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ABSTRACT

We report the results of three-dimensional Newtonian calculations of neutron-star binary coalescence using
smooth particle hydrodynamics (SPH). Using a relaxation technique, we construct hydrostatic equilibrium
models of close neutron-star binaries in synchronized circular orbits. We use a simple polytropic equation of
state with I" = 2 to represenr}.; cold nuclear matter, and we assume that the mass ratio g = 1, as observed in all
known neutron-star binary systems. Using SPH, we study the dynamical stability of these hydrostatic equi-
librium models. In a sequence of models with decreasing binary separation we find that dynamical instability
sets in slightly before the point along the sequence where the surfaces of the two stars come into contact. This
is in agreement with the known stability properties of the solutions of the classical Darwin problem for two
identical, incompressible components. We find that the initial stage of the instability, consisting in the steady
merging of the two stars into a single ellipsoidal object, is completed in about one orbital period. At this point
sudden mass shedding is triggered, resulting in the rapid removal of matter from the central object through
two outgoing spiral arms. This results in the rapid redistribution of matter in the system until a new, nearly
axisymmetric, differentially rotating equilibrium structure has formed. Using the quadrupole approximation,
we follow the emission of gravitational radiation from the onset of dynamical instability to the establishment
of axial symmetry.

To support our results, we present several test-bed calculations which use SPH for binary systems. We con-
sider axisymmetric, head-on collisions between two identical I = 2 polytropes and compare our SPH results
to those of previous finite-difference calculations. Most importantly, we calculate solutions of the Roche and
Darwin problems for polytropes with a wide range of adiabatic indices, 5/3 < T" < 10. We find good agree-
ment with known analytical results, in both the nearly incompressible and highly compressible limiting
regimes. These calculations provide stringent tests of our method’s ability to hold stable binaries in equi-
librium and to identify terminal points or the onset of dynamical instability along equilibrium sequences of
close binaries. Such tests are crucial for establishing the credibility of numerical results and, in particular, of

computed gravitational radiation waveforms.

Subject headings: binaries: close — hydrodynamics — radiation mechanisms: gravitational — stars: neutron

1. INTRODUCTION

Coalescing neutron-star binaries have long been recognized
as one of the most promising sources of gravitational radiation
(Dyson 1963; Clark & Eardley 1977; Clark, van den Heuvel, &
Sutantyo 1979). Recently, interest in these sources has been
revived with the design of laser interferometric gravitational-
wave detectors: The Caltech-MIT LIGO project and its Euro-
pean counterparts (Abramovici et al. 1992; Schutz 1986, 1989;
Thorne 1987; Vogt 1992). Indeed, these detectors are capable
of making broad-band observations, and should be particu-
larly sensitive to the radiation of frequency ~10?-10° Hz
emitted during the terminal phase of the coalescence.

Several neutron-star binaries have been observed in our
Galaxy. The well-known binary pulsar PSR 1913 + 16 (Hulse
& Taylor 1975) was the first to be discovered. Its orbital evolu-
tion, including relativistic effects, has now been observed for
many years (Taylor & Weisberg 1989). In particular, the theo-
retical estimate for the gravitational-radiation decay rate of the
orbit has been directly confirmed to high accuracy. The time it
will take for the binary to complete its coalescence is estimated
to be about 3 x 108 yr. Another similar system, PSR 2303 + 46,
was discovered some years ago (Stokes, Taylor, & Dewey
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1985), but its very long orbital period (about 12 days, com-
pared to 8 hr for PSR 1913+ 16) has so far precluded the
measurement of any relativistic effect. Recently, two more
neutron-star binaries were found, both with short ~10 hr
orbital periods: PSR 2127+ 11C in the globular cluster M15
(Anderson et al. 1990) and PSR 1534+ 12 (Wolszczan 1991), a
high Galactic latitude nearby source. The coalescence times for
these two new systems are about 2 x 108 and 3 x 10° yr,
respectively.

Narayan, Piran, & Shemi (1991) and Phinney (1991) have
used these latest observations to reevaluate the expected event
rate of mergers, improving on earlier work by Clark et al.
(1979) based solely on PSR 1913+ 16. In both of these recent
studies the event rate is conservatively estimated to be about 3
per year within 200 Mpc. This rate could be much higher if
there exists other types of neutron-star binaries which have so
far escaped detection, such as those that could form in galactic
nuclei containing clusters of stellar remnants (Quinlan &
Shapiro 1989).

During most of the orbital evolution of a coalescing
neutron-star binary, the separation between the two stars
remains much larger than their radii, and hydrodynamic effects
are completely negligible. In this regime, post-Newtonian per-
turbation methods can be used to calculate the evolution of the
system, including the emission of gravitational radiation
(Lincoln & Will 1990). Ultimately, however, as the binary
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separation decreases, hydrodynamic effects will become more
and more important. In particular, the characteristics of the
final burst of gravitational radiation, emitted when the two
stars finally merge together into a single object, will be deter-
mined entirely by hydrodynamics and will be very sensitive to
the internal structure of the two stars.

Calculation of this final evolution is difficult, even in the
Newtonian regime, because the evolution is strongly nonlinear
and fully three-dimensional. In their pioneering work, Naka-
mura & Oohara (1989; see also Oohara & Nakamura 1989,
1990) have used a conventional, finite-difference hydrody-
namics scheme to study the coalescence of two identical
neutron stars represented by polytropes. They focused on the
case in which the two stars result from the fission of a collaps-
ing, rotating core. In this case the binary may never be in a
state of hydrostatic equilibrium at any time during its evolu-
tion. By contrast, we use a Lagrangian method, smooth par-
ticle hydrodynamics, which is particularly well suited to
three-dimensional problems, and we construct a true hydro-
static equilibrium model of a neutron-star binary as initial
condition for our calculation.

We have made a considerable effort to check the ability of
our code to hold stable binary configurations in dynamic equi-
librium and to identify terminal points or the onset of insta-
bilities along equilibrium sequences. Failure to pass these tests
would result in spurious initial data, spurious fluid motions,
and spurious gravitational wave amplitudes. We feel that such
tests should be mandatory prerequisites for all numerical cal-
culations of gravitational wave emission (see, e.g., Centrella et
al. 1986, for a description of useful test-bed calculations).

The purpose of our work is to study in detail the hydrody-
namics of the final merging of two neutron stars and the corre-
sponding gravitational wave emission. In this paper, the first of
a series, we focus our attention on a detailed description of our
numerical method (§ 2) and a presentation of various test cal-
culations, including the compressible Roche and Darwin prob-
lems (§ 3) and the head-on collision of two polytropes (§ 4). A
complete coalescence calculation is presented (§ 5) for the sim-
plest case of two identical neutron stars, represented by I" = 2
polytropes, in a circular orbit, with their spins aligned and
synchronized with the orbital rotation. In future papers, we
will explore systematically the emission of gravitational radi-
ation under less restrictive assumptions. Specifically, the effects
of spin desynchronization or misalignment, eccentricity, and
unequal masses will be studied, and more realistic equations of
state, with varying stiffness, as well as the gravitational radi-
ation reaction, will be introduced. In addition, thermal effects
and neutrino diffusion will be incorporated, using a modified
SPH scheme which we are presently developing (Lai, Rasio, &
Shapiro 1992).

2. NUMERICAL METHOD

2.1. Smooth Particle Hydrodynamics

Smooth particle hydrodynamics (hereafter SPH) was intro-
duced specifically to deal with astrophysical problems involv-
ing fluids moving arbitrarily in three dimensions. The key idea
is to calculate the pressure gradient forces by kernel estimation,
directly from the particle positions, rather than by finite differ-
encing on a grid, as is done in more traditional Lagrangian
methods such as PIC (the particle-in-cell method; see, e.g.,
Harlow 1988). This idea was originally introduced by Lucy
(1977) and Gingold & Monaghan (1977), who applied it to the

calculation of dynamical fission instabilities in rapidly rotating
stars. Since then, a wide variety of astrophysical problems have
been tackled using SPH. In the past few years, these have
included galaxy formation (Evrard 1988; Shapiro, Kang, & .
Villumsen 1990), star formation (Monaghan & Lattanzio
1991), supernova explosions (Nagasawa, Nakamura, &
Miyama 1988; Herant & Benz 1991), solar system formation
(Boss, Cameron, & Benz 1992), tidal disruption of stars by
massive black holes (Evans & Kochanek 1989), and stellar
collisions (Davies & Benz 1991; Rasio & Shapiro 1991). The
method itself has also undergone major advances. Most
notably, artificial viscosity has been incorporated (Lattanzio et
al. 1986), as well as powerful algorithms for the calculation of
self-gravity, such as particle-mesh methods (Evrard 1988) and
tree algorithms (Hernquist & Katz 1989; Benz et al. 1990).

In SPH we must solve the equations of motion of a large
number N of Langrangian fluid particles,

.f,- = v,- )
m; i,'_ — FS-G"W) + FgHydm) . (1)

The fluid density at x; is estimated from the masses and posi-
tions of neighboring particles as a local weighted average,

pi = Z m; Wij . 2
J
We use symmetric weights, W; = W, calculated following the
method of Hernquist & Katz (1989) as
W= 3[W(lri—r;l  h) + W(lr;—rj), )] . )

Here h; is a smoothing length associated with particle i, and
W(r, h) is an interpolation kernel, for which we use the second-
order accurate form of Monaghan & Lattanzio (1985),

[ 3/r\% 3/r\? r
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When the true density p(x) of the fluid is represented by an
appropriate distribution of particle positions, masses, and
smoothing lengths, one can show that p; = p(x;) + O(h?) (see,
e.g., Monaghan 1985). Since our calculations assume an adia-
batic equation of state for the gas, the pressure at x; will be
estimated as

Pi=Aip{’ (5)

where 4, is a function of the specific entropy at x;, and I is the
constant ratio of specific heats. The local speed of sound is
¢; = (TP;/p,)*. Throughout this paper, we assume that the
value of I" defining an initial polytropic equilibrium and the
value associated with subsequent adiabatic changes are identi-
cal.

