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ABSTRACT 
The role that hydrodynamical instabilities may play in the formation mechanism of H i high-velocity clouds 

(HVCs) in the Galactic halo is studied taking into account the effects of both convection and thermal conduc- 
tion. The linearized MHD equations are solved numerically in order to analyze the behavior of small pertur- 
bations applied to different equilibrium configurations whose relevance in a Galactic halo context has been 
discussed in a previous paper (Einaudi & Ferrara). The conditions for the growth of a condensation mode, 
often invoked to explain the origin of HVCs, and its spatial profile are derived. It is shown that, for the range 
of parameters appropriate to the hot disk gas generated by multisupernova explosions, thermal instability is 
strongly inhibited by spatial gradients in the background flow. It is argued that HVCs can hardly form as a 
result of a thermal instability in a hot Galactic flow. A nonradiative but rather “dynamical” instability may 
develop whose growth rate is maximum when parameters close to those determining a transonic solution for 
the flow are adopted; transonic solutions themselves are found to be stable. Some discussion is devoted to the 
possibility that this “ dynamical ” instability may be connected with the onset of a thermal supersonic Galactic 
wind. 
Subject headings: Galaxy: halo — hydrodynamics — instabilities — MHD 

1. INTRODUCTION 

This is the second of a series of papers whose aim is to 
investigate the properties of the hot component, if present, of 
the Galactic halo. Here we study the behavior of small pertur- 
bations which can arise in this component, whereas the first 
paper (Einaudi & Ferrara 1991, hereafter Paper I) was devoted 
to the analysis of the stationary solutions modeling hot gas 
outflows from the disk into the halo. The presence of such a gas 
at high latitudes in the Milky Way and in external galaxies has 
been suggested, but not definitely proved, by a growing 
number of evidences. The most obvious diagnostic technique 
for hot gas (T ~ 106 K) is represented by X-ray observations. 
Bregman (1980b) developed a theoretical model of the emission 
properties of X-ray coronae around galaxies. He concluded 
that the bulk of the emission should occur below 1 keV and 
that for edge-on galaxies the corona may be more luminous 
than the disk which suffers the X-ray absorption by neutral 
gas. Bregman & Glassgold (1982) have searched for X-ray 
emission in two edge-on galaxies (NGC 3628 and NGC 4244) 
in the Einstein IPC 0.9-2.9 keV band, but they detected no 
diffuse emission from the coronae of those galaxies. On this 
basis they suggested that either the gas must be at a lower 
temperature (< 6 x 105 K) or a very hot wind may be present. 
McCammon & Sanders (1984) also derived an upper limit 
(T <5 x 105 K) for the temperature of the hot gas in the halo 
of M101 from X-ray observations. The implications of these 
observations for the general structure and properties of the 
ISM in M101 are explored by Cox & McCammon (1986). 
Recently Wang (1991) has reported the detection of diffuse 
X-ray emission from the halo of the Small Magellanic Cloud 
using the Einstein IPC. He claims that the emission spectrum is 
consistent with a hot cooling flow from the galaxy’s body. 
Extensive searches for hot gas in the halo of the Galaxy have 
been carried out by Nousek et al. (1982) and Marshall & Clark 
(1984), their work being based on different surveys of the soft 

