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ABSTRACT

Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near
20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acous-
tic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective
temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed
efficiency of convection. Models with increased convective efficiency have radial blue edges that are increas-
ingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip.
Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance
for detection would be observations in the ultraviolet. These models also explain why searches for radial pul-
sations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial
DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations.
The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude
modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the

mass of the star.
Subject headings: stars: oscillations — white dwarfs

1. INTRODUCTION

In any account of the history of stellar evolution white dwarf
stars appear frequently as objects that provide key insights and
understanding of stars and the physics which governs their
structure. White dwarfs provided an early successful applica-
tion of relativity and quantum mechanics, which was needed to
understand their tiny radii and very high mean densities. In
more recent times, the principles of stellar seismology have
seen their most successful application in studies of the ZZ Ceti
stars and other nonradially pulsating white dwarfs (Kawaler
1990; Winget 1988). Furthermore, such pulsation studies of
white dwarfs hold great promise for probing the history of star
formation in our Galaxy (Wood 1992).

One episode in this history has recently been revisited.
Ledoux & Sauvenier-Goffin (1950) showed via a vibrational
stability analysis that if white dwarfs derived their luminosity
from hydrogen burning, they would be vibrationally unstable.
The lack of observed brightness variations at that time led
them to conclude that the energy source of white dwarfs must
be something other than nuclear fusion. This work set the stage
for Mestel’s (1952) model of white dwarf cooling, with residual
heat from prior evolutionary stages providing the stellar lumi-
nosity. Somewhat ironically, it turned out that some white
dwarfs do indeed pulsate; the observed pulsations are very low
amplitude nonradial pulsations. These pulsations, which occur
in white dwarfs within three distinct regions in the H-R
diagram, have proved to be extremely useful probes of the
interiors of white dwarf stars. These multiperiodic pulsations
allow us to determine the precise masses of these stars, to
determine their rotation periods, to decode the compositional
stratification of their outer layers, and to actually measure
their evolutionary time scales (Kawaler 1990; Winget 1988).

The same theoretical tools that so successfully describe the
nonradial pulsations of the ZZ Ceti stars and the pulsating DB
white dwarfs make an as yet unconfirmed prediction. White
dwarf stars near the ZZ Ceti instability strip are unstable to
radial pulsations with periods between 0.1 and 10 s. These
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radial mode instabilities are driven by the ¥ — y mechanism
operating in the outer hydrogen partial ionization zone. Many
groups have discussed these radial mode instabilities (i.e.,
Starrfield, Cox, & Hodson 1979; Saio, Winget, & Robinson
1983; Starrfield et al. 1983; Starrfield & Cox 1989).

Unfortunately, observational searches to date have not
found evidence for radial pulsations in DA white dwarfs
(Robinson 1984). While it is possible that the current models
are in error because of effects not included in the modeling (i.e.,
Starrfield & Cox 1989), it is also possible that the amplitude of
the pulsations is below the current observed upper limits.
Ground-based searches for radial pulsations in DA white
dwarfs are limited by the small number of photons
(necessitating long runs) as well as the noise introduced into
the data by the Earth’s atmosphere (i.e., scintillation noise and
other short-period transparency variations). In an ideal world,
these observations would be performed from space, where scin-
tillation is nonexistent, and using a sufficiently large telescope
so that photon statistics do not hide periodic signals in short
runs. Such a facility currently exists as the Hubble Space Tele-
scope at least during the time that the High Speed Photometer
remains on board. In part because of the capabilities of the
HST for ultraviolet observations, it can observe white dwarfs
at significantly higher photon count rates than from the
ground.

Prior studies of radial pulsations in white dwarfs have con-
centrated on the hydrogen-envelope DA stars. To date, no
systematic study of the radial pulsation properties of DB white
dwarf models has been published, although individual models
are discussed in Cox et al. (1987) and Starrfield & Cox (1989).
Such stars, with effective temperatures of 25,000 to 30,000 K
are more promising targets than the DA stars for study with
HST. This paper presents a comprehensive theoretical analysis
of the pulsation properties of DB white dwarfs at temperatures
between 20,000 and 33,000 K. These objects are also found to
be unstable against radial pulsations; this work characterizes
the radial instability strip for these stars. Several interesting
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properties of the radially unstable modes make them useful in
their own right for seismological study of white dwarfs. In
particular, the frequency spacing of high-overtone radial
modes provides a very accurate mass determination for these
stars. Section 2 describes the construction of the equilibrium
models of white dwarfs used in the subsequent pulsation
analysis and discusses the properties of the models relevant to
their radial pulsation properties. The mechanics of the pulsa-
tion calculations are described in § 3. Sections 4 and 5 sum-
marize the results of the adiabatic and nonadiabatic analysis,
respectively, of the models. Observational searches, past and
future, for radial pulsations in white dwarfs are discussed in the
context of these new models in the concluding section.

2. MODELS

To explore radial pulsational instabilities in DB stars, we
first constructed a grid of models of helium-envelope white
dwarfs. Most models are 0.60 M , with a surface layer of 103
stellar masses of helium. For each of three convective effi-
ciencies, we constructed models with effective temperatures
between 19,000 and 32,000 K. The hottest models represent the
hottest DB white dwarfs that lie at the base of the well-known
gap in the DB luminosity function between about 30,000 K
and 40,000 K. The structural properties of these models are
very similar to the evolutionary models described by Tassoul,
Fontaine, & Winget (1990).

Equilibrium models used in this study are part of a new
series of white dwarf models designed for pulsation analysis.
The models presented here are technically static envelope inte-
grations, as they are not part of a stellar evolutionary sequence.
Since most of the action in radial pulsations in classical vari-
able stars occurs well above any luminosity sources, static
envelopes such as these are quite adequate for linear radial
pulsation calculations for the fluffy variables such as Cepheids,
RR Lyra stars, and é Scuti stars. However, in white dwarf stars,
the eigenfunctions penetrate below the surface layers, and into
regions of changing composition and luminosity. Hence static
models for white dwarf pulsation studies must in general be
more carefully constructed to be considered realistic. To be
more specific, models of white dwarfs cannot assume constant
luminosity with depth in all regions of interest; the models
must extend more deeply into the core where energy is gener-
ated by residual gravitational contraction and release of stored
thermal energy.

