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ABSTRACT

In this paper, we continue our study of a powerful axisymmetric MHD instability recently put forward by
the authors as the underlying cause of anomalous transport in accretion disks. The theory of local non-
axisymmetric perturbations in weakly magnetized disks is presented. Such disturbances are of interest for
several reasons, most notably in the context of a dynamo magnetic field amplification scheme. The most vola-
tile disturbances are those associated with the presence of a poloidal field, which grow by tens of orders of
magnitude with e-folding times measured in fractions of an orbital period. We also examine the stability of a
purely azimuthal field configuration and find that nonaxisymmetric instability is present, but with a growth
time measured in tens of orbital periods. In general, the most rapid growth occurs for very small radial and
azimuthal wavenumbers, leading to coherent magnetic field structure in planes parallel to the disk. We suggest
that this instability will prove to be a key ingredient for the generation of magnetic fields in disks.

Subject headings: accretion, accretion disks — instabilities — MHD

1. INTRODUCTION

Recently, Balbus & Hawley (1991, hereafter BH; 1992) and Hawley & Balbus (1991, hereafter HB) have identified a powerful and
generic linear axisymmetric MHD instability in differentially rotating systems. The remarkable nature of this instability stems from
its rapid growth rate (in a Keplerian disk, the most rapidly growing wavenumbers have an e-folding time equal to 2/3n times the
rotation period), and its complete indifference to many properties of the magnetic field. Provided only that some poloidal com-
ponent of the field is present and the total field strength is subthermal, the maximal growth rate is independent of both the magnetic
field strength and the field geometry. It has been argued that the growth rate associated with this instability is likely to be the most
rapid that any process feeding off the differential shear can attain (Balbus & Hawley 1992). This mechanism thus seems to be an
extremely promising candidate for the physical basis of the “anomalous transport” long conjectured to be present in accretion
disks. In this paper, we extend our original study by examining the stability of weakly magnetized disks to nonaxisymmetric
disturbances.

The investigation of finite azimuthal wavenumbers allows the case of a purely toroidal field to be considered, whereas the
orthogonality of the field and the wavenumber vectors precludes an axisymmetric treatment of the field geometry. We find that such
a field configuration is also essentially unstable (more accurately, it has an extended exponential growth phase), but with a smaller
growth rate than is shown by fields which also have a poloidal component. Another technical issue of interest is a simple by-product
of the calculation. In BH is was stated, but not explicitly shown, that axisymmetric perturbations develop in disks in a simple
exponential or oscillatory manner even when shear causes the background azimuthal field to grow linearly with time. In the analysis
we present here, the time dependence of the perturbations is not assumed a priori. Under this more general assumption, we show
that the axisymmetric limit of our equations corresponds to the general dispersion formula presented in BH, thereby confirming the
original claim.

But the fate of nonaxisymmetric disturbances is a more far reaching issue, for it bears on another well-known problem of
astrophysical theory: the origin of cosmic magnetic fields. Does the instability presented in BH lead to large-scale magnetic field
amplification in differentially rotating disks? A traditional approach to field amplification has been to postulate fluid velocity fields
which lead to turbulent dynamo amplification (Moffatt 1978; Parker 1979; Cowling 1981; Zel’dovich, Ruzmaikin, & Sokoloff 1983).
In such schemes, much is made of the need to close the dynamo equations. By this it is meant that whereas differential rotation
generates a toroidal field component from a poloidal one, it is not so straightforward to close the feedback loop and obtain the
sustained generation of poloidal field from toroidal. In classical dynamo theory, this issue is addressed by appealing to background
turbulence with nonvanishing mean helicity (Zel’dovich et al. 1983; Cowling 1981), giving rise to the so-called “a ” process in the aw
dynamo. (This should not be confused with the turbulent viscosity « parameter.) Taken at face value, however, the results of BH
imply that to obtain exponential growth of a weak disk field requires little more than differential rotation. “Little more” means
linear perturbations. Poloidal field seems to beget not only toroidal field, but through the instability, additional poloidal field as
well.

