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ABSTRACT

The transfer of angular momentum from the rotating superfluid in a neutron star to the crust is likely
responsible for pulsar glitches and postglitch relaxation, and bears on issues of internal heating, stellar preces-
sion, and general relativistic rotational instabilities. The change in angular momentum of the neutron super-
fluid is determined by the motion of its vortex lines. In the star’s inner crust, vortices pin to the nuclear lattice
and move by the process of vortex creep. Here we develop a rate theory for vortex creep. Our results differ
from those of earlier work by including both quantum and classical unpinning processes, as well as the effects
of vortex tension. Quantum tunneling sets a lower limit to the creep rate at low temperatures. Vortex tension
reduces the creep rate by coupling adjacent pinning sites. The superfluid in the highest density parts of the
inner crust (2 10** g cm~3) may approach rotational equilibrium on sufficiently short time scales and possess
an adequate moment of inertia to account for observed postglitch relaxations.

Subject headings: dense matter — stars: interiors — stars: neutron

1. INTRODUCTION

Sudden increases in pulsar rotation rates, “ glitches,” as well
as spin rate variations following these events, are commonly
attributed to superfluidity in neutron stars (Anderson & Itoh
1975; Ruderman 1976, Alpar et al. 1984a; Pines & Alpar 1985;
Epstein, Link, & Baym 1992; Baym, Epstein, & Link 1992). In
the Vela pulsar, for example, a typical giant glitch produces a
relative increase in the surface rotation rate of a few times
1078, followed by an increased deceleration that decays over
time scales of days to years (Cordes, Downs, & Krause-
Polstorff 1988). Glitches are believed to arise from sudden
transfers of angular momentum from the superfluid to the
crust, while the slower postglitch relaxations occur as rotation-
al equilibrium between the superfluid and the rest of the star is
restored.

Dissipative coupling between the superfluid and the crust
heats the stellar interior and damps stellar oscillations. As the
star slows, a fraction of the superfluid rotational energy is
converted into heat (Alpar et al. 1984a; Shibazaki & Lamb
1989; Van Riper 1991; Shibazaki 1992), which increases
thermal emission from older neutron stars. Stellar oscillations
involving compression waves, shear waves, or precession
create differential motion between the superfluid and the crust
(Epstein 1988; Mendell 1991a, b). Coupling between the super-
fluid and the crust extracts energy from these modes, thereby
constraining the amplitude of stellar precession and limiting
the growth of general relativistic rotational instabilities (Alpar
& Ogelman 1987; Lindblom & Mendell 1992).

In this paper we examine the dynamics of the neutron super-
fluid in the inner crust of a neutron star. This region, which
extends from stellar densities between ~10'2and ~2 x 10'*g
cm 3, contains a gas of free neutrons which flows through a
lattice of neutron-rich nuclei. In the inner crust the attractive
component of the nucleon interaction pairs neutrons forming
an isotropic, s-wave superfluid (Migdal 1959; Hoffberg et al.
1970; Ginzburg & Kirzhnits 1964). The superfluid velocity is
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determined by the spatial arrangement of its vortex lines, so
that any change in the superfluid rotation rate requires vortex
motion. The mechanism by which vortices move through the
inhomogeneous environment of the nuclear lattice is not fully
understood, and several possibilities have been considered.
Interactions between vortex lines and nuclei can pin the lines
to the nuclear lattice (Alpar 1977; Alpar et al. 1984a; Epstein &
Baym 1988; Link & Epstein 1991, hereafter LE), strongly in-
hibiting vortex motion. Pinned vortex lines can move by the
process of vortex creep, whereby they unpin from one configu-
ration, overcome an energy barrier, and repin in another con-
figuration. Vortex creep may not be the only mechanism by
which vortices move, however. If vortex pinning is sufficiently
strong, forces on pinned vortices lead to crust cracking, and the
movement of fragments or plates of the crust may change the
vortex distribution (Ruderman 1991). In the opposite extreme,
vortex pinning may be very weak in some regions of the inner
crust, and the superfluid nearly corotates with the crust (Jones
1990).

The aim of this paper is to formulate a microscopic theory of
vortex creep and to determine the dependence of the creep rate
on temperature and density in the inner crust. We pay particu-
lar attention to several important points not treated ade-
quately in previous studies of vortex creep. First, we include
the effects of vortex tension, which reduce the creep rate by
raising the energy the vortex lines must overcome in order to
move (LE). Second, we allow for quantum tunneling, which
sets a lower limit to the creep rate at low temperatures. The
motion of a vortex line from one pinned state to another can be
described as either classical motion over the energy barrier or
as quantum tunneling through the barrier. At sufficiently high
temperatures, vortex creep occurs mainly by classical thermal
activation. In the opposite limit, it occurs primarily by
quantum tunneling. Preliminary results of our work have been
described by Epstein, Link, & Baym (1992) and Baym, Epstein,
& Link (1992).

This paper is organized as follows. Section 2 gives an over-
view of the vortex creep process. In § 3 we derive the vortex
excitation spectrum for a dilute lattice of pinned vortex lines.
Section 4 gives a derivation of the vortex unpinning rate in the
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classical and quantum regimes. Section 5 discusses dissipative
processes and their role in unpinning and repinning. In § 6 we
evaluate the creep rate, study the vortex unpinning process for
a steadily slowing star, determine the response of the superfluid
and the crust to a glitch, and discuss the limitations of our
results. In § 7 we present a summary and conclusions. Appen-
dix A describes the classical rate theory for vortex unpinning.
Appendix B gives a quantum description of a pinned vortex
line, and Appendix C contains a calculation of the mode spec-
trum of a pinned vortex.

2. OVERVIEW OF VORTEX CREEP

In the inner crust of a neutron star a superfluid vortex line
interacts with the lattice of nuclei, being attracted to the nuclei
or repelled by them, depending on the local matter density. In
either case the vortex line tends to bind to an array of pinning
sites of nuclei or interstices between the nuclei (Epstein &
Baym 1988; LE). A completely rigid vortex line would not
intercept many pinning sites unless it happened to be oriented
along a major axis of the crystal. This situation is illustrated by
the dashed line in Figure 1. As emphasized by Jones (1992), the
pinning forces on a randomly oriented rigid line largely cancel,
since, on average, there are nearly as many nearby pinning sites
on either side of the line. However, for a vortex line of finite
tension, pinning is much more efficient. Link & Epstein (1993)
computed the configurations of arbitrarily oriented vortex
lines in a cubic crystal by minimizing their free energies. They
found that the increase in the self-energy due to slight bending
is compensated for by the large change in the interaction
energy when the vortex line passes through nearly all of the
nearby pinning sites. As Figure 1 illustrates, the line comprises
a number of straight lengths separated by kinks. Along the
straight lengths, the pinning sites are evenly spaced. In our
treatment of vortex creep we will concentrate on the unpinning
and repinning from the sites which lie along the straight
lengths.

If in the early stages of neutron star evolution vortices are
formed before the crust solidifies, the crystal lattice may grow
along the vortices. In this case, vortices would line up with the
principal axis of the lattice throughout much of the inner crust,
and the kinks could be very far apart.

In the elemental process of vortex creep, a vortex line
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F1G. 1.—Path of a vortex line through a crystal. The solid line shows a
vortex of stiffness 7 = 1 (see eq. [3.9]). The dashed line shows an infinitely stiff
line.
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segment unpins from one set of pinning sites and repins on a
new set of sites. We consider a vortex segment of length L
initially pinned at a total of N sites along an array in the
z-direction. The superfluid flow past the vortex creates a
Magnus force, which we take to be in the polar radial direction
F. We call the initial configuration of the line state i, and the
new configuration state f. If R;_  is the transition rate from
state i to state f, then the creep velocity of the line in the
direction of the Magnus force is

Uy = Z A_ri—bf Ri—»j' ’ (21)
T

where the sum is over all possible final states. The mean dis-

placement Ar,_, , is

Arp, = 2 j [ry(2) — rdz)ldz, 22
L L

where r(z) and r((z) are the loci of radial coordinates along the
line in the initial and final states. In general Ar,.,, can be
positive or negative; however, our study of the mechanics of
vortex unpinning (LE) showed that the combined effects of
vortex tension and the Magnus force strongly suppress or
forbid transitions in which the line moves in the opposite direc-
tion of the Magnus force. Accordingly, we include only tran-
sitions with Ar;_, ; > 0 in the vortex creep rate (if both positive
and negative Ar,_, s were important, other approaches would
be needed; see, e.g., Chau & Cheng 1991). The rate R, is
determined by the number of pinning bonds that break simul-
taneously during a transition and not by the exact location of
these bonds along the line. We take R, = R; when j (<N)
bonds break simultaneously. There are ~N/j (for N > j)
independent transitions of this type. After the segment unpins
from j pinning bonds, it moves a mean radial distance Z,(j)
before it repins. However, before the segment repins, addi-
tional pinning bonds can break away or unzip; we take
(n; — 1)j to be the average number of additional sites that
unzip. The mean displacement of the line for this transition is
thus Ar;_, , ~ 5,£,(j)j/N. The radial vortex creep rate can now
be written

N
Ve = 'Zl ’7; Rj/r(.]) . (23)
i=
The problem of estimating the vortex creep rate reduces to
obtaining the individual unpinning rates R;, the mean trans-
lations #,, and the unzipping factor #;.