As long as there is no nuclear energy generation, neutrino
cooling of the core is small, and residual gravitational contrac-
tion is a minor energy source, the energy generation rate for
degenerate stellar material is proportional to the specific heat
per unit mass and the rate of cooling of the core. If the core is
isothermal, and sufficiently degenerate that only the ions con-
tribute to the specific heat, then the energy generation rate per
unit mass is a constant, proportional to the cooling rate (see
Van Horn 1971). These conditions are all satisfied in the cool
white dwarfs (Savedoff, Van Horn, & Vila 1969), so that these
stars have luminosity profiles that can be accurately modeled
by assuming that the luminosity within a shell of radius r is
proportional to the mass contained within that shell. Indeed,
this prescription has been used by many investigators as a
short cut to white dwarf models with reasonable thermal pro-
files (i.e., Dziembowski & Koester 1981; Cox et al. 1987;
Kawaler & Weiss 1990). While the variable DB white dwarfs
are hotter than those studied by the above authors, their lumi-
nosity profiles can still be approximated by the above pro-

cedure. This procedure does ignore neutrino emission, which
can be a contributing cooling effect in the hottest models.
Examination of evolutionary sequences of 0.60 M, models
shows that at T, = 30,000 K, the neutrino luminosity is
approximately 40% of the photon luminosity; the neutrino
luminosity drops with decreasing effective temperature (Iben &
Tutukov 1984).

With the above specification for the luminosity profile, we
integrate the usual equations describing stellar structure from
the surface to a point 0.001M, from the center. We use a
fourth-order Runge-Kutta integration scheme. The step size is
controlled to limit roundoff and truncation errors and to main-
tain sufficient zoning resolution for the subsequent pulsation
analysis. For overall accuracy of all quantities of 1 part in 10°,
this scheme results in models with approximately 300 shells.
The step size was further reduced so that all models have
approximately 600 zones stored, with the zoning criterion that
fractional changes in the primary quantities remain smaller
than 0.035 from one zone to the next. To obtain a model with a
specified effective temperature, mass, and surface helium layer
thickness, we adjusted the model luminosity to ensure that the
density of the innermost point matched the mean density of the
central ball. In this way, these envelope models are essentially
complete stellar models.

Our models have almost pure helium envelopes surrounding
homogeneous cores of 50% carbon, 50% oxygen by mass. By
the time DB white dwarfs cool to the temperatures where
radial instabilities occur, gravitational settling purifies the
surface helium layers, with most heavy elements (in particular
C and O) having settled below the envelope and into the
degenerate core. The abundance profile of helium as a function
of depth can therefore be closely approximated by assuming
diffusive equilibrium throughout the model. With this assump-
tion, the helium abundance with depth is determined using the
diffusive equilibrium prescription described by Arcoragi &
Fontaine (1980). For all of our models, we assume a helium
layer mass of 0.001M, based on recent seismological studies
of PG 1159 (Kawaler & Bradley 1993). The pulsation results
presented here are very insensitive to the surface helium layer
thickness as long as the helium represents more than 107 1°
stellar masses.

The equation of state used in the integrations is analytic
throughout, but with a temperature switch to simulate the
effects of pressure ionization. At temperatures below 10%° K
we compute the density assuming an ideal, nondegenerate gas
using the Saha equation for ionization equilibrium. At tem-
peratures above 10%2 K, we assume complete ionization and
that the ions are nondegenerate. The electron pressure in this
regime is computed using the algorithm described by Eggleton,
Faulkner, & Flannery (1973), and Coulomb interactions
between the ions is treated as in Iben & Tutukov (1984) and
Koester & Schonberner (1986). Between log (T) = 6.0 and
log (T) = 6.2, we interpolate linearly in log (T) between the
fully ionized and Saha equations of state. The switch in the
equation of state occurs well below the driving region for most
modes and has no significant effect on the computed growth
rates. Radiative opacities are taken from the Los Alamos
Opacity Library using tables with compositions (Y = 0.999,
Z =0.001) and (Y =0, C = 0.999, Z = 0.001). An additional
H-rich table was used for the DA sequence described in § 6.
Conductive opacities are computed using the Iben (1975) fit to
the tables of Hubbard & Lampe (1969). All tabular inter-
polations use four-point Lagrangian interpolation in density
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and temperature, and simple linear interpolation in composi-
tion. The equation of state and opacity computations are all
designed to maximize the smoothness of the determined quan-
tities and their derivative with respect to density and tem-
perature. In the construction of the models we have reduced as
much as possible the numerical noise in the models since it is
amplified in the higher order pulsation calculations.

Convection is treated using variations of the classic Bohm-

Vitense mixing length theory. We consider three cases of
increasing convective efficiency. Using the terminology of
Arcoragi & Fontaine (1980) (see also Tassoul et al. 1990) they
are ML1, ML2, and ML3. Readers are urged to consult the
above references for details. In short, ML1 is the classic treat-
ment, ML2 is more efficient because of different assumptions
about horizontal energy transport, and ML3 is the most effi-
cient as it is the same as ML2 but with a mixing length to
pressure scale height ratio of 2 instead of 1. In all cases, we also
follow the practice of limiting the pressure scale height near the
top of a convection zone (Bohm & Stuckl 1967) though this
additional factor plays only a small role in the results of the
computations.

A very important property of the equilibrium models is the
thermal time scale at the base of the surface convection zone

qbe C')T
Tbc:\f 3 M,dq, (1)
0

where c, is the specific heat, ¢ = (1 — M,/M,) is the fractional
mass below the surface, and M, is the mass of the model (Cox
1980). The subscript “ bc” refers to quantities at the base of the
convection zone; thus the integral proceeds from the surface to
the base of the convection zone. For the driving of pulsations
by partial ionization mechanisms, driving is most efficient
when the thermal time scale in the partial ionization region
matches the pulsation period of interest. Thus the time scale at
the base of the surface convection zone is a key parameter for
investigations of pulsational instability. The value of 7, is
shown in Figure 1 for the 0.60 M, ML1, ML2, and ML3
sequences of models. The values of 7, found for the models in
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F1G. 1.—The thermal time scale at the base of the surface convection zone
in DB white dwarf models, as compared with the longest period unstable
radial mode. Solid curves show 7, for model sequences with three different
prescriptions for convection. Symbols connected by dotted lines show log IT
for the longest period unstable mode for models at the given temperatures. All
times and periods are in seconds.
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this study agree remarkably well with the results of Tassoul et
al. (1990).

By inspection of Figure 1, we can get a preview of the results
to be presented later. As the convection zone base moves
downward, the thermal time scale 7, increases. The blue edge
for radial instability should be near the effective temperature
where 7, is approximately equal to periods characteristic of
high-overtone radial modes. Thus the blue edge for radial pul-
sations will be where 7, is a few tenths of a second, i.e., at
about 30,000 K, with a small dependence on the efficiency of
convection. For comparison, the blue edge for nonradial
g-mode oscillations will fall where 7, is approximately equal
to the lowest overtone g-mode period of about 100 s. This
nonradial blue edge, first explored by Winget et al. (1983), lies
at about 28,000 K for ML3 to 20,000 K for ML1 in our models.