The nonlinear behavior of a small, weakly magnetized meridonal slice of a Keplerian disk has recently been studied numerically
by Hawley & Balbus (1992, hereafter Paper III), the companion paper to this article. With the imposition of periodic boundary
conditions, a constant gas density, and a nonvanishing dipole moment for the magnetic field, the simulations showed persistent and
dramatic field growth. In many cases, no indication of saturation was evident after many rotation periods. A common nonlinear
resolution seen in the simulations appears as a sort of streaming motion. Two channels of fluid, separated along the vertical axis and
consisting of oppositely directed high and low angular momentum material, flow radially with a steadily increasing fluid velocity.
J. Goodman (1991) has made the important observation that the exact, nonlinear solution for incompressible radial displacements
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in a vertical magnetic field with a shearing-sheet geometry is identical to the linear exponential solution. Is the channel solution a
dynamo? Does the existence of this solution “close the dynamo equations” without the need to postulate an ad hoc turbulent
background?

One difficulty with this conclusion is that it is openly contemptuous of a famous theorem: that it is impossible to sustain isolated
dynamo activity by axisymmetric fluid motions alone (Moffatt 1978). Classical dynamo theory confronts this by arguing that it is
only on average that axisymmetry may prevail, and that the true motion of the fluid turbulence is considerably more complicated on
microscopic scales. But the key word in the statement of the theorem is “isolated.” The critical step in the proof requires that surface
integrals at infinity involving magnetic field lines vanish (e.g., Paper IIL.) For dipole or higher order fields, this procedure can be
justified. For an accretion disk threaded by a field that may be Alfvénically coupled to an interstellar ambient field or to a central
star, it may be more problematic to ignore these surface integrals. Also, on scales large enough to be regarded as “infinity,” the
assumption of axisymmetry itself must break down, another reason to question the direct applicability of the theorem to accretion
disks.

It is only the restrictive symmetry imposed by the assumption of axisymmetric fluid motions that allows the induction equation to
be cast in a conserved current form, which is critical to obtain the anti-dynamo result. More general fluid behavior expected in
physical systems has no such global constraints. Whatever the difficulties of understanding the nature of local axisymmetric field
amplification in systems connected globally to a more complex ambient magnetic topology, local nonaxisymmetric disturbances
present no problems of this sort. Thus, the fate of this class of perturbation is of particular interest in the study of the generation of
magnetic fields in both accretion and galactic disks.

Focusing attention on formal closure of the dynamo equations seems to us to be very much the wrong approach to understanding
field amplification in disks. One obvious difficulty is posed by the existence of the channeling solutions. More generally, the presence
of the instability renders untenable the assumption of independent magnetic field and velocity fluctuations, which is always used as
the starting point of kinematical dynamo theory (Zel’dovich et al. 1983). However, before the instability of BH can be regarded as a
viable large-scale magnetic field generator, it needs to be shown that nonaxisymmetric disturbances evolve productively: that they
do not, for example, ultimately break the field down into uncorrelated parcels. This would be inconsistent with such observations as
the large-scale correlation of magnetic fields seen in radio observations of disk galaxies (e.g., Mathewson, van der Kruit, & Brouw
1972). The suggestion sometimes voiced in the literature that large wavelengths are associated with the maximal linear growth rate
of the axisymmetric instability, and therefore that only local uncorrelated structures are to be expected, is not in itself compelling. In
fact, the maximal growth perturbations have zero radial wavenumber, and execute extended radial displacements. In planes of
constant z, linearly growing fields show a regular geometry. As the field grows in strength, progressively larger vertical wavelengths
grow more rapidly. There is nothing in the axisymmetric linear theory that precludes the growth of ordered fields.

It is the possibility that something unusual may be associated with nonaxisymmetric disturbances that begs attention. Unfor-
tunately, the technical issues involved in this sort of undertaking are frustratingly complex, and the literature is characterized by a
lack of consensus among experts on the relative importance of fundamental processes. Genuine theoretical progress is likely to come
only with painstaking numerical work, but a start can be made by carefully examining the linear problem. Toward these ends, we
present here an analysis of nonaxisymmetric disturbances in a rotationally supported disk. Our basic finding is that large azimuthal
wavenumbers show a much smaller growth rate than is shown by small azimuthal wavenumbers, so that at least a linear
nonaxisymmetric calculation is consistent with large scale magnetic field coherence. The plan of this paper follows.

