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parameters (including changes in the wavelength dependence)
and pulsation activity in the supergiant with a period of 949,

We also need further study of the magnetic field: is there
one present, how large is it, and what is its structure in the
vicinity of the accretion disk? How much effect does it have
on the wavelength dependence of the polarization?
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A study of Cepheid period variability. Technique

L. N. Berdnikov

Saratov State University
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Pis’ma Astron. Zh. 18, 519-527 (June 1992)

An algorithm is described for computer implementation of the Hertzsprung method, the most accurate
method of determining the times of brightness extrema of variable stars with stable light curves. A numerical
experiment is performed, and a relationship obtained between the error o in determining the times of Cepheid
light maxima, the rms error in the observations o,,’, expressed in fractions of the amplitude, and the number
of observations n: o = a,,'(0.453/1/n + 2.51/n?). Practical recombinations are made to account for the effects
of noncoincident times of Cepheid maxima recorded in the Johnson B and ¥ bands.

Introduction. The study of variable star period variability
is based on analysis of O — C diagrams. The most accurate
method of determining the O — C residuals (for stars with
stable light curves) is the Hertzsprung method (Tsesevich,
1971). One of the advantages of this method is the ability to
calculate the errors in determining the times of brightness
extreme, but one of its drawbacks is the large number of cal-
culations required, which probably is why the Hertzsprung
method was not widely used in the days of manual calcula-
tions.

Widespread application of the Hertzsprung method be-
came practical only with the advent of computers. In this
work, several questions are examined pertaining to computer
implementation of this method. For specific examples, we will
use Cepheid light curves, although the Hertzsprung method is
completely applicable to any variable star with constant light
curve shape.

Computational method. In the Hertzsprung method, the
mean light curve to be processed is superimposed by the least
squares method on an actual (standard) curve constructed from
the most accurate (for example, photoelectric) observations.
The shift for which the observations coincide with the standard
curve determines the phase of maximum light (which has the
sense of an O — C residual, expressed in fractions of the
period) which, when multiplied by the period, gives the O —
C residual in days. Here, of course, the observations should
first be transformed to the photometric system of the standard
curve.
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In the computer implementation of the Hertzsprung meth-
od, some difficulties are encountered when transforming the
observations to the system of the standard curve. By using
chords (Tsesevich, 1971), this transformation can be done for
observations which fully span the light curve. However, the
observations occasionally fall only on the rising or descending
branch of the light curve, or are concentrated near maximum
or minimum light. Increasing the number of points on the
curve (as is possible when a large series of observations is
processed piecemeal) does not always improve the situation,
due to the sparsity of essentially all existing series of observa-
tions. This leads to a significant prolongation of the time inter-
val, which can increase the scatter of points on the processed
curve when the period is not accurately known (either poorly
determined, or simply variable), or when the processed data
include period change. Therefore, it is not always possible to
construct a sufficient number of chords, and other methods of
transformation, specific to each case, must be applied.

To alleviate these difficulties, we (Berdnikov, 1983)
suggested implementing the Hertzsprung method somewhat
differently from the classical approach: we proposed to ap-
proximate the actual observations, instead of the mean light
curve, by the standard curve. For each observation we write
an equation of condition of the form:

mi=m g +af (g, ), . @

where m; is the observed magnitude, m,, is the average stellar
magnitude, @ is the half-amplitude of the oscillations, f is
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TABLE 1

8Z Aql U Aql FN Agl
n 6"\ . . 4
O A ° Om 8 ° Om 4 ’

