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ABSTRACT

We derive a virial theorem and an analog for King’s formula in modified Newtonian dynamics (MOND;
Milgrom 1983) and use these to estimate the mass-to-light ratios (M/Ls) in MOND of the dwarf spheroidal
galaxies in the Local Group. We find that the low-velocity dispersion observed in the Fornax dwarf galaxy
implies low values for its M/L in MOND: 0.3—-1. In particular the derived value in the core of Fornax (0.3) is
much lower than expected for a normal old stellar population. Conversely, the velocity-dispersion measure-
ments in Draco and Ursa Minor appear to still require dark matter in MOND. We show that M/L must vary
between the dwarf spheroidals around the Galaxy by a factor of order at least 20, even in MOND.

Subject headings: dark matter — galaxies: elliptical and lenticular, cD — galaxies: kinematics and dynamics —

gravitation

1. INTRODUCTION

The strong observational evidence for dark matter in many
galaxies and clusters of galaxies suggests either that most of the
mass in the universe is dark or that the standard Newtonian
theory of gravity and dynamics is not valid on galactic scales
(e.g., Milgrom 1983; Sanders 1984; Fahr 1990). Of the pro-
posed modified gravity theories, Milgrom’s (1983) modified
Newtonian dynamics (MOND) has been surprisingly suc-
cessful (Sanders 1990). Begeman, Broeils, & Sanders (1991)
claim that one-parameter MOND models can fit the data
better than three-parameter disk plus dark halo models.

Dwarf galaxies, because of their weak internal accelerations
and large spread of observed mass-to-light ratios (M/Ls), are
excellent laboratories for testing such alternative theories of
gravity and for constraining candidates for the galactic dark
matter. Lake (1989) emphasized the discrepancies between
MOND and rotation curves of dwarf irregular galaxies (but
see the counterarguments of Milgrom 1991). In this paper, we
focus on dwarf spheroidals in the Local Group and discuss in
some detail the constraints placed on MOND by the absence
of significant observed dark matter in Fornax. We then discuss
Draco, UMi, and Carina, for which very large M/Ls are
inferred from their observed velocity dispersions (Aaronson &
Olszewski 1988; Pryor 1991). We find that some of these
dwarfs probably contain some dark matter even in MOND,
and that in any case a large spread of intrinsic M/L is also
required in MOND for the Local Group dwarf spheroidals.

2. VIRIAL THEOREM AND MASS-TO-LIGHT RATIOS
IN MOND

Milgrom (1983) has suggested that a modification of
Newton’s laws in the regime of weak acceleration can obviate
the need for large amounts of dark matter in galaxies and
clusters. Subsequently, Bekenstein & Milogrom (1984) con-
structed a classical field theory for MOND, in which Newton’s
first law, mFé = mg = F, is retained, while modifying the
relationship between the gravitational potential and mass dis-
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tribution in the limit of weak gravity:

V- [u(1g1/ac)g] = 4nGp . 1)

The transition from Newtonian to modified gravity (MOND)
occurs at @y ~ 1-3 x 1078 cm s~ 2; see below. For |g| > a,,
u— 1,and MOND approaches Newtonian gravity. For |g| <
ay, L — | g|/a,. There is currently no cosmological formulation
of MOND, so that the long-range cutoff (r —» ¢/H,) is not
defined in the theory.

In the weak acceleration limit in MOND, the gravitational
acceleration due to an isolated spherical system is proportional
to M(r)/r (see also below). Because of the 1/r falloff at large
radii MOND can explain flat rotation curves without the need
to resort to dark matter. From fitting rotation curve shapes for
a sample of spiral galaxies, Kent (1987), Milgrom (1988), and
Begeman et al. (1991) find a mean a, ~ (1-1.3) x 1078 hs, cm
s~ 2. The range in a, from best fits corresponds to a factor 3,
after including contributions from H 1 gas. With a, fixed at its
median value and adjusting M/L, one obtains reasonably good
fits. The asymptotic rotation velocity in the weak-field regime
of MOND depends only on a, and mass; applying this to the
Galactic rotation curve yields

