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ABSTRACT

Simple equations are derived for the long-distance propagation of magnetohydrodynamic (MHD) jets. Solu-
tions of these equations are fitted to two observed jets providing estimates of the fast magnetosonic speeds (v )
and the distances of the fast magnetosonic points. The relation of the jet properties at large distances to a
complete family of MHD jet solutions is discussed, and it is shown that there is one key dimensionless param-
eter, B = (2B2a?/M,vy)'?, where B, is the poloidal magnetic field at the inner disk radius a;, vy is the
Keplerian velocity at a;, and M, is the disk accretion rate. The dependences of the fast magnetosonic speed
and of the fluxes of mass, energy, momentum, and angular momentum of the jet on & are discussed. For %
larger than a critical value (X0.45), the central star spins down, while for smaller values it spins up. For #
increasing from the critical value, v, increases while the mass and momentum fluxes of the jet decrease.

Subject headings: ISM: jets and outflows — MHD — stars: pre-main-sequence

1. INTRODUCTION

High-velocity bipolar outflows and optical jets appear as
characteristic features of star-forming systems (Lada 1985;
Mundt 1985). Direct and indirect evidence indicates that most
of these systems have Keplerian accretion disks (Sargent &
Beckwith 1987; Kenyon & Hartmann 1987; Bertout, Basri, &
Bouvier 1988; Basri & Bertout 1989). In turn, there is strong
evidence that outflows and jets occur only in systems with
accretion disks (see review by Konigl & Ruden 1992). Regard-
ing the theory of the outflows, it is well known that radiatively
driven winds can be ruled out (because the radiation has insuf-
ficient momentum), and that thermally driven winds can also
be ruled out (because of the excessively high temperatures
required). Thus, most of the recent theoretical work on out-
flows and jets from star-forming systems have investigated
magnetohydrodynamic (MHD) outflows which are a conse-
quence of having a poloidal (r, z) magnetic field threading an
accretion disk. The high specific angular momentum of MHD
outflows can remove most of the angular momentum remain-
ing in the inner part of an accretion disk, and this can have the
important consequence that the formed stars rotate very
slowly as observed (Hartmann et al. 1986).

Most of the theoretical work on MHD outflows and jets
from star-forming systems has been based on the stationary
self-similar model of Blandford & Payne (1982) (Konigl &
Ruden 1992). However, important physical quantities of this
model, the fluxes of mass, energy, and angular momentum, are
infinite; finite values are obtained by introducing cutoffs (at
both small and large cylindrical radii). As a result the most
important region of the flow dynamically (at small radii) is
neglected. A different approach to the theory of MHD winds
and jets, in which all of the physical quantities are finite, is
based on envelope equations derived from the main MHD
conservation equations by averaging over the jet cross section
(Lovelace, Mobarry, & Contopoulos 1989, hereafter LMC;
Koupelis & Van Horn 1989; Lovelace, Berk, & Contopoulos
1991, hereafter LBC). The outflow is assumed to originate from
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the inner part of the accretion disk where the power available
from the accretion flow is largest (Shu et al. 1988 ; Pringle 1989)
and where the magnetic field is predicted to be strongest
(Wang, Lovelace, & Sulkanen 1990).

New impetus for the development and exploration of theo-
retical models of jets comes from recent spectral line observa-
tions of the radial velocity and other jet properties as a
function of distance and from corresponding proper motion
measurements in cases of nearby objects (see, for example,
Mundt et al. 1990, and Reipurth 1989a). Although there is
evidence of intrinsic temporal variability in the jet properties of
some sources (for example, in HH 111 [Reipurth 1989b] and in
HH 46/47 [Raga et al. 1990; Reipurth & Heathcote 1991]), it is
reasonable to first fully explore the predictions of stationary jet
models. Figure 1 shows an overview of the jet geometry.
Section 2 of this paper simplifies the equations of LBC to apply
to the propagation of MHD jets at large distances, and it
applies the results to two observed jets. Section 3 of the paper
summarizes the dependences of the main jet properties on the
accretion disk parameters for a complete family of solutions
obtained from the equations of LBC.