i 2 3 4 5 6 7 8 9 10 i
10 | 0.04 0.008 0.0000 0.0017 0.013 0.0002 0.0023 0.018 0.0005 0.0030
10 0.02 0.016 —0.0004 0.0031 0.027 --0.0008 0.0046 0.036 0.0005 0.0061
10 | 0.03 0.024 0.0001 0.0048 0.040 --0.0001 0.0076 0.054 0.0009 0.0094
10 | 0.04 0.032 —0.0005 0.0065 0.054 0.0004 0.0084 0.072 0.0010 0.0117
10 | 0.05 0.041 --0.0011 0.0079 0.067 0.0023 0.0107 0.089 0.0036 0.0144
10 | 0.07 0.057 0.0017 0.0109 0.0% 0.0025 0.0172 0.125 0.0008 0.0220
10 | 0.10 0.081 —0.0014 0.0177 0.134 0.0065 0.0242 0.179 0.0009 0.0292
10 | 0.15 0.122 0.0036 0.0233 0.201 0.0086 0.0325 0.268 0.0097 0.0448
10 | 0.20 0.162 | —0.0010 0.0358 0.268 | —0.0073 0.0427 0.357 —0.0136 0.0550
10 | 0.25 0.203 0.0044 0.0410 0.335 0.0099 0.0533 0.447 —0.0142 0.0754
20 | 0.01 0.008 —0.0001 0.0009 0.013 0.0003 0.0014 0.018 --0.0001 0.0021
20 | 0.02 0.016 -0.0003 0.0016 0.027 —0.0002 0.0030 0.036 0.0003 0.0041
20 0.03 0.024 0.0003 0.002 0.040 0.0004% 0.0040 0.054 —0.0008 0.0060
20 | 0.04 0.032 0.0002 0.0034 0.054 0.0003 0.0058 0.072 0.0001 0.0081
20 | 0.05 0.041 0.0002 0.0042 0.067 0.0001 0.0068 0.089 —0.0003 0.0104
20 | 0.07 0.057 0.0002 0.0051 0.094 | —0.0004 0.0096 0.125 —0.0020 0.0142
20 | 0.10 0.081 —0.0004 0.0081 0.134 0.0008 0.0141 0.179 0.0003 0.0206
20 | 0.15 0.122 0.0029 0.0117 0.201 0.0010 0.0206 0.268 --0.0100 0.0301
20 | 0.20 0.162 0.0018 0.0181 0.268 0.0008 0.0267 0.357 0.0036 0.0392
20 | 0.25 0.203 | --0.0022 0.0207 0.335 0.0013 0.0338 0.447 --0.0069 0.0498
30 | 0.0 0.008 | --0.0001 0.0006 0.013 0.0003 0.0011 0.018 —0.0002 0.0016
30 | 0.02 0.016 —0.0001 0.0013 0.027 —0.0001 0.0021 0.036 0.0000 0.0033
30 | 0.03 0.024 | —0.0001 0.0019 0.040 0.0003 0.0033 0.054 --0.0005 0.0049
30 | 0.04 0.032 —0.0004 0.0024 0.054 ~ 0.0004 0.0042 0.072 ~--0.0005 0.0065
30 | 0.05 0.041 0.0005 0.0033 0.067 0.0005 0.0053 0.089 0.0001 0.0081
30 | 0.07 0.057 —0.0004 0.0043 0.0% 0.0011 0.0075 0.125 -0.0018 0.0113
30 | 0.10 0.081 -0.0015 0.0066 0.134 0.0001 0.0103 0.179 0.0018 0.0161
30 | 0.15 0.122 --0.0009 0.0092 0.201 —0.0024 0.0164 0.268 0.0069 0.0246
30 0.20 (.162 0.0023 0.0128 0,268 0.0014 0.0219 0.357 0.0002 0.0321
30 | 0.25 0.203 0.0006 0.0157 0.335 ~0.0019 0.0264 0.447 --0.0032 0.0409
50 | 0.01 0.008 0.0001 0.0005 0.013 0.0001 0.0008 0.018 —0.0002 0.0012
50 | 0.02 0.016 0.0000 0.0009 0.027 0.0001 0.0017 0.036 0.0000 0.0025
50 | 0.03 0.024 —0.0001 0.0013 0.040 0.0002 0.0025 0.054 0.0002 0.0037
30 | 0.04 0.032 0.0002 0.0019 0.054 0.0001 0.0033 0.072 ~0.0008 0.0049
50 | 0.05 0.042 -0.0001 0.0022 0.067 --0.0001 0.00%1 1.089 0.0005 0.0061
50 | 0.07 0.057 —0.0003 0.0030 0.0% 4.0003 0.0057 0.125 0.0008 0.0087
50 | 0.10 0.081 0.0003 0.0044% 0.134 —0.0001 0.0082 0.179 -0.0001 0.0124
50 | 0.15 0.122 | —0.0002 0.0070 0.201 0.0002 0.0126 0.268 0.0034 0.0190
50 | 0.20 0.162 | —0.0005 0.0087 0.268 0.0002 0.0163 0.357 --0.0023 0.0242
50 | 0.25 0.203 0.0012 0.0112 0.335 0.0014% 0.020% 0. 447 0.0010 0.0307
100 | 0.01 0.008 0.0000 0.0003 0.013 0.0001 0.0006 0.018 —0.0001 0.0009
100 | 0.02 0.016 0.000t 0.0006 0.027 0.0000 0.0011 0.0 0.0005 0.0017
100 | 0.03 0.024 | —0.0002 0.0009 0.040 0.0002 0.0017 0.054 0.0005 0.0026
100 | 0.04 0.032 | —0.0001 0.0012 0.054 0.0004% 0.0023 0.072 0.0008 0.0035
100 | 0.05 0.041 —0.0001 0.0015 0.067 0.0001 0.0029 0.089 0.0000 0.0043
100 | 0.07 0.057 0.0000 0.0021 0.094 —0.0004% 0.0039 0.125 0.0000 0.0060
100 | 0.10 0.081 0.0005 0.0031 0.134 0.0000 0.0057 0.179 —0.0002 0.0087
100 | 0.15 0.122 0.0002 0.0046 0.201 0.0001 0.0086 0.268 —0.0016 0.0134%
100 | 0.20 0.162 0.0002 0.0061 0.268 0.0008 0.0114 0.357 0.0028 0.0175
100 | 0.25 0.203 | —0.0003 0.0075 0.335 0.0003 0.0143 0.447 --0.0012 0.0218