M 1/4 a 1/4
=220 M - -1,
Poo (6 X 101°M®) (3 < 10-¢) Kkms @

The mass of stars and interstellar matter in the Galaxy is not
very well determined (van der Kruit 1989). In the Bahcall-
Soneira model (Bahcall & Soneira 1980) the total disk mass is
~6 x 10'° M, including ~40% “disk dark matter” (which
ought not to be counted in MOND); however, this value
depends on the assumed radial scale length of the disk. In van
der Kruit’s model the total disk mass including “disk dark
matter” is ~7 x 10'© M, whereas the bulge contributes
~1 x 10'° M. Thus to explain the Galactic rotation curve in
MOND we would require that a, ~ 3 x 1078 ¢m s~ 2. Finally,
The & White (1988) obtain a, = 2.0 x 1078 hZ5 cm s~ 2 from
an analysis of the X-ray gas and galaxies in the Coma Cluster.
Because of uncertainties in the value of the Hubble constant
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and the differences in the various methods, a, is therefore
uncertain: a, ~ 1-3 x 107® cm s~ 2. Hereafter, we will use
a, =2 x 1078 cm s~2 and indicate the dependence of the
various quantities on its value.

We can derive a virial theorem in MOND by differentiating
the trace of the moment of inertia tensor,

d2
0=—

dt* ),

where the integration is over an arbitrary volume V and the

density distribution is assumed invariant in the differentiation.
Thus

Erp@)|r*, ©)

strp|i|2= —strp(r)r-g. @
v v

The first term is the kinetic energy, which we can relate directly
to the system’s luminosity, L,,, M/L, {, and internal three-
dimensional rms velocity, v,,,. The second term cannot be
transformed to yield a total potential energy as in Newtonian
r~ 2 gravity; this concept is not well-defined in MOND.

2.1. Isolated Weak Field Limit

For an isolated spherical system in the weak acceleration
limit, the gravitational acceleration in MOND can be calcu-
lated from equation (1):

iso

_ 1Gao M() |2

r

G

Using this equation, the second term in equation (4) can be
calculated and, in terms of the measured luminosity density
profile, v(r), and M/L, {, we have

{Lyy V2ns = a},/ZG”ZCWZj d3r L(N*v(r) , 6)
v

where L(r) is the luminosity within radius r. Solving for the
M/L yields
4
. Vs
150 e S 7
‘ ao GF?Ly, 0
where in the absence of rotation v, is the rms three-
dimensional velocity dispersion, and the constant F is given by

1
F = @ Id3rL(r)1/2v(r)

1 © 2 d r 3/2
=— Z—1| 4nr? =
L33 L dr 3 I:L r drv(r):|

Thus the total mass of an isolated system in the weak field
regime of MOND is M = 9 /4a, G. Milgrom (1984) found
this relation for the low-density isothermal spheres when
solving the MOND structure (Jeans) equation with the
assumption that the velocity dispersions are independent of
radius; but the result is general.

2.2. Quasi-Newtonian Weak Field Limit

In MOND, unlike Newtonian gravity, there is a nonlinear
relationship between acceleration and mass. The gravitational
acceleration produced by a satellite galaxy, moving in the
gravitational field of a central galaxy, is altered by the external
field. Milgrom (1986) solved the MOND equation in the limit
that the acceleration due to the central galaxy, g., is much
larger than the internal acceleration of the satellite. In this case

®

wWIiN

the effective gravitational field strength that governs the kine-
matics of stars in the satellite is

on _ _GM()
ug./aor*

In this so-called quasi-Newtonian limit, the effective mass in
MOND is related to the Newtonian mass by a factor u~*, and
the internal gravitational field predicted by MOND is elon-
gated in the direction of the external field, by a factor of at
most 21/2 for u(x) = x.

Inserting equation (9) into the virial theorem (eq. [4]) results
in the standard Newtonian virial mass multiplied estimate

reduced by the factor u~1:

©®

CQN — 2#(gc/a0) vfms rV

GL,, (10

where r, is the virial radius for the respective luminosity
density profile.

