~ 10
h~* Mpc.’ Among its most notable successes are agreement
with the low order statistics of galaxy clustering, the inferred
structure and abundance of galactic halos, the structural
properties and abundances of galaxy groups and clusters, and

4 The nature of the fluctuations in the microwave background radiation
detected by COBE, and announced after this paper was submitted, provides
substantial support for inflationary model assumption 3 (Smoot et al. 1992;
Wright et al. 1992). This detection constrains the overall amplitude of the mass
fluctuations, but does not affect the major issue addressed in this paper,
namely, the shape of the galaxy autocorrelation function on large scales.

5 However, a somewhat lower bias than originally envisaged is required to
fall within the error bands of the COBE measurement.
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the general topology of the large-scale galaxy distribution (see
the review by Frenk 1991).

However, recent studies of clustering on scales =10 h~1
Mpc pose serious difficulties for the SCDM model. The most
compelling data are angular correlation functions for the
Automatic Plate Measuring Facility (APM) survey of ~ 10°
galaxies. These decline much less rapidly on large scales than
the SCDM predictions (Maddox et al. 1990). An independent
indication of strong clustering on similar scales came from the
Queen Mary and Westfield College Durham, Oxford, and
Toronto (QDOT) redshift survey of over 2000 IRAS galaxies
(Efstathiou et al. 1990; Saunders et al. 1991; Moore et al. 1992).
This refers, necessarily, to a much smaller volume than the
APM survey, and the signal is dominated by a few strong
superclusters in the more distant part of the sample. Prelimi-
nary analysis of a significantly larger, but as yet unpublished,
redshift survey of IRAS galaxies, suggests that much of the
signal in the QDOT data is an upward statistical fluctuation
(M. Davis & G. Efstathiou 1991, private communication;
Fisher et al. 1992); confirmation of this must await final joint
analysis of the two samples.

The suggestion of “excess power ” first arose from estimates
of the autocorrelation of Abell clusters (Hauser & Peebles
1973; Bahcall & Soneira 1983; Klypin & Kopylov 1983). The
numerical simulations of White et al. (1987a) showed that
cluster correlations in SCDM should have an amplitude 2-3
times smaller than these estimates. Unfortunately, observa-
tions of cluster correlations have had a checkered history, and
the integrity of the Abell cluster has been repeatedly called into
question (Sutherland 1988; Dekel et al. 1989; Olivier et al.
1990; Sutherland & Efstathiou 1991; but see Postman,
Huchra, & Geller 1992). A new sample of rich clusters identi-
fied from the APM survey exhibits weaker correlations which
are (marginally) consistent with the SCDM predictions
(Dalton et al. 1992), but X-ray cluster samples have a large
correlation length (Lahav et al. 1989). Finally, Peacock (1991)
and Peacock & Nicholson (1991) show that bright radio gal-
axies are also strongly clustered on large scales. It is unclear
how these objects should be related either to more normal
galaxies or to rich clusters.

Crucial in the comparisons of these clustering data with
SCDM are (often implicit) assumptions which relate the galaxy
and mass distributions. Galaxy formation is a highly nonlin-
ear, and perhaps nonlocal, transformation of the mass density
field. As such it is unlikely to preserve the correlation statistics
of the density field, even if the transformation is effectively local
(P. Coles 1992, in preparation). The morphology-density rela-
tion (Dressler 1980; Postman & Geller 1984; Haynes 1988), in
conjunction with growing evidence that galaxies of different
luminosity (Loveday et al. 1992) or selected at different wave-
length (Saunders, Rowan-Robinson, & Lawrence 1992) cluster
differently, shows that the correlation statistics of all types of
galaxy cannot separately parallel those of the mass distribu-
tion. Nevertheless, observational analyses almost always
assume that this is the case, and where justification is required
they cite the standard high-peak model.

The idea that the sites of galaxy formation might in some
way be associated with the peaks of a suitably smoothed
version of the linear density field seems eminently reasonable.
In the simplest realization of this scheme, the statistics of real
catalogs are identified with those of the peaks found when the
smoothing scale, R, and threshold peak height, vo, are both
spatially invariant [here a2 = {(p — p)>)/p? is the variance of
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the smoothed field]. This has become the standard model for
“biased galaxy formation,” and has been investigated exten-
sively since Kaiser (1984) first suggested a similar model to
explain the strong clustering of Abell clusters (Davis et al.
1985; Bardeen et al. 1986; White et al. 1987a; Coles 1989;
Lumsden, Heavens, & Peacock 1989). In this particular model
the “galaxy” correlation function on large scales is indeed
proportional to that of the underlying mass fluctuations.

In fact, there is no convincing justification for assuming that
peaks should make successful galaxies if and only if they rise
above some universal threshold. Soon after the concept of
biasing was introduced, there were suggestions that feedback
effects from a first generation of galaxies, themselves formed by
the collapse of the highest peaks, might suppress star forma-
tion in neighboring protogalaxies (Rees 1985; Silk 1985). Such
“action-at-a-distance ” mechanisms might also act to stimulate
the formation of nearby galaxies (see Dekel & Rees 1987 for a
review). Another possibility is that bias might arise
“naturally” through nonlocal dynamical processes reflecting
the effect of a galaxy’s environment on its collapse and evolu-
tion. Such mechanisms have been explored by White et al.
(1987b), Frenk et al. (1988), Carlberg & Couchman (1989), and
Carlberg, Couchman, & Thomas (1990), but it is still unclear
how they relate to the high-peak model or whether their pre-
dictions are consistent with observation (Cole & Kaiser 1989;
White, Tully, & Davis 1988; Eder et al. 1989). In this paper we
study a simple extension of the high-peak model which rep-
resents nonlocal effects of the first type.