2. STEADY JET PROPAGATION AT LARGE DISTANCES

The equation for the conservation of axial momentum of a
stationary ideal MHD jet can be written as

d F dr

— Fp=—"+2nr —p.,, 1
dZ P Dz + Znr dZ pex ( )
(LBC). Here, z is the axial distance from the origin, v, is the
mean axial speed of the jet flow, r is the mean jet radius, p,,(z) is
the pressure (kinetic plus magnetic) of the medium outside the

Jet,
B> B?
F = 2 2 X - _ =z
JP J;=consl d x<pvz + pln‘ + 87.[ 4TE>

is the axial momentum flow of the jet, F, ~ —GM, M j/gz is
the gravitational force of the central star (of mass M,), M, is
the mass flow rate of the jet, and p,,, is the internal kinetic
pressure of the jet. Following the discussion of LBC, we
assume that jet carries no net current. The jet collimation
results from the focusing effect of the external medium.
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F1G. 1.—The figure shows a semiquantitative sketch of the jet radius (r) and
axial velocity (v,) a function of axial distance (z) from LBC. Here, g; is the initial
jet radius assumed equal to the inner radius of the disk, and v, is approx-
imately the Keplerian velocity of the disk at a;. The important axial distances
are indicated : the slow magnetosonic critical point at z_,, ; the Alfvén singular
point at z,; the fast magnetosonic critical point at z,; and the distance of
perfect collimation (where dr/dz = 0) at z,,. The third critical point, the cusp or
slow wavefront point, is at a distance z, very close to but less than z,
(Lovelace et al. 1986). Section 2 gives expressions for z, and z,, and the corre-
sponding flow speeds, and it discusses the possible recollimation of the jet
indicated in the figure by the dashed lines beyond z,,. Section 3 discusses z,,,
and z, and the corresponding flow speeds.

At large distances, z > z,, where z, is the distance to the
Alfvén point discussed in § 3, the jet radius is much larger than
its initial value (at the accretion disk, z = 0), the jet’s rotation
rate is much smaller than its initial rate, and the kinetic
pressure of the jet is negligible due to adiabatic expansion
(LBC). Consequently, to a good approximation &%, ~ M iU,
+ Fo/(2v2), where the first term represents the momentum
carried by the matter and the second term of the momentum
carried by the predominantly toroidal magnetic field. The left-
hand side of equation (1) is therefore [1 — (v,/v.)*1(dv,/dz),
where v, = (#,/M;)"? is the fast magnetosonic speed of the
jet. From LBC, &, ~ a?B2v2/4, where q; is the initial jet radius
assumed equal to the inner radius of the disk, v, is the initial
azimuthal velocity of the jet which is equal to the disk’s rota-
tional velocity at r = g;, and B, is the value of poloidal mag-
netic field threading the disk at a;. Thus, v, ~ (a7 B} v}/4M )"
or, equivalently,

1~ oMo 52 112 m(ﬁ)z(@)}

M;~0.62 x 10 - a’*m 14 106/ \o, , (2
where we have written v, = (GM,/a;)"/*6~*/? with § a numeri-
cal factor [20(1); LBC]. Also, we have introduced m =
M,/Mganda = a/2 x 10'! cm). We consider that a, m, and &
are all of order unity. Note, however, that a; may be larger than
the radius of the star, if the star has an appreciable intrinsic
dipole magnetic field (Bertout et al. 1988). The quantities B,,
M;, and therefore v /vy are intrinsic parameters of the jet in that
they are determined by the physical conditions of the disk close
to the central object. In § 3, we derive the conditions which
interrelate M, By, v,/v,, and the disk accretion rate.

In order for the jet flow to pass through the fast magneto-
sonic critical point, the two terms on the right-hand side of
equation (1) must cancel at this point. It is clearly appropriate
to introduce the dimensionless variables: V, = v,/v,, Z = z/z,
R =r/z;, and P, = p../(p.,)s, Where the f subscript indicates

159

evaluation at z = z,. The cancellation of the right-side equa-
tion (1) at z, gives

i ={ GM, M; }1/3
77 |2nlpe RAR/AZ)] v,
or
Mj >1/3
107° Mg yr !

-10 —-271/3 -1/3 1/3
[ ) )
(Pex)s az|, Uy

Notice that V, = M3/, where M, = v,/v, is the Alfvén Mach
number of the flow, and v, is the Alfvén speed. Equation (1)
can now be written as

(1 L)dV,__{ 1 _PexR(dR/dZ)} “
“V3)az T "T*\v,z2 " [R@R/AZ), S’ )

15 2
K= GM;" ~2x 10‘4a5<——10 cm)<@> )
SN Zr vy

Taylor expansion of equation (4) at Z = 1 gives (dV,/dZ) |, =
{x/3[2 + (dP,/dZ) + (1/R)dR/dZ)];}'/*. Because z, and x
depend on the external pressure, it is appropriate to refer to
them as extrinsic parameters of the jet.