3. RADIAL PULSATION COMPUTATIONS

3.1. Adiabatic Oscillation Frequencies

The equilibrium models described in the previous section
were analyzed with two separate stellar oscillation codes. Our
pulsation analysis is based on the equations described in Saio,
Winget, & Robinson (1983, hereafter SWR). Those authors,
who used a relaxation code to compute eigenfunctions and
eigenvalues, noted the difficulty in fully resolving the eigen-
functions for high-overtone modes. As a result, their node
count for a given eigenfrequency was necessarily ambiguous.
To resolve the eigenfunctions fully and therefore obtain accu-
rate oscillation frequencies, requires a very large number of
zones in an equilibrium model when solving the equations with
relaxation techniques.

To obtain accurate pulsation periods for the radial modes,
we used a shooting technique to solve the differential equations
describing linear, adiabatic radial oscillation (see, for example,
Cox 1980). These equations relate the relative perturbations of
the radius and pressure of a concentric spherical shell with the
mechanical properties of the equilibrium model. The starting
conditions for the inward integration were obtained using the
surface boundary conditions: the first condition is the chosen
normalization of the eigenfunctions, while the second condi-
tion ensures that the pressure is regular at the surface. Integra-
tion inward was performed using a fourth-order Runge-Kutta
routine. To ensure that roundoff and truncation error were
minimized, the Runge-Kutta steps were subject to quality
control using the techniques described by Press et al. (1986). To
obtain the coefficients of the differential equations between
shells of the model, we interpolated all equilibrium model
quantities using bicubic splines. The effective number of shells
used ranged from 50 shells for low-order overtones to 20,000
shells for the highest overtone modes computed. The results of
the adiabatic computations were therefore very insensitive to
the number of shells in the equilibrium model. Increasing the
number of shells from 200 to 1000 resulted in changes in the
computed oscillation frequencies by less than 1 part in 10° for
all modes considered.

As a further check on the accuracy of the computed
frequencies, we evaluated the variational form of the
eigenfrequency after convergence using the computed eigen-
functions. We obtained the variational form by integrating the
radial weight functions, as described by Cox (1980). Agreement
between the integrated frequency and the eigenfrequency was
always closer than 1 part in 10, with the agreement being
closest for lower overtones. Since these weight functions result
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from asymptotic solution to the linear adiabatic wave equa-
tion, one would expect to obtain closer agreement for the high
overtones. However, the integration of the weight functions
was performed as a side calculation to the evaluation of the
true eigenfrequency. The step size in the Runge-Kutta integra-
tion was set by the shape of the eigenfunctions and not the
weight function. To adequately sample the weight function
would require a different zoning strategy, and so the integrated
frequency of the higher overtone modes was adversely affected
at the expense of accurate eigenfunction shapes. In any case,
the agreement between the integrated frequency and the eigen-
frequency is more than adequate for the purposes of this paper.

3.2. Nonadiabatic Pulsation Computation

As discussed in Cox (1980), inward shooting teehniques for
solving the differential equations describing linear, radial non-
adiabatic oscillations diverge rapidly while still in the surface
layers. Hence we were forced to abandon the Runge-Kutta
technique to calculate the nonadiabatic properties of the
models. Instead, we used the Newton-Rapheson technique to
solve for the eigenfunctions and eigenvalues. The solution tech-
nique is similar to that described in SWR, but with a few
simplifications. In this study, we ignore the contribution of
perturbations of the radiation pressure to the equations. Also,
in deriving the equations, SWR assumed a form for J, the
specific intensity, that includes the gravitational energy term.
In this study, we ignore this term as well. For instance, equa-
tion (A3) of SWR is replaced in this study with

d(5s/cp)__ oP xr | 95
lT*dr = b1P+ (4—KT)+xpx -

4 p

1 o oL
+[2<1+7>—a(clw2+4):|7r— A

where all physical quantities are as defined in SWR. In this and
the remainder of the equations we follow the usual convention
denoting the Lagrangian variation of a quantity x by dx. The
remaining modifications to the SWR equations are equivalent
to ignoring all terms proportional to ®. For example, the non-
adiabatic outer boundary condition that enforces the assump-
tion of no inward flux at the outer boundary becomes
oP 16r os
Vaa P + 2r ¢
This equation, along with the adiabatic surface boundary con-
ditions, are the three outer boundary conditions. We use a
slightly different form than SWR for the inner boundary condi-
tions as well. To obtain regular solutions our central boundary
conditions ensure that the spatial derivatives of ér/r and L/L
vanish at the center. None of these simplifications had any
significant effect on the outcome of the computations.

The nonadiabatic calculations produce complex eigen-
frequencies for the spectrum of radial modes. The real part of
the eigenvalue corresponds to the pulsation frequency and is
normally within 1% of the adiabatic frequency. The imaginary
part of the eigenfrequency corresponds to the damping rate for
the oscillations. For convenience, let us define the negative of
the imaginary part of the eigenvalue as «, the linear “growth
rate.” Thus 1/k represents the e-folding time for the amplitude
of the mode. The growth rate is negative for modes that are
stable, and positive for linearly unstable modes.

Because the relaxation solution to the nonadiabatic equa-
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tions is limited in spatial resolution to the zoning of the input
equilibrium model, the precision of the nonadiabatic eigen-
values is not as high as the adiabatic values determined as
described in the previous section. As discussed in SWR, the
models underresolve the eigenfunctions, resulting in an under-
estimate of the number of radial nodes. However, the eigen-
values are at least representative of the ideal values. More
precisely, we find that the period of the first and last unstable
radial modes is largely independent of the zoning. For the
ML2 model at 30,000 K containing 600 zones, the first
unstable mode has a period of 0.577 s (k = 23), and the last
unstable mode has a period of 0.122 s (k = 104). These k values
are determined using the eigenfunction values at the grid
points only; the trye value of k could be greater than this,
especially for higher order modes. These periods can be com-
pared with the periods determined using a model with the
same parameters, but only about 310 shells: the first unstable
mode has a period of 0.567 s (k = 23) and the last unstable
mode has a period of 0.123 s (k = 87). Note that the periods in
these two models are very close for these important modes, but
that the eigenfunctions are seriously underresolved in the 310
zone model. We note here that the mode with a period closest
to 0.122 s has a value of k that is 119, as determined using the
adiabatic code. Thus the nonadiabatic code, using the model
with 600 zones, is missing approximately 15 interior nodes.