- The analysis is wholly contained in § 2. We study the evolution of Eulerian perturbations in a thin disk in comoving, local
Lagrangian coordinates (Goldreich & Lynden-Bell 1965), details of which are presented in § 2.1. After deriving two coupled
equations for the evolution of the poloidal field components in § 2.2, we show that the physically interesting case of vanishing
buoyant frequency allows for a reduction to a single fourth-order equation in § 2.3. When the ratio of the vertical to azimuthal
wavenumber is large, the equation has WKB solutions. We present a qualitative discussion of the behavior of these solutions, before
returning to more general numerical solutions in § 2.4. The case of a purely azimuthal field is studied, as is the more general case
when a poloidal field is also present. Finally, § 3 summarizes our findings and conclusions.

2. LOCAL NONAXISYMMETRIC DISTURBANCES

2.1. Preliminaries

Our starting point is similar to the one in BH: we consider a weakly magnetized axisymmetric accretion disk of finite vertical
extent. But in contrast to the presentation in BH, we assume at the outset that the disk is thin, and apart from the velocity shear, we
ignore local radial structure in the unperturbed disk. We employ a standard (R, ¢, z) cylindrical coordinate system, and assume that
the angular velocity Q(R) is constant on cylinders. All other flow variables may depend upon z. A weak magnetic field is present in
the disk with an arbitrary local geometry. The field is weak in the sense that the Alfvén speed is asymptotically small compared with
sound speed, and hence with the rotation velocny as well. We denote the azimuthal field component B, &, and the poloidal
components B, 7 and By 7. (The notation ¢, etc. is used to denote a unit vector.) The basic dynamical equations are

di%ﬂ?-:::o, @.1a)
v 1 B*\ 1
i vp+=)-—@B-V)B+VO=0, (2.1b)
dt  p 8n 4mp

aal: Vx(@x B =0 (2.1¢)
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The notation d/dt indicates the Lagrangian derivative, and @ is the external gravitational potential. (This may include a massive
halo.) Other symbols have their usual meanings.

We consider the local response of the disk to nonaxisymmetric perturbations. As is well known, such disturbances cannot have a
simple plane waveform because of the effect of the shearing background on the wave crests (Goldreich & Lynden-Bell 1965). One
adopts Lagrangian shearing coordinates

R' =R, (2.2a)
¢ =¢—QR), (2.2b)
=1z, (2.2¢)
comoving with the unperturbed flow. Then
0 _o a0 )
R _OR  dR 3¢’ (232)
0 G,
67)’ = % , (2.3b)
0 0
‘a‘z—, = E . (230)
Let us further note that
d 0 0
=5t Q(R) e 249

In local Largrangian variables, linear perturbations are assumed to have a space dependence e'®x ®'*mé"+&=) The effect of this
variable transformation is simply to replace a fixed radial wavenumber with a shearing one:

aQ

kg < kg(t) = kx —mt — . 2.5
r < kg(?) R — M iR 2.5
No modification of ¢ and z variables are needed. Provided we now work with the Lagrangian time derivative, equation (2.5)
summarizes the transformation.

The presence of shear causes the toroidal magnetic field to grow linearly with time:

Br dQ
B,(t) = B,(0){ 1 t .
o) = By )( + 305 TR ) : 26)
where B,(0) is the initial azimuthal field. But the combination of equations (2.5) and (2.6) shows that the Alfvén parameter k - B is
constant with time, despite the fact that neither the Eulerian wavenumber k = [kg(t), m/R, k,] nor the magnetic field vector B is
individually constant:

B0
k-B=k'RBR+m—RQ(——)+szZ. @7

Evidently, the wavevector and unperturbed magnetic field become increasingly more orthogonal in just the right proportion to
cancel the effect of the growth of their magnitudes and maintain constant k - B.