The energy flux, %, of a stationary ideal MHD jet is a
constant,

1. dR\? F
S 3 Mj[l + k"(d—Z> ]vf + u_zo =const, (5a)

where k, is a numerical constant of order unity (LBC). The
terms oc M ; represent the energy carried by the matter, while
the term oc # , represents the Poynting flux. Evaluating equa-
tion (5a) at the fast magnetosonic point gives

A\ m M. v,\?
7oz o0 Lo TN iomare () o

where A" = (3/2) + (k,/2(dR/dZ|,)?, and Lg ~ 3.8 x 103
ergs s~ . In turn, equation (5a) implies that

drR _ | 2 - VE+ @V
az =~ — k,V? '

Equations (4) and (6) can be integrated away from the fast
magnetosonic point to give the dimensionless axial velocity of
the jet V,(Z). In general V(Z) depends on «, k,, dR/dZ|;, and
the profile of the external pressure, P, (Z), If P, (Z) = const,
the velocity increases and reaches a maximum at a large dis-
tance z,, > z, at which point dR/dZ|,, = 0. For example, for
A = 2.75, the velocity reaches a maximum value of V, ~ 2.14
at a distance z,, &~ 3.8z, k"% oc z}/2. At this distance the frac-
tion € of the total energy flux carried by the electromagnetic
field, the Poynting flux, is € = 1/(1 + V3/2); the fraction of the
axial momentum flux carried by the B field is 1/(1 + 2V'3); and
the fraction of the angular momentum carried by the B field
is #1/(15.6V). If P, (Z) is a decreasing function, the distance
to the maximum of V is in general larger than its value for
P, = const.

Beyond z,, the jet velocity and radius predicted by equa-
tions (4) and (6) decrease; that is, the jet “recollimates.” Earlier

z; ~0.75 x 10'° cm (am5)1/6<

where

(6)
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studies (Chan & Henrikson 1980; LBC; Contopoulos &
Lovelace 1992) suggest that the decrease of the jet velocity and
radius reverses—the jet “bounces "—at a large distance ~2z,,
and subsequently reaccelerates and reexpands. Note that the
treatment of the passage of the flow through the bounce
requires the full equations of LBC. Approximate fittings of
solutions to equations (4) and (6) to observations of two jets are
shown in Figure 2.
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FiG. 2—The top panel of the figure shows an approximate fitting of data
on the jet of XZ Tau (circles) of Mundt et al. (1990) to V,(z) from the theory of
§ 2. For the solid curve for z > 0, we have taken z; sin (y) = 10" em,k, = 1.7

x 1073, v,, cos(y) =23kms™', " = 2.75and v, /v, = 1.1(sin y)*/?, where y
(=~ 82°; Mundt et al. 1990) is the angle between the jet axis and the line of sight.
For the solid curve for z < 0,z sin (y) = 0.6 x 10'* cm,x_ = 1.3 x 1073, v,_
cos (y) =35 km s™!, " =275, and v,_/v, = 1.6 (sin y)*/>. The approximate
distance to the source is 160 pc so that 1" ~ 2.3 x 10> cm. The f-arrows
indicate the fast magnetosonic points. The pressure of the external medium is
assumed to have the dependence p,, oc (1 + z2/H?) ™! with H = 106 cm. For
the value M;~ 5 x 107'® Mg yr~' of Mundt et al, equation (3) implies
(Pex)y ~ 2 x 1078 dyn cm™2, and equation (5) gives F~ 1.5x 1072 Lg,
where we have omitted for simplicity the differences between the +z jets. The
discrepancy between the points and the model near z = 0 may be due to
scattering in this region (see Mundt et al. 1990).

The lower panel shows an approximate fitting of data on the jet of HH 83
(circles) of Reipurth (1989a) to the theory of § 2. For the upper solid curve, we
have taken z, sin y =28 x 10'* cm, x =10"%, v, cos (y) =93 km s,
A =275, v,/v, = 2.67(sin y)'/2, and we have started the integration of eq. (4)
at z sin (y) = 8.7 x 10'° cm and v,/v, = 1.1. The lower solid curve shows the
assumed dependence of the external pressure. Note that we have assumed that
the jet has recollimated and gone through one bounce near knot A. The
approximate distance to the source is 460 pc so that 1” = 6.9 x 10*3 cm. For
example, for y = 45°, z, ~ 3.9 x 10'* cm and v{/vo ~2.2. In turn, for M; =
107° M yr~%, eq. (3) implies (P,,), ~ 3 x 107 ° dyn cm~2, and eq. (5) gives
Fg~015L.