If feedback effects are important, the visibility of a galaxy
may depend on the large-scale statistical properties of the
density field in a complex way. For example, protogalaxies
collapsing within range of the radiative or hydrodynamic
effects of other protogalaxies might produce slightly brighter
or slightly fainter galaxies than those forming elsewhere. We
investigate such cooperative effects using a simple model in
which the threshold for producing a visible (i.e., cataloged)
galaxy depends linearly on the mean mass density averaged
over some large surrounding volume; this should itself be a
(nonlinear) measure of the galaxy density in the same volume.
Within this model a surprisingly small (but observable) spatial
modulation of galaxy properties is sufficient to reconcile the
SCDM model with the observed APM correlations. Although
we cannot prove their importance, we mention several physical
mechanisms that could plausibly produce such modulation.
Our main point is that processes related to galaxy formation
can substantially modify the spatial distribution of galaxies on
large scales. Related ideas have been discussed recently by
Babul & White (1991), but our mathematical formalism and
our physical picture are fundamentally different from theirs.
Our model is much closer in spirit to the original high-peak
model, and is distinguished mainly by the fact that nonlocal
effects cause the mass and galaxy correlation functions to have
different shapes. In § 2 we develop the requisite mathematical
tools. In § 3 we apply them to scale-free models, for which
various analytic relations are easily derived, and to the CDM
model. In § 4 we discuss physical processes which might give
rise to cooperative galaxy formation, and observational tests of
its consequences.

2. A MATHEMATICAL MODEL FOR COOPERATIVE
GALAXY FORMATION

In the standard high-peak model, galaxy formation is
assumed to occur from material initially located near high
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peaks of the linear density fluctuation field. The density con-
trast at early times, d(x) = [ p(x) — p]/p, is taken to be a Gauss-
ian random field, and to have been smoothed with a kernel of
characteristic scale R,, chosen so that the enclosed mass
matches the halo mass of a bright galaxy. Peaks rising above
some global threshold, d(x,,) > vo, are then identified as galaxy
formation sites. Here o is the rms value of J, and v is typically
taken to be 2-3. We wish to extend this model to incorporate
the possibility that peaks form galaxies more easily (or, equiva-
lently, form brighter galaxies) if there are other galaxies nearby.
One might imagine making the threshold level, v, a decreasing
function of the mean galaxy density in some surrounding
domain of influence of characteristic size R; > R,. However,
this is mathematically intractable because of the highly nonlin-
ear relation between galaxy and mass densities in the high-
peak model. We therefore adopt the simpler assumption that
the threshold depends on the mean mass density in the domain
of influence. This is strongly correlated with the galaxy density
and is much easier to analyze. We take the simplest possible
dependence and assume that galaxies form from material near
peaks satisfying

0(x,y) > vo — x5(xpk) , (1)

where § is the density contrast smoothed on the scale, R,, of the
domain of influence, and « is a constant which we will refer to
as the modulation coefficient. We have thus introduced two
parameters, R and k, which characterize the scale and ampli-
tude of cooperative effects. If x is positive, peaks in
“protosupercluster ” regions have to cross a lower threshold in
order to form a significant galaxy than peaks in “ protovoids.”

It is easy to see that the model of equation (1) is mathemati-
cally equivalent to the standard high-peak model, but for a
different density field. Let us define a new field by

8'(x) = d(x) + xd(x) . V)

Since 8 is just a convolution of § with a fixed filter, it is clear
that ¢’ retains the random phase property of J, and so is also a
Gaussian random field. Hence, rewriting equation (1) as
¢’ > vo, one finds that our cooperative galaxy formation model
predicts a galaxy distribution identical to that found if the
original high-peak model is applied to ¢’ rather than to 6. We
can therefore apply all the analytic machinery developed for
the standard model to our extension of it. In order to keep the
mathematics simple, we will follow Kaiser (1984) and approx-
imate the correlation function of peaks above a given threshold
by that of points above the same threshold. On scales larger
than R, this approximation is reasonably good. The result
differs from the true peak-peak correlation function primarily
in giving more weight to higher peaks (Bardeen et al. 1986).
This approach is quite adequate for our purpose, which is to
demonstrate how cooperative effects can modify the predic-
tions of the standard biasing model.

We start from Kaiser’s (1984) definition of the relevant
correlation function as the fractional excess probability that
two points at separation r are both above the global threshold

Pr (8, > vg, 9, > va) _ P,(r) 3
[Pr(d>ve)] 2  P?° @

1+ §>v(i‘) =

¢ This is not quite accurate, because the peaks of &’ do not coincide exactly
with those of 6. However, the correspondence is good for the parameters which
interest us. Furthermore, the analogy is exact in Kaiser’s (1984) approximate
treatment of the problem, which we follow in this paper.
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In this definition, 6, and J, are used to denote the density
contrast at the positions, x; and x,, of the two field points, and
|x, — x,| =r. Since 4 is a Gaussian random field, these prob-
abilities are given by

P, = jwfl(y)dy , @

Pr) = f ) rfz(yl, Vai &Ny, dy, . (9)

where x, y are scaled variables with unit variance, f,(x) is the
univariate Gaussian probability distribution function (pdf),
f2(x, y; C) is the bivariate Gaussian pdf with covariance,
{xyY = C, &r) = (8,0, is the two-point correlation function
of the matter distribution. Thus &£, (r) is a function only of
&(r)/o? and v. Kaiser (1984) showed that in the limit where
v — oo and & — 0, this dependence is simply

2
&) = 5 E0). ©)

so that there is a multiplicative amplification of the corre-
lations of peaks relative to those of the underlying matter dis-
tribution. For other approximations to ., see Politzer &
Wise (1984) and Jensen & Szalay (1986).