The hydrodynamical part of the force on particle i is calcu-
lated as

Fgﬂydro) — _Z m; m]li(% + ;:%) + Hij:lvi VVij . (6)
J 1

J
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Here II;; is an artificial viscosity term, while the rest of the
above expression represents one of many possible SPH-
estimators for the local pressure gradient force —(Vp/p); (see,
e.g., Monaghan 1985). This form has the advantage of being
computationally convenient, while at the same time providing
a natural set of conservation laws (see below). For the artificial
viscosity we adopt a symmetrized version of the form proposed
by Monaghan (1989):

— i€ + ﬂﬂf,

Hi' = 7
j Py )]
where p;; = (p; + p)/2, ¢;; = (¢; + ¢;)/2, and
("i_”j)'("i_"j)
, when (v;—v) (r;—r;) <0,
g = 11— 1, PR ) Bm2) ) <0,

0, when (v;,—v)*(r;—r)=0,

with h;; = (h; + hj)/2. This represents a combination of the
usual von Neuman-Richtmyer artificial viscosity and a bulk
viscosity. It provides a good description of shocks when the
constants satisfy « ~ g ~ 2, and 5% ~ 10”2 (Monaghan 1989;
Hernquist & Katz 1989). To complete the description of the
fluid, we write the first law of thermodynamics at x; as
d4;, T —1
T ; m; I v, — v) - V, W; . ©
The set of equations (1)—(9) has the important property of
guaranteeing, at least in the absence of gravity, the exact con-
servation of momentum and energy. We define the total
momentum of the fluid as

P,= Z m;v; , (10)
and the total energy of the fluid as
— Z (% v? + miui> , (11)
where u; is the specific internal energy of a fluid particle,
B _ A e (12)

ul.z—:—-———
G—-1p; y—1

Given these definitions, one can show (Rasio 1991) that equa-
tions (1)—(9), with a symmetric kernel and h; = constant, imply
dP,,/dt = 0 and de/dt = 0. Similarly, if we define the total
entropy of the system by

ks A
So == 1w & mil“(F - 1) +o

we see from equation (9) that dS,,/dt =0 in the absence of
shocks. Here kg is Boltzmann’s constant, u is the mean molecu-
lar weight, and S, is an arbitrary constant, so that equation
(13) reduces to the usual thermodynamic definition of the
entropy for an ideal gas.

An evolution equation for u;, rather that 4;, has often been
used in other implementations of SPH (see, e.g., Hernquist &
Katz 1989; Rasio & Shapiro 1991). We find that the use of
equation (9) has several practical advantages. First, when the
artificial viscosity is not used, or, if it is used, for those fluid
particles away from shocks for which II;; = 0, the property
that A4; = constant can be used directly so that no time is
wasted integrating an additional equation. But most impor-

(13)
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tantly, the numerical results obtained by integrating equation
(9) are often more accurate than those obtained with an energy
equation. This can be understood as follows. Since the kernel
W(r, h) is a monotonically decreasing function of r, the right-
hand side of equation (9) is positive definite, because II;; > 0
when (v; — v)) - (x; — x;) < 0 and is zero otherwise. This pro-
perty guarantees that the integration of equation (9) will lead
to physically reasonable results, with the entropy never
decreasing in time. In contrast, nothing guarantees that the
numerical integration of the energy equation will preserve the
positivity of u;. This can sometimes lead to unacceptably large
errors. Consider for example the nearly complete adiabatic
expansion of a region of the fluid into the vacuum. Particles in
that region will have u; — 0 at late times. Inevitably, numerical
truncation errors will lead to u; being set equal to zero (or
worse, u; < 0) for some of these particles. This is not in itself a
problem, since the contribution from those particles to the
total internal energy of the fluid is indeed negligible. However,
the specific entropy associated with 4; = (T — Du;/p} ~* has
also vanished in the process, even though it may not be negligi-
ble at all. Since A4; is normally a conserved quantity, the system
will keep forever the memory of this error, and the solution
could become meaningless if, for example, that particle were to
return later to a more active interior region.

One disadvantage of using the entropy equation is that when
time-dependent smoothing lengths are introduced, this can
lead to errors in the conservation of total energy. These errors
are directly related to the level of numerical noise in the system,
measured by the ratio o/c of the velocity dispersion of random
particle motions to the local speed of sound. Consider a small
region of fluid where all particles have smoothing lengths h; =
h(t), One can show on the basis of statistical mechanics argu-
ments (Rasio 1991), and verify empirically, that the total fluid
energy €,, in that region will evolve, as a result of the time-
dependent h, according to the following approximate relation,

2
<i ie'—"'> ~ —30( — 1)(l @> =,
€0 dt hdt) c

where the angle bracket denotes an ensemble averaging.

In practice, the use of time-dependent, individual particle
smoothing lengths h; is essential in ensuring that the spatial
resolution remains acceptable throughout a calculation. The
local values of h; must continually adapt themselves to expand-
ing and contracting regions of the fluid. The convenient pre-
scription that we use is to continually update the values of k; so
that the number of neighbors, Ny, of any particle remains
approximately constant in time. This number is a very impor-
tant parameter in the calculation. It is directly related to the
level of numerical noise in the system. In general, we find that,
for given physical conditions, the noise level in a calculation
always decreases when Ny is increased. Moreover, higher accu-
racy is obtained in SPH calculations only when both the
number of particles N and the number of neighbors Ny are
increased, with N increasing faster than Ny so that the smooth-
ing lengths h; decrease (Rasio 1991). The choice of the param-
eter Ny for a given calculation will therefore be dictated by a
compromise between what is considered an acceptable level of
numerical noise and the desired spatial resolution (which is
~hoc 1/N¥¢ in d dimensions). For most three-dimensional
calculations with N ~ 10%, we have found that N = 64 is an
adequate choice.

To provide reasonable accuracy, the SPH method requires

(14
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the use of very large numbers of particles (typically N > 1000).
This rules out a direct summation method for calculating the
gravitational field of the system. Instead, we have turned to a
grid-based method for calculating the gravitational field of the
fluid. The SPH definition of the (smooth) density (eq. [2]) is
used to calculate the values of the source term for the Poisson
equation at grid points. An FFT-based convolution algorithm
(Hockney & Eastwood 1988; Wells et al. 1990) is used to solve
for the gravitational potential on the grid. Forces at grid points
are obtained by finite differencing, and then interpolated onto
the particle positions. For the problem described in this paper,
the use of a grid is further motivated by our intention to incor-
porate into a future version of our numerical code the calcu-
lation of post-Newtonian effects, such as the gravitational
radiation reaction, which can only be done by finite-
differencing. In our code, we also perform the neighbor search-
ing using a grid-based algorithm. Specifically, we use a variant
of the method usually adopted in P®*M particle codes
(Hockney & Eastwood 1988). This method is extremely effi-
cient, even for wide distributions of smoothing lengths, provid-
ed that one is careful to fine-tune the ratio L/(h;) of the grid
separation L to the average particle smoothing length <A;>.

The time-evolution equations (1) are integrated using an
explicit leap-frog scheme. This provides second-order accuracy
in time. Note that such a low-order scheme is appropriate here
because pressure gradient forces are subject to numerical noise.
For stability, the time step must satisfy a Courant condition
with h; replacing the usual grid separation. For accuracy, the
time step must also be a small enough fraction of the system’s
dynamical time. In practice we calculate the time step as in
Monaghan (1989), setting At = Min(At,, At,) with

h.
: , (15)
¢; + 1.2ac; + 1.2 Max; p;
where k ~ 0.1, and At, = Mingh,/v)"/2.

2.1. The Quadrupole Formulain SPH

For nearly-Newtonian fluids, the emission of gravitational
waves can be calculated using the quadrupole approximation
(see, e.g., Misner, Thorne, & Wheeler 1970). In this approx-
imation, the amplitude Al of the wave in the transverse-
traceless gauge can be written

2 G &L, (t—r1)
rct dt? )

Here I} is the transverse-traceless part of the reduced quadru-
pole moment, i.e.,

'}’11;11- = Plk'I'knan - %lePkn'I'kn >

At, =k Min,.<

TT _
hlm -

(16)

an

where Py, = 8, — n,n; is the projection operator onto the
plane transverse to the radial direction n, = x,/r,

'I'lm = Ilm - %6lm1 (18)
is the reduced quadrupole moment, and
I, = jpx, Xpdx . (19)

The total power crossing a distant sphere of radius r at retar-

ded time t is
E _ l E ds{lm d3'1'lm
dt)ow S5c>\ d® at® /)’

(20)
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while the total angular momentum carried off by gravitational
waves is

dJ, 2G a*1,, d*%
— === —r—3" ). 21
( dt )Gw 5¢° 6"""< de?  de? @y
In the orthonormal basis defined by
0 10 1 0
=2 =- = = — 22
“=a% %" i ¢ rsin 0 0¢° @2)

the two basis tensors for transverse-traceless tensors corre-
sponding to a propagation along e; are

e, =¢;®e—e,;,®e,,

e, =¢;Qe,+e,Qe;. (23)
From equations (16) and (17) with n = ¢; we find
rh™ = (g5 — Y0064 + 2Hg5e (24)

where the components in spherical coordinates are related to
the Cartesian components by (see, e.g., Kochanek et al. 1990)

¥, = @, cos? ¢ + 1, sin? ¢ +¥,, sin 2¢) cos?
+1,.sin20 — @, cos ¢ + ¥, sin ¢) sin 20,

0 =%, sin? ¢ + %, cos® ¢ — ¥, sin 29,

oo = — 3@, —1,) cos Osin 2¢ + ¥, cos 6 cos 2¢
+ (&, sin ¢ —¥,, cos @) sin 6 .