2.3. Central Mass-to-Light Ratios in MOND

It is often more reliable to determine a central M/L than to
use uncertain global parameters. In Newtonian theory,
assuming that the stellar velocity distribution is isotropic, we
may use King’s formula (King & Minkowski 1972; Richstone
& Tremaine 1986):

o~ = 903

¢ =N 2GI0)y, -
Here o, is the central projected line-of-sight velocity disper-
sion, r, is the core (half-brightness) radius, and # is a constant
very close to unity for a variety of mass models. Merritt (1988)
discussed the main limitation of this formula—if the stars are
on primarily radial orbits, the M/L ratio can be overestimated
by up to a factor ~2-3, while if the stars are on primarily
tangential orbits M/L is underestimated. In the quasi-
Newtonian regime, we obtain the MOND value immediately:

(N = g, /a)Y . 12

In the isolated weak-field limit of MOND, we can derive a
similar formula by fitting to the isotropic low surface density
isothermal sphere solution given in Milgrom (1984), whose
volume density distribution can be written as

#\3/27-3
p=po|l+|— , (13)

350

16na, Gpy

(1)

where

r3= (14)
Here o is the (isotropic and constant) velocity dispersion, equal
in this case to the central o,. The (scaled) surface density dis-
tribution of this model is fairly similar in the central parts to
the King models we will use below. For the core radius and
central surface density we find r, = 0.582r, and X, = 0.923
x 2por.. Dividing by the observed surface brightness and
using the expression for r, and 6, = o then gives

[ = 176 —%0__ _ 123 %6 g (15)
T agGIOY: T T agr, ¢
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This has the same scaling as the global virial relation (7), as
expected.

2.4. Estimate from Tidal Radius

The tidal radius of a dwarf galaxy in the gravitational field of
the Galaxy in principle yields yet another estimate of its mass
in MOND, The tidal field of the Galaxy is v2, r,/D2,, wherer, is
the tidal radius and D, the distance of the dwarf galaxy from
the Galactic center. At r, this must balance the internal
MOND gravitational field, (ao/guw)GMg4,/r? (in the quasi-
Newtonian limit). Equating the two accelerations gives

3
[N = vi(—"—) (GaoL)™* . (16)
D dw.

In the isolated limit of MOND, the corresponding mass esti-
mate is reduced from the quasi-Newtonian value by an extra
factor r,/Dy,,, but this will generally not be appropriate near r,.
While this tidal estimate is subject to obvious uncertainties, it
does not depend on errors in either the velocity measurements
or the distance to the satellite galaxy.

3. THE FORNAX DWARF: CONSTRAINTS ON MOND

Fornax, the most luminous and one of the most distant
dwarf ellipticals in the Local Group, appears to be a good case
for testing MOND. Buonnano et al. (1985) estimate that its
distance is 131 + 13 kpc. Then, based on photoelectric photo-
metry by de Vaucouleurs & Ables (1968), which extends to
about r ~ 50, they obtain Fornax’s luminosity as 7.0%2:2
x 10° Ly . This may be a lower limit: From the measured
surface brightness and the King models fitted to the star counts
one obtains about 1.5-3 times this value. Hodge (1971) finds
that Fornax’s star count profile is well fitted by a King (1966)
model with concentration parameter, ¢ = log (r,/r,) = 0.5, and
King radius r, = 177 = 675 pc. This corresponds to a core
(half surface brightness) radius of r. = 11:2 = 430 pc. More
recent star counts (Eskridge 1988) result in a somewhat larger
tidal radius: r, = 16.7 = 640 pc; r, = 108’ = 4100 pc; ¢ = 0.8;
r. = 1318 = 530 pc.

King’s formula yields Fornax’s Newtonian central M/L for
an isotropic velocity distribution:

2 -1 M
N 56 —20 e o 17
¢ (10 kms™'/ \500pc/ Lo (a7

Here we have used a central surface brightness of 14.8 V..
arcmin~? (Pryor 1992) = 11.8 L, ,/pc®. As discussed above,
the uncertainty in this estimate may be as large as a factor
~2-3, depending on the anisotropy of the stellar velocity dis-
tribution.

Paltoglou & Freeman (1987, 1991) based on observations of
80 K giants, found a central velocity dispersion of 9.4*1-2 km
s~ 1. Mateo et al. (1991) report a velocity dispersion of 9.9 + 1.7
km s~ for their central field, while for their outer field, they
find 12.0 + 2.8 km s~ !. Aaronson & Olszewski (1986) mea-
sured a dispersion of 7.8 + 3.2 km s~ ! from three globular
clusters. Some of these measurements refer to different Fornax-
intrinsic radii, which may account for the small differences.
Paltoglou & Freeman (1987) also report a velocity difference of
3.4 + 2.4 km s~ ! between their two equidistant fields on either
side of Fornax. The implied rotation velocity of ~1.7kms™!is
probably not dynamically important; see below. Using the
measured dispersions in equation (17), we find that Newtonian
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gravity predicts a central M/L of ~5 in Fornax, consistent
with an old stellar population and little missing mass.