In our extension of the high-peak model, £, , will be given by
these same formulae, except that &, o, and v must be replaced
by

E(r) = (8183 = &) + 2x(6,8,) + k%<6,8,),  (7)
o =./¢0), ®)
v =va/a’ . ©

If R;> R,, then ¢’ ® 0, v x v, and {'(r) = &(r) for r < R,. In
this limit our modification of the standard model does not
affect the “galaxy correlations”, £, ,, on scales much smaller
than that of the domain of influence. On scales much larger
than R, there are two possibilities. Either the smoothing
involved in going from & to ¢ has little effect on the corre-
lations, so that & ~ (1 + k)¢, or the tail of the smoothing
kernel dominates the correlations so that & x x2¢{§,6,). In
both cases &’(r) is enhanced above &(r) for large r, with the
result that £, in our cooperative formation model has extra
large-scale power when compared with the standard high-peak
model. Notice that if k is too large or R, is too small, then V'
will differ significantly from v, and it is clear from equation (4)
that our modification will change the abundance of galaxies
predicted by the standard model. In practice, we will be inter-
ested in parameter sets for which this is not a problem.

Neither the Kaiser approximation for &, (eq. [6]) nor the
published alternatives to it (Politzer & Wise 1984; Jensen &
Szalay 1986) are particularly accurate on the scales of interest
to us (Coles 1986). We have therefore chosen to evaluate &, (r)
numerically. We use the techniques outlined in the Appendix
to reduce the dimensionality of the integrals, in order to end up
with

&)
—d o 2 g2g10027-1/2 _ V2E(0) ] }
{C(r)L[é(O) 20 exp[ For+ 220 |4

X [Jwexp (— y;)dy]_z . (10
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The line integral in the first line of the equation may be evalu-
ated by standard numerical techniques. In the next sections we
calculate ¢ (r) for cosmologically interesting perturbation
spectra.

3. APPLICATIONS

In this section we apply our model for cooperative galaxy
formation to specific Gaussian random fields. This shows how
its predictions differ from those of the standard high-peak
model, and allows us to assess its relevance to large-scale
power in the observed galaxy distribution. We first examine
scale-free random fields for which analytical calculations of the
integrals are possible. We then consider the fluctuation field
predicted in a universe dominated by cold dark matter. Let
P(k) = {]5,|*> be the power spectrum of density fluctuations
as a function of spatial frequency k. This function is sufficient
to specify all the properties of a Gaussian random field. We
require versions of the initial fluctuation field smoothed on
several scales. For a Gaussian filter of scale R, the smoothed
field, d(x, R), is obtained from the unsmoothed field, d(x),
through

1 _ 2
5, R)=Wjd3sé(s) exp<— Iszzs' ) 11)

It is straightforward to show that
<6s(x1, Rl)as(xl H R2)>

1 (=
= 27:2L dk k2P(k)

sin kr

1
o oXP [— 3 k*(R? + R%)] (12)

is the covariance between versions of the field with different
smoothing and measured at different field points. Here r =
| x, — x,|. Notice that this notation differs slightly from that of
the last section, where d(x) was used to denote d(x, R)), and
o(x) to denote d4(x, R,).

3.1. Scale-free Fluctuations
A scale-free power spectrum has the form

P(k) = | *) oc k", (13)

with n constant. Power spectra of this sort not only are a
mathematical covenience but also can provide a good approx-
imation to physically motivated models over a limited range of
scales. For such spectra, the variance of the density field varies
with smoothing as (62> oc R™""3. We are interested in the
field smoothed on two different scales, R, and R, for which, in
our previous notation,

<52> i- &n+3
ol 9

This simple relation enables us to be more precise about the
requirement, v' ~ v, needed for our model to preserve the
abundance and the small-scale clustering of galaxies in the
standard high-peak model (i.e., for k¥ = 0). From equations (7),
8), (9), (12), and (14) we find that the condition |v —v'| < 1
requires

2 R n+3
x2+2<"+5’/2x<;(f> . 15)

g
Thus, as long as R; > R,, even a large value of x can be

invoked without affecting abundances or small-scale clus-
tering.
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For a power-law spectrum, equation (12) can actually be
evaluated analytically. We find

2R2 (n+3)/2 r2
o R R))) = ¢} ——2— F\ =——
< s(xl’ 1)5s(x2, 2)> g (R% + R%) "(Z(Rf + R%)) >

(16)

where F,(x) = M((n + 3)/2, 3/2; —x) is Kummer’s function
(Abramowitz & Stegun 1972). Hence, in our previous notation,

{8,0,) = &r) = 6*F,(r*/4R}) , a7

o _ r2 R n+3 22
(3.5,5 = 2F,,< 4R2>=02(§a) F(#) (18)

(8,6,> = o? RGN\ (19)
172277 \R? + R? "\2(R? + R2)) "’

The Kummer function, F,(x), has asymptotic behavior, F, — 1
as x>0, and F, oc x"®*3/2 a5 x — co0. Thus, for r > R,, all
three of these correlations are approximately equal, demon-
strating the result, noted earlier, that & ~ (1 + k)¢ on large
scales. Provided that equation (15) is satisfied, our modifi-
cation of the standard high-peak model increases the galaxy
correlations, &, ,, predicted on these scales by the same factor.
The transition between these enhanced correlations and the
unchanged small-scale correlations clearly occurs at r ~ R,. Its
detailed shape may be expected to depend on the shape of the
filter function, representing the distance dependence of a
galaxy’s influence on its neighbors (here assumed Gaussian).

Figures la and 1b show &. (r) for fluctuation spectrum
indices n = —1 and n = 0, respectively. In both cases, we chose
R/R, = 10and v = 2.5, and used the four values of x indicated
in the plot. Our Gaussian representation of the domain of
influence clearly leads to a relatively abrupt transition between
the small- and large-scale regimes. Only for the largest values
of k does condition (15) begin to be violated in the n = —1
case. When this happens, the bias on small scales begins to
drop below that predicted by the standard model. This is easily
understood as a consequence of ¢’ beginning to increase sig-
nificantly above o, thereby forcing v’ to drop below v—the
peaks accepted as galaxies start to become less “rare.”
However, these effects are negligible for parameters of interest
in our current problem. Figure 1c¢ illustrates the effect of alter-
ing the averaging scale. As expected, the modification of the
standard model retains its shape as R, is adjusted, provided
that it does not approach R, too closely. Clearly, wide varia-
tions in the shape of galaxy correlations could be produced by
superposing a number of feedback effects with varying
strength, sign, and scale.