For a perfect fluid, the first and second time derivatives of
the quadrupole tensor can be evaluated directly using the
method of Finn (1989). We use the continuity equation to write
the first time derivative of equation (19) as

(25)

L= — jV - (po)x; X, dx . (26)
Integrating by parts then gives
I'lm = J‘p(lem + U xl) dx . (27)

Similarly, taking the time derivative of equatidn (27) and
using both the continuity equation and the Euler equation of
motion we get

I-lm = - J‘I:V . (pl!)(l), Xm + Uy xl)

1
+ pxm(; 0,P + 0,® + v*o, v,) (28)

1
+ px,(; OpP + 0, + "0, v,,,)] d3x ,

where @ is the Newtonian gravitational potential. After inte-
gration by parts and simplification this gives

I, = ‘[[2pu, v, + 2P6,, — p(%,,0,® + x,0, ®)]dx . (29)

In SPH, we replace the integration in equation (29) by a sum
over all particles, so that

N
fisee Z m
i=1
- PO o o
X [20}')05,‘,’ +2 P O + (xDglD + xPg®) . (30)
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Here, to avoid confusion, an upperscript (i) has been used to
represent the particle index, and g® is the gravitational force at
x®, Equations (24), (25), and (30) allow us to calculate the
gravitational wave amplitude directly from particle positions
and velocities, without the need to perform numerical differen-
tiations. One numerical differentiation is required, however, to
calculate the total power and angular momentum carried away
by the waves from equations (20) and (21).

3. CONSTRUCTION OF HYDROSTATIC EQUILIBRIUM MODELS

3.1. Introduction

Until very recently, calculations of hydrostatic equilibrium
models for close binary stars could only be performed with
approximate perturbation methods. This is because the
problem is intrinsically three-dimensional: even for the sim-
plest systems, where the spins of both components are parallel
to the orbital angular momentum and synchronized with the
orbital motion, the axisymmetry of the rotation is broken by
the presence of tidal forces, which have a symmetry axis per-
pendicular to the rotation axis.

For incompressible configurations, the tensor virial method
has been used with great success to study analytically the linear
departures from spherical symmetry (cf. Chandrasekhar 1969,
and references therein). Unfortunately, when the binary
separation is small, the linear approximation breaks down, and
the method no longer gives accurate results, especially near the
surface of the two components.

For highly compressible configurations (in practice, poly-
tropes with indices n > 3, or I" < 4/3), the first-order pertur-
bation technique of Monaghan & Roxburgh (1965) has been
used for the equilibrium structure (Martin 1970; Naylor &
Anand 1970). In this technique, the polytrope is divided into
two regions. In the inner region, the perturbing forces are
assumed to be small and a linear perturbation of the Lane-
Emden solution is used. In the outer region, the density is
assumed to be negligible so that the potential can be written as
a solution of the Laplace equation. The two solutions are then
matched at some critical radius. This method does not break
down when the surface deformations become very nonlinear,
but is only applicable to highly compressible, centrally con-
densed stars for which the two-region approximation is valid.

Little is known about the intermediate case of mildly incom-
pressible (I' 2 5/3) components with large, nonlinear surface
deformations. Close binary neutron stars belong precisely to
this category. In this section, we show how SPH can be used to
construct hydrostatic equilibrium models of binary stars with
arbitrarily large surface deformations, and arbitrarily stiff equa-
tions of state. Specifically, models can be constructed where the
surfaces of the two components are in contact, and adiabatic
indices as high as I' =10 can be used with no particular
problem. In § 3.2, we demonstrate the accuracy of the method
by calculating solutions of the classical Roche problem, which
has known semi-analytical solutions. The deformation of more
compressible stars (polytropes) by point mass companions is
also examined, and the SPH results are compared to approx-
imate analytical solutions valid in the “highly compressible”
limit (§ 3.3). Finally, in § 3.4, we construct models of binaries
containing two polytropes of equal masses with various adia-
batic indices. In particular, binaries containing two identical
polytropes with I = 2 are constructed to model neutron star
binaries.
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3.2. The Classical Roche Problem

The classical Roche problem consists in determining the
equilibrium structure of a homogeneous, incompressible body
(called the primary), rigidly rotating about a point mass com-
panion (called the secondary). The perturbing potential due to
rotation and tidal effects is expanded in series of the coordi-
nates about the center of mass of the primary, and only the
lowest order (quadratic) terms are retained. Given these simpli-
fications, the potential surfaces are ellipsoidal and a complete
solution can be found semi-analytically.

We adopt notations and conventions similar to those of
Chandrasekhar (1969). The origin of the coordinate system is
at the center of mass of the primary (mass M). The x-axis is the
axis of the binary, going from the primary to the secondary
(mass M’). The z-axis is parallel to the rotation axis. The
orbital angular frequency Q is given by Kepler’s third law,
which we write as

_G(M + M)
UL

Q2 =ul+q), (31

where a is the binary separation, ¢ = M/M’ is the mass ratio,
and u = GM'/a® is a measure of the strength of the tidal forces.
In terms of these quantities the perturbation potential can be
written (cf. Chandrasekhar 1969, chap. 8, eq. [6])

DRt = 202(x2 +)2) + ux? — 12— 4. (32)
Terms of higher order than quadratic in the coordinates have
been neglected in this expression. The coefficient of the linear
term vanishes identically when Q satisifes equation (31).

Numerically, we solve the problem by a relaxation technique.
First, we construct a spherical, unperturbed model of the
primary. We cannot deal directly with incompressible matter
in SPH, but we can solve the problem for polytropes with
increasingly large values of I and treat the incompressible case
as the I' — oo limit.

The SPH model of the unperturbed polytrope is constructed
as follows. We place N ~ 4 x 10* particles at the points of a
cubic lattice in a sphere of radius R. Individual particle masses
m; = p(r)/n are assigned, where n= N/@nR3/3) is the
(uniform) number density of particles and p(r;) is the exact
density at r;, determined by solving the Lane-Emden equation.
Such a uniform distribution of particles ensures that the spatial
resolution remains good near the surface of the star, where the
deformations are largest. The entropy variables A; of all par-
ticles are given the (constant) value of P/p" for the polytrope.
Since the spatial distribution of particles is homogeneous, a
constant number of neighbors Ny = 100 for all particles is
easily achieved by setting h; = constant = (1/2)[3N y/(4nn)]*/.

An external perturbation force, derived from the potential
(32), is then applied to the polytrope. Specifically, we use the
following equations of motion:

dv; _ FiHydro) 4 p(Grav) 4 FRoche) _ U

, 33
dt trelax ( )

where FHY4r) i the pressure gradient force of equation (6) and
F©™) represents the self-gravity of the primary. The external
force for the Roche problem is obtained from equation (32) as

FRoh) = VORH = u(3 + g)x, % + payid — pziz . (34)

A linear friction term has also been added in equation (33) to
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guarantee that an equilibrium is reached at the end of the
calculation. In the absence of such a friction term, the sudden
application of the external force F®**) would result in oscil-
lations of the fluid about the new equilibrium configuration. It
is important to choose the relaxation time ¢,,,,, in such a way
that the damping of these oscillations is slightly overcritical.
This implies t,e1,, S tose, Where to,, ~ (Gp)*/? is a typical oscil-
lation period. If the relaxation time is longer than critical,
“Roche lobe overflow” can occur near a critical solution, the
star losing some mass before an equilibrium is reached. On the
other hand, if the relaxation time is too short, the equilibrium
is reached much more slowly and computational resources are
wasted.

We now describe our numerical results. For simplicity, we
only consider the equal mass case, where g = 1. The units we
use are such that G = M = R = 1, where R is the radius of the
unperturbed polytrope. (Note that, in this paper, we will use
geometrized units, where G =c¢ =1, only when describing
gravitational radiation.) For each of three values of the adia-
batic index, I = 5/3, 2, and 10, we have constructed a sequence
of about 10 equilibrium models with increasing values of u. Of
particular interest is the location along each sequence of the
critical configuration, beyond which no equilibrium solution of
the Roche problem exists.