The global Newtonian M/L can be obtained from equation
(10) without the factor yu, but depends on uncertain global
parameters. As the limiting radius of the de Vaucouleurs &
Ables (1968) photometry is similar to the tidal radius of
Hodge’s (1971) star counts, we use the ¢ = 0.5 King model to
estimate the virial radius r, = 800 pc corresponding to that
luminosity. Then with v2,; = 362 we find ¢ of order 15, but
this may still be an overestimate.

We now derive the analogous result in MOND. At the dis-
tance of Fornax the MOND acceleration due to the Milky
Way, guw = vZ./r = 1.2 x 107° cm s~ 2 is much less than a,.
We then need to determine whether Fornax is an isolated
system in MOND, ay > ggornax > guw-, OF Whether it is in the
quasi-Newtonian regime, ay > guw > Jrormax- W€ can roughly
estimate the internal acceleration in Fornax by ggmax = f02/7.,
where f depends on radius and includes the effects of aniso-
tropy. If the system is isotropic, f can be determined from the
light profile and assuming the M/L to be constant and given
through either equation (12) or equation (15). In the quasi-
Newtonian case we combine equations (9) and (12) to get

on_ L) o8

T 2nl(0)r? r,’ (18)

while in the isolated weak-field limit we use equations (5) and

(15) to find
w _ [LT6LO)]"2 03
g ‘[ 10) ] 7 (19)

The two dimensionless functions of radius in equations (18)
and (19) are plotted in Figure 1 for three King models with
concentration ¢ = 0.5, 0.8, 1.0. They all peak near r =r, and
the maximum value for fis about 1.7 in the quasi-Newtonian

r/rC

F1G. 1.—Dimensionless internal accelerations for King models with
¢=0.5, 0.8, 1.0 (from top). Dashed lines show weak field isolated regime of
MOND, and dotted lines quasi-Newtonian regime. See eqs. (18) and (19).
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case and 1.5 in the isolated case. Then we find the peak value of
the internal gg,, ., ~ 1.60%/r, ~ 8 x 107'® cm s~ 2, somewhat
less than the external acceleration due to the Galactic field. If
the system is radially (tangentially ) anisotropic then using the
central o, will overestimate (underestimate) {, and hence
Jromax DY @ factor of order 2. Thus Fornax is not clearly in
either the quasi-Newtonian or isolated regime and, given the
current errors in the velocity measurements, the ratio of inter-
nal to external acceleration is sufficiently close to one that we
will consider both limits separately.

We begin by assuming that Fornax is in the isolated system
regime. Using equation (7), we determine a corresponding
global mass-to-light ratio:

(iso~085 Oo 4 DFornax -2 o -t MO
T \94 km s~/ \131 kpc 2x1078) Loy

(20)
and from equation (15) a central value
. 4 -2 -1 M
C;SOEO.IS Oo ~— e a9 — O] .
9.4 km s 500 pc 2x10 Loy
@1

On the other hand, if we assume that Fornax is in the quasi-
Newtonian (QN) regime, then MOND predicts accelerations
that are a factor u~ }(x) ~ x ! = ao/guw = 0.06 ! greater than
they would be in the Newtonian case for the same mass dis-
tribution; cf. equation (9). Thus, applying MOND to Fornax in
the QN regime yields

QN o N ~ IMW N
4 ug a0§

~ 0.85 Oo 2 Ty -t DFornax -t
“7\9.4 km s~/ \800 pc 131 kpc

y Vo 2 a0 ! Mg
220kms ') \2x1078) Lg,°
As in the Newtonian case, the global QN value requires
specifying the virial radius, rms velocity dispersion, and total

luminosity. From equation (12) we find the corresponding core
value:

CQN ~ 0-34< Oo 2( DFomax _2< Ve ?
¢ 94 km s~ !/ \131 kpc 220 km s !