2.2. Linear Disturbances

Consider the fate of linear perturbations in a shearing disk with a weak magnetic field. The time-dependent Fourier amplitudes of
Eulerian perturbations are denoted &p, 5P, etc. Following BH we use the Boussinesq approximation, and as mentioned above,
except for the presence of shear flow, we ignore local radial structure. Then the linearized dynamical equations expand to

kg Ovg +%5v¢ +kd0,=0, (2.82)

dvg P B-6B\ _k-B
2% _ | 2=+ —22) i 52 6B, = 2.8b
i 2Q6v4 + lkR<p + yr ) i amp 0B =0, (2.8b)
dév 0P B-6B k-B op OP

Ly et 2 Zsp, 2 _ 2.
dt +i z( ) 4np ) ' dnp 7 p? Oz 0, 289)
dov, «* im (6P B-J6B k-B

¢ == —i B, = 2.
dt *20 UR+R<p+ 47zp> 4np5¢ 0, (2.8d)
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doB
—2 — i(k - B)dvg, (2.8¢)

dt

doB

Z — . k . X
7 = k- Bv,, (2.80)
dSB,  dQ )

-~ TR OBr = ilk - B)ov, . (2.8g)

(We have suppressed the explicit time-dependent notation in kg.) Since dkg/dt = —mdQ/dR, equations (2.8¢)—(2.8g) together with
equation (2.8a) guarantee the divergence free condition d(k + 6B)/dt = 0. The entropy equation for adiabatic perturbations is

5d6 dlnPp~33
% 7” o, “—a”—— -0. (2.8h)
Using equation (2.8f), this may be integrated to yield
6 36B, dlnPp~33
p__20% 0P 2.9)

p Sik-B) oz

Using this result in equation (2.8c) leads to

B:-6B 6P 1 d°B N? k-B
= _ z B .
4y | p kk-B di I:kzk-B+kz47rp:|5 2 (.10
where
310P dlnPp~313
2_ _ 229297 F
N 5 ) oz . (2.11)
in the Brunt-Viisild frequency.
To proceed further, we note that equation (2.8a), (2.8¢), and (2.8f) give
R doéByg doB,
vy = mitk < B) (kR i +k, I ) . (2.12)
We now use equations (2.8¢), (2.10), and (2.12) in equation (2.8b) to obtain
d*6By 2QR déBy déB, 2 kg kg (d?6B, 2
% + - <kR o +k, i + (k - vy)*| 0Bg — k, 0B, | — k, \ae + N*%6B, =0, (2.13)
where the Alfvén velocity is written
B
=——. .14
"= G 19
We need another independent differential equation coupling 6By and 6B,. Using k * 6B = 0, first obtain
R
0B, = — - (kg 0Bg + k, 6B,) . (2.15)
Next, differentiating equation (2.12) gives
dov R d*5B d*B 1 dQ doB
¢ = R4k z A 2.16
dt ~ mik - B) (k" a2 T ) ik+B)dinR dt 216)
Multiply equation (2.8d) by kx and equation (2.8b) by m/R, then subtract one from the other:
dov, | K? i(k - B) m m dovg
— - 0B, — — o2 = .
krp —= it + 20 kg dvg amp kg 0B, R O0Bg | — R & +2 6v4, 0. (2.17)
Using equations (2.12), (2.15), and (2.16) in equation (2.17) leads after simplification to
m? 1d?6Bg k, d*5B, 2m dQ déBp k, 2mQ d5B m? k
1 — I_ = 24 (k-v,)?| OB 2 5B,
[ +(kRR)2] i Tky d keRAIR dt ThgkgR dr T & OBl It e | 0
(2.18)

Equations (2.13) and (2.18) are the two coupled differential equations in B, and dB, that form the cornerstone of the analysis. It
can be shown that in the limit m — 0 the axisymmetric dispersion formula is obtained, but the calculation is rather involved and is
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deferred to the Appendix. As stated earlier, the result is not without interest because it shows explicitly that local axisymmetric
instabilities are always described by simple exponential solutions, even when an azimuthal field changes with time.

For numerical work, it is convenient to isolate the second-order time derivatives. Equations (2.13) and (2.18) can be recombined to
yield

6B, 20R k kg (. d6By . dOB,\ 2mk, d(RQ) d5Bg k2 — K2
z _ z z z — (k- 2 .
2 m K <k“ i TR )t Re R a (%W T PBe @19)
B,  20RK2( dSBy  dOB,\ 2mkgdQ dSB; 2mk,Q dSB, ren . kak,
P2 m k2< & g © dR & KR ar | koA 0Bt e NOOB, (220
where
K=k + R2+kf, 221)

and the time dependence of kg is given in equation (2.5).