The superfluid angular velocity Q(r) at a distance r from the
rotation axis of the star is calculated from the quantized circu-
lation law,§ v * dl = kN (r), where ¥ = nh/m is the quantum of
circulation, m is the neutron mass, and N (r) is the number of
vortex lines interior to r. The superfluid angular velocity rate of
change Q is proportional to the rate at which vortex lines
migrate away from the center of the star. For an areal density
of lines n(r), Q(r) is given by

Kno, 0Q(r)

0= - = - [msm +r ——] "7 .49

or

Equation (2.4) shows how the radial velocity v,, of individual
vortex lines, determined by the microscopic physics, regulates
the macroscopic rotation Q of the neutron superfluid.

A vortex segment in a pinned state unpins by overcoming an
energy barrier. The unpinning rate R; is the probability of the
line segment passing through or over the pinning barrier times
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the attack frequency or the rate at which it approaches the
barrier. At low temperatures a vortex has a low probability of
being in an excited state and unpins primarily by quantum
tunneling from the ground state of the pinned configuration.
At high temperatures, the higher energy levels are occupied
and the vortex can unpin by classical thermal activation. The
dominant process is determined by the relative magnitudes of
the temperature T and the excitation energy hw; of a vortex
segment spanning j pinning sites, where w; is the fundamental
frequency of the segment that unpins. For temperatures T less
than a “crossover temperature” T, = hw;/2, quantum tunnel-
ing dominates, while classical thermal activation dominates for
T > T, (see Fig. 2).

Classically, a line segment escapes from the pinned state by
passing over an activation energy barrier A;; these activation
energies were obtained in LE. The unpinning rate R; obtained
from classical rate theory is

R (2.5)

where v, is the effective attack frequency, which includes
statistical weights or entropy factors (see discussion in Appen-
dix A).

At temperatures low compared to T, quantum tunneling is
the dominant process, and the rate becomes nearly
temperature-independent. There is no well-established theory
for computing T, for an extended object such as a vortex line.
We find in § 4 an approximate rate expression useful at all
temperatures:

— —Aj/T
j,class — Vegs € ) s

— Aj/Tefs,j
R; >~y e Te0i

how; hw,; T,
Tor; = % coth (ﬁ) = T, coth (?) .

Note that for high temperatures T, reduces to T, and the
general expression (2.6) reduces to the classical one, equation
(2.5).

(2.6)
where

@.7)

In R/R,

classical

quantum

[l (! I A l
0 1 2 3

T,/T

Fi1G. 2—Rate R as a function of temperature T. At high temperatures,
where motion past the barrier occurs classically, In R is linear in 1/7T. At low
temperatures, where quantum tunneling dominates, the rate approaches a
constant R,. The transition between the two regimes is defined by the cross-
over temperature T,.
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3. VORTEX EXCITATION SPECTRUM

The vortex excitation spectrum is needed to determine the
vortex creep rate. Oscillations of a vortex in the absence of
pinning have been well studied (Thomson 1880; Fetter 1967;
Epstein & Baym 1992), but to evaluate the creep rate we
require the vortex oscillation spectrum for a pinned line. Here
we derive the spectrum for the case in which the vortex thick-
ness is small compared to the pinning spacing. We take the
pinning sites to have a density n,(z) along the z-axis and write
the vortex displacement from the z-axis as s(z, t).

The velocity of a vortex is given by the balance between
tension, pinning, and Magnus forces; from LE,

. 0%s

T 5; + n(2)F,(s) — p;x X (v,—v,) =0,
where T is the effective tension of the vortex, F, 8) is the
pinning force per site, and p; is the mass density of the super-
fluid. The vorticity vector k of magnitude « is aligned with the
vortex, v, is the superfluid velocity, and v, = 0s/0t is the veloc-
ity of the vortex (note that eq. [2.6] of LE contains a sign error
in the Magnus term). We denote the equilibrium solution to
equation (3.1) with v, =0 by s¢(z). To examine small oscil-
lations about equilibrium, we write s(z, t) = sq(2) + €(z, t), so
that v, = Je(z, t)/0t. Expanding the pinning force about the
equilibrium configuration gives

OF,;
Fpi(e) = Fpi(s0) + ( l) Ej H
Js 0

J

(3.1)

(3.2)

where repeated indices are summed. For simplicity, in the
remainder of this section we assume that the incremental restor-
ing force is symmetric, ie., (OF ,;/0s;) = fo J;; (an asymmetric
restoring force is treated in Appendix C). The linearized equa-
tion of motion is then

Oe(z, 1)
o
where primes denote differentiation with respect to z.

The solutions to equation (3.3) are circularly polarized
helical waves. In terms of

Te(z, 0" + f, ny(2)e(z, t) + psx x 0, (3.3)

€[z, £)  ie(z, 1)

€4z, t) = ) (34)
* \/E
the vector equation can be written as two scalar equations,
- Oe.(z, t
Testo O +fonfleste, 0+ ipgx 22020 35

We treat the distribution of pinning sites as a linear, periodic
array:

n,(z) = y 3z —nl),

n=0,%1,%2,...

(3.6)

where | is the pinning spacing. The delta-function approx-
imation is appropriate if the range of the interaction (~ 10 fm)
is small compared with the spacing, as is the case throughout
much of the inner crust (see l,,;, in Table 1). The pinning ampli-
tude f, in equation (3.3) is related to the pinning potential used
in LE by

fo = A2 h
ro

3.7)
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TABLE 1
PINNING PARAMETERS

log p, U, 13 Imin T/A? vg (v5/v g )min I1dI, /dlog,p°
gm cm™3 MeV fm fm cms~!

11.83 6.6x10~* 26 98 21 1.4 x 10° 0.35 1.6 x 10~%
11.99 1.8x10-3 23 93 20 1.6 x 10° 0.34 3.2 x 1075
12.18 3.6x10~3 2.0 89 17 1.9 x 10° 0.33 8.1 x 10~5
12.41 9.0x10-3 1.7 84 16 2.1 x 10° 0.33 1.8 x 10~*
12.79 2.5x10~2 15 79 13 2.7 x 10° 0.32 6.4 x 10~*
12.98 0.40 14 71 0.053 1.6 x 107 - 1.2 x10"3
13.18 6.4 15 66 0.0068 1.6 x 108 - 2.8 x 10-3
13.53 15 (1.0)° 19(19) 57 0.0090 (0.22)  17x10%(8.0x10) - (0.11) 9.0 x 103
13.89 9.0(097)  46(12) 39 0.070 (1.8) 52x 107 (3.2 x 10) - (0.25) 2.7 x 102
14.12 54(0.22) 18 (30) 29 0.12 (110) 38x107 (24 x 105) - 5.9 x 10~2

2 Values in parentheses are estimates based on the gap calculations of Ainsworth et al. 1989 using the method of Alpar et al. 1989.
® The quantity A is typically in the range 6-10 in the regions of interstitial pinning, and 1-3 in the regions of nuclear pinning, except where

Ex1,,(@tlogp, 2 14).

¢ Calculated for a 1.4 M, star with a Friedman-Pandharipande 1981 equation of state. At each density, we estimated the mass fraction of
superfluid from the nuclear mass numbers given by Negele & Vautherin 1973.

where r is the distance between the vortex line and a pinning
site at which the pinning force due to the site reaches its
maximum F_,., A=1—vs/vg, v;=|v,—v,|, and vg is the
value of v; at which the magnitude Magnus force per unit
length, | p,k x v;], equals the maximum pinning force per unit
length, F,,./l. As vs — vg, the equilibrium position of a pinning
bond approaches ry, and the pinning force per unit length
approaches F,,./l. Hence the pinning amplitude f,, the deriv-
ative of the pinning force with displacement evaluated at equi-
librium, approaches zero as v; — vg.

With n, given by equation (3.6), the equation of motion (3.5)
is formally identical to the Schrddinger equation for the
Kronig-Penney model for a particle in a periodic, delta-
function potential (see, e.g, Baym 1969). The eigenfunctions
are Bloch waves, that is, the products of plane waves of wave-
number k and functions that are periodic with a pinning
spacing I. In Appendix C we solve this eigenfunction equation
to find the dispersion relation

A1/2 3
A" sin gl ~0,
ql

where 1 = Try/F,, | is the stiffness of the vortex line. The
oscillation frequency is o, = Tq?/p, k. The values of w, that
satisfy the dispersion relation (3.8) fall in bands separated by
forbidden gaps; see Figure 3.

The tension has the form T = p,x?A/4n, where A ~ 0.116
— Ink¢ and ¢ is the coherence length. Typically 2 S A <10 in
the inner crust (LE). As defined in LE, a flexible vortex has 1
much less than unity, while a stiff vortex has t much greater
than unity. Numerically,

T"o Ps Uy >—1/ ro \ l ! (3.9
T o~ .
Foaxl 10*3 g/\ 1 MeV (10 fm/ \ 50 fm ? )

where U, = 4F_,,r/3 is the pinning energy (see LE). For the
fiducial values in equation (3.9), T ~ 1 and vortices are interme-
diate between stiff and flexible. Flexible vortices may exist in
the regions of nuclear pinning (stellar densities p, 2 103 g
cm~?) where pinning energies are largest and I is smallest. In
the lower density interstitial pinning regions, the vortex lines
are stiff. Table 1 shows the pinning energy U,, coherence
length £, and nearest neighbor distance of nuclei ;,, and the
quantities 7/A and v, for selected densities in a neutron star.

cos kl — cos gl — (3.8)

These pinning parameters are based on the pinning potential
obtained by Epstein & Baym (1988). Because the Epstein-
Baym (1988) calculations may overestimate pinning forces in
the nuclear pinning regions, we have also estimated the
pinning energy using the formalism of Alpar, Cheng, & Pines
(1989), and the superfluid gaps calculated by Ainsworth, Pines,
& Wambach (1989); these values are shown in parentheses.