X-ray sky. The signatures of the hot coronal component may 
be found in the emission detected by Nousek et al. (1982) in the 
MI band (0.5-1.0 keV) and by Marshall & Clark (1984) in the 
SAS 3 carbon band (0.1-0.28 keV). These data are consistent 
with hot halo gas having a temperature of 2-3 x 106 K, but 
unfortunately, because of many difficulties in the interpretation 
of the measurements, a local origin cannot be excluded. Indi- 
rect indications of hot gas in the halo come from IUE 
absorption-line measurements. The most relevant feature in 
this context is the N v absorption line, which has a scale height 
of about 2 kpc (Savage & Massa 1987). Because of its high 
ionization potential (77.5 eV), this ion is very likely to be pro- 
duced collisionally and therefore has been taken as a good 
indicator of hot gas. In fact the abundance of N v, under a 
collisional equilibrium hypothesis, peaks at about Tc = 2 
x 105 K; however, Edgar & Chevalier (1986) have demon- 
strated convincingly that absorption lines are most likely to be 
formed under nonequilibrium ionization conditions in a gas 
cooling from temperatures higher than Tc. Theoretical founda- 
tions for the origin and existence of high-latitude hot gas are 
provided by several models. That which has attracted more 
attention in the last decade is the so-called galactic fountain 
(hereafter GF) model introduced by Shapiro & Field (1976) 
and subsequently developed by Bregman (1980a). In the GF 
model, the hot gas (T ^ 106 K) present in the Galactic disk, 
which has a thermal scale height of 6 kpc and therefore is 
buoyant, tends naturally to flow into the halo where it cools 
through the combined effects of convection and radiation. Fur- 
thermore, Shapiro & Field (1976) suggest that some conden- 
sations (clouds) may form as a result of the cooling process and 
fall back to the plane at high velocities, thus indicating a con- 
nection with the observed high-latitude, H i high-velocity 
clouds (HVCs). Bregman (1980a) argued that thermal insta- 
bilities like those studied by Field (1965) may represent a suit- 
able formation mechanism for the HVCs in the framework of 
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the GF model. However, it has become increasingly clear that 
the filling factor of the hot component of the ISM in the disk is 
not as high as previously thought (Cox 1989, 1990; Cox & 
Slavin 1991). In fact the neutral layer, as revealed by H 121 cm 
observations, has a thick exponential distribution superposed 
to the Gaussian one and reaches heights of about 500 pc 
(Lockman 1984; Dickey & Lockman 1990). With this recogni- 
tion the circulation of gas proposed by the GF model should 
be considered as a localized phenomenon where most of the 
hot gas is created, i.e., regions of multiple supernovae explo- 
sions. This point is implemented correctly in the chimney 
model (Norman & Ikeuchi 1989) which predicts that the hot 
gas can flow freely into the halo only through the open top of a 
very large superbubble created by multiple supernovae explo- 
sions and subsequently fragmented by a Rayleigh-Taylor insta- 
bility, thus forming what the authors define as a “chimney.” 
Although this model is quite appealing, some important 
aspects are far from accepted. In particular, numerical simula- 
tions and analytical work seem to indicate that, if the exponen- 
tial tail of the H i distribution is really present, the blowout 
does not occur unless the center of the superbubble is located 
about 100 pc or more from the Galactic plane (McCray & 
Kafatos 1987; Tenorio-Tagle & Bodenheimer 1989; Spitzer 
1990). In addition, the situation is even worse if a magnetic 
field of a few ¡¿G parallel to the plane is present (Cox 1989; 
Tomisaka 1991). 

From the above considerations it is possible to realize that 
our present comprehension of the general scenario of the disk- 
halo connection and of the coronal environment is somewhat 
uncertain. We believe that a crucial point, a potentially rich 
source of information in order to achieve a deeper understand- 
ing of the processes which govern the thermal and dynamical 
properties of the Galactic halo, is represented by the study of 
the origin and properties of the HVCs. In this paper we would 
like to clarify whether the existence of HVCs may be generally 
explained with thermal instabilities occurring in a hot coronal 
flow originating in the Galactic disk. 

The properties of thermal instabilities were explored by 
Field (1965) who derived the dispersion relation of the modes 
existing in a homogeneous static fluid where radiative losses, 
mechanical heating, and thermal conduction are taken into 
account. His study was based on two essential assumptions: 
the first is that the fluid is homogeneous and the second is that 
the perturbations are periodic in space along with their deriv- 
atives. These assumptions allow solutions of the form e^kr+tot^ 
and yield the dispersion relation between m and k. It is evident 
that under these conditions the presence of a homogeneous 
velocity field produces only a Doppler shift of the frequencies 
without altering the physics of the modes, because the static 
situation can be recovered with a simple change of the refer- 
ence frame. The above assumptions appear to be clearly 
unrealistic in a Galactic application. In fact, on the one hand, 
the outflow from the disk can be homogeneous only when the 
radiative cooling is exactly balanced by some form of mechani- 
cal heating everywhere. On the other, even if the actual bound- 
ary conditions which must be satisfied by the perturbations are 
unknown, the periodic ones appear to be highly unrealistic. It 
follows that a Fourier expansion is not allowed and Field’s 
results are not applicable, even in a homogeneous configu- 
ration. 