2.3. Qualitative Behavior

Equations (2.19) and (2.20) are complicated, and to understand their physical content it helps to combine them into a single
fourth-order equation. Since the most unstable disturbances are associated with N? = 0, and the calculations become considerably
more manageable in this limit, we restrict ourselves to this case in the section. Nothing fundamental to the instability is lost by
working in this limit, which is in fact exact for the disk midplane z = 0. Even with this simplification, lengthy manipulations are
involved, but the final equation is relatively simple. Only an outline is given.

With N2 = 0, solve equation (2.20) for déB,/dt:

doB, k2 d kg d6B
a M I:dtz +- "")Z]‘SB“ kR dtR ’ (222)
where we have introduced
2Qk. R m?2 \ ]!
u= [ - <1 + 2 Rz):l , (2.23a)
and
m?> dinQ m?
vz(l_Wd_lIE)/(l-’_W)' (2.23b)

The idea now is to use equation (2.22) to obtain expressions for d?6B,/dt> and d°B,/dt3, and to insert these terms into the
once-differentiated form of equation (2.19). It is a messy business, and it seems best only to write down the final result:

K[ m> [ do \* 4
@ [ R RN ] 8By + [x +6 g ( e R) ][ R RN ](SBR

m?> (dinQ)? mky dQ [ d2 5B
- 4Q%(k * v,)*6B, — 6 —2 adll URRY) R_0. .
[1 TR <dln R) ] (k= 2a)0Br = 62 Tinr [dﬁ MY ] w0 @

The case of greatest physical interest is “low” m, m/k, R < 1. This still leaves a great deal of asymptotic space for m, since
k,R> k H> 1, where H is the disk scale height. The existence of the large parameter k, R/m immediately suggests a WKB
approach. Physically, the WKB parameter represents the ratio of the time for k to change significantly to the shearing time
(dQ/dIn R)~*. Whenm/k, R < 1,

2
mky  dQ [d BBx o 29

k2R dInR | dt? dt

which is similar to the dispersion relation (2.17) in BH, and clearly goes over to it as m vanishes. One difference is the final term in
equation (2.25). It arises from the interplay of nonaxisymmetry and shear, and its importance in a WKB treatment is as an
amplitude modifier on longer time scales. It does not affect the essentially oscillatory or exponentially behavior of the solution. The
other difference between equation (2.25) and a simple dispersion formula is of course that k% and k2 are now time-dependent.
Equation (2.25) is a fourth-order equation; explicit WKB solutions are unwieldy and less than transparent. But the existence of
WXKB solutions means that the qualitative nature of the behavior is easily understood by analogy to the axisymmetric solution. The
behavior of the ratio k/k, is important, as shown in Figure 1. Initially large, it drops to a minimum value near unity when ky passes
through zero, and then rises again at later times. Since k - v, is constant, the wavevector evolution traces (and retraces) a horizontal
line in the plane of Figure 1. As t - — oo, the tightly wrapped wave is a superposition of inertial and Alfvénic modes. If the constant
(k - v,)*/Q? is above the critical value (d1n Q2/d In R), there is no dynamical amplitude growth at any time. If (k - v,)?/Q? is below

k2 [ a2
o [ St vA)Z:l 0By + K [; S+ (ke vA)Z]asR — 4Q%(k - v,)23By — 6 + (k- vA)Z:I
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Stable

| k/kg

F1G. 1—Region of stability and instability in (k - v,)?>~k/k, plane. As discussed in the text, the quantity k - v, is constant for a shearing wavevector. Initially, k/k,
is large, and the point defining the wavevector moves to the left in the plane on a constant k - v, line. The minimum value of k/k, is unity (to order m?/k2R?.) After
attaining its minimum, the wavevector point retraces its path to the right. If (k - v,)*> < dQ?/dIn R, then a finite portion of time is spent in the unstable region, and
substantial growth may occur.