Vol. 403

In addition to the mass and energy fluxes, the angular
momentum flux, &, of a stationary ideal MHD jet is a con-
stant,

B,B
FL= f dzxr<pv¢ v, — —L5> = const,
'z = const 47!:

J K M, A
~ -570 v Ze (70 )L
~ 4.1 x 10 - (am) <2‘5><10_9 M, yr'1><vo> , (1)

where J o ~ 1.6 x 108 g cm? s~ ! is the angular momentum of
the Sun. The angular momentum removed from the disk by the
jets may account for the slow rotation rates of T Tauri stars as
discussed further in § 3.

If the fraction of the total energy flux of the jet carried by the
Poynting flux is €, then the jet’s magnetic field is

2eF g\ 2
(B¢)rms = (—E> >

r?v,

N aqf € 112 g \2
~ 14 x 10 G(O.Z) 01 L,

15 —1\1/2
X<10 rcm><400 kums ) . ®)

The poloidal field is weaker by a factor ~ga/r =2 x 107
(103 cm/r); LBC. Because the toroidal field vanishes outside
the jet (LBC), the radial field tension and pressure forces
balance exactly. Consequently the B, field acts neither to pinch
nor expand the jet channel. The jet density is n; ~ 300 cm 3
(M;/107° Mg yr~')(10*3cm/r)*(400 km s~ /v,) for a mean par-
ticle mass that of hydrogen.

3. INTRINSIC PROPERTIES OF JETS

Earlier studies (LMC, LBC) developed a simplified theory
for magnetically driven jets and winds. The basic equations of
the theory follow from the conservation of mass, momentum,
angular momentum (about the z-axis), and energy for the ideal
MHD jet flow. The theory allows the determination of the jet’s
axial velocity, radius, rotation rate, and temperature from the
surface of an accretion disk to very large distances. A method
for solving the equations and a representative solution was
presented in LBC. Here, we describe a different, more accurate
method for solving the equations, and we present a complete
family of solutions. The method we use is that of “inner (close
to the disk) and outer (far from disk) expansions.” This
approach uses the fact that the slow magnetosonic critical
point of the jet flow occurs close to the disk, at z,,, far removed
from the Alfvén point of the flow, at z, > z,,. We match the
two solutions at a distance z, between z,,, and z,.

For the outer solution, we solve the radial virial equation of
LMC from z, > z., and v, = v, > v, toz > z,. This equation
has the form A(d*r/dz?) = F,, with A = A(r, z, 7', v,| Ry, V,)
and F, = F,(r, z, V', v,| Ry, V), Where ¥ = dr/dz, R, = r,/a; is
the dimensionless Alfvén radius, V, = v,/v, is the dimension-
less Alfvén velocity, a; is the initial radius of the jet, and v, is
the disk’s rotation rate at a;. For the outer solutions there are
just two important parameters, R, and V,. [There is a weak
dependence on the parameter & = vZ/v3, where uvg =
(GM ,/a;)'* is the Keplerian velocity of the disk, and on the
thermal pressure of the gas.] We note that the radial virial
equation has a singularity at the Alfvén point atz = z,,r =r,,
v, = v,, Where A = 0. In order for the flow solution to pass
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smoothly through this point, the initial slope r'(z,) must be
chosen uniquely. Smooth flows can readily be obtained by
numerical shooting method solution of the virial equation. The
required values of r, are of order unity. However, there is a
further constraint of the solution space which arises from the
fact that the fast magnetosonic point is necessarily at a very
large distance, z¢,, > z,, if the pressure of the medium external
to the jet is small compared with the jet’s internal magnetic
pressure at z,. Note that in the absence of an external medium
the outflow would have a conical shape with half-opening
angle of order 45°. The family of outer jet solutions obtained
under these conditions is shown in Figure 3 as v [Vo =
(k, Vo R3)' as a function of R,. Notice that no solutions are
found to exist for R, < 1.75 or v /vy < 0.73 for the conditions
of the figure.