The choice of the boundary conditions in a stability analysis 
is crucial because it may change the nature of the possible 
perturbations which arise in the system (provided that pertur- 

bations scale lengths are not small compared to the equi- 
librium ones) and therefore may alter sensitively the stability 
properties of the same equilibrium structure. In the case of 
interest, there are two possible choices which in principle can 
lead to completely "different results. One possibility is to believe 
that the perturbation is unable to change the conditions of the 
flow at the disk level and therefore perturbations of the govern- 
ing parameters must vanish there. This possibility applies to a 
physical situation in which the flow propagates in the vacuum 
and does not have to coexist with an external medium. When 
an external medium is present, a stationary solution is 
achieved when the influence of the external medium propa- 
gates back to the origin of the flow, producing a “feedback” 
which changes the physical conditions there. We have seen in 
Paper I that once the above-mentioned values of the governing 
parameters are given, the properties of the stationary solutions 
are completely determined. There are solutions which develop 
singularities at the sonic point, thus unphysical; there are solu- 
tions which correspond to either subsonic or supersonic flows 
depending on whether the velocity at the disk is subsonic or 
supersonic; finally, we have critical solutions in which an ini- 
tially subsonic flow becomes supersonic passing the sonic point 
or vice versa. All these solutions have been found by changing 
the values of velocity, density, temperature, and heat flux at the 
disk level. Following the above discussion, some of these values 
depend on the feedback of the external medium in which the 
flow is propagating and therefore the nature of the stationary 
solution, which is actually achieved by the system, can be 
found only by an inspection of the time-dependent equations 
governing the system. 

The simplest approach to this problem is represented by a 
linear stability analysis of the stationary solutions discussed in 
Paper I considering boundary conditions for the perturbations 
such that the effects of an external medium can be taken into 
account. If the perturbation grows in time, the corresponding 
stationary solution is not physically feasible, since the condi- 
tions at the disk level producing such a solution vary in time as 
a result of the simulated feedback. The linear analysis can 
provide information only on the nature of the stable, physically 
realistic equilibria and on the time scales of the departure of 
the system from the initial configuration in the first phase. No 
information can be deduced on the nature of the final state or 
on the total transient time necessary to achieve the equi- 
librium. 

In this paper we perform this analysis adopting a normal 
modes approach, i.e., looking for solutions of the linearized 
relevant equations whose time dependence is of the form el(0t. 
The frequency co, which is the eigenvalue of the problem, is in 
general a complex number. In the homogeneous case, with 
periodic boundary conditions, there are several eigenmodes 
which can be easily identified as sound waves, gravity waves, 
and one condensation mode. We are interested in the possible 
formation of HVCs in the galactic halo and therefore in the 
condensation mode, described by Field (1965) in the static and 
homogeneous case. This mode is practically isobaric; it is 
driven by a favorable energy balance and is a purely growing 
mode in the unstable static configurations; thus, the real part 
of the frequency cor is zero. We will study the properties of this 
thermal mode by adopting those boundary conditions capable 
of providing the halo conditions discussed above, and by 
including the effects of the dynamical terms not considered in 
the previous works. We will consider one-dimensional pertur- 
bations which depend only on the coordinate along the equi- 
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librium streamlines, solving numerically the resulting eigen- 
value problem and deriving the conditions for stability, the 
growth rate of the perturbations in the unstable configu- 
rations, and their spatial profiles whose inspection allows their 
identification. The plan of the paper is the following: in § 2 we 
describe the model and the fundamental equations, and in § 3 
we present the results of the stability analysis. Section 4 gives a 
brief summary of the results along with the conclusions. 

2. DEFINITIONS AND EQUATIONS 

In Paper I we solved the equations governing the steady 
state of a hot outflow propagating from the disk of a spiral 
galaxy; here we study the stability properties of those struc- 
tures. We just mention the approximations and assumptions 
made in Paper I, which are the same adopted here. 