The dispersion relation (3.8) can be solved explicitly in the
limits of stiff and flexible vortex lines. For stiff vortices (t > 1)
the coefficient of the third term in equation (3.8) is negligible. In
the long-wavelength limit, kl < 1, it follows that gl ~ kI, and
the frequency in the lowest band is

AY? kA k212
The excitation energy for k = O is
A I \2
~ 04AY = ) — keV . .
hw, ~ 0.4A (7)(80 fm) eV (3.11)

Here we have chosen fiducial values appropriate to the intersti-
tial pinning regions of the inner crust of a neutron star.
If the vortex lines are flexible (t < 1), and if /A2 < 1, then

3

/
/'

®p

N
T\

- \ 4

>
< >

kl

F1G. 3.—Energy spectrum for excitations on an isolated, pinned vortex.
Allowed values of w, fall in bands, separated by gaps. The energy spectrum
begins at w,,.
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ql ~ (n + ). Throughout the first band (n = 0), we have

kA 2t
Wy ~ —4—17 I:l — A—”-z‘ (1 + cos kl)] . (3.12)
The corresponding excitation energy for k = 0 is
A I \2
hwo ~ 120l = | =—— k 3.1
@o <3><50 fm) eV, (3.13)

where we have used fiducial parameters appropriate to the
nuclear pinning regions of the inner crust.

In both the stiff and flexible limits an increase of the velocity
difference v; between the superfluid and the crust, or a decrease
of the wavenumber k, lowers the vortex oscillation frequency.
In Figure 4 we show w,, as a function of the stiffness for differ-
ent values of A. As a general rule, quantum effects must be
considered when the excitation energy is larger than or compa-
rable to the temperature. The internal temperatures of glitch-
ing neutron stars are expected to be in the range 1-50 keV; this
band is shown in the figure. We therefore expect that stiff
vortex lines can be accurately treated classically, while
quantum effects must be considered for flexible vortex lines.

4. UNPINNING RATE WITH QUANTUM TUNNELING

In this section we estimate the unpinning rate as a function
of temperature. At low temperatures, a vortex line can unpin
by the quantum mechanical process of barrier penetration or
tunneling. Whereas classically the vortex must pass over the
activation barrier, in quantum tunneling the vortex line follows
classically forbidden trajectories through the barrier. Quantum
tunneling of a particle depends sensitively on the shape of the
potential and the coupling to a thermal background. The
dynamics of barrier penetration by an extended object, because
of its internal degrees of freedom, has additional complications.
Nevertheless, the quantum tunneling regime, as illustrated in
Figure 2, is determined largely by a single parameter, the cross-
over temperature T,. In this section we present a schematic

3T I T T

Quantum

log hwy keV

Classical —f

l ] ] ]
-4 -2 o 2

log T

F1G. 4—Gap energy in the pinned vortex excitation spectrum as a function
of stiffness, for A = 0.01, 0.5, and 0.99. The horizontal dashed lines bracket the
range in neutron star temperature, 1-50 keV. For this figure we use A = 2 and
a pinning spacing of 50 fm.
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theory which gives unpinning rates of the form shown in
Figure 2.

We begin by considering the simpler, but related, problem
of a particle in a harmonic potential in one dimension. The
Hamiltonian for this problem is

P2 meQZ
“mt T2

4.1)

where m is the particle mass, Q is its displacement, P is its
momentum, and  is the oscillation frequency. To put the
Hamiltonian in the same form as used in Appendix B for a
pinned vortex line, we define conjugate coordinates g =
(mw)*?Q and p = P/(mw)*/?, so that

H=3o(p* +q% . 4.2)

Particle escape is not possible from such a potential extending
to infinity. The problem of interest is the escape of a particle
trapped in a potential of finite height 4. The heavy line in
Figure 5 represents the “true” potential. Since the exact form
of the true potential is unknown, we model it as a truncated
parabola (thin solid line in Fig. 5). The model potential is the
same as that in equation (4.2) for q < q,, zero for g > q,,, and
its height is that of the true potential: A = wg2/2. We approx-
imate the states of the particle by those of an unbounded para-
bolic potential. We take the particle flux out of the well to be
the product of the probability density P at g, and the root
mean square particle velocity (in appropriate units):

R=<g*)'*P(q,) .

Since the true tunneling rate depends on the poorly known
potential barrier, going beyond the simple approximation (4.3)
is not warranted at present. Equation (4.3) contains the correct
qualitative dependence in the physical parameters so long as
the barrier height A4 is much greater than the temperature.

To obtain P(g), we assume a thermal distribution of excita-
tions. The probability of finding the particle in a unit interval
of qis

@.3)

PO=Z71 S ), (@4

"true"

Potential

model —

>
>

Uy q

Fi6. 5—One-dimensional particle potentials considered in the text. The
heavy solid line represents the true potential with activation barrier A =
©4q2/2. The thin solid line is the truncated parabolic potential, wg?/2 for g < q,,
and zero otherwise.
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where W, (g) is the wave function of the oscillator of energy level
n, and Z is the partition function,

0
z=y B

n=0

4.5)

The energy levels of a harmonic oscillator are glven by E, =
ho(n + %). Using the techniques described in Landau &
Lifshitz (1980), we obtain

[ 1 ho\ |M? [ 42 ho\ |
P(q) = | — tanh - = —1-
(9) | tan <2T> exp | % tanh 27/ |
Similarly, we find that the probability density P(p) for a given
interval of momentum space is

4.6)

1 ho\ |12 [ p? ho\ |
P(p) = | — tanh - = —1|. @
(p) D an <2T> exp | tanh ( 2T>_ 4.7)
Using ¢ = 0H/dp = wp, we find
h ho\ |12
22\1/2 _ 2N1/2 _
G {p*) w[ 3 coth < 2T>] . 4.8)

Combining equations (4.3), (4.6), and (4.8) gives an expression
of the form of the classical Arrhenius equation (eq. [2.5]):

A/Tess
b

R ~ve™ 4.9)

where v = w/2n, and

hw hw T,
T = > coth (ﬁ) = T, coth <7§> .

Note that for high temperatures T, reduces to T, and we
recover equation (2.5) for classical thermal activation (with v
instead of v.). For low temperatures, T, ~ hw/2, and the
tunneling rate from the ground state is nearly temperature-
independent.

Now we consider how these results relate to the problem of
vortex unpinning. In Appendix B we show that the Hamilto-
nian for small-amplitude excitations of a pinned vortex about
its equilibrium configuration is

(4.10)

(4.11)

where the wavenumber k labels each independent energy
eigenmode. If an activation energy A, could be associated with
each of the energy eigenmodes, then the vortex unpinning rate
could be obtained in direct analogy with the rate given by
equation (4.9). This association is generally not possible,
however, because the activation barriers are determined by
large displacements of the vortex in its double-well potential,
whereas the eigenmodes correspond to linear perturbations
near the bottom of a single potential well. Nevertheless, one
can construct a packet of eigenstates peaked at wavenumber
k =k, = n/(j + 1)] that has a shape similar to the saddle-
point configuration of the vortex line [where j is the number of
broken pinning bonds in the saddle-point configuration, I is
the pinning spacing, and the characteristic wavelength is twice
(j + DI]. For each saddle-point configuration we identify an
activation energy A; (calculated in LE). We write the
unpinning rate for each j as

4.12)

Rj ~ vje—Ai/Teff.j R

with Ty ; given by equation (4.10), except that o is now
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replaced by w;, defined by

w;=w,, where k=k, =mn/j+1). (4.13)

To agree with R; in the classical limit, we must replace v;
w;/2n by the eﬁ‘ectwe attack frequency v, These two fre-
quencies differ by the “entropy factor ” (see Appendix A); this
uncertainty is small compared with those in our estimate of the
tunneling rate.

The rate given by equation (4.12) has the correct basic form
for the unpinning process, and T, is reasonably well deter-
mined. However, the actual value of R; in the quantum limit,
T < T, is quite uncertain, since the parameters of the potential
enter exponentially in the rate.