this value, then there is a period when (k/k,)? is small enough that a finite portion of the evolution is spent in an exponential growth
phase. Call the WKB growth rate ¢. For values of (k - v,)?/Q? below critical, but of order unity, both the duration of the exponential
growth phase and the magnitude of o grow larger with decreasing (k * v,). The maximum amplification is achieved when (k - v,)?/Q?
is near 1 — x*/16Q*. Finally, when (k - v,)*/Q* < 1, then ¢ ~ (3)"/?(k - v,) (Balbus & Hawley 1992). When k - v,/Q becomes
comparable to the (small) WK B parameter m/k, R, the time scale for the perturbation to evolve is no longer rapid compared with the
long k-changing time scale, WK B methods break down, and numerical integration is required for even a qualitative assessment. We
shall find that exponential amplitude growth does not disappear, but takes place over time scales long compared with an orbital
period. For all solutions, as t — oo, wavelike behavior is regained when the wavevector evolution emerges from the unstable region
and moves rightward in Figure 1.

2.4. Field Geometry and Stability

We return to the general solution of equations (2.19) and (2.20). Let us parameterize the rotation curve by introducing an index p
defined by

Q*R)~R77. (2.26)
Thus, a Keplerian disk is characterized by p = 3, a galactic disk by p = 2. Next, following lines similar to those developed in
Goldreich & Lynden-Bell (1965), we incorporate the radial wavenumber into a new independent time variable t:

) aQ
v=kgR=keR—m——1, 2.27)

so that k2R? = 12 + m? + k2ZR2.
Using equations (2.26) and (2.27), equations (2.19) and (2.20) become

426B, K2 (4 om?\/ doBy\ 4 (N?kr k -0, 4 Kk, R2k2\ doB,

2 em <;+R2k§>(’ o ) om\@ R T 9B e\t ) e G
{26B, 2 k, (2? 5B, 4 K[ doB\ 4 [(k-v)? Kk*—k:N?
= =;k2R(‘m—z—P+2> df”wﬁ(f dr>—pzmz< o vt o) (229)

Equations (2.28a) and (2.28b) are the form of the evolutionary equations that are used in the numerical integrations. In this work, we
shall concentrate on the Keplerian p = 3 case, retaining the above for the sake of completeness. Nothing essential is lost by this
restriction.

One of the more interesting cases to examine for nonaxisymmetric instability is the purely azimuthal field configuration, since in
the absence of a poloidal component, the Alfvén wave branch is inaccessible by an axisymmetric analysis. Of course, the field
geometry enters equations (2.28) and (2.29) only through the combination k * v, = mB,/[(4np)'/*R]. Large m values are required to
generate a perturbed magnetic tension k * v, ~ Q. But going to large azimuthal wavenumbers has its price. The problem is equation
(2.27). As m becomes large, there is less time before the radial wavenumber of the disturbance becomes large, which leads to tight
wrapping of the wave crest and stabilization of the disturbance. The question then is whether significant growth can be achieved
when m is not large and k * v, < 1. The answer appears to be yes, although the growth rates are relatively small compared to the Q
time scale we are used to seeing when a poloidal component is present—typically a few percent of the orbital frequency, correspond-
ing to growth times of tens of orbital periods. The most rapidly growing disturbances seem to arise for values of m of order (k, R)*/2.

For an azimuthal field, we may write
k-vA= m \(k,vay (2.30)
Q k.R Q /)
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FiG. 2—Evolution of B,, B, and 0B,. The initial amplitudes are 6B, = 1, 5B = 0.3, and 6B, = 0.3. We selectk, R = 100, m = 1, and allow the initial value of
©=kgR to be determined by V + 6B = 0. N? has been set to zero. (k - v,)?> = 10"*Q "2, appropriate to an initial toroidal field configuration with the selected
wavenumbers.

It seems reasonable to adopt a value near unity for the second factor on the right, since the z wavenumbers would then be of the
same order as those of interest when a poloidal field is present of comparable strength to the assumed azimuthal field. Thus, we find
that the small Alfvén parameter on the left-hand side of equation (2.30) is of order the WKB parameter m/k, R, which is the most
natural scaling assumption. Note that it also means WK B methods are marginal.