The inner solution applies from the surface of the disk at
z~0 to z, » z,,. For this region, we use the Bernoulli con-
stant for the flow which can be written as

E=32+w+ D, + 3(rw)? + wfrio; — r*ow), )

where v, is the poloidal (r, z) velocity, w = [ dp/p the enthalpy,
®, the gravitational potential, i(rw)?® the toroidal kinetic
energy, the w; term is the Poynting flux per particle, and w; =
vo/a; is the initial angular rotation rate of the jet (which is equal
to the disk’s rotation rate). Conservation of angular momen-
tum gives ® = w;r3(v, — v)/(r*v, — riv,), (LBC). To a good
approximation, we have (0®— 2ww)/w? = —1 + (v,/v,)
[1—(/ra)*]* and r = g; + ¥, z, where ¥, is known from the
outer solution. For the inner region, we assume the gas to be
isothermal so that w=cZIn(p), where c, = (kTy/m)"/? is
the Newtonian sound speed of the disk corona, with c,; < v,,
and m is the mean particle mass. Equation (9) has the form
& =&z, v,)=const, or, equivalently, (dv,/dz)(0&/dv,) +
(06/0z) = 0. At the slow magnetosonic critical point,
(06/0v,)g, =0, at v, = vy, = c; A~ /2, where A4 is a numerical
factor (between 1 and 2). At this point, we must have d&/
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FiG. 3.—The figure shows the dependence of the fast magnetosonic speed of
the jet, v, on the dimensionless Alfvén radius R, = r,/a,. Here, a; is the inner
radius of the disk, v, = v;/6'/%, and vy = (GM,/a)'/*. For the figure we have
taken 6 = 1.1 and k, = 2.5. The dots represent the numerically determined
values.
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0z = 0, which gives z,, ~ (6 — 1)r,, a/[(26 + 1)(r})* — 6]. The
density ratio between z = 0 and the slow magnetosonic point is
roughly  exp [—k(vg/c,)*]. Here, k= 56 — 1)%(r,)*/[(26
+ 1)(r,)> — 6] is much less than unity if (5 — 1)> < 1. In con-
trast, for a nonmagnetic, isothermal wind, this same ratio is
exp [ — (vg/cs;)®] (Parker 1963), which is vanishingly small
(1072°% for plausible values of c,;.

The key parameter for the family of jet solutions of Figure 3
is the Alfvén radius R,. We determine R, by using the conser-
vation of mass and angular momentum for the disk/jet system.
We simplify the subsequent formulae by assuming & ~ 1.
Conservation of mass gives M, = M, + 2M,, where M, is
the mass accretion rate of the disk of large r, M, is the rate of
increase of the star’s mass, and the mass outflow rate 2M ;is
assumed for simplicity to be equally divided between the =+ z
jets. Conservation of angular momentum gives M,aq; vy =
dJ,/dt + 2%, where J, is the angular momentum of the star,
and 2%, is the angular momentum efflux assumed equally
divided between the +z jets. Conservation of energy gives an
equation of the form M,v§/2 = d/dt[J2/21,)] + 2F ; + -,
where I, is the moment of inertia of the star, the ellipsis
denotes other terms such as the boundary layer radiation
(Pringle 1989; LBC), and 2% is the energy efflux of the +z
jets. For fixed M,, the maximum of % as a function of Je
occurs for J, J, <0, which corresponds to J2 decreasing with
time. Small values of J,, during most of the star’s disk accretion
are suggested by observations of T Tauri stars by Hartmann et
al. (1986) which show that most of the stars have small rota-
tional velocities (5 10% of the breakup velocity).

Therefore, we first consider the limit where g% =
[J /(M a;00)]* < 1 so that M, a;v, ~ 2%,. In this limit, the
Jjets remove most of the angular momentum still in the incom-
ing matter at the inner disk radius. In this limit, the azimuthal
motion of the disk matter in the very inner part of the disk is
significantly less than Keplerian. Because J « & const, the star’s
rotation rate decreases with time, Q, oc I 1. Using the fact that
the specific angular momentum of the jet is F1/M;=
a;vx RG k, (LBC), gives R} = 1/(2k, &), where & = M;/M,. In
turn, equation (9) gives %, = M;vZ[R% — (3/2)], with our
earlier weak assumption that ¢,; < vg. We can also express the
energy flux of the jet at the fast magnetosonic point as %, =
AM 07, where " is defined in equation (5b). Combining this
expression with equation (2) gives