The growth rates as a function of period also depend only
slightly on the coarseness of the zoning in the models. The
maximum difference in the growth rate is only 40%, with the
coarsely zoned model having somewhat greater growth rates.
For the purposes of this study, we are mainly concerned only
with the sign and the order of magnitude of the growth rate.
Since the growth rates in the models are in general only believ-
able to a factor of 2 or so, this small difference between models
with different zonings is not significant. Hence we use the adia-
batic radial code to determine accurate periods for the models,
and the nonadiabatic pulsation code to determine the stability
and growth rate as a function of period for the same model.

We also note here that the high-overtone radial modes have
frequencies that are shorter than 0.1 s for k greater than about
110. At these short periods, which approach the acoustic cutoff
frequency, the surface boundary condition begins to break
down. Modes with shorter periods than the cutoff period do
not see the surface of the star as reflective; energy pumped into
such modes escapes through the surface as a running wave.
The cutoff period for DB white dwarf models is approximately
0.08 to 0.10 s (Hansen, Winget, & Kawaler 1985). Therefore the
leakage of energy through the photosphere limits the linearly
unstable periods to longer than about 0.08-0.10 s.

3.3. Asymptotic Relations

The computational resources required to compute the accu-
rate pulsation periods for higher order radial pulsations are
nontrivial. However, as k increases, the eigenfrequencies
approach values that are easily computed using the asymptotic
behavior of the linear adiabatic wave equation. Following the
analysis of Tassoul & Tassoul (1968) the wave equation can be
expressed in the form

d2 2
i w[j—z - ¢(r)] =0, @

where c, is the adiabatic sound speed, w is the “ wave function,”
and ¢(r) is a depth-dependent function of the structural param-
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eters of the equilibrium model. The wave function w is oscil-
latory as long as the factor in brackets in the above equation is
greater than zero; that is, the eigenfunction is oscillatory when
62 > c2¢. When this condition holds, the solution to the wave
equation is of the form

w(r) oc e, %)
where
2
k=5 = ¢0) ©)

is the radial wave number for the mode at position r. For an
oscillatory solution, an integral number of half-wavelengths of
the eigenfunction must fit between the turning points. If the
eigenfunction changes much more quickly than the function
¢(r), then we obtain the eigenvalue condition

r k,dr=(n+ D, )

where n is the number of nodes in the eigenfunction, and the
integral is over the regions where the eigenfunction is oscil-
latory. An illustrative example is for high-frequency (and there-
fore high-overtone) modes, where 62 > c2¢. In this case we can
write

vn = vO(n + 1) s (8)

1/ (Par\™!
v0=5<f ;’) o« \/GpY ©)

where the last expression is merely the period-mean density
relation. Thus in the high-frequency limit, the frequencies of
radial modes become equally spaced in frequency, with the
spacing equal to v,. This well-known result allows us to ensure
that the numerical solution of the pulsation equations produce
eigenfrequencies that are accurate and consistent. We show in
the next section how this equation can provide a mass determi-
nation in radially pulsating white dwarfs.

where

4. ADIABATIC FREQUENCIES

The computed frequencies of our models follow the expecta-
tions based on asymptotic analysis. As an illustration, we show
in Figure 2 the frequency separation between successive modes
as a function of n in a 0.60 M 5 model (T, = 25,000, ML2). The
frequency difference approaches the constant value v, with
increasing frequency. As n increases, the local wavenumber
decreases in comparison to the scale over which ¢(r) changes,
and the WKB conditions are approached. In fact, the fre-
quency of the n = 140 mode is approximately 10 s, so that
departures of the frequencies from their asymptotic limits are
much less than 1 part in 10*. The adiabatic Runge-Kutta code
produces very reliable frequencies and mode identifications,
with an expected precision of about 1 part in 10°. Also shown
in Figure 2 is the result for the frequencies of this model com-
puted with the nonadiabatic relaxation code. The poor
resolution of the high-order eigenfunctions results in relatively
large departures from uniform frequency spacing, as expected.

Note also that at this level there is oscillatory behavior in
Figure 2. This real effect is caused by discontinuous change in
¢(r) across the helium-carbon composition boundary and can
be understood analytically (Gough 1990). If these modes are
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Fic. 2—Difference in frequency between successive radial overtones as a
function of overtone for two types of adiabatic pulsation calculations. The
equilibrium model is 0.60 M, T, = 25,000 K, using ML2 convection. The
solid line connects modes computed using a shooting technique that fully
resolves all eigenfunctions. The dotted line connects modes computed using a
relaxation technique that solves for the eigenfunctions on the input model grid.
The dashed line is at a fixed frequency difference corresponding to the asymp-
totic solution in the limit of high radial overtone. Clearly the relaxation tech-
nique grossly underresolves the node number for a given frequency. Note that
the wiggles in the solid curves are real, and result from a slight degree of mode
trapping in radial modes by the helium/carbon composition transition zone.

indeed observed, and the needed precision of the frequency
measurements achieved, radial modes could in principle
provide a measurement of the depth of the surface helium
layer, in a way that is complementary to the successful mode-
trapping studies of nonradial oscillations in DB and DA white
dwarfs (Kawaler & Weiss 1990; Bradley & Winget 1991;
Bradley, Winget, & Wood 1992; Brassard et al. 1992).

The uniform frequency spacing seen for high-order radial
modes holds the key to detecting these modes in observations
of DB white dwarfs. As we will soon see, many modes are
unstable in these models, so that if they are excited to high
enough amplitude, these stars should be multiperiodic. The
amplitude of individual modes may indeed be quite low and
not easily distinguished from noise. However, the noise peaks
in a power spectrum should be at random frequencies, while
the peaks due to radial pulsation are uniformly spaced in fre-
quency. Thus one can increase the chances of detection by
looking for correlations in the frequencies of peaks in the
power spectrum. One technique to uncover the modes would
be to perform a Fourier transform of the power spectrum.
Radial modes would be responsible for a peak in this Fourier
transform of the Fourier transform (FT?) at a frequency of
1/v,, or about 14 Hz~!. We strongly recommend this approach
to searches for radial oscillations in white dwarfs and demon-
strate the technique in the final section of this paper.

Table 1 presents the values of v, for various 0.60 M models.
These values were computed by integrating the inverse of the
sound speed through the model and agree to better than 1 part
in 10° with the computed values of the high-overtone radial
oscillation modes. Note that for all of the 0.60 M 5»models
vo ~ 0.070 s~ 1, and that at a given value of T,, v, is insensitive
to the efficiency of convection.