In Figures 2, 3, and 4, we plot the evolution of 6B,, §Bg, and 0B, for three different m values: m = 1, 10, 100. The initial conditions
for the displayed run are B, = 1, 6By = 0.3, and the initial  value is chosen to correspond to 0B, = 0.3; the initial time derivatives
are zero. We set k; R = 100 throughout, and for the displayed runs, we have chosen the midplane value N2 = 0. (Positive N2 runs
are slightly more stable.) The m = 1 and m = 10 runs both show growth, with m = 10 displaying by far the more vigorous behavior.
But increasing m leads to diminishing returns, as shown in the m = 100 run. This is quite stable, even though it corresponds to what
would be a highly unstable value of k - v, for an axisymmetric disturbance. The difficulty is that k; grows too rapidly for large m
values, and a wavelike response becomes the lone possibility.

In common with the axisymmetric disturbances, the greatest response for nonaxisymmetric perturbations occurs when a poloidal
field is present. Then, we can always adjust k * v, to be near Q for maximum growth, without incurring the large m penalty of
shortening the wrapping time of the wavevector. We show here the response of m = 1 disturbances for a few different values
ofk - v,.

The Keplerian critical value of k - v, is 3'/?Q, and to illustrate the onset of instability, we plot results at, and just below this value.
Further decreasing k - v, leads to behavior indistinguishable from an exponential instability. In general, there are few surprises.
Growth occurs when k/k, is near unity, corresponding to 7 and the orbit number equal to 0. The WK B amplification factor during
the growth phase is just exp (| | w|dt), integrated over the time that k/k, is in the unstable region shown in Figure 1. This rapidly
becomes an enormous factor, leading, as already emphasized, to unstable growth.
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FiG. 5—Same as in Fig. 2, with m = 1,(k * v,)> = 3Q”. These parameters are natural for a configuration with a weak poloidal field.

In Figure 5, 6B,, By, and 6B, are shown for (k * v,)> = 3Q2. There is no growth, and the generally choppy nature of the solution
corresponds to a superposition of two different WKB waves with a nonsteady phase relation. Figure 6 shows the case (k - v,)? =
2.9Q7, just into the unstable regime. The same initial conditions give rise to a much different result. The same choppy superposition
is evident a times t < 0, but the amplification “filter” picks out only one of the WKB waves for growth. A smooth oscillatory
behavior is evident in the stable ¢ > 0 portion of the run. Further reduction of k - v, yields explosive growth, as shown for example
in Figure 7. For the sake of completeness, we show in Figure 8 a run with nonvanishing N? = 0.8Q2, and rotation curve parameter
p = 2 (flat rotation curve.) The behavior is qualitatively similar to the earlier runs.

A final point worth touching upon is the relative growth between the three components of the magnetic field. Equation (2.15) is

0By = — % (t0Bg + k, ROB,) . (2.31)
Since 7 increases monotonically, either 6B, will eventually dominate 6By and 8B,, or 6By ~ —(k, R/t)dB, and decline with time.
Starting with initial conditions in which the three components are comparable, the latter outcome is evident in the numerical
solutions. It is unlikely however that this behavior will be retained in the nonlinear resolution of the instability, because the
explosive growth phase occurs for relatively small 7-values. For this reason it seems more likely that the dominant poloidal
component of the field will be radial (as in the axisymmetric limit), but with a comparable or larger toroidal component growing
with the ever present differential shear.

3. SUMMARY

In this work, we have investigated the stability of weakly magnetized thin accretion disks to nonaxisymmetric instabilities. We
refer to the disturbances as “instabilities,” even though they are technically transient amplifications, because the amplification
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FiG. 8—Evolution of the field components in a p = 2 (flat rotation curve) disk, with initial conditions as in Fig. 2. The critical value of (k * v )7 is 2Q2, and we
have taken here a value of 1.5Q7. Also, we have N2 = 0.8Q2 The runs show the same recurring pattern seen in the previous figures.

factors can be tens of orders of magnitude. The linear time dependence of the unperturbed azimuthal component of the magnetic
field in no way affects the essential oscillatory/exponential behavior of either axisymmetric or nonaxisymmetric local disturbances.
To the extent that nonaxisymmetric instabilities may be a prerequisite to true magnetic field amplification, our results are very
encouraging. The presence of a poloidal field and small m perturbations is sufficient to ensure vigorous exponential growth on time
scales a fraction of a rotational period, and even a purely azimuthal field offers no respite from an instability whose growth rate is
measured in tens of orbital periods. There is no hint from linear theory that the correlated, large-scale magnetic features seen in the
two-dimensional numerical simulations break down when nonaxisymmetric structure is allowed.