5. DISSIPATION AND THE REPINNING LENGTH

We now turn to the issues of dissipation and coupling to the
thermal bath. Dissipation affects both the reaction rate R; and
the repinning distance ¢,. The vortex segment can exchange
energy through the scattering of Kelvin modes with excitations
in the crystal lattice and in the superfluid (Epstein & Baym
1992; Baym, Epstein, & Link 1993; Jones 1992) and by prop-
agation of the energy to different parts of the vortex line, where
eventually it can be shared with the crystal lattice. We expect
that the coupling rate due to the latter process is the most
rapid. The thermal coupling rate y; describes the energy
exchange between the vortex line segment and its environment.
To estimate this rate, we note that the unpinning or repinning
of a segment of length (j + 1) creates excitations with wave-
number near k; ~ n/(j + 1)l. The energy in these excitations
moves away from the segment at the group veloc1ty v,
Ow,/0k. The thermal coupling rate y; for this process is roughly

vy(kj)
Yi~ G+l (5.1)

5.1. Damping and the Unpinning Rate

For classical thermal activation, the unpinning rates R; are
reduced if the thermal coupling is either very rapid compared
with the attack frequency, or very slow (see, e.g., Hinggi,
Talkner, & Borkovec 1990). The rate given by equation (2.5) is
an upper limit which holds for moderate damping, v; ~ ;. For
low y; the rate is reduced because the classical phase -space
trajectories over the activation barrier are depleted by the
escape process, and are only slowly refilled by interaction with
the thermal bath. At very large y;, on the other hand, the
probability flux over the barrier is diminished by repeated
randomizations of the trajectories. The qualitative behavior of
the classical rate as a function of the damping is illustrated in
Figure 6.

The picture differs for quantum tunneling. Since tunneling
proceeds mainly from the ground state, there is no depletion
problem, and the rate is maximum at low damping. For strong
damping, dissipation increases the effective potential barrier
and exponentially reduces the tunneling rate. As we show
below, the latter effect is unimportant for vortex motion in
neutron stars because dissipation is small in the regions of the
star where quantum tunneling is significant.

Using equations (3.10) for stiff vortex lines (z > 1,j > 1), and
equation (5.1), we obtain

2
Y; 2nt

v, AR 62
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Y

F1G. 6.—Classical rate as a function of damping for a given temperature
and barrier height. The rate is maximized for moderate damping, i.e., for y
comparable to the attack frequency.

In this limit, the length of the saddle-point configuration with
the lowest activation energy is ~j, I, and we found in LE (eq.
[B15]) that j, = t'?F(A). In general F(A) is complicated;
however, for A <%, j, ~3t"2A~ Y4 which gives y;/v; ~ 2.
Except for A very close to unity, where j, grows as (1 — A)™%,
the ratio y,/v; does not differ significantly from unity. As Figure
4 illustrates, stiff lines likely unpin by classical thermal activa-
tion. The condition that y;/v; ~ 1 is consistent with our use of
the maximum unpinning rate.

In the flexible limit (t < 1) a vortex segment unpins by
breaking a single pinning bond, and the adjacent sites are
essentially unaffected. In this case j = 1. Equations (5.2) and
(5.1) now give y;/v; = 2nt/A'?, which is <1 for A not too
small. The low damping rate is due to the inhibition of the
energy transport by reflections at the pinning sites. Since flex-
ible lines unpin through quantum tunneling for cooler neutron
stars (see Fig. 4), the small value of y; justifies our neglect of the
thermal coupling in the unpinning rate of equation (4.12).

5.2. Repinning Length

The radial creep rate of vortex lines is given by equation
(2.3), where ¢, is the radial distance the vortex segment moves
before repinning. These radial translations are determined by
the dissipative forces affecting the motion of free segments as
well as other factors, such as the orientation of the vortex
through the lattice and the distribution and nature of lattice
imperfections. Since a stiff segment is effectively damped on
time scales comparable to its oscillation time in the pinning
potential well, such a segment, once free, is readily captured by
one of the first sets of appropriate pinning sites it encounters.
In this case we take £,(j) ~ l,,;,, Where [;,, the minimum dis-
tance between pinning sites, is taken to be the nearest-neighbor
separation between nuclei. In the case of flexible vortex lines,
the damping is somewhat smaller, and the repinning distance
may be longer than [;,. However, given the uncertainties in
the quantum tunneling rate, we also use £,(j) ~ l,,;, in this
limit. Values of ;,, from LE, are given in Table 1.

min>

5.3. Unzipping

Pinning sites at the ends of an unpinned segment are subject
to a large Magnus force per site and tend to break away or
“unzip.” We cannot determine accurately the final length of a
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segment after unzipping; however, a number of factors contrib-
ute to limiting the unzipping process. Any variations in the
effective pinning strength along the line inhibit further
unpinning. For example, variations in the crystal structure, due
to changes in orientation or the presence of dislocations, cause
some segments of a vortex to be more strongly pinned than
other segments. The kinklike structure of a vortex threading a
lattice along an axis other than a symmetry axis provides a
natural maximum unzipping length. Unzipping straightens
part of the segment and bends other parts. In either case, the
process is likely to terminate at the kinks in the line (see Fig. 1).
In our estimates we will ignore the amplification of the vortex
creep rate by unzipping, and take n; = 1in equation (2.3).

6. VORTEX CREEP RATE IN THE NEUTRON STAR
INNER CRUST

In this section we first evaluate equation (2.3) for the vortex
creep rate for stiff and flexible vortices. Second, we estimate the
parameters describing the vortex creep steady state for neutron
stars between 103 and 106 years in age. Third, we describe the
response of the superfluid and the crust to a glitch. Finally, we
discuss the limitations of our analysis.

6.1. Stiff Vortex Lines
Stiff vortex lines unpin by disengaging j > 1 pinning bonds
at once. In LE we found that segments of length ~j, | have the
minimum activation energy A4,. In Figure 7 we show A4, over
the full range in A for different values of the stiffness. The
activation energies for arbitrary length segments are related to

A, by
J 2 j* ] *

The activation energy A; has a minimum at j = j,, as required.
Since j, > 1 for stiff vortices, we may approximate the sum

in equation (2.3) as an integral in j, whose integrand is peaked

near j = j,. Evaluating the integral by the method of steepest

6.1)

log A./U,

F1G. 7.—Activation energy in units of the pinning energy, as a function of
the dimensionless superfluid lag velocity for different values of the vortex
stiffness. The larger values of © correspond to breakaways of longer segments,
and hence have large activation energies.
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descent, we obtain the creep rate for t > 1:

2nT, 12

eff % — Ay/Tests

Uer = Vet lmin( A e o/ Tetts s
*

(62)

where v = Sw;, /2n. Here T.¢, and w;, are evaluated at k =
n/(j, + 1)l (see eq. [4 13]). The entropy factor S is discussed in
Appendix A, and w;, is obtained from equation (3.10).

6.2. Flexible Vortex Lines

For flexible vortices, the dominant contribution to the creep
rate is due to single-site breakaways. Multisite breakaways,
while possible, contribute negligibly, since they involve much
larger activation energies. The creep rate for flexible vortices
(t < 1)is then
—A1/Tess,1 ,

(6.3)

1, and o, is obtained from equation

Uer = Vesr lmin (2

where v = (Sw;/2m);-
(3.12

The activation energy depends on the distribution of pinning
spacings I; it is greater for smaller /. Since the unpinning rate in
equation (4.12) decreases exponentially as the activation ener-
gies increase, vortex lines spend most of their time in configu-
rations with the average spacing between pinning sites near its
minimum value I;,. This state with [ ~ [ arises in two ways:
A vortex can bend on a length scale 2j, [ to align with the
crystal orientations (see Link & Epstein 1993 and Figure 1
above), or the vortex lines can creep into regions where the
crystal orientations are aligned with the vortices. In either case
the pinning spacings are best approximated by ;..

6.3. The Vortex Creep Steady State

In the steady state, the change in the superfluid rotation rate
is related to the spin-down rate t_;' of the crust by

Q Q 1

L=, 4

Qs Qc tsd (6 )
Here we are assuming for simplicity that (Q, — Q.)/Q, < 1.
From equation (2.4) we find for uniform rotation of the super-
fluid (0Q,/0r = 0) that

R,
o 2tsd ’

where we use the radius of the star, R, for the characteristic
polar distance.

For given internal temperatures and spin-down rates, equa-
tion (6.5) can be equated to equations (6.2) and (6.3) for v, to
obtain the quantities j,, T, = hw;,/2, and T, ; these values
are listed in Tables 2 and 3 for the pinning parameters of Table
1 and the temperatures calculated by Van Riper, Link, &
Epstein (1993). The calculations of Van Riper et al. (1993)
include heating effects of vortex creep using the formulation
given here. Table 2 gives the internal temperatures for the
“standard” cooling calculations for a 1.4 M neutron star
with superfluid neutrons, the Friedman & Pandharipande
(1981) equation of state, and a magnetic field of 10*> G. Table 3
presents calculations for accelerated cooling due to a quark
liquid in the stellar core. In these tables the stellar age is t,4/2
(corresponding to a breaking index of 3). We take the entropy
factors to be S =4 for > 1 and S = 10 for © < 1 (see Appen-
dix A).

For the interstitial pinning regions (log p, < 12.9), steady

v (6.5)
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state creep could be maintained by the breakaway of segments
involving ~10-1000 pinning sites. In the regions of nuclear
pinning, creep proceeds by the breaking of one or two pinning
bonds for the Epstein & Baym (1988) pinning parameters, and
by the breaking of ~10-100 sites for the weaker nuclear
pinning energies. The nature of the unpinning process is reflect-
ed in the values of Ty, /T. If T, /T ~ 1 the unpinning pro-
ceeds primarily by classical thermal activation, while if
T,/ T > 1it proceeds by quantum tunneling. We find that in
the interstitial pinning regions unpinning is classical. In the
nuclear pinning regions quantum effects are important, espe-
cially for older and cooler stars. With the Epstein-Baym
pinning parameters quantum tunneling must be included for
stars as young as the Crab pulsar. For weaker nuclear pinning,
quantum effects become significant for internal temperatures
below ~ 10 keV; these low temperatures are reached only in
old stars (=10% yr) with standard cooling, but are quickly
obtained (< 10° yr) for accelerated cooling.