We assume that the flow is one-dimensional in the direction 
perpendicular to the Galactic disk along the field lines of the 
magnetic field. The magnetic flux tube defining the topology of 
the flow has a cross section A(z) which enlarges with height. 
The only magnetic effect considered is the collimation both of 
the flow and of the heat flux in the direction of the field with 
the subsequent reduction of the dimensionality of the problem 
to one. The plasma is assumed to be optically thin and the 
energy equation adopted expresses the balance resulting from 
the combined effects of thermal conduction, radiative losses, 
convection and mechanical heating. The gas is supposed to the 
perfect, fully ionized with cosmic abundances (Allen 1973). As 
for the gravitational potential O, we use the model by Innanen 
(1973) for the Galaxy, modeled as a three-component (bulge, 
disk, and a dark massive halo) system. The adopted cooling 
function Ard is the standard one for collisional equilibrium 
given by Raymond, Cox, & Smith (1976); the thermal conduc- 
tion coefficient parallel to the magnetic field lines is the 
classical one given by Spitzer (1962). In the coronal environ- 
ment, this is a fairly good approximation and saturation effects 
considered by Co wie & McKee (1977) may be neglected in the 
linear regime of perturbations, if it is negligible in the station- 
ary flow. 

All the quantities entering the equations must be understood 
as nondimensional, each having been normalized to the appro- 
priate scale. We use as basic dimensional quantities time, 
density, and temperature, whose scales are indicated by t, p*, 
T* ; t will be identified with the cooling time corresponding to 
p* and T*, which are the values of density and temperature at 
the disk level. In terms of these basic scales, we derive the scales 
of all the remaining physical quantities. In particular, the 
velocity scale is given by the adiabatic sound speed cf at the 
base, the length scale by ref. In the absence of self-gravity, the 
relevant equations can be written as follows : 

ftipA) + PAfz=0, (2.1) 

introduced the conductive and heating time scales Tcd and The, 
both normalized to the radiative one (for their explicit expres- 
sion, the reader is referred to Paper I). A misprint has intro- 
duced a gravitational term in the energy equation of Paper I 
which does not appear in the above equation (2.3), and which 
was not considered in the calculations. The term / denotes the 
appropriate exponent of the cooling function in the range of 
temperatures considered, y is the specific heats ratio, gz is the 
z-component of the gravitational field, and Lg is the non- 
dimensional gravitational scale length (which is equal to 1 if 
the scale length is normalized to the sonic radius). The expo- 
nent / is temperature-independent, which seems to be a good 
assumption in a linear regime. In general, as Gaetz, Edgar, & 
Chevallier (1988) have demonstrated, in a fountain flow, the 
cooling function may be different. In fact, it would be necessary 
to perform the ionization and cooling function calculations 
along with the hydrodynamics; we will address this issue in a 
forthcoming paper. For comparison with Field’s original 
analysis, we consider a constant heat source term H in the 
energy equation (2.4), which will be dropped subsequently. A 
homogeneous steady solution is attained when H is equal to 
the radiative losses computed at p* and T*. This term has been 
introduced in the present analysis for the following reason. The 
properties of thermal instabilities were studied by Field (1965) 
adopting a homogeneous equilibrium, resulting from a balance 
between radiative losses and mechanical heating and neglect- 
ing gravity. Although we are not interested in homogeneous 
configurations, we found it instructive to start our analysis by 
deriving the thermal stability properties of a static homoge- 
neous equilibrium and then modifying the boundary condi- 
tions with respect to Field’s analysis, in order to identify the 
condensation mode. This mode will then be studied in more 
realistic configurations obtained by decreasing to zero the 
source term H, and by increasing the disk velocity v*. 