B =g, L7 — g, 8P, (10a)

where g, =2/(k, ), g,=6/A4, and B =[Bialv/
(M, v%/2)]*"? is a useful dimensionless measure of the strength
of the disk magnetic field,

a*?\( B, \[10~7 Mé yr~1\1/2
02l —m | — | ————— . 1
B0 22<m1 ,2>< ; OG)< = (10b)

a

Because there is a minimum value of the Alfvén radius R, (Fig.
2), there is a maximum value of ¢ which we denote ¢, =
1/[2k (R3)min)- In turn, there is a corresponding minimum
value of the magnetic field denoted 4, and given by B3 =
g1 & ' — g, €2, The dependences of ¢, R,, and v,/v, on &
are shown as the solid curves in Figure 4. For the conditions of
the figure, &, = (M;/M,) . = 0.068 and &, ~ 0.45. For & >
2. and thus £ < ¢, we find the asymptotic results & ~ g3~ *
or M;oc (M,)*/BS, Ry ~ B%/(2k,g3)'%, and v /v, ~ B%/(4g?).
The rate of energy release from the accretion flow near the
inner part of the disk is #L,, where L, = M,v%/2 = 0.56 L,
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F1G. 4—The figure shows the dependence of the important jet parameters
on the dimensionless disk magnetic field 4. For the figure we have taken
=11, k, =25, and A =275. The rotation rate of the star decreases
(toward zero) for # > 2., whereas it increases for # < 4,.

(m/a(M, /1077 My yr™ '), and n =1 — (Q,/Q)* < 1 (Pringle
1977). For the conditions of Figure 4, we have 2% ;/L, ~
0.76-5.8¢. The excess power, Ly, = nL, — 2% ;, appears as
electromagnetic (UV) “boundary layer” radiation (Bertout
1987; Kenyon & Hartmann 1987; Bertout et al. 1988).

For weak magnetic fields, Z < 4,, it is not possible for the
jets to carry away all of the incoming angular momentum
(M, a;vg). Consequently, a fraction of this angular momentum
goes into the star, 8 = J,/(M, a;v¢) > 0. This results in spin-
ning up the star, dQ*/dt > 0. In thls limit angular momentum
conservation gives R2 = [(1 — B)/¢ + 2f31/(2k,). We again
obtain equation (10), but now g; = 2(1 — f)/(k,#’) and g, =
(4/2)[(3/2) — B/k,]. For a given value of # < %,, the smallest
possible value of B occurs for the minimum value of R, and
this corresponds to the largest possible value of & = M /M
The dashed curves in Figure 4 show these dependences In this
limit, we find &/¢, ~ (%#/48.)* <1, or M;oc B}, Ry =175,
vy/ve = 0.73, /EocM and 2% /L, ~ 5.3¢ <036

In order that the formed star be slowly rotating as observed
(Hartmann et al. 1986), it is necessary that g2 < 1, or equiva-
lently # > %, during most of the disk accretion of a signifi-
cant fraction of the star’s mass. The rate of increase of the star’s
angular momentum is J, = M, a;v¢ § so that its increase in
angular momentum is AJ, = AM, a;v¢{f), where AM _ is the
mass change. In order to have, say, AJ, <50 J,, we need
(B> <0.1(AM /0.1 M). Formation of a slowly rotating star
with significant mass addition by accretion from an approx-
imately Keplerian disk appears to require outflows or jets with
high specific angular momentum. A contrary view is given by
Konigl (1992).