Two simple methods can be used to locate the critical point
along a sequence. The easiest but least sensitive method is
simply to follow the time evolution of some quantity measur-
ing the departure from spherical symmetry and to look for a
divergent behavior. This is illustrated in Figure 1, which shows
the evolution of the maximum elongation along the axis of the
binary for four different calculations with I = 2. We used this
method to obtain a first, coarse determination of ;. A more
accurate determination of y,;, using this method would require
prohibitively long calculations, since the growth time of the
deformation can be very long near the critical point. A more
sensitive method, which we used to refine our search, consists
in looking for early signs of mass shedding, or “ overflow ” near
the axis. This is illustrated in Figure 2, which shows contour
lines of the density in the orbital plane for various models with
I' = 2 near the critical solution. The scale is linear and the
outermost contour corresponds to p = 0. The first signs of
overflow are clearly apparent for 4 = 0.070.

| T T 1 | S T 1
] ]
- o u=0.08 B
a5 [ a2 u=0.075 o ]
T o p=0.0725 a7
- e u=0.07 s .
% 2 — » u=0.06 ° N o ]
g - o ] .
" C ° L, * i s o ° ° ]
1.5 — ce) g a S . : e ®© 0o 0 © o o o |
C Q g A A A A A 4 4 & & 4 4 a4 a s
1 e ]
_T P R T N NN RN WS WU NN A NI S ' i

0 5 10 15

time

Fi6. 1.—Time evolution of the maximum elongation x,,,/R of the primary
along the axis of the binary, for four different models along the I = 2 com-
pressible Roche sequence. Time is units of (R3/GM)*/2. The critical point is
clearly located at u ~ 0.07.
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TABLE 1

PROPERTIES OF THE CRITICAL SOLUTIONS
IN THE COMPRESSIBLE ROCHE PROBLEM

r Herit xcril/R
12 0.074 1.50
5/3 0.074 146
2 0.069 1.58
10l 0.058 1.58
00 tiviiinnininns 0.053 1.56

Table 1 summarizes the properties of the critical configu-
rations for various values of I'. The values listed under I" = oo
are from Chandrasekhar (1969). Those listed under I' = 1.2
(corresponding to the “infinitely compressible” n =135
polytrope) are from the approximate solution described below
in § 3.3. We find that the SPH result y_; = 0.058 for y = 10 is
very close to, though slightly larger than, the value p,;, = 0.053
given by Chandrasekhar (1969, chap. 8, Table XVIII).2. As
expected, the value of u_;, increases for decreasing I', the more
centrally condensed structures being less sensitive to tidal
forces. The interior profiles of the various critical configu-
rations are compared in Figure 3.

3.3. The Compressible Roche Problem

For small T, the SPH results for the Roche problem should
be compared to those obtained by the method of Monaghan &
Roxburgh (1965) for the perturbation of centrally condensed
polytropes (cf. § 3.1). Unfortunately, as far as we know, no
calculation of the Roche problem based on this method has
been published. However, we can easily obtain some analytic
results for the profiles near the surface of the primary. Indeed,
for a centrally condensed structure, we know that the gravita-
tional potential of the primary can be approximated as
— GM/r near its surface. Therefore the structure of the primary
near its surface can be determined approximately by solving
the hydrostatic equilibrium equation,

1
; V(p") + Ve =0, (35)
where the potential @ is a known function (cf. eq. [32]),
__%__l 20,2 2y 2_1 2__12
D= " 2Q(x + %) u<x 2V —37). (36)

The solution of equation (35) can immediately be written as
H + ® = ®,, where @, is a constant and H is the enthalpy,

dp r _
=| === r-1 37
Solving for the density we get
r _ 1) 1/(r—-1)
p= [(T (@, — @)] . (38)

The constant @, in equation (38) is clearly the value of the
potential at the surface (where p = 0). In the method of Mon-
aghan & Roxburgh (1965), the value of @, is determined by
matching the exterior solution, equation (38), to an interior

3 Note that g, in Chandrasekhar (1969) is given in the unit zGp. Since
G=1 and p=3/4n) in our units, we have p.; (here)=0.75 X p,,0
(Chandrasekhar).
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F16. 2—Density contours in the orbital plane at t = 15 for different models
near the critical point of the I' =2 compressible Roche sequence: (a)
1 =0.060; (b) p = 0.070; (c) u = 0.075. The scale is linear, with the nth contour
corresponding to p, = n x (0.0SMR~3). The outermost contour corresponds
to p =0. The region covered is —2 < x, y < 2, in units of R. Some mass
shedding near the axis is clearly apparent in (b) and (c).

solution obtained by a linear perturbation technique.
However, to zeroth order, if we assume that the physical condi-
tions in the interior have changed very little, it is clear that
®, = —GM/R, as in the unperturbed polytrope. With this
approximation, the solution near the surface is completely
determined by equation (38).

We can rewrite the solution in a more useful, dimensionless
form by using the following relatfon for a spherical polytrope

ofindexn = 1/(T" — 1),
4G

—_ 5 2 1-1/n
A_(n+1)<51> Pe s

(39

where the central density
& M
= . 40
P 1220\ ¢, 47R3 (40)
Here ¢ and 6 are the usual Lane-Emden variables (see e.g.,
Chandrasekhar 1939), and ¢, is the first zero of 6(¢). Equations
(38)—(40) with ®, = — GM/R give
2 9/ (I) 1/(r-1)

ﬁ=|:|f |¢1<| | _1)] @

Pe 61 GM / R
This ratio is plotted in Figure 3 (dashed line) for I = 5/3 and
remains very close to the SPH solution in the region near the
surface where p/p, < 0.1.

The value a;, of the binary separation corresponding to the

critical (i.., terminal) equilibrium solution is determined from
the conditions

q)o = (I)(X = Xerity Y = 0,z= 0) > (42)
where x,;, is such that
0P
<a>x=xcm,y=z=0 - 0 ’ (43)

When these conditions are satisfied, the surface of the primary
passes through the saddle point of the potential along the axis
(the Langrange point L,). Equations (36), (42), and (43) with
®, = —GM/R give

acrit_é 3+q 1/3‘ _3
R —2< q ) > xcrit/R_z‘ (44)

Note that x_;, is independent of the mass ratio in the highly
compressible limit. These results are included in Table 1 under
I' = 1.2 (corresponding to the “infinitely compressible” n = 5
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Fi1G. 3.—Interior density profiles of the critical configurations for various
values of the adiabatic exponent I'. The semimajor axis of each density contour
in the orbital plane is plotted as a function of the ratio p/p, for that contour.
The horizontal line at the top, corresponding to the incompressible case, is
from Chandrasekhar (1969). The profiles for I = 5/3, 2, and 10 are from our
SPH calculations. The dashed line is the profile calculated from equation (41)
for ' = 5/3. Central densities in units of MR ™3 are 0.24, 0.26, 0.79, and 1.4 for
T = o0, 10,2, and 5/3.

polytrope, for which p./p = o). It interesting to note that the
ratio x.;/R is not only independent of the mass ratio in the
highly compressible limit, but depends also very little on the
compressibility for any mass ratio, varying only from x_;/R =
15 for T'=12 to 14 < x_;/R < 1.6 for 0 < g <20 in the
incompressible limit (see Chandrasekhar 1969, chap. 8, Table
XVIII).

In Table 1, we see that, already for I' = 5/3, the parameters
of the critical solution calculated by SPH agree well with our
approximate analytical solution. In particular, the value
Herie = 0.074 determined numerically agrees very well with the
analytical result p.;, = 1/a3;, = 2/27 = 0.0741 obtained from
equation (44).

3.4. The Darwin Problem

More realistic models for synchronized binary stars can be
constructed in SPH using a relaxation technique similar to the
one described above for the Roche problem. At ¢ = 0 we place
two polytropes separated by a distance a along the x-axis. The
construction of each polytrope takes place as before, using a
uniform spatial distribution of particles on a cubic lattice and
varying the particle masses to represent the density. The
system is then allowed to relax in the presence of the combined
gravitational field of both stars and the centrifugal potential.
Here, in contrast to what was done for the Roche problem,
both the self-gravity and the tidal interaction are calculated
without approximations, by solving Poisson’s equation on a
grid overlapping both components.

The effects of rotation, however, are still represented by a
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centrifugal term in the SPH equations of motion:
% — F(Hydro) + F(Grav) + F(_Rot) _ L_
13 L 13 b
d relax

45)

where F®Y = Q%(x; & + y, ). Care must be taken to calculate
the centrifugal term in a way which remains consistent at all
times with the distribution of mass in the system. The pro-
cedure we use is as follows. At ¢t = 0, we calculate the total
angular momentum of the system as L, = Q_, Q, where Q,, =
T;mix? + y?) and Q = [G(M + M’)/a*]*/>. During the relax-
ation, L, is then assumed to remain constant but Q,, is
constantly updated and the rotation frequency recalculated as
Q=L,Q,,. This procedure guarantees that the relaxation
process remains physically reasonable, and that the final
equilibrium structure is in a state of rigid rotation.

Figure 4 illustrates the results of such a relaxation calcu-
lation, performed here for two polytropes of equal masses with
I' = 2 and an initial binary separation a = 2.9 (units are such
that G = M = M’ = R = 1). By the end of the calculation, at
t = 15, the separation has stabilized at the value a = 2.83. Con-
tours of constant density in the orbital (x-y) plane and in the
transverse (x-z) plane are shown. The equilibrium solution
depicted in Figure 4 will be used as the starting point of our
coalescence calculation in § 5. Indeed, this solution is actually
unstable: if set into rotation and allowed to evolve dynamically,
the two stars will merge completely in about one rotation
period.

The same procedure can be used to calculate a sequence of
models with decreasing binary separation, as we did for the
Roche problem. Here, however, such a sequence does not ter-
minate. It can be extended all the way to the point where the
two stars are in contact (we refer to the corresponding solution
as the critical solution). In fact, using SPH, it is even possible to
construct equilibrium models where the two stars overlap. This
is of little interest, however, since these models are dynamically
unstable (cf. § 5). We have constructed numerically the
sequence corresponding to g = 1 and I" = 2. The deformation
X./R (Where, as before, x is along the axis of the binary,
increasing toward the point of contact between the two stars)
of the critical solution along this sequence is given in Table 2.
It is in excellent agreement with the results of semi-analytic
perturbation calculations by Martin (1970) for polytropes of
index 2 < n < 5. For these very compressible polytropes, the
parameters of the critical solution are nearly independent of
the polytropic index (Martin 1970 finds that the deformation
Xi/R varies only between 1.365 and 1.375 for 2 < n < 4.9).
Table 2 also gives the result for the incompressible case,
I' = oo, taken from Chandrasekhar (1969, chap. 8, Table
XVIII). Note that this latter result was obtained in the context
of the classical Darwin problem, where the tidal potential is
truncated to quadratic terms.