We perform a linear stability analysis; any quantity ( may be 
expressed as Ç = £0 + SC, where the perturbation SC is such 
that \SC\/\C \ < 1 and has the form 

SC(z, t) = SC(z)ei(at. (2.5) 

By linearizing equations (2.1)-(2.4), we obtain the following set 
of equations for the perturbed quantities p,v,T: 

v0 P' + Po + r^o + v'0)p + (Fpo 4- p'o)v = 0 , (2.6) 

T0 p' + Po vo V + Po T' + ^v0 v'0 + — gz+ T'^Jp 

+ (icopQ + Po v'0)v + PÓ r = 0 , (2.7) 

- — T5J2T" + (v0 T0 - yv0 T0)p' + (v0p0-5 — T^T'At 
T'cd \ ^cd / 

+ (i(oT0 - iy(oT0 + v0 T'0 + 2p0 Tf
0)p 

dv dp 1 
pTt = -Tz-Tg

pg*’ 
(2.2) 

Py £ 
dt 

J_d_ 

Ted SZ 
- p2Tf + — H, 

The 
(2.3) 

P = pT , (2.4) 

+ (Po To + T0 p’o - y T0 p'0)v 

+ i icopo + V0 Po - FoPo +fPo Tq~ 1 

15 
4 

T^r2 + ^ n<2T T = 0, (2.8) 

where p is the density of the fluid, v is the velocity, p is the where the subscript 0 refers to the unperturbed quantities, the 
thermal pressure, and T is the temperature. We have also prime indicates the z-derivative, and F = 1/A(dA/dz). In order 
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to solve the problem numerically, the system (2.6)-(2.8) has 
been put in a different form, involving two coupled equations 
for T and p, i.e., eliminating v, whose explicit expressions are 
given in the Appendix. Equations (2.6)-(2.8) form a homoge- 
neous fourth-order ordinary differential system which implies 
that four boundary conditions (BCs) are required. When they 
are homogeneous, we have to deal with an eigenvalue problem 
where the eigenvalue is represented by the normalized growth 
rate co. Following the discussion given in the Introduction, we 
want to simulate the effect of the feedback of the external 
medium through a proper choice of the BCs. Therefore we 
choose to impose two BCs at the disk level and two at the 
upper boundary located at zh where we assume that the exter- 
nal pressure is comparable to the internal one. The actual 
value of zl in this framework is evidently a free parameter of the 
problem and has been varied in the range 3-10 kpc. 

Which is the more realistic choice of the BCs depends on the 
response of the external fluid at z = 0 and zt to the flow pertur- 
bation, which is observationally unclear. However, arguments 
can be found in favor of several different possibilities. The 
external fluid can be considered either a mass reservoir, such 
that the perturbed density must vanish, or a perfect absorber, 
such that the perturbed pressure must vanish. It may act as a 
thermostat, implying that the perturbed temperature vanishes, 
or alternatively as an insulator, maintaining the heat flux unal- 
tered. In order to check the possible difference in the stability 
properties of the same equilibrium configuration induced by a 
different choice of the BCs, we parameterize the external fluid 
response in the following way : 

K\o,i). 1 P' + *4o!/), 1P + -K(o!¡>,! r + KZ), 1 T = 0 ; (2.9a) 

KZh2p' + K$lh2p + X$i)>2 r + K\t]lu2 T = 0 ; (2.9b) 

the coefficients KU) are considered as free parameters to be 
varied and subscripts 0, / refer to the boundaries z = 0 and 
z = zh respectively. Some particularly meaningful limiting 
cases can be obtained by an appropriate choice of the KU) 

coefficients at each boundary. All the detailed results presented 
in this paper refer to a choice of KU) modeling the boundaries 
as a thermostat and mass reservoir. We have found the solu- 
tions to be insensitive to variations of the type of BCs used in 
the calculation. The numerical procedure adopted is a finite 
difference scheme with variable grid. The grid size is a function 
of co, determined by the local scale of the equilibrium quan- 
tities. We make an initial guess for the perturbations T and p 
using a number of grid points N equal to the number of grid 
points necessary to compute the equilibrium. Then we increase 
N in order to attain a satisfactory accuracy on T and p by 
using the routine D02RAG of the NAG numerical library. The 
convergence is quite fast, and we are able to compute the eigen- 
value œ and the profiles of the corresponding eigenfunctions 
with an error of a few percent. 