standard curve represented in tabular form and normalized to
have amplitude in the interval [1, —1], ¢;(P) is the oscillation
phase, which depends on period P, and y is the phase shift,
which gives the phase of maximum light.

This approximation differs from a sine or cosine approxi-
mation only in that a standard curve, given in tabular form,
replaces a trigonometric function in (1).

The system of nonlinear equations (1) is linearized and
solved by the method of least squares for the corrections to
any set of unknowns m,y, a, P, and y. As an initial approxi-
mation to my,, we take the arithmetic mean of all the processed
stellar magnitudes; for we use the half-amplitude of the stand-
ard curve; for P we use the value given by the OKPZ (Orga-
nization of Variable Star Observers), and y is determined in
the following manner: The sum of the squares of the devia-
tions of the observations from the standard curve is calculated,
then the standard curve is shifted in phase by 0.02 and the sum
of the deviations squared is again calculated, then the standard
curve is shifted another 0.02 and the sum of squares is again
calculated, etc., until the total shift reaches 1. The shift corre-
sponding to the minimum sum of squared deviations is then
used as an initial approximation to y.
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We note that m,, and a are obtained in the photometric
system of the observer, and not of the standard curve, since
the latter is given in dimensionless (normalized) form.

Besides the differences between this approach and the
classical computational scheme (Tsesevich, 1971), there are
also certain analogies. For example, m,, and a in Eq. (1) are
responsible for the shift of the processed and standard curves
along the stellar magnitude axis (i.e., the observations are
transformed into the photometric system of the standard
curve), and P and y are used to determine the phase of maxi-
mum light. If P is fixed, then for all intents and purposes, the
proposed approach resembles the classical.