An upper limit on the value of 4 arises from the fact that a
sufficiently strong field, %,,,, ~ (vx/v,)"? > 1, where v, is the
radial accretion speed, leads to a nonaxisymmetric interchange
instability (Kaisig, Tajima, & Lovelace 1992). Therefore, we
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assume Z is in the range from %, to #,,,. For an unbiased
sample of objects, or one object at different epochs, we denote
the probability of a value & in the interval d# as W,d% and
consider as an example Wy oc ¢ with g = const. Using the
above-mentioned asymptotic dependence v, oc #%, we find
W,, oc v;@* D2 Note that speed of the collimated jet (dr/
dz = 0), v}, is larger than v, by a constant numerical factor,
v; = Cv,. For the conditions of Figure 4, C = 2.14. Notice that
for a given value of M, or L, a large value of v, corresponds to
a small jet momentum flux, % p oc M v, oc L,/v;, and an even
smaller mass flux, M oc L,/v}, where we have used the fact that
M v}/L, is approx1mately constant for 4 significantly larger
than %.. A high v, jet will tend to have a smaller bow shock
velocity. Neglecting for simplicity, the momentum carried by
the B field, the bow shock velocity is vy~ v/
[1 + (oa/p)" 2] where p,, is the density of the ambient medium,
and p; is the density of the jet (Norman, Winkler, & Smarr
1983; Hartigan 1989). Because p; oc Mj/vf oC M,,/vf, we have
Vps = CZ,/[l + N(v,/ve)*?], where N ~ 1.1(n,,/10*
cm~3)Y41077 M yr ~1/M,)"3(r/10'* cm)(a/m)'/? for a hydro-
gen gas. Thus, v, increases with v, for v,/v, < (2/N)*3. For
larger vy, it decreases with v, and approaches v, oc v; /%, The
time scale t; required for stationary intrinsic jet parameters
(M; » F L, F g, etc.) to be established after altered conditions at
the disk (AB, and/or AM,) is roughly the flow time between the
disk and the Alfvén point. We estimate t; < 10%a,/vx ~ 10 days
( a3/2 /m1/2)

There are solutions to our equations which correspond to
intrinsically lopsided jets where there are different values of
& =M; /My, Rps, 0,1, Fry,etc, for the +zand —z jets for
a given value of 4. The power outflow Fp, + F_ is less
than 2%  for the symmetric case considered. However, a non-
reflection symmetric | B| field may favor intrinsically lopsided
jets as discussed previously by Wang, Sulkanen, & Lovelace
(1992) for extragalactic jets. The source XZ Tau shown in
Figure 2 is best fitted by intrinsically lopsided jets.

In other systems with magnetically driven jets but large acc-
retion rates, we expect to have Z < 4.. This limit is of interest
because there is a definite minimum value of the fast magneto-
sonic speed, v,, and a corresponding minimum value of the
speed of the collimated jet, v; = Cv,. For the conditions of
Figure 4, these values are v, ~ 0.7vx and v; = 1.49vg. This
aspect of magnetically driven jets distinguishes them from
other types of winds (Holzer & MacGregor 1985). The
minimum jet speed for # < %, may underly the constant speed
0.26¢ observed for the jets of SS 433 (Margon 1984). Of course,
outflow speeds lower than this mimimum may result if the jet
entrains external material or if the jet flow originates from the
disk at distances larger than q;.

4. CONCLUSIONS

Application of the theory of LBC is made to observed radial
velocity profiles of two jets (§ 2). Analysis of such velocity pro-
files allows the determination of the fast magnetosonic speed,
v, and the axial distance of the fast magnetosomc point, z,. In
turn, the theory relates the mass flux of the jet, M , tov,/v, and
BO, where v, is approximately the Keplerian velocnty at the
inner radius of the disk, a;, and B, is the poloidal magnetic field
threading the disk at a;. In addition, the theory gives three
relationships between the energy, momentum, and angular
momentum fluxes of the jet and M and v,/v,.

Section 3 discusses a complete famlly of magnetically driven
jet solutions obtained from the equations of LBC. We show
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that the key dimensionless parameter which determines the
essential nature of a jet is # = (2B2a?/M,v)'/?, where M, is
the disk accretion rate. The dependence of v,/v, and the jet
fluxes on # is derived. For # larger than a critical value,
2. ~ 0.45, the star spins down, whereas for # < 4, it spins up.
For 4 increasing from 4., the jet velocity increases, while the
mass and momentum fluxes of the jet decrease. For a sample of
objects, or one object at different epochs, a distribution of %
values gives rise to a distribution of jet velocities and fluxes.
For some T Tauri sources, modeling of the IR-UV spectrum
of the disk, the boundary layer, and the star allows approx-
imate determination of M,, a;, vx, and the angle between the
disk normal (or jet axis) and the line of sight (Kenyon & Hart-
mann 1987; Bertout et al. 1988; Basri & Bertout 1989). Detec-
tion and spectral measurements of optical jets in these sources
would be of particular interest because v,/v, could be deter-
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mined assuming v, ~ vx. From a given value of v,/v, > 1,
Figure 4 implies a definite value of £ = M;/M,. Because M, is
known, M; and the other jet fluxes could be predicted and
compared with the observed jet. Furthermore, one could derive
the disk magnetic field B,,.
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