% Ao M o}
2 x 1078 Loy’
Finally, the tidal radius of Fornax yields a last estimate of its

mass in MOND. From equation (16) we find a total mass of
2.7 x 10° M and

22

23)

4 —_—
(Do = 039 s I RO
1Mo 20kms !/ \2x 1078 ’

where we have used Eskridge’s (1988) larger tidal radius in
order to favor MOND and divided by the photometric lumi-
nosity. This gives an upper limit to the M/L; to be fair, we
should rather have used the total luminosity predicted from
the measured central surface brightness and the King model
with that tidal radius, Ly ~ 2.4 x 107 L, ,,, which would have
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reduced { by a factor 4. While this tidal estimate is uncertain, it
is independent of any errors in either the velocity measure-
ments or the distance to Fornax. The result is comparable to
that derived above from the core parameters.

All of these estimates give low values for the M/L of Fornax
in MOND. Moreover, most of the possible systematic errors in
the velocity dispersion (e.g., the presence of binaries or con-
tamination due to atmospheric motions) would tend to cause
observers to overestimate the velocity dispersion. Further, we
believe that the core values are the more reliable, for the
reasons stated. These come out low, with M/L < 0.3 in both
the isolated or quasi-Newtonian regime of MOND, so that the
fact that Fornax is not clearly in either regime is fortunately
not problematic. Such a small M/L is plausible only for a
peculiar stellar system consisting mostly of young, very
massive stars, while Buonnano et al. (1985) find that the stellar
population in Fornax is devoid of very massive stars and is
quite similar to galactic clusters. Typical global M/L ratios in
globular clusters are 1.5-3 (Pryor et al. 1988). Equations (20)-
(24) show how the observational parameters would have to
change if the MOND M/L for Fornax is to reach this value.

M. Milgrom (private communication) has suggested that
Fornax could be a small SO-like galaxy supported substan-
tially by rotation, with its angular momentum vector nearly
parallel to the line of sight. Such an effect might be expected in
MOND. This hypothesis would require that Fornax appear
nearly round on the night sky. Fornax, however, is significantly
flattened with an ellipticity of 0.3, and this, together with the
Paltoglou-Freeman measurement, is sufficient to show that
Fornax is not a rotating disk (Pryor 1992). Even if Fornax were
an isotropic oblate rotator, we would expect a mean rotation
velocity of ~0.650, ~ 6 km s~ ! for the apparent axis ratio,
which is somewhat greater than, but perhaps not inconsistent
with, the Paltoglou-Freeman value. In this case, depending on
the inclination angle, rotation would add ~o¢3 and at most
~203 to the total kinetic energy and therefore change the
derived masses by only of order 50%.

4. DWARF SPHEROIDAL GALAXIES IN THE LOCAL GROUP

The other dwarf satellites of the Milky Way for which veloc-
ity dispersion measurements are available are Draco, Ursa
Minor, Sculptor, and Carina. Table 1 lists some observed
quantities for these dwarfs, taken from Table 4 of Pryor (1992),
and some quantities derived from these data. The virial radius
(col. [7]) is computed from the fitted King model (cols. [5]-
[6]); for all these models v,,,, = 1.460,. Some of the numbers
for Fornax differ slightly from those used in the previous
section as we have kept strictly to Pryor’s conventions for a
consistent comparison.

Comparing the respective external acceleration (col. [2]) in
the gravitational field of the Milky Way with the internal accel-
eration (~ 1.603/r, ; see § 3) shows that the first three of these
dwarfs are not clearly in either the quasi-Newtonian or iso-
lated weak-field limit of MOND, while Draco and UMi appear
to lie on the isolated side. Thus we have again computed
central and rms M/Ls in the two regimes, both of which show
the same trends. Again the central values seem more reliable.
The central Newtonian ¥ (col. [9]) is taken directly from
Pryor (1992); the corresponding MOND values are computed
from equations (12) and (15). In the former case we have used
u(x) = x. To calculate the rms Newtonian M/L (col. [12]) and
the quasi-Newtonian MOND values we have used the above
Urms» 1.€., Used the observed King profile as the radial profile for
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TABLE 1
OBSERVABLES AND MASS-TO-LIGHT RATIOS IN DWARF SPHEROIDAL GALAXIES