6.4. Postglitch Response

We now examine the response of the superfluid and the crust
to a glitch. Our approach is similar to that of Alpar et al. (1989)
but uses the vortex creep theory developed here. For simplicity
we consider a single zone of pinned superfluid where the super-
fluid has an angular velocity Q; and moment of inertia I,,. The
behavior of the crust is given by

1O +1,09,=N,,, (6.6)

where N, is the external breaking torque and I, is the total
moment of inertia of the crust and all components tightly
coupled to it. Since the core superfluid is coupled to the crust
over time scales of minutes (Alpar, Langer, & Sauls 1984b),
I, =1 —1,, where I is the total stellar moment of inertia. For
neutron star masses near 1.4 My, and reasonable nuclear
equations of state, I, < 1072,

In the steady state, Q =Q = —|Q_|, so that N, =
—1|1Q,|. The lag between the superfluid and crust, o =
Q. — Qc, evolves as
(1Qu1+9Q).

wzq—Q=% (6.7)

Using equation (2.4) for €, and neglecting vorticity gradients

(i.e., 0Q,/0r = 0), we obtain
I Q 1 v
D=— -2-= =—|Q ——=1, (6.8
=1 ('Qool 2 R, vcr> Icl ml(l Ugﬂ)) (6:8)

where we take the distance of the pinning region from the
rotation axis to be the radius of the star, R, and define v, , =
R, 1/2Q,.

The activation energy derived in LE is a function of the lag
frequency.? The creep velocity in equations (6.2) and (6.3) can
be expressed as

Ver = V(@) exp [ — A(w)/ Teer(@)] (6.9)

(we drop the asterisks here and in the following). Treating the
deviation of the lag from its steady state value o, as a pertur-
bation, we expand v, as

= vcr,oo ea(m—ww) >

v (6.10)

cr

2 In LE we used the dimensionless lag (v; — v,.)/vp = @R /vp.
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TABLE 2
f STANDARD COOLING, B = 10'2 G

o0
& Tt logo  ufus i T, T /T
L. keV  yr gm cm™3 keV d
40 103 11.83 0.015 3200 0.10 1.0 0.22
11.99 0.039 1200 0.12 1.0 0.64
12.18 0.069 580 0.15 1.0 1.3
12.41 0.15 240 0.17 1.0 3.1
12.79 0.31 96 0.23 1.0 6.9
12.98 0.24 6.6 44 1.1 320
13.18 0.59 1.0 75 1.3 4900
1353 0.76 (059)° 1.0 (3.8) 87 (19) 1.4 (1.0) 680 (240)
13.89 067(0.82)  1.0(11) 84(45)  1.3(1.0) 4300 (53)
14.12 073 (0.90)  2.2(120) 51(0.10)  1.1(1.0) 2000 (2.2)
24 10*  11.83 0.023 2000 0.10 1.0 10
11.99 0.059 740 0.12 1.0 29
12.18 0.10 370 0.15 1.0 58
12.41 0.22 160 0.17 1.0 120
12.79 0.41 68 0.22 1.0 240
12.98 0.30 5.0 43 1.3 1.1 x 104
13.18 0.63 1.0 75 1.7 1.3 x 10°
13.53 0.78 (0.69) 1.0 (3.3) 86 (18) 1.9 (1.0) 1.9 x 10% (6300)
13.89 069 (0.87)  1.0(12) 83 (3.7) 1.8 (1.0) 1.2 x 10° (1100)
14.12 073 (0.93)  2.2(130) 51(0.085) 1.4(1.0) 4.6 x 10 (45)
15 10° 11.83 0.035 1300 0.10 1.0 440
11.99 0.086 490 0.12 1.0 1200
12.18 0.15 250 0.14 1.0 2400
12.41 0.30 110 0.16 1.0 4600
12.79 0.52 53 0.22 1.0 7400
12.98 0.34 44 42 1.6 3.6 x 10°
13.18 0.63 1.0 75 2.5 3.8 x 10°
1353 077 (077)  1.0(3.4) 86 (16) 29 (1.1) 5.6 x 105 (15 x 10°)
13.89 069 (091)  1.0(13) 83(3.2)  2.8(1.0) 3.5 x 10° (2.4 x 10%)
14.12 078 (0.95) 1.0 (140) 16 (0.072) 1.1(1.0) 8.1 x 105 (960)
4.3 108 11.83 0.10 410 0.098 1.0 3.8 x 104
11.99 0.23 160 0.11 1.0 8.9 x 10*
12.18 0.36 91 0.13 1.0 14 x 10°
1241 0.59 52 0.15 1.0 1.7 x 10°
12.79 0.80 45 0.17 1.0 1.3 x 10°
12.98 0.35 4.1 42 4.9 1.1 x 107
13.18 0.62 1.0 75 8.7 1.2 x 108
13.53 0.76 (0.88)  1.0(42) 86 (12) 10 (1.6) 1.7 x 107 (2.2 x 106)
13.89 068 (0.97)  L.0(18) 84(20)  9.8(1.0) 1.Ix 10 (2.6 x 10°)
14.12 085 (0.98)  1.0(190) 16 (0.044) 1.9 (1.0) 1.6 x 107 (1.1 x 10%)

 Values in parentheses are estimates based on the gap calculations of Ainsworth et al. 1989.

where is the relaxation time, and

__ 0 |[Aw 1
“=‘aw[n"]%‘ (.11 to = g @ — ) (6.15)

The response to a perturbation in  is given by

is the offset time. The relaxation time depends on the pinning

o~ I 10, | (1 — et@0) | (6.12) parameters, while the offset time depends only on the change in

I, the lag across the glitch. Relaxation times for neutron stars

During a glitch the crust speeds up, while at least part of the undergoing standard and quark cqoling are given in Tables 2
superfluid slows down, and the glitch decreases w below . and 3. The response of the crust is given by

Taking the lag just after the glitch to be w; (0, > w; > 0), the
solution to equation (6.12) is O =10, | — {Ig o . (6.16)
I . 1

= I, €2, | |:1 1+ (e — l)e"/"] ’ 6.13) Immediately after a glitch, |Q, | > |Q,, |. Equations (6.13) and

where (6.16) show that the slow-down rate Q. remains essentially

unchanged for an interval t,,, before relaxing toward Q_, over a

t = 1 (6.14) time scale t,. The dependence of the response on the size of the

"T1Q, |a ' glitch is nonlinear. However, for sufficiently small glitches,
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TABLE 3
QuaRrk COOLING, B = 1012 G

T tage log p., Uﬁ/va J. T, Teﬂ. /T t,
keV  yr gm cm™ keV d
4.0 103 11.83 0.13 320 0.097 1.0 1.8
11.99 0.29 130 0.11 1.0 3.9
12.18 0.43 75 0.13 1.0 5.8
12.41 0.66 48 0.15 1.0 6.1
12.79 0.84 48 0.15 1.0 4.1
12.98 0.40 3.6 41 5.2 450
13.18 0.67 1.0 75 9.3 3900
13.53 0.79 (0.91)* 1.0 (4.5) 86 (11) 11 (1.6) 580 (67)
13.89 0.72 (0.97) 1.0 (19) 82 (1.8) 10 (1.0) 3600 (7.9)
14.12 0.87 (0.99) 1.0 (200) 16 (0.039) 2.0 (1.0) 530 (0.33)
2.0 10* 11.83 0.22 180 0.093 1.0 83
11.99 0.43 80 0.10 1.0 140
12.18 0.60 54 0.13 1.0 170
12.41 0.79 50 0.12 1.0 120
12.79 0.90 55 0.12 1.0 73
12.98 0.38 3.7 42 10 1.3 x 104
13.18 0.65 1.0 75 19 1.2 x 10%
13.53 0.78 (0.91) 1.0 (4.6) 86 (11) 22 (2.7) 1.8 x 10* (1900)
13.89 0.71 (0.98) 1.0 (22) 83 (1.4) 21 (1.0) 1.1 x 10° (140)
14.12 0.87 (0.99) 1.0 (230) 16 (0.030) 3.9 (1.0) 1.6 x 10* (5.9)
11 10° 11.83 0.33 110 0.090 1.0 3300
11.99 0.57 60 0.10 1.0 4400
12.18 0.72 48 0.12 1.0 4200
12.41 0.87 56 0.097 1.0 2300
12.79 0.94 62 0.094 1.0 1400
12.98 0.37 3.9 42 19 3.8 x 10°
13.18 0.64 1.0 75 34 3.8 x 108
13.53 0.77 ( 0.91) 1.0 (4.5) 86 (11) 39 (5.0) 5.6 x 10°% (5.9 x 10%)
13.89 0.69 (0.99) 1.0 (25) 83 (1.1) 38 (1.1) 3.4 x 106 (2800)
14.12 0.86 (0.99) 1.0 (260) 16 (0.024) 7.1 (1.0) 5.0 x 10° (110)
0.62 108 11.83 0.45 79 0.088 1.0 1.1 x 108
11.99 0.70 53 0.093 1.0 1.1 x 108
12.18 0.82 53 0.095 1.0 8.5 x 10*
12.41 0.91 63 0.079 1.0 4.5 x 10*
12.79 0.96 69 0.076 1.0 2.8 x 10*
12.98 0.35 4.1 42 34 1.1 x 107
13.18 0.62 1.0 75 61 1.2 x 108
13.53 0.76 (0.90) 1.0 (44) 86 (11) 70 (9.1) 1.7 x 107 (1.9 x 10°)
13.89 0.68 (0.99) 1.0 (27) 84 (0.95) 68 (1.2) 1.1 x 10® (5.9 x 10%)
14.12 0.86 (0.996) 1.0 (300) 16 (0.020) 13 (1.0) 1.5 x 107 (2200)

 Values in parentheses are estimates based on the gap calculations of Ainsworth et al. 1989.

to < t,, and the response of the crust is given by

o, = —|Qw|<1 +£2t—0e“‘/">

e (6.17)

and depends linearly on the size of the glitch.