3.2. Cold Dark Matter Models

We now apply our cooperative galaxy formation model to a
CDM universe. We take the power spectrum in the form given
by Davis et al. (1985): :

8,12 = 2.43 x 1030~ 2k(1 + ak + Bk + yk?)~2 h~3 Mpc?,
(20)

where b is the usual “ biasing parameter,” defined as the square
root of the ratio of the variances of the galaxy and mass fluc-
tuations within randomly placed spheres of radius 8 h~! Mpc
(see, e.g., Bardeen et al. 1986). If k is expressed as 2z divided by
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F1G. 1.—Autocorrelation functions for models with scale-free fluctuation
spectra, P(k) oc k". The unperturbed threshold overdensity for galaxy forma-
tion is taken to be v = 2.5. (a) Correlations for n = — 1, with fixed R/R, = 10
and « equal to O (solid line), 0.5 (dotted line), 1 (short-dashed line), and 2 (long-
dashed line). (b) As in (a), but for n = 0. (c) Correlations for n = — 1, with fixed
k = 1 and Ry/R, equal to 10 (dotted line), 30 (short-dashed line), and 100 (long-
dashed line); the solid line corresponds to k = 0 as in (a). Note that since the
threshold is specified relative to the amplitude of the linear density fluctua-
tions, the size of these correlations is independent of the normalization of the
underlying linear power spectrum.

the present wavelength in Mpc, then a = 1.7], f = 9.0/*2 and
y = 1012, where | = (Qh%)~!; in the standard CDM model,
Q =1 and h = 0.5, so | = 4. Since our model, like the original
high-peak model, calculates galaxy correlations from ¢/62, the
amplitude of the power spectrum, and so the parameter b
drops out of our analysis. All the numerical results given and
plotted below assume h = 0.5.

We now proceed as in the previous section, substituting the
power spectrum, equation (20), in equation (12) in order to
calculate the three terms in the equation for &'(r) (eq. [7]).
There are four parameters that must be fixed. The first two
specify the standard high-peak model: these are the galactic
smoothing scale, R,, and the global threshold, v. The remain-
ing two describe the modulation of the threshold due to co-
operative effects: these are the scale of the domain of influence,
R,, and the modulation coefficient, k. For the first two we take
values typical of those used in N-body work: R, =0.5 h™!
Mpc and v = 2.8. Figure 2 shows spatial correlation functions
for three different choices of the modulation parameters. For
each smoothing length, x was adjusted so as to produce the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...405..403B

408

2 T [T 71
' 7]
= B ]
= 0 ]
w O[T ]
S L _
- R/(h™" Mpc) =
e 7
- —— 20 .
| ——-30 \
_2_1 11 1 I 1 }~
-1 2

o1
log (r/h Mpc)

F1G. 2—Autocorrelation functions for the cold dark matter model. The
results of our calculations are plotted for ¢ < 1; on smaller scales we plot the
power law &(r) = (r/ro) ™7, with ry = 5.7 h~* Mpc. (This power law is plotted
from the point at which it first intercepts the model prediction.) The dotted line
gives correlations in the standard “ high-peak " model with R, = 0.5 h~' Mpc
and v = 2.8. The remaining lines show results for models of cooperative galaxy
formation with these same values for R, and v, but with different sizes of the
domain of influence: R, = 10 h~' Mpc (short-dashed line), R, = 20 h~! Mpc
(solid line), and R = 30 h~! Mpc (long-dashed line). In each case, the modula-
tion coefficient was adjusted so as to give a constant, 2.5% rms modulation of
the threshold: x = 0.84, 2.29, and 4.48, respectively. All the calculations
depicted here assume h = 0.5.

same rms modulation of the threshold, k6/ve = Av/v = 0.025
(cf. eq. [1]). This required taking x = 0.84, 2.29, and 4.49 for
R, = 10,20, and 30 k! Mpc, respectively.

Once again we see that our modulation of the threshold for
galaxy formation has little effect on small-scale correlations.
However, at large r, deviations from the standard biasing
model can be substantial, even for relatively small values of the
modulating scale, R, ~ 10 h~! Mpc. Large changes in &,
occur even though the fractional change in the threshold is
small. (Since the number density of galaxies depends exponen-
tially on v, it is reassuring that only a small perturbation is
required.) Effects are more complex than for the scale-free
spectra of the last section because the linear mass correlation
function for CDM has a zero crossing on the scales of interest
[at r = 18(Qh?)~! Mpc] and thus is not well approximated by
any power law. The smoothing involved in obtaining ¢ from
can push the corresponding zero crossing of £’ out to consider-
ably larger scales, resulting in a prediction of similar behavior
for the galaxy correlations. This is the reason why the £’ curves
in Figure 2 remain positive at separations for which £, is nega-
tive.

In order to find out whether our model can match observed
estimates of large-scale power in the galaxy distribution, we
now calculate the predicted angular autocorrelation function,
w(0), for comparison with the estimate of Maddox et al. (1990)
from the APM survey. Their data (kindly provided by the
APM group) are reproduced in Figure 3, which plots w(6) for
six disjoint bins in apparent magnitude, all scaled to the mag-
nitude limit of the Lick catalog (Groth & Peebles 1977), which
is deemed to be complete to b; = 18.4. The dotted line shows
the angular correlation function expected in the SCDM model,
which, of course, assumes a uniform biasing threshold. The
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“power crisis” of the standard model on large scales is clearly
illustrated in this plot. As Maddox et al. discuss, the fit cannot
be improved by changing the bias strength in the CDM predic-
tions or by changing the assumed Hubble constant within
acceptable limits; the theoretical w(f) has the wrong shape.