D vZ D! 1.603r, ! G 15 ry L
Galaxy kpe 107°cms 2 107°cms™2  kms~! pc c pc Loy o (N ld e & giso
(1) (V)] 3) @) ) © O @®) ) 10 @1y (12 13 (14 (15
Fornax ......... 145 1.1 1.1 10 480 0.8 1100 8.0- x 10 5.7 0.31 0.24 13.5 0.74 0.95
Sculptor ....... 78 20 1.8 7.0 140 1.0 380 3.1 x 10° 11 1.1 0.77 59 0.59 0.59
Carina ......... 92 1.7 2.5 8.8 160 0.7 330 4.1 x 10° 53 4.5 5.1 61 52 11
Draco .......... 75 2.1 4.8 10.5 120 0.7 250 3.1 x 103 94 9.9 17 88 9.2 30
UrsaMin ...... 69 2.3 44 10.5 130 04 225 3.1 x 10° 83 9.5 14 80 9.2 30

NoTe-—Observables taken or converted from Table 4 of Pryor 1992: col. (2): distance; col. (5): central velocity dispersion; col. (6): core radius; col. (7)
concentration index; col. (8): virial radius; col. (9): absolute V luminosity. External acceleration of the Galaxy (col. [2]) uses v, =220 km s~ . Col. (3) is approximate
internal acceleration. Cols. (10)—(15) give central and rms mass-to-light ratio in Newtonian, MOND quasi-Newtonian, and MOND isolated weak-field dynamics.

the dominant component of the mass. In the isolated limit of
MOND we have used the virial equation (7), but this time with
v2.s = 303, as this is more appropriate in this case.

We first consider the MOND quasi-Newtonian limit. In this
limit, MOND predicts a linear relationship between galacto-
centric distance and the M/L inferred by an observer using
Newtonian theory. Here, we assume that the true M/L ratio of
the dSph are all roughly the same. The solid lines in Figure 2
show the predicted relationship between (Y and galactocentric
radius. The points in the figure show the Newtonian M/L;
from Table 1. These points do not follow the trend predicted
by MOND, but rather show the opposite effect. Fornax, the
most distant galaxy, has little inferred dark matter. On the
other hand, Draco and Ursa Minor have the highest mass-to-
light ratios.

In the isolated regime of MOND, which is the appropriate
one for Draco and Ursa Minor, both these dwarfs show evi-
dence for dark matter. Measurements of individual stellar velo-
cities find o ~ 10.5 km s~ ! in both systems (Aaronson 1983;
Aaronson & Olszewski 1988), implying the quoted Newtonian

100
80
60
IV
40 _3
L 1
20 1 =
{m =
r Sculptor 7
: ¢m =03 Fornax
O L 1 L 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1
60 80 100 120 140
D (kpc)

F1G. 2.—Inferred Newtonian M/Ls for the Milky Way’s dwarf satellites,
compared to the quasi-Newtonian MOND prediction for constant intrinsic
M/L. Values for Draco, Ursa Minor, Carina, Sculptor, and Fornax were com-
puted with King’s formula (11), and the MOND prediction with eq. (12). The
galactocentric distances, velocity dispersions, and core radii are from Pryor
(1992). Since the dwarfs are old stellar systems, they should have similar M/Ls.
The discrepancy between constant (MNP and the observations is independent
of the value of a,,.

M/Ls (¥ ~ 80-90. Aaronson & Olszewski (1988) argue that
long-term monitoring of these dwarfs has reduced the possi-
bility that contamination of the sample by binaries has spu-
riously raised these dispersions. The precise values of the M/L
depends on the assumed core radii of the dark material relative
to those for the stars, and the possible anisotropy of the stellar
orbits (see Pryor 1991 for a review). In order to bring the
MOND M/L, of Draco and UMi down to ~1 we would
require that the observed o, overestimates the true one-
dimensional dispersion in the core by a factor of 2. For the
observed stellar density distribution such a strong radial
anisotropy is not feasible in Newtonian theory, and seems
unlikely in MOND. Thus, unless we make strong assumptions
about anisotropy and core radii, MOND does not appear to
solve the dark matter problem.

Furthermore, for a set of galaxies with constant M/L and
dynamics governed by the isolated limit of MOND, an obser-
ver using Newtonian dynamics should find the product of the
Newtonian M/Ls and 6*/a,r, to be a constant proportional to
the true M/L (eq. [15]). The derived M/L values from Table 1
are compared in Figure 3 to this prediction of MOND; the
data show the opposite trend. This effect is independent of the
value of a,.