The asymptotic analysis above indicates that v, scales as
(M/R3)2, This scaling controls the dependence of v, on T, and
stellar mass. The increase of v, with decreasing effective tem-
perature (and therefore decreasing radius) is a result of the
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TABLE 1

ASYMPTOTIC FREQUENCY SPACING (v,)*

T ML1 ML2 ML3
19,000......... 0.07420
20,000......... 0.07357
21,000......... 0.07297 e
22,000......... 0.07240 0.07267
23,000......... 0.07185 0.07209
24,000......... 0.07131 0.07151
25,000......... 0.07078 0.07094 e
26,000......... 0.07027 0.07038 0.07056
27,000......... 0.06976 0.06983 0.07001
28,000......... 0.06925 0.06929 0.06945
29,000......... 0.06875 0.06877 0.06889
29,500......... 0.06850 e .
30,000......... 0.06825 0.06826 0.06833
31,000......... 0.06775 0.06775 0.06777
31,500......... e 0.06750 0.06751
31,750......... 0.06738
32,000......... 0.06724 0.06725 0.06725

* Incycles s~ * for 0.60 M ; DB models.

models’ approach to the zero-temperature mass-radius rela-
tion. As mass increases, v, increases as well: Table 2 shows the
structural properties of DB white dwarf models of different
mass, but all with T, =25000 K, and ML2 convection.
Because these models all lie close to the zero-temperature
mass-radius relation, the radius is a function only of the stellar
mass. In the limited mass range of interest for white dwarfs, we
find that our model radii scale as R oc M ~ %8, Therefore, from
Table 2, we can derive a relationship between v, and stellar

mass
M 1.7
=0.171{ — .
w=o (i)

While derived for models at a single effective temperature, the
approximate nature of this relation renders it independent of
the small dependence of v, on T,. It is easy to see that if
multimode high-overtone radial pulsations are observed in DB
white dwarfs, then the observed frequency distibution will
allow precise determination of the mass of the star.

(10)

5. NONADIABATIC RESULTS

S.1. The Blue Edge and Convective Efficiency
DB white dwarf models are linearly unstable to radial pulsa-
tions soon after they develop surface convection zones; this
occurs at effective temperatures around 31,000 K. As a DB
white dwarf cools below 35,000 K, the conditions in the outer-

TABLE 2

Mass DEPENDENCE OF STRUCTURAL PROPERTIES
ofF DB WHITE DWARF MODELS

M/M,  log(R/R;) log(L/Lo) v

040......... —1.7721 —1.0010 0.03591
0.50......... —1.8451 —1.1469 0.05242
0.55......... —1.8753 —1.2073 0.06137
0.60......... —1.9033 —1.2633 0.07094
0.65......... —1.9299 —1.3166 0.08129
0.70......... —1.9558 —1.3684 0.09256
0.80......... —2.0073 —1.4714 0.11879

Note—All models have T, = 25,000 K and use the
ML2 prescription for convection.
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most layers allow recombination of He 11. This recombination
results in large opacities which in turn block the radiative flux
to the point where the outer layers become convectively
unstable. As the star cools further, partial ionization and the
associated convection is driven deeper into the star. At some
point, the thermal time scale in the surface convection zone
reaches a few tenths of a second, which is similar to the periods
of high-overtone radial pulsation modes. Therefore, the well-
known k and y effects can operate to destabilize these high-
order radial modes.

The theoretical blue edge for radial pulsation lies at about
31,000 K in our models, with a weak dependence on the effi-
ciency of convection. Table 3 lists the blue edges found for
three model sequences for both the radial and nonradial
modes. In all cases, the initial unstable modes have periods
between 0.14 and 0.22 s. As the models cool below the blue
edge, the period of the lowest overtone unstable mode rapidly
reaches the radial fundamental of approximately 12 s, while the
shortest unstable period drops to below the acoustic cutoff
period. For yet cooler models, the degree of the highest
unstable overtone gradually diminishes.

Note that while more efficient convection gives a somewhat
bluer radial blue edge, the blue edge varies by less than 2500 K
from ML1 through ML3. For nonradial modes, however, the
blue edge is much more sensitive to the treatment of surface
convection, increasing 8500 K from ML1 through ML3.
Therefore, the difference between the radial and nonradial blue
edge increases substantially with decreasing convective effi-
ciency. This is consistent with the conclusions drawn earlier
from Figure 1, as the thermal time scale at the base of the
convection zone increases faster with decreasing temperature
for models with efficient convection. Thus an observational
determination of the blue edge for radial pulsations can help
confirm the suggestion from nonradial studies that convection
is very efficient in DB white dwarfs. This conclusion generalizes
to DA white dwarfs as well (see § 6 below).

5.2. Growth Rates for Unstable Modes

For a given model, the growth rate is largest for the shortest
period modes, with the low overtones having the longest
growth times. In Figure 3 we show the growth rate as a func-
tion of period for several models in the ML2 sequence. These
plots are qualitatively similar to those for DA models present-
ed by SWR. This should come as no surprise because of the
structural similarity between DA and DB white dwarf models,
and in the driving mechanism. As discussed by SWR, the
shapes of these curves can be understood in terms of the time
scales with the partial ionization zone. In the models, some
radiative damping occurs above the driving region. Modes
with periods significantly shorter than 7, will be damped more
than the slightly longer period modes; this is because these
modes have small amplitudes in the surface driving zone. Simi-
larly, modes with periods significantly longer than 7, will have

TABLE 3

EFFECTIVE TEMPERATURE FOR RADIAL AND NONRADIAL
BLUE EDGE IN 0.60 M, DB MODELS

MLI1 ML2 ML3
Radial .................... 29500 31000 31750
Nonradial ................ 20000 25500 28500
0(=T,—T,) ... 9500 5500 3250
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FI1G. 3.—Growth rate (in s™') as a function of pulsation period for radial
modes in the ML2 sequence. The curves join modes for a model with the
effective temperature (in units of 1000 K) indicated. The upper panel shows
growth rates for models near the blue edge, while the lower panel displays
models at lower effective temperatures. The dashed line is the growth rate
curve for the model at 29,000 K ; it is repeated in the bottom panel for compari-
son purposes.

smaller growth rates as the partial ionization zone adjusts
quickly (and therefore more adiabatically) to oscillations on
those longer time scales. For these longer period modes, the
eigenfunctions have significant amplitude in the damping
region below the surface convection zone. Thus the driving is
greatest for modes with periods at (or slightly shorter than) t,,,
and diminished on either side of that period.