The angular correlation function, w(f), is related to its
spatial counterpart, &(r), through Limber’s integral equation
(which involves the luminosity function or, alternatively, the
redshift distribution of the sample under consideration). Thus,
to calculate our predictions for w(f), we need to know &(r) for
all r. Our analytic models, however, are only valid on large
scales, since they do not include dynamical effects which alter
small-scale clustering. This limitation is of little relevance here,
since we are primarily interested in large-scale effects, and, in
any case, our model predictions do not differ from those of the
standard model on small scales. We have therefore used a
similar approach to that of Maddox et al. (1990). We extrapo-
late our model correlation functions to small scales by &(r) =
(r/fro)"*7, where ro =57 h~! Mpc, as recommended by
Maddox et al. The transition from our model prediction to this
power law is made where the two functions cross: r = 5.7 h ™!
Mpc for the standard model (x = 0) and slightly larger radii for
our cooperative formation models (see Fig. 2). We also adopt
the luminosity function recommended by Maddox et al. (their
eq. [3]) and their evolutionary prescription. For the standard
model, the resulting &(r) is a reasonable match to the N-body
simulations of Frenk et al. (1990), and the corresponding w(6) is
very similar to the one plotted by Maddox et al.

Predictions of w(f) made in this way are compared with the
APM data in Figure 3 for the same three values of R, shown in
Figure 2. Recall that in each case k¥ was chosen so that the rms
modulation of the effective threshold is only 2.5%. The model

log w(8)

-3

-1 0 1

F1G. 3.—Angular autocorrelation function for galaxies in the APM survey
and in cold dark matter models. The circles give the APM result for galaxies in
the magnitude range 17 < b; < 20, split into six disjoint lines in apparent
magnitude, all scaled to the magnitude limit of the Lick catalogue, b; = 18.4.
The dotted line shows correlations in the standard CDM model. The remain-
ing three lines show correlations in models of cooperative galaxy formation
assuming the same sizes of the domain of influence used in Fig. 2: R, = 10 h ™!
Mpc (short-dashed line), R, = 20 h~! Mpc (solid line), and R, = 30 h~* Mpc
(long-dashed line). The angular correlations were obtained from the spatial
correlations depicted in Fig. 2 using the procedure described by Maddox et al.
(1990).
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with R, =20 h~! Mpc gives an excellent fit to the observa-
tions, while the other two models bracket the range of accept-
able possibilities. A modulating scale of ~10 h~! Mpc seems
to be the smallest acceptable value, but arbitrarily large
amounts of large-scale power can be produced in the galaxy
distribution by choosing a sufficiently large R;. In the next
section we explore physical mechanisms that may produce a
modulation on the scales required to account for the APM
data.

4. DISCUSSION

We envisage cooperative effects as arising through radiative
and hydrodynamical processes during protogalactic evolution.
In a model like CDM, the dominant dark matter component
will be almost unaffected by these processes. Thus, the struc-
ture and abundance of massive halos should differ little
between cooperative formation and standard models. As a
result, the most plausible implementation of our ideas would
seem to be through a modulation of the luminosity of the
galaxy formed by a peak of given height. We require peaks to
form somewhat brighter galaxies when there are other peaks
nearby. Lower peaks would then make it into a magnitude-
limited catalog more easily if they occurred in “proto-
superclusters ” rather than in “protovoids.” This brightening
could occur in a variety of ways and could even conspire to
produce no detectable dependence of the luminosity function
on clustering. However, it is more plausible that such a depen-
dence would be induced, and it is easy to estimate how large a
modulation of the galaxy luminosity function might be
required.

As noted above, an rms modulation, Av/v = 2.5%, of the
effective threshold can boost the large-scale power of a CDM
model to the levels seen in the APM survey. In the neighbor-
hood of our chosen parameters, v = 2.8, R, = 0.5 h~! Mpc, the
formulae of Bardeen et al. (1986, Figs. 1 and 3) show that the
abundance of peaks varies as An/n ~ —10Av/v. Thus, we
require cooperative effects to cause a 25% modulation of the
probability that a peak produces a cataloged galaxy. Let
us take a galaxy luminosity function of the form n(L)dL oc
exp (—L/L,)dL/L and, for a simple model for brightening,
assume that the modulation affects the characteristic lumi-
nosity, L,, but preserves the shape. This is equivalent to
assuming that all galaxies are brightened by the same factor.
We can characterize the depth of a flux-limited survey by the
expected median distance. For our chosen luminosity function
and in the absence of cooperative effects, the flux limit corre-
sponds to 0.62L,, at this distance. A 0.21 mag modulation of L,,
at this limiting luminosity alters the abundance by 25%. This is
a remarkably small amount. The luminosities of galaxies need
to be modulated by only about 0.2 mag to explain the entire
“excess ” power in the APM data. Notice that in principle such
an effect should be directly observable. Current studies of the
luminosity dependence of clustering, however, come to contra-
dictory conclusions (Hamilton 1988; White et al. 1988 ; Eder et
al. 1989; Valls-Gabaud, Alimi, & Blanchard 1989; Loveday et
al. 1992).