Table 1 shows that there is a large spread in the derived
M/Ls between the five dwarfs, independent of whether the
central or global ratio is used, in Newtonian or MOND
dynamics, and in the isolated and quasi-Newtonian regimes of
MOND. Yet the stellar populations of all of these systems are
similar, consisting of old metal-poor stars.

While dwarf spheroidals do not show any correlation
between (¥ and galactocentric distance, they do show a very
clear correlation between luminosity, metallicity, and M/L
(Djorgovoski & De Carvalho 1991). The most luminous dwarf
spheroidal, Fornax, has the highest metallicity and the lowest
M/L, while Draco and Ursa Minor have low luminosity, low
metallicities, and high M/Ls. This correlation would suggest
that Leo I and Leo II, which are more luminous than F ornax,
should have low Newtonian M/Ls. On the other hand,
MOND would predict that these systems, which are at roughly
twice Fornax’s galactocentric distance, should have high New-
tonian M/Ls in the quasi-Newtonian regime. Kinematic obser-
vations of these galaxies will provide interesting additional
input to these arguments.

5. DISCUSSION AND CONCLUSION

5.1. Sanders’s Finite Length Scale Antigravity

As noted by Sanders (1990) himself, the existence of small
galaxies with large mass discrepancy rules out theories of
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FiG. 3—Inferred Newtonian M/Ls for the Milky Way’s dwarf satellites,
compared to the MOND prediction in the isolated regime, assuming that all
satellites had the same intrinsic M/L. Values for Draco, Ursa Minor, Carina,
Sculptor, and Fornax were computed with King’s formula (11); for the
MOND prediction, eq. (15) was used. In MOND, ¢?/a,r, > 1 corresponds to
the Newtonian limit. The velocity dispersions and core radii are from Pryor
(1992). Since the dwarfs are old stellar systems, they should have similar M/Ls.
The discrepancy between constant (MNP and the observations is independent
of the value of a,,.
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gravity in which the discrepancy is explained in terms of a
simple modification of the r-dependence of the gravitational
force, such as FLAG (finite length scale antigravity; Sanders
1984). In FLAG, the gravity of a point particle is weakened by
a repulsive Yukawa term on large-galaxy scales. The corre-
sponding length scale rgp 4 is found from fitting observations
of rotation curves in well-studied spiral galaxies (Sanders
1986): reLag = 24 h,s kpc + 4 kpc. The need for dark matter
on scales of ~100 pc in Draco and Ursa Minor, where the
FLAG M/L should differ little from the Newtonian M/L,
emphasizes the earlier point.

52. MOND

The kinetic properties of the Milky Way’s satellites are prob-
lematic for MOND. We have used several approaches to esti-
mate Fornax’s MOND M/L. All of these techniques yield
M/Ls less than one and the most reliable estimates are not
consistent with the old stellar population seen in Fornax.
Despite the similar stellar populations of the dwarf spheroidals
around the Milky Way MOND predicts a large spread in their
M/Ls and Draco and Ursa Minor appear to still require dark
matter even in MOND.

Also, MOND predicts that a Newtonian observer should
always find missing mass in systems with weak accelerations
(03/agr. < 1), and the prediction is such that an observer using
Newtonian dynamics to determine the apparent M/L should
see distinct trends in the isolated as well as quasi-Newtonian
regimes. The dwarf spheroidals do not obey either of the pre-
dicted MOND scalings.

5.3. Conclusion

We conclude that both non-Newtonian gravity theories face
difficulties in accounting for the observed kinematic properties
of the dwarf spheroidal galaxies around the Milky Way. Any
modified gravity theory, whether the modifications depend on
length scales or accelerations, will find it difficult to explain
Newtonian M/Ls of ~5 in Fornax and the abundance of dark
matter in Draco and Ursa Minor on the same scales of a few
100 pc.

Baryonic or cold dark matter, together with Newtonian
gravity, appear to be better explanations for the halos of Draco
and Ursa Minor. Yet, even then, galaxy formation theories still
have the challenge of explaining why there is a lot of dark
matter in some dwarf galaxies and none in others.
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