Finally, to test our ability to calculate gravitational radi-
ation waveforms, we took one of our equilibrium models with

TABLE 2

PROPERTIES OF THE CRITICAL SOLUTIONS
FOR BINARY POLYTROPES

r Xma/ R Source
12015 ... 1.37 Martin 1970
2 e 1.40 SPH
00 tiiiiiiiiniieeas 1.42 Chandrasekhar 1987
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F1G. 4—Density contours of an equilibrium binary star system. The contours were calculated as in Fig. 2. The binary contains two polytropes of equal masses
with I' = 2 and with a binary separation a = 2.8 (units are such that G = M = M’ = R = 1). Cuts through the orbital plane (a) and the plane containing the rotation
axis and the axis of the binary (b) are shown. The regions covered are —1 < x < 3 and —2 < y, z < 2. This configuration was used as the initial condition for our

calculation of binary coalescence.

a rather large binary separation and we calculated its dynami-
cal evolution. The equilibrium configuration determined in the
corotating frame of the binary was set into motion and its
dynamical evolution was calculated in the inertial frame (see
§ 5 for a discussion of stability). The corresponding gravita-
tional radiation waveforms, calculated according to the
method of § 2.2, for an observer situated along the rotation
axis, are shown in Figure 5. Also shown are the theoretical
waveforms calculated for two point masses on the same orbit.
Clearly, the agreement is excellent. These results provide
reassurance that our computed waveforms will be reliable and
not the result of spurious fluid motions.

4. HEAD-ON COLLISIONS OF POLYTROPES

Head-on, axisymmetric collisions between identical poly-
tropes provide an ideal test problem for this work. Indeed, they
incorporate most of the ingredients of a coalescence calcu-
lation: strong, nonlinear hydrodynamical and gravitational
interactions between the two stars, with shocks providing the
dissipation. Because of its axisymmetry, the problem has
already been well studied with more conventional finite-
difference methods, which allow one to determine the solution
with high spatial resolution. These calculations provide models
for colliding neutron stars. Head-on collisions of two identical
I" = 2 polytropes have been calculated by Gilden & Shapiro
(1984) (who also studied I = 5/3) and Evans (1987) in the New-
tonian case, and are now being studied in full general relativity
by Abrahams & Evans (1992). Some preliminary Newtonian
calculations of off-axis collisions between neutron stars, using
SPH, were also reported by Kochanek & Evans (1989).

The initial condition for our calculation is constructed as
follows. We place two identical, unperturbed I' = 2 polytropes
along the x-axis, separated by a distance 4R, where R is the
stellar radius. This separation is large enough that we can

;

[M/R]

(r/M)h,

[M/R]

(r/M)h

IIII|I1IIIIIIIIIIIIIIIIIII|III

e =
) »
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I 1 1 1 1 I 1 I 1 1 ] 1 1

10 20 30
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F1G. 5—Gravitational wave emission from a stable binary system. The
binary contains two I' = 2 polytropes of equal mass M with a binary separa-
tion a = 3.5R. Geometrized units (G = c = 1) are used for measuring the
parameters. Amplitudes of the two polarization states of the radiation are
shown, as a function of retarded time ¢, for an observer along the rotation axis
(6 = 0) a distance r from the source. The solid lines are from our numerical
calculation. The dashed lines (barely distinguishable) show the theoretical
waveforms corresponding to two point masses with the same binary separa-
tion.
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neglect tidal deformations at ¢t = 0. All fluid particles in each
star are given the same initial velocity, corresponding to a
head-on, parabolic trajectory of their centers of mass. Each
polytrope is constructed as in § 3, using N = 8000 particles per
star. The results we quote in this section are in units such that
G =M =R =1, where M and R are the mass and radius of
one polytrope. Our calculation extends to t, =20 in these
units. Conservation of total energy is maintained to better than
1% throughout the calculation (cf. Fig. 6).

The evolution of the system can be summarized as follows
(see also Gilden & Shapiro 1984). As the two stars come into
contact, two recoil shocks form and begin to propagate into
each star along the collision axis. The shock-heated gas in the
central region immediately accelerates in the transverse direc-
tion, where it is not being contained by ram pressure. We find
that about 5% of the total mass eventually escapes from the
system. The rest, after it reaches a maximum expansion, recon-
tracts supersonically, leading to a second phase of shock-
dissipation in the system. After a few more large amplitude,
nonadiabatic oscillations, the system stabilizes into a hot, pul-
sating, nearly spherical equilibrium configuration. The initial
shock-heating, as well as the ensuing nonadiabatic pulsations
can be seen most clearly in Figures 6 and 7, where we show the
time evolution of total internal energy and total entropy in the
system. For 2 <t <3, the two recoil shocks propagate
through the stars, leading to a steep rise in entropy and inter-
nal energy. For 3 <t < 6, the gas is expanding adiabatically,
implying a decrease in internal energy and a plateau in
entropy. For 6 <t < 20, the internal energy oscillates, while
the total entropy increases monotonically, implying that differ-
ent regions of the gas are not recollapsing in phase. Finally,
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FiG. 6—Time evolution of the various energies during the head-on colli-
sion of two polytropes with equal masses and I' = 2. The potential energy
(short-dashed line), internal energy (dotted line), kinetic energy (long-dashed
line), and total energy (solid line) are shown
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FiG. 7—Time evolution of the total entropy and gravitational radiation
waveform for the head-on collision of two I' = 2 polytropes with equal mass
M. The total entropy is calculated according to eq. (13), with the arbitrary
constant S, calculated in such a way that S, , = 0 at t = 0. The time and wave
amplitude are measured in geometrized units. The three lines correspond to
calculations with different parameters: the solid line is for N = 8000 particles
per star and Ny = 64; the dotted line is for N = 4000 particles per star and
Ny = 32; the dashed line is for N = 16,000 particles per star and N = 64.

for ¢ = 20, the pulsations become nearly adiabatic and the
total entropy levels off. This evolution is qualitatively in good
agreement with that found by Gilden & Shapiro (1984).

Also shown in Figure 7 is the gravitational radiation wave-
form corresponding to the collision, calculated by the method
of § 2.2. For an axisymmetric system, the only nonvanishing
polarization is h . , and is given by

3o
Yt dr?

To check the sensitivity of our numerical results to changes
in the integration parameters, we repeated the calculation with
three different combinations of the number of particles N and
the number of neighbors Ny (cf. § 3). Our “reference” calcu-
lation was performed with N = 8000 particles per star and
Ny =~ 64; it took about 20 CPU hours on an IBM 3090-600J]
supercomputer. The corresponding results are shown by the
solid line in Figure 7. To test the influence of numerical noise,
we repeated the calculation with N = 4000 particles per star
and Ny = 32 [this does not change h oc (Ny/N)'/3]. The results
were practically unchanged (cf. Fig. 7, dotted line). To test the
influence of spatial resolution, we performed a calculation with
N = 16,000 particles per star and N ~ 64 (this makes h about
25% smaller). The results were again barely changed (cf. Fig. 7,
dashed line), perhaps with the exception of a slightly higher
amplitude in the gravitational radiation waveform. In Figure 8,
we show a more detailed comparison of the three SPH results
for the early development of the waveform, and we also
compare our results to those of a recent finite-difference calcu-
lation (Abrahams & Evans 1992). For the main peak in the

sin? 6 . (46)
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F1G. 8.—Comparison of waveforms at early times for the head-on collision.
Conventions for the three SPH results are as in Fig. 7. In addition, the short-
dashed line shows the result of a recent finite-difference calculation (Abrahams
& Evans 1992).

wave amplitude, the difference between the two methods is
<10%, and may be due to the higher spatial resolution of the
finite-difference calculation.

The evolution of the total luminosity of gravitational radi-
ation, calculated from equation (20), is shown in Figure 9.
Most of the luminosity comes from the rapid deceleration of
the matter during the propagation of the recoil shocks. This

Lew/Lo [(M/R)°]

0 2 4 6

t/M [(R/M)¥?]

FiG. 9—Gravitational radiation luminosity vs. retarded time for the
head-on collision depicted in Figs. 6-8. Here L, = ¢*/G = 3.6 x 10°° ergs s~ .
The solid line is our SPH result (for N = 16,000 particles per star and
Niy = 64). The dashed line shows the theoretical result for two point masses.
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corresponds to the second peak in Figure 9. Instead, the much
smaller first peak corresponds to the initial free-fall of the two
stars. For comparison, the luminosity corresponding to the
case of two point masses is also shown (dashed line). The total
energy radiated in gravitational waves during the collision is
Aegw ~ 0.6/c* in our units, or Aegw ~ 0.6 x 1052 M2 R/
ergs, where M, , is the mass of one star in units of 1.4 M and
R, is the stellar radius in units of 10 km. This corresponds to
an efficiency Aegw/Mc? =~ 2.4 x 1073 M]/2 R{/?, comparable
to that found by Gilden & Shapiro (1984).