3. RESULTS AND DISCUSSION 

As we have shown in Paper I, it is possible to obtain various 
equilibrium configurations depending on the actual thermody- 
namic conditions at the disk-halo interface. In this section, we 
discuss their stability properties which are deduced from the 
behavior of the eigenvalues and the eigenfunctions of the 
system (2.6)-(2.8) as a function of the background flow vari- 
ables (density, temperature, velocity, heat flux, heating, etc.). 
Given the form of the elementary perturbation (2.5), an insta- 

bility will occur if the imaginary part of the eigenvalue Im (a>) is 
negative. 

We first study the static homogeneous solutions of the 
steady state equations, i.e., constant temperature and density 
and zero velocity. This solution exists when the equations are 
simplified by considering a constant cross section for the flow, 
by neglecting the gravity and by assuming the following 
mechanical heating: 

H - Ard(p*, T*) = 0 . (3.1) 

If this condition is not fullfilled, gradients in the profiles of the 
various equilibrium quantities are always present. As far as the 
equilibrium configuration is concerned, this is the solution 
studied by Field (1965), but the use of the BCs (2.9) modifies the 
properties of the various modes present in the system. A spatial 
Fourier expansion of the perturbations is not consistent with 
such a choice of the BCs and therefore it is impossible to 
determine a simple dispersion relation œ(k) = 0 as in the case 
of the periodic BCs adopted by Field. We find an infinite spec- 
trum of modes, and we identify those corresponding to pure 
imaginary values of co and to negligible pressure variations 
with the condensation ones. Among them we look for the 
eigenvalue with the minimum imaginary part of the frequency, 
(hi : its sign determines whether or not the system is stable and, 
when the sign is negative, its modulus represents the growth 
rate of the instability. The sign of coh given the density and the 
temperature of the system, depends only on zh and it becomes 
positive for sufficiently short structures. We can then define the 
critical length zlc as the minimum length for a given tem- 
perature and density in order to have instability. Using a set of 
values of p%,v%,T%, and zz which lead to unstable solutions, we 
start to decrease z*. The spectrum of the eigenvalues is then 
shifted toward more stable values, and we take as zlc the largest 
Z* for which all the eigenvalues have a positive imaginary part. 
In order to quantify the differences introduced by our BCs with 
respect to the periodic ones, in Table 1 we compare the values 
of zk computed when K\ÿJhl = = 1, K$tiu = 0; i = 1, 
2; y 2, 4, with the corresponding critical lengths zfc obtained 
from Field’s dispersion relation using our cooling function. 

We find values of zlc systematically larger than those of 
Field, which means that some configurations which are 
unstable against periodic perturbations are stabilized when 
our BCs are introduced. This result is not surprising because 
BCs (2.9) limit the class of perturbations which can arise in the 
system with respect to the periodic case. When zt is slightly 
bigger than zlc, we find only one mode with negative c^. The 
corresponding eigenfunctions p and T are such that the pres- 
sure perturbation for the adopted BCs is 

P = p0T + T0p' ~ const = 0 , (3.2) 

as is evident from the example shown in Figure 1. These results 
are in perfect agreement with the well-known fact that in the 

TABLE 1 
Critical Lengths 

n* (cm 3) T* (K) zlc (kpc) (kpc) 

10"3   106 0.88 0.7 
10“3   3. x 106 8.4 6.5 
5. x 10~3   106 0.19 0.14 

Note.—Comparison of the critical length zt (this paper) 
with the one obtained by Field 1965 for different base 
parameters of the flow. 
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L/(tc,) 
Fig. 1.—Eigenfunctions for the homogeneous case with n* = 10"3 cm-3, T* = 106 K, z* = 1.61 kpc, and coi = —1.17. Solid line, density; dashed line, pressure; 

long-dashed line, temperature. 

homogeneous case, the condensation mode is almost perfectly 
isobaric, that, if P = 0, the problem can be reduced to a Sturm- 
Liouville one (McClymont & Craig 1985) with the conse- 
quence that the most unstable condensation mode, identified 
as the only one with negative cbi in this case, is the fundamental 
harmonic with no nodes in the eigenfunctions. 