We believe that the nonlinear development of weak field shearing instabilities in accretion disks is the most promising generic
explanation for the presence of anomalous viscosity, and will also prove to be a powerful magnetic field amplifier. The time is passed
that we may look to gas dynamics alone to understand nonspherical accretion processes. Transport mechanisms premised on the
fiat that accretion disk magnetic fields are perpetually weak, or that the fields exhibit no large-scale coherence or are otherwise
inconsequential, receive support neither from linear MHD analyses nor from numerical simulations. The linear theories presented
in this paper and in BH suggest that large-scale magnetic fields in the disk plane are seeded by low kg, low m, rapidly growing
perturbations. The calculations challenge fundamental assumptions of kinematic dynamo theory when applied to disk systems. The
m = 0 disturbances studied in detail in Paper III vividly show the rapid large-scale growth of initially weak azimuthal and radial
field components, as do the simulations of Stone & Norman (1992). We see nothing in the linear nonaxisymmetric work presented
here to deter the notion that three-dimensional simulations will show the same correlated field growth and hefty angular momen-
tum transport. But this prediction need not be taken on faith. Such confidence will very soon be tested. Little more can be done with
linear theory in weakly magnetized, single-fluid accretion disks. Two- and three-dimensional MHD simulations of stratified disks
are the essential next steps.
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APPENDIX

It is not altogether straightforward to obtain the axisymmetric dispersion relation as m — 0 from equations (2.19) and (2.20). A
straightforward limiting procedure gives to leading order V - 6B = 0, not the axisymmetric dispersion formula. The dispersion
relation emerges only in the next higher order in a small m expansion. Thus we need to expand the §-amplitudes as a power series in

" 0By = OBY + moBL + -~ OB, =0B% + mdBl + - (Ala)
Only terms through order m are needed. We must also make use of the (exact) expression for kg :
aQ
kp=kd—m— Alb
R m 4R t. ( )
Henceforth, in this section only, we suppress the 0 superscript in k%. The zeroth-order amplitudes have time dependence e ~***, and
satisfy 5B
) dtl = —iwdBY , (A2a)
where j may stand for either R or z, and
kg 6B% + k,6B2 =0 . (A2b)

To recover the axisymmetric dispersion relation, it is slightly more convenient to start with the equations in the forms of
equations (2.13) and (2.18). If we substitute the expansions (Ala) in equation (2.13), the leading order terms give (as stated above)
V : 6B = 0, while the next order terms require

doB} déB! kg ( 1 k?
k R k 2= iw 530 = 2 0
g Ty k. <2QR><k2 -N )‘SB (A32)
where
@ =w®—(k-v,)*. (A3b)
We shall also need the twice-differentiated form of equation (A3a):
d36B% d*6B! dQ , dQ kx o? [(Kk?
z _ | 824 9 0o, R _ N2 0
ke =gp th s (’ TR T dR>5B * L. 20rR <k2 N >5B (ad)
The last ingredient we shall need is a relation for the order m terms of the once-differentiated form of equation (2.18):
d35BR k, d*6B! k, ,dQ 2Qw? (dInQ k,
= — (1 — i B° 0 0
( i ke df > 2 @ gr (1 —i0n0B: + = = | T 9B — g 9B
déBy k, d6B! k, dQ
ko) =2+ 2 —24+2—(1- B? :
+(k v, [ i kR it + K2 d ( iwt)d =0 (A5)

By substituting equations (A3a) and (A4) into equation (A5) and using (A2b), after considerable simplification the axisymmetric
dispersion equation emerges:

Ko, K K2
~4 2 2z
@ —w(kzx +k2 >—4Q k—z(k'vA)2=0, (A6)
which is our desired result.
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Note added in proof—The stability of strong, vertical magnetic fields in disks to nonaxisymmetric disturbances has recently been
considered by Tagger, Pellat, & Coroniti (1992) (Tagger, M., Pellat, R., & Coroniti, F. V., ApJ, 393, 708 [1992]).
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