With a luminosity function of our assumed shape, this
simple model predicts the abundance variation induced in flux-
limited catalogs to be quite a strong function of distance. At
the expected upper and lower quartile distances of such a
catalog, the apparent magnitude limit corresponds to lumi-
nosities of 1.20L, and 0.28L,. Above these limits a 0.21 mag.
variation of L, induces abundance variations of 40% and 17%,
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respectively, corresponding to threshold variations of Av/
v & 4.0% and 1.7%. This particular model for the influence of
cooperative effects on the luminosity function thus predicts
that the large-scale clustering seen in flux-limited surveys
should increase strongly with distance.” (However, other
equally simple models can be found in which no such depen-
dence is present—for example, one in which the amplitude but
not the shape of the luminosity function depends on environ-
ment.) Note that these distance-dependent effects occur within
any one flux-limited sample but do not affect the scaling of w(0)
between samples to different flux limits. There is some weak
but suggestive evidence for a distance dependence of clustering
in current data. Most of the excess power detected by the
QDOT survey is contributed by superclusters in the more
distant part of the sample, as can be clearly seen in the counts-
in-cells analysis of Efstathiou et al. (1990; see their Fig. 1).
Notice that this same effect requires that the large-scale
clustering—but not the small-scale clustering—galaxies should
increase strongly at high luminosities. Weak evidence in favor
of this comes from the fact that the most luminous galaxies
known, cD galaxies and strong radio sources, do indeed have
strong large-scale correlations (West & van den Bergh 1991;
Peacock & Nicholson 1991; Peacock 1991).2 Finally, a large-
scale modulation of galaxy luminosities would give rise to a
similarly modulated variation in the zero points of the Tully-
Fisher or “ D,-¢ ” relations, commonly used as distance indica-
tors. This effect might be misinterpreted as coherent large-scale
galaxy flows (e.g., Lynden-Bell et al. 1988; Mathewson, Ford,
& Buchhorn 1992; Silk 1989).

The amplitude of cooperative effects may not need to be
large, but their coherence scale, in excess of 10 h~! Mpc,
remains impressive. For our arguments to be convincing, we
must clearly identify processes which could lead to the kind of
modulation we are suggesting. Our poor understanding of the
physics of galaxy formation is a severe handicap at this point.
We are able to do little more than point to some observational
indications that physical effects of large intrinsic scale are
present at the epoch of galaxy formation, and can plausibly
influence galaxy formation itself.

Along the line of sight to high-redshift quasars, the density of
intervening hydrogen clouds is observed to drop as the redshift
approaches that of the quasar—the so-called proximity effect.
This is clear evidence that the UV radiation field of a typical
quasar is affecting the ionization state, and perhaps the struc-
ture, of the intergalactic medium out to comoving distances of
about 20 h~! Mpc (Bajtlik, Duncan, & Ostriker 1988). At
higher redshifts there is also evidence that the observed quasar
population emits insufficient UV radiation to explain the ion-
ization of the diffuse intergalactic medium, and that a substan-
tial additional radiation source, most plausibly massive stars in
forming galaxies, is needed (Donahue & Shull 1987; Shapiro &
Giroux 1987). If star formation is rapid, the UV luminosity of a
massive protogalaxy can rival that of a QSO (e.g., Terlevich
1989), and so should influence the structure and ionization of

7 As a result of such a dependence, our calculation of w(f) is incorrect, since
the standard form of Limber’s equation assumes that the galaxy autocorrela-
tion function is independent of redshift. We have repeated our calculations
taking this into account by regarding x in eq. (7) as a function of redshift. We
find that this introduces only a small change in the inferred w(f), and, by
slightly adjusting the values of our parameters, we can recover almost exactly
the results shown in Fig. 3.

8 Some local biasing models can give a dependence of the amplitude of the
correlation function on luminosity; the distinguishing feature of cooperative
models is a dependence of the shape of this function on luminosity.
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surrounding material over scales comparable to those of the
observed proximity effect. Such changes in the thermodynamic
state of pregalactic matter will affect later galaxy formation
through changes in the effectiveness of cooling processes. The
most likely consequences of UV radiation are the dissociation
of preexisting molecular gas (Kang & Shapiro 1992) and the
ionization and dispersal of dense cloudlets. It would therefore
seem that although the scale of these radiative effects is similar
to those of our cooperative model, their sign might be wrong.®
However, additional effects, such as a change in the stellar
initial mass function, could conceivably reverse the sign of the
effect. Babul & White (1991) suggest that such radiative pro-
cesses may give rise to large-scale structure in the galaxy dis-
tribution by creating large barren regions surrounding the
burned-out-remnants of old quasars. This idea requires a much
more drastic decoupling of the mass and galaxy distributions
than the model we investigate in this paper.

Starbursting galaxies may be the best observed analogs of
“typical ” galaxies during their major formation phase. Recent
observations by Heckman, Armus, & Miley (1990) suggest that
such large-scale star formation is accompanied by massive
superwinds, scaled-up versions of the strong, collimated wind
seen in the nearby starbursting dwarf, M82. From their data
these authors estimate wind velocities and mass fluxes of about
2000 km s~ and 50 M, yr ! in their larger systems. If such a
wind blows for about 10® yr, approximately the dynamical
time of the regions seen to be active, it gives off a total mecha-
nical energy which is larger than the binding energy of the
observed stars in a bright galaxy. Emitted by a protogalaxy at
redshift 4 and unimpeded by surrounding intergalactic matter,
such a wind would travel a comoving distance of 15 h~! Mpc
by a redshift of 2 (for Q = 1) and would still have a kinetic
energy comparable to that of the stars in a bright galaxy.
Whether propagation would actually occur over such dis-
tances depends on whether intergalactic space is nearly empty
or contains sufficient diffuse matter to slow the wind. Contin-
ued failure to detect any diffuse absorption through the Gunn-
Peterson test suggests that the mean density of any such
component may be low. In this case the wind may propagate
until it impacts a neighboring protogalactic cloud, thereby
stimulating further galaxy formation over the scales envisaged
by our model. This idea is a weaker and more inhomogeneous
version of the kind of explosive galaxy formation suggested by
Ostriker & Cowie (1981).