Figure 8 shows the dependence of the relaxation time (eq.
[6.14]) for the creep process, whether classical or quantum, on
pinning parameters, effective temperature, and spin-down rate
for three pulsars. For the scaling chosen, the shape of the curve
and position of the maximum differ little between the three
pulsars. Since log t, R, | Q. |/vg S —2.0, we obtain a lower limit
on the critical velocity. Table 4 shows the lower limits on vg
inferred from the shortest relaxation times following selected
pulsar glitches. The most stringent limit, vy = 2.5 x 10° cm
s~1,is posed by a glitch in the Crab pulsar. The values of vg in
Table 1 are consistent with this lower limit almost everywhere
in the inner crust.

The two branches of the function in Figure 8 can be

obtained analytically by considering how ¢, scales with the
temperature and pinning parameters in two limits in which
the activation energies derived in LE have simple forms. In
the continuous breakaway limit, when v,/vg = wR /vg > 0.75
(or, equivalently, A < %), the activation energy is A =
5.09U,t'/2A%4, In this regime,

. Up 2Q, v, N 1/5< T \*°
t, ~0.22 1 . .
=0 Rslﬁwl[n<Rs!le>] U,ee) - 19

The relaxation time depends strongly on the temperature, the
pinning strength, the stiffness, and the critical lag, but is quite
insensitive to the factor v, appearing in the creep rate. For
wR /g <1 [or (1 —A) < 1], the activation energy is A4 ~
0.54vg U, 1'/2/R, w, which gives

g I:l“( 20 v, )]“2 U,t'/?
Rsl Quo | Rs ' Qoo l T;ff ’

t, ~0.54 (6.19)
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FiG. 8—Relaxation time ¢, as a function of pinning energy U, for three
pulsar spin-down rates.

For a neutron star pinning layer to be in this regime it must
have low pinning energies (see Tables 1 and 2).

6.5. Regions of Applicability

In this study we have made several simplifying assumptions
which permit us to derive compact expressions for the creep
rate, but limit the domain of applicability of the results. One
critical assumption is that a pinned vortex is bound to a single,
linear array of pinning sites. This linear pinning condition is
violated if the dimension ¢ of the vortex core is comparable to
the separation I ;, between pinning sites. For the parameters
listed in Table 1, the condition & < I, is well satisfied for
stellar densities p, < 1.5 x 10'* g cm ™. In the higher density
parts of the inner crust (perhaps extending as far as
~24 x 10'* g cm™3 and comprising up to ~10% of the
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moment of inertia of the inner crust) the superfluid gaps are
smaller and the vortex core dimension, £, can become so large
that vortices become thick enough to encompass two or more
adjacent nuclei. (For the gap calculations of Chen et al. 1986
and Ainsworth et al. 1989, & > I ;, occurs at somewhat lower
densities and the neutrons are normal at the highest densities
of the inner crust.) Vortices in these regions may bind to the
lattice by “superweak pinning” (Alpar et al. 1984a), or they
may remain unbound, allowing the superfluid to nearly coro-
tate with the crust (Jones 1990); in either case the creep rates
derived in this paper cannot be used. The linear pinning
approximation also requires that the vortex lines do not
strongly interact with adjacent pinning sites before overcoming
the activation barrier. In the continuous unpinning limit dis-
cussed in LE we found that the vortex line bowed out a
maximum distance s,,, before reaching the saddle point or
activated state. Our approximation is justified as long as
Smax < Imin — 2T, that is, the vortex must not bow out so far
that it reaches into the pinning potential of a nucleus a lattice
spacing [_;, away. This condition corresponds to vs5 > (Vs)min-
For regions of the crust in which we expect continuous break-
away, we have solved for (vs),,;, using the expressions given in
LE (Appendix B) for the vortex shape; values of (vs)mi, are
listed in Table 1. At smaller differential velocities, the attrac-
tions of the adjacent pinning sites reduce the activation ener-
gies below those used here.

Ruderman (1976, 1991) has pointed out that the Magnus
force on vortex lines can generate sufficient shear stresses to
crack the inner crust material. According to his estimates,
cracking occurs in the nuclear pinning regions for relative veloc-
ities v; < vg (in the interstitial pinning regions, and probably in
the regions with ¢ = I;.., crust cracking requires relative veloc-
ities greater than vy and therefore does not occur). Ruderman
speculated that crust cracking allows vortex lines embedded in
plates of crust material to move in the polar radial direction
(while remaining essentially at a fixed distance from the star’s
center). Such plate tectonic motion would move vortex lines in
the nuclear pinning region much more rapidly than the vortex

TABLE 4
LOWER LIMITS ON vy

PSR I€2] glitch date t, vp >
-3 d cm s™!
0833-45 (Vela) 1.0 x 10~ 2/69° 10.0 9.0 x 103
8/71° 4.0 3.6 x 10%
9/75° 4.0 3.6 x 103
7/78° 6.0 5.5 x 10%
10/81¢ 6.0 5.5 x 103
8/82¢ 3.0 2.7 x 103
7/85° 6.5 6.0 x 10°
12/88¢ 4.6 4.6 x 10°
12/88¢ 0.4 720
0531+21 (Crab) 2.5 x 107° 2/75¢ 10.88 2.5 x 10°
8/86/ 2.5 5.5 x 104
0355+54 1.1 x 10~12 1/859 44 440
0525+21 1.8 x 10~14 1/74% 143 23

2 Cordes et al. 1988.

® McCulloch et al. 1987.
¢ McCulloch et al. 1990.
4 Flanagan 1990.

¢ Lohsen 1981.

f Lyne & Pritchard 1987.
8 Lyne 1987.

" Downs 1982.
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creep process. For a slowing neutron star, the superfluid vor-
tices drag plates away from the stellar rotation axis. The matter
that is depleted from near the axis is replaced by core material,
and the matter that accumulates at the equator is subducted.
As a plate is subducted to higher pressure, its composition
changes through weak interaction processes and by neutron
captures or emission. However, since the charged-particle reac-
tions are frozen out in a cool neutron star, the number of nuclei
cannot change, and the newly subducted matter cannot come
into complete equilibrium with its surroundings. Using the
calculations of Haensel & Zdunik (1990) for an accreting
neutron star as a guide, we estimate that the density difference
between the subducted matter and the ambient matter is >
10%. Since the change in the gravitational potential across the
inner crust is 210~ 3¢, the energy required for subducting a
plate or pulling up new matter is 2100 keV nucleon!. This
energy must be compared with the free energy released when
vortices move away from the rotation axis. The latter quantity
is ~(v, — v,)vy < vpv; ~ 1 keV nucleon™* for v; ~ 107 cm s ™!
and v, ~ 10® cm s~'. For young, decelerating pulsars, the
energy released is insufficient to drive plate subduction and
matter upwelling. Models for neutron star plate tectonics
which do not involve subduction are being studied (M. Ruder-
man 1992, private communication), but at this time it seems
likely that vortex creep is an important mechanism for vortex
motion in the nuclear pinning regions as well as in the intersti-
tial pinning regions.

In summary, the vortex creep theory developed here is gen-
erally applicable to vortex motion in the inner crust with two
important exceptions: (1) It cannot describe vortex creep in the
low-density parts of the inner crust when the differential veloc-
ity between the crust and the superfluid is small, i.e., when
V5 < (V5)min; Se€ Table 1. (2) The present formulation does not
apply to regions with thick vortices & 2 1.,

7. DISCUSSION

We have presented a microscopic description of vortex
unpinning and creep. Our treatment includes physics not con-
sidered in earlier studies. In particular, we use improved activa-
tion energies which include the effects of vortex tension, and we
allow for the quantum character of vortex excitations. The
creep rates we obtain (eqs. [6.2] and [6.3]) are dominated by
thermal activation for T > T, and quantum tunneling for T' <
1;; the quantum turnover temperature T, = hw;, /2 is listed in
Tables 2 and 3 for various stellar densities as a function of
pulsar age and for two cooling scenarios: “standard cooling”
and enhanced cooling for a star with a quark core.

Postglitch timing data currently provide the best probe of
neutron superfluid dynamics. The dynamic response of a
pulsar after a glitch is likely due to the gradual reestablishment
of rotational equilibrium between the superfluid in the inner
crust and the rest of the star; in § 6.4 we examined this
response. A given layer of the inner crust can produce the
observed postglitch response if it equilibrates with the correct
time scale and has sufficient moment of inertia to yield the
observed magnitude of the spin rate change. Table 1 shows the
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distribution of superfluid moment of inertia through the inner
crust, I 'dI/d(log,, p,). The predicted relaxation times are
given in Tables 2 and 3.