5. COALESCENCE OF A BINARY POLYTROPE

Following the procedure described in § 3 we can construct,
for a given mass ratio ¢ = M/M’ and adiabatic index T, a
sequence of equilibrium models with decreasing binary separa-
tion. As we have seen, the sequence can be followed all the way
to the point where the surfaces of the two stars come into
contact. However, we expect these equilibrium solutions to
become dynamically unstable to tidal disruption somewhat
before the point of contact. Indeed, analytical studies, based on
the tensor virial method, have established this for the case of
incompressible components with ¢ = 1 (Chandrasekhar 1975,
Tassoul 1975). A survey of equilibrium, g = 1 sequences with
various adiabatic indices, which we performed using SPH, .
reveals that the same result is true in the compressible case: for
binaries containing two polytropes of equal masses, dynamical
instability sets in just before the point of contact along an equi-
librium sequence with decreasing binary separation. The growth
of the unstable mode leads to the coalescence of the two com-
ponents on a time scale comparable to the orbital period.
Using SPH, we can follow the full nonlinear evolution of the
instability, and determine the final fate of the system. The start-
ing point of our coalescence calculation is the equilibrium
model shown in Figure 4. This model is just past the critical
point for dynamical instability, which for the T =2, g=1
sequence, corresponds to a binary separation a4,,/R =~ 3 (for
comparison, in the incompressible case, a4,,/R = 2.90; cf.
Tassoul 1975). The onset of instability is illustrated in Figure
10, which shows the dynamical evolution of the binary separa-
tion for one model just before the critical point, and one model
just past the critical point (the emission of gravitational radi-
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FIG. 10—Time evolution of the binary separation for two equilibrium
models. The model with initial separation a/R = 3.5 is stable. The other model,
with initial separation a/R = 2.8 is unstable and leads to the coalescence of the
two neutron stars on a time scale comparable to the initial orbital period
(P, ~ 21 in units where G = M = R = 1).
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FIG. 11.—Coalescence of the binary depicted in Fig. 4. Contour plots of the density in the orbital plane are shown at various times. The region covered is —4 < x,
y < 4. The scale is logarithmic with 16 contours covering 4 decades down from the maximum. (a) t = 0; (b) t = 5; (c) t = 10; (d) t = 15; (e) t = 20; (f) t = 25;

(g)t = 30; ()t = 35;(i) t = 40;(j) t = 60.

ation from the stable model was calculated in § 3 as a test of
our method).

The development of the instability and the following hydro-
dynamical evolution of the system are shown in Figure 11. As
before, we use units such that G = M = R = 1, where M and R
are the mass and radius of one unperturbed star. Assuming that
both stars have a mass M ~ 14 Mg and an unperturbed
radius R =~ 10 km, the initial binary separation is a ~ 28 km
and the initial orbital period P, ~ 1.5 ms. The entire evolu-
tion shown in Figure 11 then takes about 5 ms. Contours of
constant density in the orbital plane are plotted for various

times. The density scale is logarithmic, covering 4 decades
down from p,,,, with four contours per decade: the nth
contour has p,/pn.. = 1074 The rotation is counter-
clockwise. Consecutive plots are separated by about one-
quarter of the initial orbital period. The entire calculation,
performed with N = 8000 particles per star, Ny =~ 64, and a
256% grid for the gravitational field, took about 100 CPU
hours on an IBM 3090-600J supercomputer.

We can distinguish three stages in the evolution of the
system. In the initial development of the instability (Figs. 11a-
11d), the surfaces come into contact and the two stars then
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begin merging. In the corotating frame of the binary, the radial
infall velocities of the merging regions remain nearly constant
in time, and very subsonic, so that the evolution is adiabatic at
this stage. After about one complete revolution, when the inner
regions of the two stars begin their radial infall, mass shedding
sets in rather abruptly: matter near the periphery of the system
starts spiraling outwards (Figs. 11e-11g). The evolution is still
adiabatic. In the final stage, the spiral arms widen and merge
together (Figs. 11h—11j). The relative radial velocities of neigh-
boring arms are now supersonic, leading to shock-heating and
dissipation. As a result, a hot, nearly axisymmetric rotating

halo forms around the central dense core. Most of the gas in
the halo remains bound to the core, with the total amount of
mass loss being less than 0.1% at the end of the calculation.
Throughout its evolution, the system remains very close to
virial equilibrium. This is in contrast to the case of a head-on
collision, where a large initial excess of kinetic energy has to be
converted into other forms (mostly gravitational potential
energy as can be seen in Fig. 6).

We can better understand these results by following the
evolution of the ratio T/ | W | of the kinetic energy of rotation
to the gravitational binding energy (Fig. 12). We know (cf.
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James 1964) that a uniformly rotating polytrope with adiabatic
index T' <225 (polytropic index n > 0.8) cannot form a
barlike structure (the equivalent of an incompressible Jacobi
ellipsoid). This is because the corresponding value of T/| W |
for the bar-mode instability would be larger than the critical
value (T/| W |)..x beyond which mass shedding occurs. For
I" = 2 this terminal point along the equilibrium sequence cor-
responds to (T/| W |)ax = 0.12 (see, e.g., Tassoul 1978). As the
initial coalescence takes place, T/| W | increases well above
0.12, making it necessary for some mass shedding to occur. The
mass shedding continues until an axisymmetric configuration
is reached. If rigid rotation were maintained throughout the
mass shedding phase, the ratio T/| W | would then decrease
until it reaches 0.12. Instead, we find that a slightly larger
value, T/| W| ~ 0.14, is reached, indicating that some amount
of differential rotation must be present in the final configu-
ration (see below).
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Fi1G. 12—Time evolution of the ratio of rotational kinetic energy T to
gravitational binding energy | W | for the coalescence depicted in Fig. 11.

The structure of the final equilibrium configuration is shown
in Figures 13-16. It consists of a rapidly rotating, uniform
density core embedded in an extended, low-density halo. The
core contains most of the mass: about 70% of the total mass is
contained within a region of radius r, =~ 1, where p/p, > 0.1 (cf.
Fig. 14). In our units the central density is p, ~ 0.8, giving
p. =2 x 10" gecm™3 M, , R{;, where M, , is the mass of the
neutron star in units of 1.4 M, and R, is its radius in units of
10 km. This is very close to the central density of our unper-
turbed polytropic model. Some spiral structure is still apparent
in the outer regions of the halo, where the density p/p, < 1073
(cf. Fig. 13).

The rotation in the core is nearly uniform, with an angular
velocity Q. ~ 0.6 in our units, corresponding to a rotation
period (27/Q), ~ 0.8 ms M 4> R} The dispersion observed
for r <1 in Figure 15 is a numerical artifact: the ratio v/r
becomes ill-defined as r — 0. Differential rotation is evident in
the halo, with the angular velocity following very closely a
power-law of the type Q oc r},, where r.,, = (x* + y?)'/? is the
distance to the rotation axis and v &~ — 1.8. Note that, since the
specific entropy is not constant in the halo (cf. Fig. 15), Q need
not be a function of r_, only. The fact that it is, to a very good
approximation, implies that the halo has the structure of a
pseudo-barotrope (see e.g., Tassoul 1978, chap. 4): the surfaces
of constant density nearly coincide with those of constant pres-
sure, even though the equation of state is not of the form
P = f(p). The exponent of the power-law is consistent with
the stability condition for pseudo-barotropes, the so-called
Solberg criterion, that the specific angular momentum j =QrZ,
must increase outward (cf. Tassoul 1978, chap. 7). Stability also
requires the specific entropy to increase outward. This condi-
tion is satisfied throughout most of the halo (cf. Fig. 15), except
in the outermost region where the final equilibrium has prob-
ably not yet been reached [the hydrodynamical time scale in
that region is very long: (Gp)~ '/ 2 100].

We can roughly estimate the temperature of the gas in the
halo by equating the kinetic pressure pkpT/u, where p is the
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FiG. 13—Density contours of the final configuration for the coalescence depicted in Fig. 11. The right panel shows a cut through the orbital plane. The left panel
shows a cut through a plane containing the rotation axis (and intersecting the orbital plane along the dashed line). The region shownis —20 <X, y,z < 20. The scale

is logarithmic, with 16 contours covering 8 decades down from the maximum.

mean molecular weight and kg is Boltzmann’s constant, to the
difference P — A,p", where P = Ap" is the total pressure and
A, is the constant, “cold” (i.e., pre-shock) value of 4 at t = 0.
The maximum temperature in the halo is then kg T,,,,,/u ~ 0.06
in our units, giving T, ~ 1.3 x 10'* K M, , Ry, for u equal
to a baryon rest mass (this is comparable to the temperature in
the interior of a nascent neutron star formed in a supernova
explosion). This high-temperature region corresponds to the
bulge at r &~ 5 in Figure 13. The average density in this region

0.8 -

0.6 — |

M (p )/ Mtot

0.4 —

0.2 — —

| | | | | | |
1 10! 10% 10® 10* 10 10°® 107 107°
P
FiG. 14—Mass profile of the final coalesced configuration for the merger

depicted in Fig. 11. The mass fraction contained inside a constant density
surface is plotted as a function of the value of the density on that surface.
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FIG. 15—Profiles of the angular velocity of rotation Q and entropy vari-
able 4 in the final configuration for the merger depicted in Fig. 11. One dot is
plotted for each SPH particle. The horizontal dashed line shows the value of 4
in the initial configuration. The cylindrical radius r.,, = (x* + y?) is measured
from the rotation axis.
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Fic. 16.—Density contours in the core of the final configuration for the merger depicted in Fig. 11. The right panel shows a cut through the orbital plane. The left
panel shows a cut through a plane containing the rotation axis (and intersecting the orbital plane along the dashed line). The region shown is —2 < x, y, z < 2. The

scale is logarithmic, with 10 contours per decade.

isp ~ 107%p, ~ 10** g cm 3. Most of the heating is caused by
shocks forming when the low-density inner edges of the
expanding spiral arms collide with the outer edge of the central
core. The interior of the core itself remains essentially
unheated. This should be contrasted to case of a head-on colli-
sion, where the entire mass of the system must pass through the
initial recoil shocks.