Numerical modeling. A computer program was written
for the algorithm described above, and a numerical experiment
was performed to test this program. Three typical Cepheid
light curves were selected: a smooth curve with moderate
amplitude and asymmetry; a curve with abrupt variations,
large amplitude, and large asymmetry; and a small-amplitude,
almost symmetric curve. As representatives of these we take
the standard curves of U Agl, SZ Agl, and FN Agl, respec-
tively. These standard curves were used to construct synthetic
light curves. For each standard curve, shifted in phase by a
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FIG. 1. Error in determining the time of maximum light of Cepheids o (in
fractions of the period) vs the mean-square error in the observations g,," (in
fractions of the amplitude) for different numbers of observations n. The
straight lines for given » are drawn in accordance with equation (3). The
data pertaining to different types of light curves are designated by different
symbols — crosses for U Aql, circles for SZ Aql, and diagonal crosses for
FN Aql. Near the beginning of the coordinates, due to lack of space, all the
data are represented by points.

specified amount Ay, we randomly selected n points. Normally
distributed random noise with rms error ¢, was added to the
magnitude at each point. The values 10, 20, 30, 50, and 100
were used for n, and 0*.01, 0.02, (.03, 0m.04, 0™.05,
0m.07, 0m.10, 0™.15, 0.20, and 0".25 for o,,. This set of n
and o, values allows us to model any light curves encountered

0.04 -

0.0z

0 20 40 60 80

FIG. 2. o vs n for fixed g,, constructed from Eq. (3). The numbers 1
through 6 designate curves for which g,,’ equals 0.03, 0.05, 0.10, 0.15,

n
0.25, and 0.40, respectively.
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TABLE II

Coeffi- e C.O€fﬁ-. €
cients in (2) cients in (2)
a 0.00176 ay, b 0.00141
b 0.00400 by ¢ 0.00213
c 0.00871 a, ¢ 0.00139
a, b, ¢ 0.00139

in practice, from high-quality photoelectric ones to poor-quali-
ty photographic ones.

For each possible » and ¢,, combination we constructed a
sample of 100 independent curves, which we then processed
by the Hertzsprung method. For each sample, Table I gives
the calculated values of A = ¢« — Ae (i.e., the differences
between the arithmetic mean of the calculated phases at maxi-
mum light &, and the specified shift Ap) and o, the arithme-
tic mean of the errors in determining ¢p,.. Hereafter, ¢ is
expressed in fractions of the period. As is clear from Table I,
A always equals zero to within the errors, which indicates
correct operation of the program.

The data from Table I can be used to find a relationship
between the error in determining the time of maximum light o,
the rms error in the processed observations o,,, and the num-
ber of observations n. To elucidate this relationship, we plot o
versus g, in Fig. 1 for different values of n. It turns out that if
o, = 0,/A is used to represent the observational error in Fig.
1 (i.e., the error is expressed as a fraction of the amplitude of
brightness variation A4), then the dependence of o on the shape
of the light curve becomes weak, and the symbols in Fig. 1 lie
along straight lines corresponding to the specified n values. If
o is plotted as a function of n, then the points lie along curves
with shapes resembling an inverse proportion, each of which
corresponds to a given o,,’ (see Fig. 2). Therefore, we seek o
as a function of n and ¢,,," in the form

a b c
0=0n" (—:- +—t— ),

Yn n n ?)
where the unknown coefficients g, b, and ¢ are determined by
the least squares method.

Table II contains the values of the rms deviation &, char-
acterizing the goodness of fit of Eq. (2) to the data of Table I
for all possible combinations of terms in formula (2). The
coefficients corresponding to the last row of Table Il are a =
0.454 + 0.032, » = 0.005 + 0.233, and ¢ = 2.54 + 1.28,
where the b term turns out to be negligible. Removing it from
(2) does not change &, and the coefficients become @ = 0.453
+ 0.006, and ¢ = 2.51 + 0.27. Thus, (2) assumes the form

o (50 251)

Yn n?