Postglitch relaxations in the Crab and Vela pulsars occur
over time scales of ~4-10 days and ~ 3-500 days, respectively,
and must involve 1% of the total moment of inertia of the
star (Pines & Alpar 1992; Link, Epstein, & Van Riper 1992).
The pinning energies based on the Ainsworth et al. superfluid
gaps yield appropriate relaxation time scales for densities >
10'* g cm ™3 (values in parentheses in Tables 1-3). The regions
of the inner crust with these densities have sufficient moment of
inertia to account for postglitch relaxation. The interstitial
pinning regions have relaxation times in the required range;
however, less than 0.1% of the moment of inertia of the star
resides in these regions. The regions of strongest nuclear
pinning also cannot be responsible for the observed postglitch
relaxations, since they have relaxation times that are far too
long, even though they possess sufficient moment of inertia.

The vortex creep theory developed here yields a lower limit
on the critical velocity difference between the crust and the
superfluid of vy 2 2.5 x 10° cm s~ ! for that component of the
superfluid with the shortest response time in the Crab pulsar
(see § 6.4 and Table 4). All pinning layers considered, except
the lowest density interstitial regions (log p, < 12.41), are con-
sistent with this limit.

Glitches may originate in regions of the inner crust different
from those responsible for the observed postglitch responses.
As pointed out in LE, all layers of the nuclear pinning regions
can provide enough angular momentum for a glitch. However,
if neutron stars have soft or moderate equations of state, the
interstitial regions cannot store enough angular momentum to
produce glitches.

Internal heating accompanies vortex creep, as the superfluid
loses rotational energy. Predictions for the surface temperature
have been made in the context of a cooling model and com-
pared with observations. Shibazaki & Lamb (1989) studied
cooling of stars with soft and stiff equations of state, and
obtained upper limits on the average critical lag velocity vy in
nine pulsars. The critical velocity depends sensitively on the
assumed equation of state, but the largest upper limits are
~107 cm s~ . The highest critical velocities (2 10® cm s~ !) we
have considered in the nuclear pinning region are inconsistent
with this constraint, provided that such regions attain a steady
state. However, since such regions would have extremely long
relaxation times, they would remain almost completely decou-
pled from the crust between glitches and could contribute little
to heating by vortex creep. These issues are discussed in more
detail in Van Riper et al. (1993).

We thank K. A. Van Riper for providing us with the results
of his neutron star cooling calculations. It is a pleasure to
thank I. Wasserman, G. Miller, and especially F. K. Lamb for
valuable discussions. This work was carried out under the
auspices of the Department of Energy and supported in part by
National Science Foundation grants DMR 88-18713 and
DMR 91-22385.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...403..285L

No. 1, 1993 SUPERFLUID VORTEX CREEP 297
APPENDIX A

CLASSICAL RATE THEORY FOR VORTEX LINES

Here we derive the rate for a vortex line to move classically from a pinned configuration, over an activation barrier, to some other
configuration. The process is illustrated in Figure 9, which shows the pinned line (p) and the saddle-point configuration or activated
state (a) of the line for four broken pinning bonds; the Magnus force is indicated. Figure 10 illustrates the variation of the vortex line
energy with displacement. The energy is a minimum in the pinned state, rises to a maximum at a, and declines for larger
displacements. The activation energy A; (j = 4 for this illustration) is the difference between the energies at a and p (vortex
activation energies are examined at length in LE). There are many other vortex configurations or paths that the vortex could follow
from the pinned configuration to the unpinned configuration; however, these paths involve larger changes in the vortex energy than
that illustrated in Figure 10.

In classical transition state theory the probability of finding the vortex near the activated state is assumed to be set by thermal
equilibration. This approximation is reliable when the escape rate is relatively small, which is the case when 4; > T. In addition, the
classical description of the lines is useful if the energies of the vortex oscillations are significantly less than the thermal energy.

In thermal equilibrium the probability of finding the vortex line in the activated state or in the pinned state is proportional to the
corresponding partition functions Z, or Z,. These partition functions are

© E(;)
Z,=Y exp(— T)’ (A1)
=1

where E$ is the energy of the /th energy level of state s (s = a or p).

If we measure the energy from the unexcited, pinned state, then E% is the sum of all the excitation energies of the individual
oscillatory modes, and the partition function can then be written as the product of the partition functions of the individual modes. If
there are M modes in the pinned state, then

Z,= ﬁ Zpis (A2)

d 1\ ho,; 1 hw,;
Z,= ..;o exp [~ <n + 5) ——Tﬂ] =3 csch (2—7f"> , (A3)
,; is the frequency of mode i in the pinned state and (n + %)hwpi are its energy levels. In the high-temperature, classical limit we
have T » hw, and Z ,; > T/hw ;.

Before evaluating the partition function for the activated state, we note that this state has one fewer oscillatory modes than the
pinned state. Small displacements of the fundamental mode from the activated state a are unstable (the energy in Fig. 10 is convex
about a), and no oscillation occurs. It is precisely this unstable (translational) motion that allows the vortex segment to escape from
the pinning well. Nevertheless, it is computationally convenient to associate an oscillatory frequency w,, with the fundamental
mode in the activated state. We therefore imagine that there is a fictitious restoring force pulling the vortex back to configuration q,
as indicated by the dashed line in Figure 10. After we obtain the expressions for the unpinning rate, we let the fictitious force vanish
so that w,; — 0. The fundamental mode in the pinned state p oscillates with frequency w,; (note that in the text, following eq. [4.13]
w; is used for w,,).

where

f
>
o
[ &N
()
C
[¥8]
T fmag
a
P .
@ o o o o @ Displacement
FiG. 9 FiG. 10

Fi1G. 9.—Pinned state p and activated state a of a vortex segment
FIG. 10.—Energy as a function of displacement of a vortex segment. For the segment to unpin, it must overcome an energy barrier of height 4;. The dashed line
indicates the potential corresponding to the fictitious restoring force in the saddle-point configuration.
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The energy in the activated state is the sum of the activation energy A4 ; and the energies of the individual oscillatory modes. We
have

A\ M
Za = e&xXp <_ J) l_l Zai s (A4)
T) =1
where
1 ha,; T
Zai = —2- CSCh <—27> _’T>hwai hwa,. N (A5)

and w,; are the frequencies of the modes in the activated state.
The unpinning rate R; is given by the probability of the vortex being found in the activated state multiplied by the characteristic
frequency w,, /2 for the fundamental mode in this configuration:

Za Way
R=—"——"=
' Z,+Z, 2n
~ 2ot oyp _4 I (22
T 2nm T) =2 \wg
A
= Vg EXP <—7f> (A6)

Each term w,;/w,; gives the ratio of frequencies of mode i in the pinned state to the frequency of the corresponding mode in the
activated state (i.e., the mode with the same number of nodes). The product of these ratios is called the entropy factor S, and the
effective attack frequency can be written as v, = w,, S/27. Since the frequency w,; does not appear in this last expression for R "
setting the fictitious restoring force to zero does not change the result.

We now estimate the entropy factors in the continuous breakaway and single-site breakaway limits.

Al. CONTINUOUS BREAKAWAY

In the continuous breakaway limit the pinning density in the dynamic equation (3.5) for vortex oscillations is n,(z) = 1/I. The
spectrum of modes for a vortex line with an arbitrary pinning force is given by the eigenvalue equation

T 2 Sol2)
[—Eﬁ—m €+(2) = we(2), (A7)
where w is an eigenfrequency. We need not consider the € _ solutions, since they are complex conjugates of the solutions € ,. We take
the vortex line to be of length L with fixed endpoints. For the pinned state, f, is independent of z (and negative) and the solutions are

€n=A,cosk,z, n odd ,

: (A8)
=A,sink,z, neven ,
where n is an integer, and k, = nn/L. We chose a normalization 4, = (2/L)'/2, so the eigenfunctions €, , are orthonormal,
Je";,,e,rndz =1.
L
The frequencies are
Tky o
pn=z,;_m5wfn+w0’ (A9)

where w, = Tk2/p, k is the frequency in the absence of the pinning potential, and w, is the gap frequency (see eq. [3.10]).