We have used the formalism of § 2.2 to study the emission of
gravitational radiation during the coalescence. Table 3 gives
the time evolution of all nonzero components of Iy,.
(Numerically, we find I}, ~ 1074, which gives an estimate of
the numerical error on the other, nonzero components.) This
table allows one to calculate the waves emitted in any direction
(0, @) (cf. eq. [24] and [25]). As an illustration, Figure 17 shows
the waveforms received at a distance r from the source by a
distant observer located on the rotation axis (§ = 0). The two
polarizations in this case are

G . "
rh+ = c_4 (I-x - {yy) >

Thx =27:I"

ity @)
The maximum amplitude corresponds to rh,,,, ~ 2.4/c* in our
units, or h_,, =~ 3 x 1072 M?, R;¢ x (r/10 Mpc)~'. Note
that, even though no dissipation mechanism was included in
the calculation, the amplitude decays rapidly near the end of
the evolution. This is simply because the distribution of mass in
the system becomes more and more axisymmetric and steady
as the new equilibrium is reached. The total luminosity of
gravitational radiation is shown in Figure 18. There is a single,
broad peak, with a maximum luminosity L, ~ 0.8 x 10°°
ergs s~ ' M3, R{¢, and with a width Atpyy = 1.0 ms M }/?
R32. The total energy radiated in gravitational waves during
the final coalescence is Aegw ~ 8.8/c> in our units, or Aegy =

1052 ergs M32 R;,/'?, corresponding to an efficiency
Aegw/Mc? ~ 3.5 x 1072 M2 R{,//*. This is in excellent agree-
ment with the most recent results of Oohara & Nakamura
(1990), who quote efficiencies between 3% and 4.2% from
similar calculations using a three-dimensional finite-difference
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FiG. 17—Gravitational radiation waveforms for the coalescence depicted
in Fig. 11. Quantities are labeled in geometrized units. Amplitudes of the two
polarization states of the radiation are shown for an observer situated along
the rotation axis (at 0 = 0).
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TABLE 3

GRAVITATIONAL RADIATION DATA

Time* I.b I, I, I, Time* Ir.® I, I, I,
0.00000......... —0.74145 0.74682 0.02420 —0.01876 32.75328......... —0.00875 0.07999 0.03040 0.16381
0.56329......... —0.68007 0.72014 0.03985 —0.25868 33.20978......... —0.09224 0.13911 0.00860 0.09059
1.12065......... —0.55974 0.58840 0.02559 —047783 33.68417......... —0.11877 0.12908 —0.01574 0.00028
1.68303......... —0.38321 0.37628 —0.00266 —0.64277 34.16769......... —0.08782 0.07347 —0.02152 —0.06291
2.25932......... —0.15297 0.11669 —0.02044 —0.73674 34.65138......... —0.03154 0.01125 —0.00505 —0.08044
2.83430......... 0.11873 —0.14314 —0.00631 —0.74736 35.13223......... 0.02070 —0.02541 0.02212 —0.06212
3.39190......... 0.40483 —0.36545 0.03502 —0.66902 35.61092......... 0.04281 —0.03669 0.03638 —0.03212
3.93559......... 0.63526 —0.55732 0.05655 —0.50547 36.09766 0.03937 —0.03338 0.02995 —0.00984
448252......... 0.76739 —0.71213 0.03924 —0.27144 36.59766... 0.02476 —0.03374 0.00595 —0.00061
5.03987......... 0.79011 —0.79413 —0.00377 0.00729 37.11234... 0.01263 —0.04485 —0.01726 0.00314
5.61881......... 0.72283 —0.76184 —0.03045 0.30243 37.63681... 0.00933 —0.05562 —0.02001 0.01483
6.19419......... 0.58704 —0.59356 —0.00797 0.56813 38.15901... 0.01071 —0.04199 0.00237 0.03642
6.74890......... 0.38687 —0.31943 0.03997 0.76201 38.68169... —0.00124 0.00144 0.02959 0.05348
7.28868.:....... 0.10967 —0.00288 0.06434 0.85277 39.20020. .. —0.03100 0.05110 0.03756 0.04490
7.82589......... —0.22535 0.29426 0.04145 0.82054 39.72968 ... —0.05674 0.07704 0.02010 0.00516
8.37457......... —0.55372 0.54656 —0.00740 0.66387 40.27815... —0.05771 0.05397 —0.00968 —0.04736
8.95095......... —0.79920 0.75663 —0.03082 0.39564 40.83446... —0.01819 —0.00601 —0.02292 —0.07783
9.52521......... —0.89732 0.89564 —0.00126 0.05253 41.38687 0.04130 —0.06676 —0.00888 —0.06201

10.07730......... —0.83351 0.90941 0.05072 —0.31142 41.93094 0.08764 —0.08326 0.02304 —0.00437
10.59555......... —0.64952 0.75971 0.07059 —0.62666 42.47504... 0.07748 —0.04943 0.03849 0.05984
11.12053......... —0.37832 0.44630 0.04050 —0.85505 43.02368... 0.01472 0.01662 0.02585 0.08738
11.65034......... —0.04809 0.03818 —0.01251 —0.95022 43.58324... —0.06270 0.06912 —0.00567 0.05689
12.19145......... 0.32941 —0.37231 —0.03396 —0.89684 44.15462... —0.10005 0.07471 —0.02526 —0.01211
12.73807......... 0.70879 —0.71073 —0.00449 —0.68773 44.72858... —0.06692 0.03400 —0.01246 —0.07350
13.28469......... 0.97952 —0.93700 0.03080 —0.33395 4528328... 0.01102 —0.02467 0.01986 —0.08699
13.82915......... 1.05378 —1.00088 0.04134 0.10649 45.82436... 0.07957 —0.06572 0.04121 —0.04708
14.38177......... 0.89707 —0.87254 0.02029 0.54778 46.36557... 0.09055 —0.07215 0.03149 0.01858
14.95270......... 0.53247 —0.55232 —0.01368 0.89543 46.92780... 0.03826 —0.03918 0.00006 0.06935
15.54012......... 0.03708 —0.07301 —0.02552 1.06161 47.49905... ~—0.03858 0.01329 —0.02298 0.07155
16.11436......... —0.46520 0.45896 —0.00204 0.98683 48.06616... —0.08886 0.05113 —0.01815 0.02795
16.67711......... —0.86949 091237 0.03188 0.66946 48.61411... —0.08014 0.05832 0.01214 —0.03008
17.23611......... —1.09109 1.13964 0.03525 0.17024 49.14651 —0.02702 0.03277 0.03876 —0.06671
17.79855......... —1.05284 1.07336 0.01063 —0.38762 49.67336 0.02839 —0.01198 0.03746 —0.06558
18.38383......... —0.73634 0.72031 —0.01886 —0.87292 50.20724... 0.05413 —0.05044 0.01105 —0.03199
18.98122......... —0.18852 0.16579 —0.02037 —1.14116 50.76010. .. 0.04074 —0.06169 —0.01846 0.01115
19.56808......... 0.45102 —0.43717 0.01065 —1.09118 51.33012... 0.00389 —0.03794 —0.02317 0.03690
20.13969......... 0.97166 —0.92630 0.03486 —0.72006 51.88762... —0.02641 0.00099 0.00071 0.03252
20.72169...:..... 1.19920 —1.16852 0.02378 —0.11753 52.42769... —0.02984 0.03252 0.03077 0.00731
21.31165......... 1.05501 —1.06165 —0.00499 0.52570 52.96127... —0.01317 0.03679 0.04055 —0.01952
21.89012......... 0.61293 —0.63832 —0.01789 1.00361 53.50208... 0.00407 0.01136 0.01924 —0.03177
22.44537......... 0.02426 —0.02598 —0.00053 1.19066 54.06067... 0.01269 —0.02384 —0.01337 —0.02478
22.96873......... —0.54501 0.58250 0.02435 1.05121 54.63173... 0.00958 —0.04343 —0.02662 —0.00658
23.46965......... —0.96200 1.01104 0.02816 0.64656 55.19231... 0.00360 —0.03568 —0.00804 0.00950
23.95222......... —1.13088 1.16329 0.01052 0.11091 55.73836... 0.00286 —0.00982 0.02438 0.01382
24.43297......... —1.03322 1.03780 —0.01165 —0.42411 56.27991... 0.00599 0.01284 0.04211 0.00816
24.90866......... —0.69703 0.69503 —0.01603 —0.83331 56.82246 0.00773 0.01729 0.02881 —0.00107
25.35677......... —0.22671 0.25139 0.00153 —-1.02517 57.36765 0.00228 0.00170 —0.00430 —0.00582
25.79015......... 0.27056 —0.19764 0.02695 —0.98361 57.92349... —0.00584 —0.01722 —0.02689 —0.00501
26.21445......... 0.66937 —0.55865 0.03843 —0.73278 58.48164... —0.00678 —0.02323 —0.01871 —0.00094
26.63626......... 0.87572 —0.75878 0.02565 —0.34667 59.03075... —0.00006 —0.01351 0.01360 0.00253
27.05774......... 0.86122 —0.75216 0.00163 0.06548 59.55533 0.00775 —0.00010 0.03809 0.00318
27.48387......... 0.65527 —0.55817 —0.01896 0.39996 60.07985 0.01408 0.00802 0.03844 0.00179
27.91629......... 0.33521 —0.23623 —0.02020 0.57727 60.61566. .. 0.00903 0.00046 0.01046 0.00165
28.34753......... 0.00632 0.10856 —0.00110 0.56265 61.16989... —0.00184 —0.01169 —0.02016 0.00369
28.77936......... —0.23477 0.37534 0.02473 0.38265 61.72348.... —0.01330 —0.01986 —0.02836 0.00622
29.19954......... —0.32860 0.47892 0.03653 0.12637 62.26967... —0.01210 —0.01181 —0.00409 0.00773
29.62546......... —0.27757 0.41447 0.02906 —0.11626 62.80638... —0.00351 0.00520 0.02872 0.00658
30.06476......... —0.12044 0.22689 0.00694 —0.26466 63.33981... 0.00441 0.01776 0.04249 0.00223
30.51328......... 0.06517 0.00400 —0.01463 —0.27738 63.87347... 0.00414 0.01543 0.02547 —0.00227
3097162......... 0.20474 —0.16019 —0.02027 —0.17228 64.42429 —0.00345 —0.00092 —0.00849 —0.00435
31.41954......... 0.25311 —0.20616 —0.00338 —0.01950 64.98416......... —0.01069 —0.01569 —0.02763 —0.00228
31.86652......... 0.20961 —0.14564 0.02117 0.11397 65.54245......... —0.01050 —0.01693 —0.01483 0.00228
32.30769......... 0.10748 —0.03000 0.03570 0.17810