Some properties of driving near the blue edge are illustrated
in Figure 4. This figure illustrates that radial instability near
the blue edge is a classic example of driving by the x and y
mechanisms working together. Figure 4 shows the integrated
work function along with x (the logarithmic derivative of the
opacity with respect to temperature at constant density) and
I'y — 1 (the logarithmic derivative of temperature with respect
to density at constant entropy). Areas of driving can be identi-
fied as regions where the integrated work increases outward.
For this choice of abscissa, the surface (defined as 7 = 1073)
lies at the left, and the center toward the right. The model in
Figure 4 was computed using ML2 convection at T, = 30,000
K; therefore it is near the blue edge. The second panel shows
the integrated work function for the n = 80 mode, with a
period of 0.166 s and a growth rate of +1.07 x 1072 s~ 1, this
mode is unstable. The top panel shows the work function for
the stable n = 10 mode, with a period of 1.185 s and a growth
rate of —1.22 x 107° s™'. In this model the peak driving
occurs at log (1 — r/R) = —4.0, below the top of the convec-
tion zone at log (1 — r/R) = —4.4. The photosphere lies at
log (1 — r/R) = —4.36. Damping is greatest at and below the
base of the convection zone, which lies at log (1 — r/R) =
—3.85 in this model. Clearly, in this model, the driving is via
the (x — y) mechanisms, as the peak lies at the minimum in
I'; — 1, while x4 is about —2 (see Cox 1980).

Figure 5 illustrates further the physics behind the range of
unstable periods. The pressure perturbation eigenfunction for
three modes are shown on a common scale; note that the
higher the overtone, the shallower the penetration of the eigen-
function into the inner layers of the star. For the stable n = 20
mode, the eigenfunction penetrates well below the convection
zone. Thus this mode is damped by the white dwarf core. For
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F16. 4—Work functions and physical quantities for the 30,000 K model
from the 0.60 M o ML2 sequence. The abscissa is the logarithm of the surface
radius fraction; thus the surface lies to the left in this figure, the center lies
beyond the right edge at zero. The bottom panel shows the values of I'y — 1
and kg in the outer layers of the model. The three top panels show the inte-
grated work function (normalized to the surface value) for the indicated modes.

the unstable mode with n = 80, the eigenfunction is nearly zero
below the convection zone and increases through the driving
zone. The stable n = 110 mode does not penetrate significantly
below the photosphere, and so driving of that mode by the

/n=20

6P/P

lllllllllllllllllllllll
I‘III‘IIIllIllII}l!lJ

log(1-r/R)
FiG. 5—Pressure perturbation eigenfunctions for the indicated modes in
the 30,000 K model from the 0.60 M, ML2 sequence. The eigenfunctions have
been normalized to their surface values.
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FIG. 6.—Same as Fig. 4, but for the 25,000 K model from the ML2
sequence. Note that the integrated work decreases outward for the n = 80 and
n = 110 modes, indicating damping near the photosphere.

=

convection zone is not great enough to overcome the near-
surface damping.

Well within the blue edge, the nonadiabatic properties of the
modes are somewhat different. Figure 6 is the same as Figure 4,
but for a model at 25,000 K. In this model, the top of the
convection zone lies at log (1 — r/R) = —4.59, the photosphere
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is at log (1 — r/R) = —4.49, and the base of the convection
zone is at log (1 —r/R) = —3.30. The work function again
shows driving at a point near the top of the convection zone,
with a local maximum at log (1 — r/R) = —4.08. However,
there is quite a bit of action right at the base of the convection
zone for the lower overtone modes. As discussed in SWR,
driving within the partial ionization zone is reduced, in a rela-
tive sense, where convection carries a significant fraction of the
total flux. In this model, convection is very efficient in the
middle of the convection zone, and therefore the radiative flux,
and its perturbation, is quite small. This accounts in part for
the flat part of the integrated work function between log (1 —
r/R) = —3.5 and —3.8. The reduction in the driving results in
the lower growth rates for the longer period overtones and is
responsible for the shoulder in the growth rate versus period
relation in Figure 3 that develops below about 29,000 K.

As the star cools, the partial ionization region works its way
deeper, into regions with longer thermal time scales. As the
above arguments suggest, the period of the most unstable
modes should increase with decreasing T,. Table 4 lists the
most unstable mode for several models. The general trend is for
the period of the most unstable mode to increase. Note also
that the growth rate for the most unstable mode reaches a
maximum about 1500 K to 2000 K inside the blue edge.
However, near the blue edge, the period of the most unstable
mode in the ML2 and ML3 sequences actually decreases dis-
continuously as the model cools through the first 2000 K or so
below the blue edge. This is because of the double-humped
shape of the growth rate as a function of n; as the smaller n
bump decays, the period of the most unstable mode switches to
the larger n bump. The maximum growth rate reached in a
given sequence is roughly 1072 s 1, corresponding to a growth
time of about 100 s.

6. CONCLUSIONS

These calculations, which confirm and expand upon earlier
studies, are quite robust in their prediction that DB white
dwarfs between about 25,000 K and 31,000 K are unstable
against radial pulsation. There have as yet been no published
studies of the photometric properties of DB white dwarf stars

TABLE 4
UNSTABLE MODES WITH LARGEST GROWTH RATES FOR 0.60 M ; MODELS

ML1 ML2 ML3

Ty P alKmax) K nax Pl Kimax) Kmax Pax(Konax) K max
19,000......... 0.280 (45) 145 x 107%
20,000......... 0.254 (50) 496 x 107°
21,000......... 0.223 (57) 1.65 x 107#
22,000......... 0.210 (61) 422 x 1074 0.292 (44) 8.37 x 10¢
23,000......... 0.194 (66) 8.01 x 1074 0.264 (49) 217 x 1073
24,000......... 0.186 (69) 1.24 x 1073 0.172 (72) 1.63 x 1074
25,000......... 0.174 (74) 297 x 1073 0.150 (84) 922 x 1074
26,000......... 0.163 (79) 535 x 1073 0.122 (101) 3.01 x 1073 0.136 (92) 2.68 x 1073
27,000......... 0.160 (81) 7.00 x 1073 0.110 (110) 6.63 x 1073 0.109 (111) 7.83 x 1073
28,000......... 0.159 (82) 7.00 x 1073 0.110 (111) 9.67 x 1073 0.109 (112) 1.13 x 1072
29,000......... 0.160 (82) 4.64 x 1073 0.109 (113) 7.39 x 1073 0.112 (110) 1.68 x 1072
29,500......... 0.163 (81) 246 x 1073
30,000......... Stable Stable 0.164 (81) 1.07 x 1072 0.112 (111) 2.00 x 1072
31,000......... Stable Stable 0.167 (80) 293 x 1073 0.112 (112) 1.45 x 1072
31,500......... Stable Stable Stable Stable 0.171 (79) 1.28 x 1072
31,750......... Stable Stable Stable Stable 0.169 (80) 6.95 x 1073
32,000......... Stable Stable Stable Stable Stable Stable
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F1G. 7—Analysis of simulated radial pulsations in a DB model, with input
fractional amplitudes of modes equal in magnitude to the growth rates. The
bottom panel shows a 50 s segment of the “light curve ”; the entire run is 1600
s. The middle panel shows a segment of the Fourier transform of the entire
time series. The top panel is a Fourier transform of the Fourier transform
(FT?) and shows peaks at the inverse of the input frequency spacing (14.2 s) its
first and second harmonics (28.4 s and 42.6 s).

with the very high time resolution required to detect the high-
overtone radial modes.