To determine the entropy factor, we require the mode frequencies in the pinned state and in the saddle-point configuration at the
top of the activation barrier. However, the expression for the saddle-point configuration obtained in LE is fairly complicated and
finding the normal modes about this solution would be difficult and not very informative. Instead, we approximate the saddle-point
configuration by taking the vortex line to be displaced beyond the range of the pinning potential for | z| < d/2, and to remain pinned
for |z| > d/2, where d ~ jl is the length of the segment that unpins. We assume the transition near | z| ~ d/2 is sufficiently gradual
that the bending of the vortex line does not contribute significantly to the mode frequency. If we write the eigenfunction equation
(A7) for the pinned line as

Ly = Wpp€sp s (A10)
where the operator & is
T 0°
=_pslc52_2+w0’ (All)
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then the dynamic equation for oscillations about the model saddle-point configuration is equivalent to adding a perturbative

id potential to &£:

V@)= —w,, |z|<d/2,
o (A12)
=0, |z|>d/2.
The frequency w,, of the activated state can be found from first-order perturbation theory. The frequencies w,, are obtained using
the operator &' = £ + V on the unperturbed eigenfunctions, € , ,,:
$/€+n = Wgp €4y - (A13)

Substracting equation (A10) from equation (A13), and using the orthonormality of the €, ,, gives the frequency shift to first order:

L/2
A(Dn = Wgy — Wpy = J‘ dz €’:.,,(Z)V(Z)€+"(Z) . (A14)
-L/2
We find
d sin k,d
Aw, = _wOZ(l +W), n odd, (A15)
d sin k,d
Aw, = —w, I (1 - k.d ), n even . (A16)

First-order perturbation theory is valid when the frequency shift Aw, < w,, i.e., d < L. In this limit the ratio of the frequency in the
pinned state to that in the activated state for a given mode is

14 i d
9@:1+w01[———— (cin k, dyk, ] (A17)
w, L wf,,+w0

an

where +/— corresponds to n odd/even. If the total number of modes is M, the entropy factor is obtained from

M M :
InS= Zlneﬂ)zwoi 1 £ (sin k,d)/kyd (A18)

n=2 an L n=2 cufn + o

where n = 1 corresponds to the fundamental mode. The (sin k,d)/k,d terms change slowly in magnitude while oscillating in sign
with each n, giving a large degree of cancellation, and to a good approximation they can be neglected. Converting the sum to an
integral, we find that the first term gives

d p;kwg [® dk d(p.x vz A4
InS ~-=% === == , A19
f n T _[, k? + pyxwo/T 2 < T “° \/511/2 (AL9)

where we used equations (3.7) and (3.9) in the last step. In LE we found that the characteristic value of j is j, oc t'/2. For the
particular case of A < 4, j, = d/I = 3.242t*/2/A'*, and we find S = ¢22°2 ~ 10. Accounting for the A dependence of S for A > 1, we
find 10 < S < 10° for A < 0.7, and in this range the A-dependence of S does not affect the creep rate significantly. As A — 1, both Jx
and § diverge. However, for A > 0.1, j, 2 10 and we expect that our assumption j, I/L < 1 breaks down.

A2. SINGLE-SITE BREAKAWAY

Single-site unpinning corresponds to T < 1. In this case we estimate the entropy factor by considering the change in frequency
between a double loop fixed at z =0, 1/ (the pinned state) and a single loop fixed at z = 41/ only (an approximation of the
saddle-point configuration).

Since the lines are free between pinning bonds, the mode frequencies are w,, = Tk2/p,k (s = p, a). For the saddle-point
configuration the wavenumbers are given by k,, = nn/2l, where n is an integer. The wavenumbers for the pinned state are given by
k,, = (n + )m/2l for n odd and k,, = nn/2l for n even. Note the twofold degeneracy, which corresponds to odd or even symmetry
about z = 0. The entropy factor is

S = fi <%>2=[2M—1 MA%I]Z:’—;M M>2), (A20)

an.

where Stirling’s approximation, n! ~ e~ "n"(2nn)!/2, was used in the last step, and we took the number of modes M to be even.
The maximum wavenumber k.., and hence the number of modes M, is determined by the vortex thickness, k,,, ¢ ~ 1. This
condition gives M = 2I/£. For neutron star parameters, we find S ~ 4.
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APPENDIX B

QUANTUM DESCRIPTION OF A PINNED VORTEX LINE

To obtain the vortex excitation spectrum, we solve the equation of motion of a pinned vortex. For the case of a symmetric pinning
potential, the equation of motion, equation (3.3), is

. 0%€(z, t)
T 0z>

Oe(z, t) _
o

— g(2)e(z, 1) + ps K X 0, (B1)

where €(z, t) describes small displacement of the line, T is the effective tension, and g(z)e(z, t) = —f, n,(2)e(z, t) is the change in the
pinning force. The corresponding energy for a line of length L is

1 (42 .
E =—J dz|:T
2 —L/2

The first term is the energy associated with bending, while the second term is the pinning energy. From equation (B1) it follows that
the energy (eq. [B2]) is a conserved quantity.
In terms of the circular coordinates (eq. [ 3.4]) the equations of motion are

Oe(z, t)
0z

+ g(2)e(z, t).z] . (B2)

T azei(z, t) 661(2, t) —

P g(2)e+(z, t) + ipsk a 0, (B3)
and the energy is
L2 [ Oe,(zt) Oe_(z,t
E= J dz[T %+ 0@ 1) | e e t):l . (B4)
L2 0z 0z
To solve the equations of motion, we look for separable solutions of the form € .(z, t) = u(z)e **'; we find
. 02
T giZ(Z) —g(2us(2) £ psxw us(z) =0. (BS)
z
This equation with periodic boundary conditions is of the Sturm-Liouville form. We define w,, to be the eigenvalue ., and it
follows that w_ = —w,,. We take the eigenfunctions u,,(z) to be a complete set of real, orthogonal functions normalized as
L/2
J dz up (2)upl2) = LOpy e - (B6)
—L/2

The general solutions for €. (z, f) are

€102, ) = Date i) =1 T X 0un), (87

m
where the af are complex constants; they must satisfy o,y = («,,)* to ensure that the physical displacements € are real. The equation
of motion for each of the normal modes is thus

den (1)

dt

Substituting the solution (B7) in expression (B4) and using the normal mode equation (B5), we find that the total excitation energy of
the vortex may be expressed as a sum of the contributions from each mode:

+iw,eZ(t)=0. (B8)

E=2EY openen®. (89)

Defining the conjugate variables

12 1/2
an=(25) "tezt0 + cz0n = (25) "0,

1 1 (B10)
Pm= —i(ps—x> /2[6,: (1) — €. (0] = <pzk> /Zefn(t) ,

2L
we write the energy (eq. [B9]) as a Hamiltonian,
H=3Y o,pn+4m), (B11)
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in the familiar harmonic oscillator form. Hamilton’s equations,

0H 0H ,
A = 4m > . = " DPm> (Blz)
OPm
give the equations of motion (B8).
The transition to the quantum theory is made by regarding the canonical variables as operators that obey the commutation rule

[ﬁmv Qm'] = - ihém,m’ . (B13)
The Hamiltonian (eq. [B11]) has the eigenvalues
E,=ho,mn+3), n=012... (B14)
APPENDIX C

ENERGY SPECTRUM OF A PINNED VORTEX LINE

Here we solve the equations of motion (3.5) for a pinned vortex line with a periodic pinning potential
N/2
nfz)= Y d&z—nl. (cy
n=-Nj2
The solution is identical to that of the Kronig-Penney model used in quantum mechanics to model a particle in a periodic field. We
seek solutions in the form of Bloch waves, i.e., in the form of a plane wave times a function with the periodicity of the one-
dimensional pinning lattice,

€z 1) = af (ui (2)e*™ (€2)
and
ut(z + ) =ui(2). (C3)
The variable k describes how the eigenfunctions change upon translation; from equations (C3) and (C2) we find
efz+ 1, t)=eMef(z, 1) . (C4)
We look for time-independent solutions of the form
€' (2) = e*u (2) = A" + Be 14, (C5)
The coefficients A and B are to be determined from the boundary conditions. From equation (C5) we find
u; (z) = Ae'17Rz 4 Be~iathz (C6)

We have the following conditions of continuity in u,’ (z):

lim [u () — u(=n)] =0,

n—0
lirr; [u(=m) —ui(—m]=0, (C7)
linf; [u ) —w (1 —m]1=0,

where the second condition follows from the translational invariance of u; (z) (eq. [C3]) and the third condition follows from the
first two. We then have a condition on the coefficients 4 and B,

A+ B = Ae@ W' 4 Bemiathl (C8)

We obtain a second condition on the coefficients by considering the discontinuity in €, (z) created by the pinning field. Integrating
equation (3.5) over a small interval surrounding z = 0 gives

lim TLe () — & (=11 = —fo&l (0) . (©9)

n—0
Using equations (C4) and (C5), we find, for small #,
€ (z=n) =ig(4 - B),

i il 4 i ; (C10)
6;.(2 = _11)/ — e—zklez-(z)/ — iqe—lkl(Aequ _ Be—,ql) .
z=l—-n

Thus
iqT(A — B — Ae"@ P! 4 Be~ia*hly — _f (4 4+ B). (C11)
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Combining equations (C8) and (C11), we obtain the dispersion relation

cos kl — cos ql +

In terms of the vortex stiffness,t = Try/F,,,, |, we have

max

cos kl — cos gl —

Equation (C13) has a structure of bands and gaps in o, = Tq?%/p, k.

The more general problem of pinning in an asymmetric pinning potential is described by the time-independent equations

We seek solutions of the form

Jo in gl =
3Tq singl=0. (C12)
A1/2 :
sin gl _ C13)
ql
fe’;(z)" — fen(2)e(2) + ips oy e:;(z) =0, (1)
Tek(2)" — f,n(2)e¥(2) — ip,kw, €5(z) =0 .
€“(2) = e™*u!(z) = Ae' + Be %" + Ce®* + De %, (C15)

and similarly for €¥(z). Determining the four coefficients in the same way as for the symmetric pinning potential leads to the

dispersion relation

I:Zq(cos kl — cos ql) +L% sin ql:I[Zq(cos kl — cosh gl) +£’IAZ" sinh qlil

+ |:2q(cos kl — cos ql) +I7A% sin ql:||:2q(cos kl — cosh ql) +f,17f sinh ql] =0. (C16)

Equation (C16) reduces to equation (C12) for f, = f, = fo.
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