As a third possibility, we note that disk galaxies are the
dominant population in the flux-limited surveys which have so
far been used to analyze large-scale clustering. There is con-
siderable observational and theoretical reason for believing
that disks were the last parts of galaxies to form, and that disk
material was accreted at fairly low redshift, z < 1, through
infall from large radii (e.g., White 1990). The total amount of
material accreted, and so the luminosity of the final disk, could

° In a recent paper, Efstathiou (1992) argues that the UV ionization would
promote the formation of luminous galaxies by reducing the fraction of gas
consumed in forming dwarf galaxies at early times.
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therefore be affected by the much larger cluster and super-
cluster structures which were beginning to collapse at the same
time. For example, the formation of a filament or pancake
might result in a significant increase in the pressure and density
of any intergalactic medium, and so might enhance the final
stages of protodisk accretion. If such processes were correlated
with the size of the supercluster, this nonlinear coupling could
give additional positive biasing beyond that predicted by the
high-peak model. The observation that the well-known
morphology-density relation extends to supercluster scales
(e.g., Haynes 1988) would seem to give at least some support to
this idea that disk formation is somehow affected by the very
largest structures.

We are unable to demonstrate that any of the above three
mechanisms will produce cooperative effects corresponding to
the model of this paper. On the other hand, in each case there
is some direct observational evidence which suggests that
coherent effects can act on the scale required. Furthermore, the
modulation amplitude needed to reproduce the observed
large-scale structure is, as we have seen, quite small. Thus
modifications of the SCDM theory which involve the physics
of galaxy formation seem much more promising than ones
involving the physics of the very early universe. Almost all of
the latter involve relinquishing some of the most physically
attractive assumptions of the SCDM theory, and often invoke
speculative ideas which have no better prospect of empirical
test than those of the simpler original model. In contrast, if
cooperative effects were important during galaxy formation,
they could be manifest as large-scale dependences of galaxy
luminosity (and perhaps also surface brightness or
morphology) on environment, although it is possible to have
cooperative galaxy formation models in which these depen-
dences are weak. The idea may thus be open to test, and
although the present observational situation is confused, with
published claims both for and against such effects (e.g., Haynes
1988; White et al. 1988; Eder et al. 1989; Hamilton 1988;
Valls-Gabaud et al. 1989), improving data sets and a clear
understanding of what is required should make it possible to
detect the effects of cooperative galaxy formation directly, if it
is indeed responsible for the apparent large-scale structure. For
the time being, however, the best tests of the cold dark matter
model remain those that are sensitive to the distribution of
mass rather than to the distribution of galaxies.
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APPENDIX

Consider the general problem of evaluating an integral of the form:
(Dn(als a25--~’an; 0)= ,xn>an)’

where the x; possess a multivariate Gaussian probability distribution with {x;> = 0 and {x; x;» = 8,; which we denote by f(x,, ...,
x,; 0). The direct evaluation of the necessary n-dimensional integral can be very expensive in terms of computer time, so instead we
convert the integrals to line integrals as follows.

For each set of values of (a,, a, ..., a,), let us regard ®, as a function of the §,; in "C,-dimensional space. Let P be the point with
coordinates 8,; in this space, and let ®,(P) be the function <I> evaluated at P. Suppose we know the value of @,(Q), at another point Q
in this space, with coordinates ¢;;. The point Q can be chosen in such a way that the evaluation of ®(Q) is simpler than that of ®(P).
In the case we shall consider we take the diagonal elements ¢;; to be equal to the 6;;, and in order to make the evaluation of ®(Q) as
simple as possible, we take ¢,; = 0for i # j. We can then express @,(P) as

% o®,(G)
oy OV

where the summation extends only over i <j because the matrix @, is symmetric in i and j. In the integral, the point G has
coordinates given parametrically by

Pr (x; > ay, x, > a,, ...

P,(P)=D,0Q) + 3.

i<j

dy

ij o

VifA) = 40;; + (1 — )¢y,
where 0 < 4 < 1. Hence
0, dy;
Z - L l i ) .
i<i 0y i~ i<j 07’:1 R
Now for Gaussian distributions,
x5 1) _ O%hlx; 9)
0ij 0x; 0x;

(for i # j), which can easily be proved by writing the multivariate Gaussian probability density function as the inverse of its
characteristic function and then differentiating under the integral sign. Thus, we have

aq)” joo Joo J‘ © 62];. ©
— = dx dx, -+ | dx, =
a’}}12 ay ! a2 2 an axlax2 a3

J‘ dx3 \[ dX4 J‘ dxnf;l(ab Az5 X35 .40 X,,; )’) .
as an

We can therefore reduce the dimensionality of the original integral.
In the case discussed in § 2 we have n = 2, so this method produces a particularly simple result. We have

oo
0712
We can therefore reduce the original integral to the line integral:

(D(Bij) - q)(¢ij) = (012 — ¢12) J frve, va; A0y, — ¢y,))dA .

Recall that we are free to pick 4),] = 0 for i # j. ®(¢;;) is then just 23. To recover the notation of § 2, we pick 6,, = 6,, = 5(0) and

= fr(ve, va; y) .

0y, = 0,y = &(r). ®(0;;) is then just 2,, so that from equation (3) we have
o 220~ %6y
7 )
which leads directly to equation (10).
REFERENCES

Abramowitz, M., & Stegun, 1. A. 1972, A Handbook of Mathematical Func-
tions (New York : Dover)

Babul, A., & White, S. D. M. 1991, MNRAS, 253, 31P

Bahcall, N. A, & Soneira, R. M. 1983, ApJ, 270, 20

Bajtlik, S., Duncan, R. C., & Ostriker, J. P. 1988, ApJ, 327, 570

Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15

Bertschinger, E., Dekel, A., Faber, S. M., Dressler, A., & Burstein, D. 1990, ApJ,
364,370

Carlberg, R. G., & Couchman, H. M. P. 1989, ApJ, 340, 47

Carlberg, R. G., Couchman, H. M. P., & Thomas, P. A. 1990, ApJ, 352, L29

Cole, S., & Kaiser, N. 1989, MNRAS, 237, 1127

Coles, P. 1986, MNRAS, 222, 9P

. 1989, MNRAS, 238, 319

Dekel, A., & Rees, M. J. 1987, Nature, 326, 455

Donahue, M., & Shull, J. M. 1987, ApJ, 323,L13

Dressler, A. 1980 ApJ, 236, 351

Eder, J. A., Schombert, J. M., Dekel, A., & Oemler, A. 1989, ApJ, 340, 29

Efstathiou, G. 1992, MNRAS, 256, 43P

Efstathiou, G., Kaiser, N., Saunders, W., Lawrence, A., Rowan-Robinson, M.,
Ellis, R. S., & Frenk, C. S. 1990, MNRAS, 247, 10P