6.1. A Search Strategy

The observational approach described in SWR and Robin-
son (1984) involves examination of individual peaks in the
power spectra of white dwarf stars for statistical significance.
While a large-amplitude peak in the power spectrum would be
conclusive evidence for radial pulsation, the observations
showed no such peaks. Upper limits are quoted for several
stars and ranged from 0.5 to 2 mmag for the ZZ Ceti stars that
were studied. That is, there were no significant peaks at those
levels in any of the stars.

The theoretical models suggest that these stars should be
multiperiodic since the growth rates for the high-order modes
are all comparable. Based on these growth rates, one would
expect dozens of modes to be present with periods between 0.1
and 0.5 s. Furthermore, these high-overtone modes should be
equally spaced in frequency. While individual modes might be
buried in the noise, we can in principle use their constant
frequency spacing to try to dig them out of the noise. Since the
noise in the data comes from photon counting statistics
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coupled with scintillation noise, the distribution of noise peaks
in the Fourier transform should be uncorrelated. However, the
peaks caused by radial pulsations will occur at a fixed fre-
quency interval. Therefore, the Fourier transform itself should
be searched for low-amplitude peaks that are equally spaced.

Such a coherent spacing of spectral peaks could only be
caused by radial pulsations. Therefore, we can in principle dig
the signal of radial pulsations out of the observed power spec-
trum by correlating the power spectrum with a “ picket fence ”
of equally spaced delta functions. The correlation value will
reach a maximum when the spacing of the pickets equals the
spacing in frequency of the radial modes. Equivalently, one can
take the Fourier transform of the power spectrum. This will
produce a peak at the inverse of the frequency spacing. The
nonsinusoidal shape of the power spectrum peaks will result in
integral harmonics of the principal spacing in the FT2. These
harmonics can be used for verification of existence of the prin-
cipal spacing.

As an example of how this works, we have synthesized
photometric data for a radially pulsating DB white dwarf in
Figures 7 and 8. Figure 7 shows the light curve, power spec-
trum, and FT? for data synthesized using the results for the
ML2 model at 25,000 K, with no noise. The amplitudes of the
modes are set equal to their growth rates for illustration pur-
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Fi16. 8.—Same as Fig. 7, but with the inclusion of Poisson noise appropriate
for 1100 counts per 0.05 s integration; the run length is again 1600 s. No
significant peaks can be readily identified in the Fourier transform, yet the FT?
still shows a significant peak at the inverse of the input frequency spacing
(14.2 s) its first harmonic (28.4 s).
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poses. Clearly, the Fourier transform shows the input fre-
quencies and their amplitudes. The FT? shows a correlation
peak at precisely the inverse of vy, and at its higher harmonics.
Figure 8 shows the same synthetic data, but with Poisson noise
added at amplitude appropriate to representative count rates
for white dwarf stars. With a count rate of 1100 counts per 0.05
integration, the amplitude uncertainty per bin is 30 mmag,
significantly larger than the input signal. In the 1600 s duration
of this simulated run, however, the amplitude uncertainty is
0.17 mmag. In the Fourier transform, only a few modes peak
above the noise level. Yet the FT? shows a clear peak at 1/v,
and it first harmonic. Thus a signal is indeed recovered from
the synthetic data, even though examination of the power spec-
trum shows no conclusive peaks.

6.2. Where Are the Radially Pulsating W hite Dwarfs?

Similar theoretical results reported for DA white dwarfs by a
number of authors (SWR and references therein) led to obser-
vational searches for radial pulsations in DA white dwarfs.
Robinson (1984) summarizes several search efforts for such
pulsations, none of which detected the predicted pulsations.
The upper limits quoted in Robinson (1984) all lie at about the
millimagnitude level, with shortest detectable periods of 0.2 s.
This failure to detect the predicted pulsations poses a signifi-
cant challenge to pulsation theory, as the predictions are based
on the same physics and modeling techniques that have so
successfully described the pulsations of a wide variety of vari-
able stars ranging from Mira variables to the Cepheids and the
ZZ Ceti stars. Numerous suggested explanations have been
proposed to explain away the pulsations, including attempts to
invoke the convection-pulsation interaction (i.e., Starrfield &
Cox 1989) which is normally ignored in pulsation studies.

However, there are at least two ways that the observational
efforts could have missed detecting the pulsations. First, the
most unstable modes could have periods that are at or above
the Nyquist frequency. Second, the chosen candidate objects
may not represent the best possible objects for visibility of the
high-overtone modes.

To examine these possibilities, we produced a sequence of
DA white dwarf models using the structure code described
earlier. This 0.60 M ; pilot sequence had a surface helium layer
of 10~ * stellar masses, and a surface hydrogen layer of 10~ 1°
stellar masses. The ML3 convection formalism was employed,
but the mixing length was not reduced near the top of the
convection zone. The nonradial blue edge for this sequence is
at about 12,700 K, in fair agreement with the observed value of
13,000 K (Wesemael et al. 1991). These models show a radial
blue edge at about 13,600 K, or roughly 900 K hotter than the
nonradial instability strip. These results for an ML3 sequence
are not consistent with SWR’s suggestion that the temperature
difference between the radial and nonradial blue edges is inde-
pendent of the efficiency of convection. They found a tem-
perature difference of 1600 K between the blue edges for their
ML1 sequences. The reason for this difference can be seen by
examination of the thermal time scale at the base of the surface
convection zone, in a way completely analogous to the case for
the DB models presented in § 5. That is, in ML3 models, t,,
increases rapidly with decreasing T,; thus the blue edges for
radial and nonradial modes are close together. This increase is
less rapid for ML1 models, so that the blue edges are farther
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apart in T, than in the ML3 models. This behavior is illustrated
very clearly in Figure 9 of Tassoul et al. (1990).