©)]

Equation (3) is used to draw the straight lines in Fig. 1
and to construct Fig. 2, in which ¢ is plotted vs n for fixed
UI)II'

Some practical recommendations. We have studied
Cepheid period variations using observations in different parts
of the spectrum, mainly in the V and B bands of the Johnson
system, and in the visual and photographic systems approxi-
mating these bands. In these studies, we have consistently
ignored the fact that the times of maximum light at long wave-
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lengths lag those measured at short wavelengths. Our experi-
ment (Berdnikov, 1990) shows that the effect of this lag is
entirely measurable, and thus all the times can be reduced to
one spectral band. For example, if the majority of observations
are in V, then the natural band to consider is V, and the corre-
sponding correction ATp to the times obtained in processing B
observations can be determined if these observations are pro-
cessed relative to the standard curve constructed in V. The
similarity of the curves in B and V allows this to be done
accurately, and the correction ATy obtained by processing the
V observations relative to the standard curve in B can serve as
a control. AT and ATy should be equal in magnitude and
opposite in sign.

We assumed that all of the standard curves are in phase.
However, it is difficult to place the maxima of all the standard
curves precisely at phase "zero." Therefore the phase shifts of
the standard curves relative to each other should be deter-
mined, and these shifts should be taken into account when
calculating the times of maximum light. This approach intro-
duces a degree of uncertainty into the times obtained, but since
this uncertainty is systematic, it turns out to have no effect on
the O — C curves.

Equation (3), like Figs. 1 and 2, can be used to determine
the suitability of the observations to study the stability of

periods to a given level of precision. For example, to search
for period changes at the 1% level, the useful curves are those
containing about a hundred photoelectric observations. There-
fore, long time series containing a large number of photoelec-
tric observations can be divided into "seasons," which increas-
es the number of experimental points, and thereby enhances
the temporal resolution of the O — C diagram. An order of
magnitude more photographic and visual observations are
required to attain this same precision, which, considering the
earlier discussion, can smear out the effects of rapid period
variability.
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(1990)]. ’
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Chaotic motion of nearly parabolic comets perturbed by the planets
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We have obtained an analytic expression for the diffusion coefficient of arbitrary, almost parabolic orbits in
the restricted circular three-body problem. We give formulas and recursion relations suitable for calculation.
The diffusion coefficient is computed for different perihelion distances and orbital inclinations, taking into

account perturbations from all of the major planets.

Introduction. The investigation of the long-term evolu-
tion of nearly parabolic orbits subject to planetary perturba-
tions is a central problem in the study of the origins of comets,
and in the interaction of observed long-period and short-period
comets. The principal characteristic of the perturbing action of
the planets is the variability of the reciprocal of the semimajor
axis of the comet orbit per unit time (the diffusion coefficient).
Determination of the diffusion coefficient is the subject of
many papers [see, e.g., Everhart (1968); Yabushita (1972);
Fernandez (1981); and Danken et al. (1987)]. Numerical mod-
eling of the problem requires integration of the equations of
motion of a very large number of comets over long time inter-
vals, and therefore results have been obtained only for certain
special cases.

Petrosk (1986), Vecheslavov and Chirikov (1986), and
Emel’yarko (1990a) used various approaches to construct an
algebraic representation describing the dynamics of objects
with orbital periods about the sun exceeding the periods of the
perturbing planets. Using this representation, one can find the
dependence of the diffusion coefficient on the orbital elements
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in the exterior version of the restricted circular three-body
problem (Emel’yanenko, 1990b).

In this paper we consider the general case of arbitrary,
nearly parabolic orbits. Using analytic expansion of the per-
turbing functions as proposed by Emel’yanenko (1991), we
estimate the diffusion rate of cometary orbits perturbed by the
major planets.

Resonant part of the perturbing function in the re-
stricted circular three-body problem. We consider motion of
a comet in a nearly parabolic orbit in the gravity field due to
the sun and a planet of mass p,,. We use the barycentric form
of the equations of motion and the astronomical system of
units. According to Emel’yanenko (1991), the perturbing
function R of the restricted circular three-body problem can be
represented in the form

R—_‘Rv‘*‘_Rey
N o _7*§,Z:Z'Z‘ (@+1)a <o:1)1:1*>‘h<2k+1>
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