Fisher, K. B., Davis, M., Strauss, M. A,, Yahil, A.,, & Huchra, J. P. 1992,
Berkeley preprint

Frenk, C. S. 1991, Phys. Scripta, T36, 70

Frenk, C. S., White, S. D. M., Davis, M., & Efstathiou, G. 1988, ApJ, 327, 507

Frenk, C. S., White, S. D. M., Efstathiou, G., & Davis, M. 1990, ApJ, 351, 10

Groth, E. J., & Peebles, P. J. E. 1977, ApJ, 217, 385

Dalton, G. B., Efstathiou, G., Maddox, S. J., & Sutherland, W. J. 1992, ApJ,
390,L1

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371

Dekel, A., Blumenthal, G. R., Primack, J. R., & Olivier, S. 1989, ApJ, 338, L5

Hamilton, A. J. S. 1988, ApJ, 331, L59

Hauser, M. G., & Peebles, P. J. E. 1973, ApJ, 185, 757

Haynes, M. P. 1988, in ASP Conf. Proc., Vol. 5, Minnesota Lectures on Clus-
ters of Galaxies and Large-Scale Structure (San Francisco: ASP), 71

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...405..403B

412

Heckman, T. M., Armus, L., & Miley, G. K. 1990, ApJ, 364, 336
Jacoby, G. H., Ciardullo, R., & Ford, H. C. 1990, ApJ, 356, 332
Jensen, L. G., & Szalay, A. S. 1986, ApJ, 305, LS

i3, Kaiser, N. 1984, AplJ, 284, L9

Kaiser, N., Efstathiou, G., Ellis, R. S., Frenk, C. S., Lawrence, A., Rowan-
Robinson, M., & Saunders, W. 1991, MNRAS, 252, 1

Kang, M., & Shapiro, P. R. 1992, AplJ, 386, 432

Klypin, A. A., & Kopylov, A. 1. 1983, Soviet Astron. Lett., 9, 41

Lahav, O., Edge, A., Fabian, A. C., & Putney, A. 1989, MNRAS, 238, 881

Loveday, J., Peterson, B. A., Efstathiou, G., & Maddox, S. J. 1992, Oxford
preprint

Lumsden, S. L., Heavens, A. F., & Peacock, J. A. 1989, MNRAS, 238, 293

Lynden-Bell, D., Faber, S., Burstein, D., Davies, R. L., Dressler, A., Terlevich,
R.J., & Wegner, G. 1988, ApJ, 326, 19

Maddox, S. J., Efstathiou, G., Sutherland, W. J., & Loveday, J. 1990, MNRAS,
242, 43P

Mathewson, D. S., Ford, V. L., Buchhorn, M. 1992, ApJ, 389, L5

Moore, B, et al. 1992, MNRAS, 256,477

Olivier, S., Blumenthal, G. R., Primack, J. R., & Stanhill, D. 1990, ApJ, 356, 1

Ostriker, J. P, & Cowie, L. L. 1981, ApJ, 243, L127

Peacock, J. A. 1991, MNRAS, 253, 1P

Peacock, J. A., & Nicholson, D. 1991, MNRAS, 253, 307

Pierce, M. J., & Tully, R. B. 1988, ApJ, 330, 579

Politzer, H. D., & Wise, M. B. 1984, ApJ, 285, L1

Postman, M., & Geller, M. J. 1984, ApJ, 281, 95

Postman, M., Huchra, J. P., & Geller, M. J. 1992, ApJ, 384, 404

BOWER ET AL.

Rees, M. J. 1985, MNRAS, 213, 75P

Rowan-Robinson, M, et al. 1990, MNRAS, 247, 1

Saunders, W, et al. 1991, Nature, 349, 32

Saunders, W., Rowan-Robinson, M., & Lawrence, A. 1992, MNRAS, in press

Shapiro, P. R., & Giroux, M. L. 1987, ApJ, 321,L107

Silk, J. 1985, ApJ, 297, 1

. 1989, ApJ, 345, L1

Smoot, G. F., et al. 1992, ApJ, 396, L1

Strauss, M., & Davis, M. 1989, in Large Scale Motions in the Universe, ed.
V. C. Rubin & G. Coyne (Princeton: Princeton Univ. Press), 219

Sutherland, W. 1988, MNRAS, 234, 159

Sutherland, W., & Efstathiou, G. 1991, MNRAS, 248, 159

Terlevich, R. J. 1989, in Structure and Dynamics of the Interstellar Medium,
ed. G. Tenorio-Tagle, M. Moles, & J. Melnick (Berlin: Springer-Verlag), 343

Tonry, J. L. 1991, ApJ, 373, L1

Valls-Gabaud, D., Alimi, J.-M., & Blanchard, A. 1989, Nature, 341, 215

Weinberg, D. H. 1992, MNRAS, 254, 315

West, M. J., & van den Bergh, S. 1991, ApJ, 373, 1

White, S. D. M. 1990, in Dynamics of Galaxies and Their Molecular Cloud
Distributions, ed. F. Combes & F. Casoli (Dordrecht: Reidel), 383

White, S. D. M., Davis, M., Efstathiou, G., & Frenk, C. S. 1987a, Nature, 330,
451

White, S. D. M., Frenk, C. S., Davis, M., & Efstathiou, G. 1987b, ApJ, 313, 305

White, S. D. M., Tully, R. B., & Davis, M. 1988, ApJ, 333, L45

Wright, N, et al. 1992, ApJ, 396, L13

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...405..403B