Thus the theoretical blue edge for radial pulsations in DA
white dwarfs is redder than assumed by SWR and Robinson
(1984), based on the calibration of the mixing length param-
eterization provided by the observed value of the blue edge of
the ZZ Ceti instability strip. With this as the case, the three
hottest objects in Robinson (1984) are probably hotter than the
blue edge of the radial instability strip and are not expected to
pulsate. Of the other objects, those significantly to the red of
the blue edge will have smaller growth rates than those nearer
the blue edge. Thus the remaining objects that are the best
candidates in Robinson (1984) are the three objects near the
ZZ Ceti blue edge; G117—B15A, G130—5, and GD 52. Of
those, only G117 —B15A is a ZZ Ceti star; the others, while
within the strip as defined by their (G — R) color, are not non-
radial pulsators. Thus either they are just outside the nonradial
instability strip, or they are odd in some way. These three stars
then are the prime suspects, for they should show radial pulsa-
tions yet none has been observed.

The pilot DA model at 13,500 K can help here. This model
lies near the nonradial blue edge and is unstable to radial
pulsations. The period range for the unstable modes lies
between 0.13 and 0.23 s, with the most unstable mode having a
period of 0.14 s. For comparison, a DA model at 13,000 K has
unstable modes between 0.15 and 3.40 s, with the maximum
growth at a period of 0.20 s. While the growth rates we find are
somewhat higher than SWR report, the periods of the most
unstable modes are comparable to their results. Thus the
models suggest that the most promising modes for detection
have periods at and below about 0.2 s. However, the Nyquist
frequency for two out of the three best candidates from Robin-
son (1984) is at 0.20 s. Thus searches for these modes in these
data become quite complex because of the sampling interval
used. The only object with a high enough Nyquist frequency is
G130—5. Using the simple technique described below, these
data should be re-examined, as they are the best (and only) real
test of the theoretical predictions regarding radial pulsations in
DA white dwarfs.

In summary, current theoretical models of DB (and DA)
white dwarfs suggest that they should be very high frequency
multiperiodic pulsators. Observations of the pulsations can in
principle provide high-precision mass determinations for these
stars. While such pulsations have not been detected yet, the
potential impact that discovery of these pulsations would have
on studies of white dwarfs, and stars in general, is enormous.
DB candidates may soon be examined for radial pulsations
with the Hubble Space Telescope; additional sensitive and
sophisticated ground-based searches for these elusive pulsa-
tions are urgently needed.

The initial motivation for this work followed discussions
with Howard Bond during a visit to the Space Telescope
Science Institute. Additional discussions with Carl Hansen,
Don Winget, Lee Anne Willson, Curt Struck-Marcell, and
Paul Bradley were extremely helpful. Kurt Rosentrater was a
valuable help in constructing the model grids. This work is
sponsored in part by NASA grant NAGW-1364 and in part by
NSF grant AST-9115213 to Iowa State University.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...404..294K

304 KAWALER

REFERENCES

Arcoragi, J.-P., & Fontaine, G. 1980, ApJ, 242, 1208

Bo6hm, K.-H., & Stuckl, E. 1967, Z. Astrophys., 66, 487

Bradley, P., & Winget, D. 1991, ApJS, 75, 463

Bradley, P., Winget, D., & Wood, M. 1992, ApJ, 391, L33

Brassard, P, Fontaine, G., Wesemael, F., & Hansen, C. 1992, ApJS, 80, 369

Cox, A. N, Starrfield, S., Kidman, R., & Pesnell, W. D. 1987, ApJ, 317, 303

Cox, J. P. 1980, Theory of Stellar Pulsation (Princeton: Princeton Univ. Press).

Dziembouski, W., & Koester, D. 1981, A&A, 97, 16

Eggleton, P., Faulkner, J., & Flannery, B. 1973, A&A, 23, 325

Gough, D. O. 1990, in Progress of Seismology of the Sun and Stars, ed.
Y. Osaki & H. Shibahashi (Berlin: Springer), 283

Hansen, C.J., Winget, D. E., & Kawaler, S. D. 1985, ApJ, 297, 544

Hubbard, W., & Lampe, M. 1969, ApJS, 18, 297

Iben, L, Jr. 1975, ApJ, 196, 525

Iben, I, Jr., & Tutukov, A. 1984, ApJ, 282, 615

Kawaler, S. D. 1990, in Confrontation between Stellar Pulsation and Evolu-
tion, ed. C. Cacciari & G. Clementini (Provo: PASP Conf. Ser., 11), 494

Kawaler, S. D., & Bradley, P. 1993, in preparation

Koester, D., & Schonberner, D. 1986, A&A, 154, 125

Ledoux, P. J., & Sauvenier-Goffin, E. 1950, ApJ, 111, 611

Mestel, L. 1952, MNRAS, 112, 583

Press, W. H., Flannery, B. P.,, Teukolsky, S. A., & Vetterling, W. T. 1986,
Numerical Recipes (Cambridge: Cambridge Univ. Press)

Robinson, E. L. 1984, AJ, 89, 1732

Saio, H., & Cox, J. P. 1980, ApJ, 265, 549

Saio, H., Winget, D. E., & Robinson, E. L. 1983, ApJ, 265, 982 (SWR)

Savedoff, M. P., Van Horn, H. M., & Vila, S. C. 1969, ApJ, 155, 221

Starrfield, S., & Cox, A. N. 1989, in White Dwarfs, ed. G. Wegner (Berlin:
Springer), 115

Starrfield, S., Cox, A. N., & Hodson, S. W. 1979, in IAU Colloq. 53, White
Dwarfs and Variable Degenerate Stars, ed. H. M. Van Horn & V. Weide-
mann (Rochester: Univ. of Rochester), 382

Stzg;ﬁe]d, S. G, Cox, A. N,, Hodson, S. W., & Pesnell, W. D. 1983, Ap]J, 268,

7

Tassoul, M., Fontaine, G., & Winget, D. E. 1990, ApJS, 72, 335

Tassoul, M., & Tassoul, J. L. 1968, ApJ, 153, 127

Van Horn, H. 1971, in IAU Symp. 42, White Dwarfs, ed. W. Luyten
(Dordrecht: Reidel), 97

Wesemael, F., Bergeron, P., Fontaine, G., & Lamontagne, R. 1991, in White
Dwarfs, ed. G. Vauclair & E. Sion (Dordrecht: Kluwer), 159

Winget, D. E. 1988, in IAU Symp. 123, Advances in Helio and Astero-
seismology, ed. J. Christensen-Dalsgaard & S. Frandsen (Dordrecht:
Reidel), 305

Winget, D. E., Van Horn, H. M., Tassoul, M., Hansen, C. J., & Fontaine, G.
1983, ApJ, 268, L33

Wood, M. A. 1992, ApJ, 386, 539

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...404..294K