* Time is in units of (R*/GM)"/2.,
® [, is in units of GM?/R.
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FiG. 18.—Gravitational radiation luminosity for the coalescence depicted
in Fig. 11. The dashed line shows the theoretical estimate for two point masses
in a (stable) binary with the same initial separation,

code which includes the gravitational radiation reaction. We
have also compared our results to those of recent N-body
simulations of the coalescence of two identical, collisionless
clusters of point masses (Kochanek et al. 1990; see especially
their Figure 11 for ro/R = 3). We find surprisingly close agree-
ment between the two calculations. This may be explained by
the relatively small importance of shocks in this particular fluid
calculation.

6. DISCUSSION

Our interpretation of the results of § 5 in terms of the ratio
T/|W| suggests that the final evolution of a coalescing
neutron star binary may be strongly sensitive to the effective
adiabatic index of the equation of state. Indeed, it is possible
that for I' 2 2.25, a stable nonaxisymmetric Jacobi-like ellip-
soid could result from the initial merging of the two stars, with
no mass shedding at all. Such an evolution would lead to a
strikingly different signature in the gravitational radiation
waveform. Indeed, the emission would remain that of a rotat-
ing bar, damped only by the radiation reaction. Moreover,
preliminary calculations which we performed for polytropes
with I < 2 indicate that the dynamical instability identified in
§ 5 disappears for sufficiently compressible configurations. In
that case the initial merging itself will be driven by the radi-
ation reaction rather than hydrodynamics. This motivates our
forthcoming study (Rasio & Shapiro 1992) of the effects that a
change in the adiabatic index will have on the solution.

In § 5 we found that, after mass shedding has occurred, the
ratio T/| W | stabilized at < 0.14. It is interesting to note that
T/|W |~ 0.14 is also the critical value for the onset of secular
instabilities in many axisymmetric, differentially rotating struc-
tures (see, €.g., Tassoul 1978). Near the end of our calculation, a
slow, steady decrease in T/| W | (on a time scale ~ 100 times the
inner rotation period) brings its value down to slightly below
0.14. However, this decrease may be caused by numerical dissi-
pation effects. Therefore, there is the real possibility that a
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secular instability will, in fact, develop. If the gravitational
radiation reaction is the only source of dissipation, this insta-
bility could lead to the formation of the compressible analog of
a Dedekind ellipsoid (see e.g., Shapiro & Teukolsky 1983), i.e.,
a differentially rotating ellipsoid which maintains a stationary °
shape in the inertial frame. This configuration, just like our
axisymmetric final configuration, does not generate gravita-
tional radiation. Note, however, that the existence of the com-
pressible analog of a Dedekind ellipsoid has never been
demonstrated. In fact, it has been shown that the most straight-
forward generalization of the classical homogeneous Dedekind
ellipsoid, ie, a nonaxisymmetric inhomogeneous configu-
ration stationary in the inertial frame and whose velocity has
no meridional component and depends linearly on position,
cannot exist (Ipser & Managan 1981).

When identical neutron stars of mass 21 M collide and
merge, there is the possibility that gravitational collapse to a
black hole will occur. It appears unlikely that rotation can
prevent the collapse, even for the case of merging in a binary.
Indeed, this would require a relativistic rotation parameter
(see, e.g., Misner et al. 1970) a/M,,, > 1. For a (Newtonian)
binary with orbital separation r this parameter has the value

1 ¢ M\ \T12
-— =07 ,
8 Uorp <1.4 Mo> (30 km)

(48)

where J is the total angular momentum, M is the mass of one
star, and wv,, = (GM/2r)}/2. Therefore we typically have
a/M,,, < 1 initially. In addition, gravitational radiation reac-
tion can remove as much as 10% of the total angular momen-
tum before the final configuration is reached (Oohara &
Nakamura 1990). For all parabolic collisions equation (48)
gives an upper limit for a/M,, (the limit being reached for
grazing incidence). Only in the case of a hyperbolic collision
with near-grazing incidence could we have a/M,,, > 1.

Thermal pressure support from shock-heated material is
equally ineffective in halting the collapse during binary
coalescence, since most of the mass evolves adiabatically (cf.
§ 5). One may wonder if different initial conditions would not
lead to a more violent interaction between the two stars, with
more material passing through shocks. Certainly, if the
neutron-star spin rates Q, differed significantly from the orbital
rotation rate Q_,,,, supersonic transverse motions could result if
|Q — Qo | /Q0r, ~ 1. The qualitative evolution of the system
in this case would likely be very different from that of a rigidly
rotating binary. In future work (Rasio & Shapiro 1992), we will
study the coalescence of such asynchronized binaries. We will
also study the effectiveness of tidal interactions during the
spiral-in phase of the evolution, and we will try to constrain the
magnitude of the desynchronization just before the final
merging.

Even in rigidly rotating binaries, gravitational-radiation
reaction does accelerate the inward radial motion of the two
stars just before they come into contact. The effective radial
velocity is (see, e.g., Shapiro & Teukolsky 1983)

64 G* M?
O g “9)
corresponding to a Mach number
3 -3
_ ()M r 50
M =4x10 <cs><1.4 M®> (30 km> - 60
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Since ¢, < ¢ in massive neutron stars, we do not expect strong
shocks to develop because of the radiation reaction. Indeed, in
the calculations of Oohara & Nakamura (1990), which include
the inward radial velocity of equation (49), shocks were found
to remain negligible. Note that this is in contradiction with a
basic assumption underlying several models of extragalactic
gamma-ray bursts based on coalescing neutron-star binaries
(see, e.g., Paczynski 1990).

In the case of truly colliding stars, however, shocks dominate
the final evolution of the system (cf. § 4). The merged configu-
ration will exceed the cold mass limit if the progenitor masses
exceed about 1 M. It is only after the hot, quasi-equilibrium
merged object has cooled by neutrino emission that the
thermal pressure support will disappear. In that case, the final
collapse to a black hole may be delayed by as much as a few
seconds, after which a final burst of gravitational radiation will
be emitted if the configuration is sufficiently nonspherical due
to rotation.

What are the prospects for detecting the gravitational radi-
ation emitted during the final merging of two neutron stars?
Since the waves emitted during the merging have nonperiodic
time dependences and have a duration short compared to a
typical observation time, we are dealing with a burst source.
This particular type of burst is known as a burst without
memory, i.e., one in which AT returns to zero after the burst is
over (Thorne 1987). This is because there is no change in the
1/r, Coulomb-type gravitational field of the source. (In a fully
relativistic calculation, however, the nonlinearities of the field
equations will in general introduce a nonzero memory,
AR™T £ 0, corresponding to the change in total mass-energy of
the system; see Christodoulou 1991 and Thorne 1992.)

The best strategy for detecting such a burst without memory
with broad-band detectors (like those of LIGO) involves the
construction of an optimal filter (Thorne 1987). This construc-
tion requires that the waveform AT'(f) be known. Therefore,
burst sources of gravitational radiation are best characterized
by their complete waveform A™'(f). However, the detectability
of a burst source can be studied approximately in terms of a
single characteristic amplitude s, and a single characteristic
frequency f,. The characteristic amplitude k. should be com-
pared to the amplitude h;,,, of a source with sufficiently large
signal-to-noise ratio that, if it is seen three times per year by
LIGO, we can be 90% confident that the detectors are not just
seeing their own noise (Thorne 1987).

It is beyond the scope of this paper to perform a detailed
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calculation of the characteristic amplitude h,. However, we can
roughly estimate h, in terms of the total energy radiated by a
source at distance r as (Thorne 1987)

AG 1/2 f -1/2 r -1
~2.7 —20( ZZGW < 0 . (51
he <10 <1 M®> (1 kHz) <10 Mpc 5D

Using our numerical result for Aegw/M (cf. § 5) and approx-
imating f. by twice the Keplerian orbital frequency at the
moment of first contact between the two stars we get from
equation (51),

-1
_ _ r
h. ~ 0.9 x 10 2°M§‘4R101<m> : (52)
For the LIGO project, once advanced detectors with light
recycling are used, the sensitivity to bursts with f, ~ 103 Hz
(limited by photon shot noise) is expected to be (Thorne 1987)

_af _Je
h3/yr =13 x 10 21<—1_I(~H_£ . (53)
Combining equations (52) and (53) we find a ratio
h r -1
<~ 0.5M3}3 R1/2<—°—> ) (54)
3or 1.4 %10 504 Mpc

where we have now used the distance r, ~ 200 Mpc within
which mergers are expected to occur about three times per year
(Narayan et al. 1991; Phinney 1991). Given the very approx-
imate nature of this analysis, and the conservative estimate for
ro, the fact that h /h;,, ~ 1 provides some encouragement that
the final bursts of gravitational waves emitted by merging
neutron stars should ultimately be detectable by LIGO.
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Science Foundation and IBM Corporation, with additional
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