We want to determine the properties of such a mode in more 
realistic nonstatic and nonhomogeneous configurations. It is 
interesting to note that, also in these cases, the system of equa- 
tions (2.6)-(2.8) admits nonoscillatory solutions, which we find 
throughout the paper to correspond to the condensation 
mode, whose cbi is modified by the presence of velocity fields 
and of the gradients of the equilibrium quantities. 

The presence of a homogeneous equilibrium velocity v$ 
induces a shift toward more stable values of the spectrum of 
the eigenvalues with respect to the static case. Eventually, for 
any given value of zt such that the static configuration is 
unstable, cbi changes sign and stability is achieved for v$ > vc. 
Some computed values of vc corresponding to different choices 
of pj and TJ are given in Table 2, with i£(o!z),i = ^(oîo,2 = 

^(o,o,i = 0» f:=: 1> 2,4. 
A decrease of H from the value necessary to have homo- 

geneity has the effect of creating gradients in the steady state 

TABLE 2 
Critical Velocities 

n* (cm 3) T* (K) zt (kpc) vc (km s 

HT3   106 1.6 25.0 
10"3   3. x 106 9.0 33.0 
5 x 10“3   106 0.3 27.0 

Note.—Values of the velocities of which a stability is 
achieved for different base parameters of the flow 
(homogeneous equilibrium case). 

solutions, with a consequent increase of the importance of 
thermal conduction. In general, the presence of gradients influ- 
ences the growth rates of the condensation mode. In order to 
show this effect, we choose two representative disk values of 
the density and temperature, namely n* = 10-3 cm-3, 
r* = 106 K, and we also fix zt = 10 kpc and = 
^(o!o,2 = 1> = 0; i — 1, 2; j ± 2, 4. For the adopted 
values of n* and T*, the cooling time is equal to t = 2.6 x 107 

yr. We also use a very low value of the Mach number of the 
flow at the disk level, namely M* = 8.8 x 10 ~4, which is 
unlikely to be realistic, but, as it turns out from the energy 
terms analysis performed in Paper I, ensures that radiation 
strongly dominates the energetics of the flow. When H is given 
by equation (3.1), the corresponding equilibrium is unstable, as 
shown in Table 1, and the unstable mode is driven by radiation 
losses and corresponds to a thermal instability. In the next 
table (Table 3), we show the variations of cbi as a function of the 
heating. For values of H below ^10-28 ergs cm-3 s-1, the 
equilibrium solutions do not differ appreciably from the one 
without heating. When the gradients in the steady state solu- 
tion are increased through a progressive decrease of the 
heating term, the growth rate becomes slower until complete 
stability is reached once the heating is suppressed. The 
numbers in Table 3 have a variation of a few percent for a 
different choice of the set 

Up to this point we have shown that thermal instabilities are 
suppressed when (1) flows are present such that the crossing 
time is so short that the cooling does not have the time to be 
effective (Table 1) and (2) temperature gradients are present 
such that the corresponding heat flux is enhanced enough to 
stabilize the system. With these results in mind, we turn to the 
stability analysis of some of the structures described in Paper I 
in which convective and conductive effects are included. There- 
fore, from now on, we consider If = 0, we turn on the gravity, 
and we allow the cross section A(z) to vary as described in 
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TABLE 3 
Heating Effects 

H/10 28 (ergs cm 3 s 1) ¿5¿ 

3.74   -1.348 
2  -0.231 
1.8   -0.134 
1  -0.064 
< 1  Stable 

Note.—Effects of the variation of the 
mechanical heating on the growth rate. 

Paper I. The equations which govern the equilibrium state of 
the flow admit solutions which present critical points (critical 
solutions), where a transition between the subsonic and super- 
sonic regime occurs. We discuss in detail the stability analysis 
of configurations with the values of n* = 0.6 x 10“3 cm-3, 
T* = 4.1 x 106 K, and of the heat flux (dT/dz)* = 
4.52 x 10"17 K cm~1, which, for v* = 157 km s-^ gave rise to 
the critical solution presented in Figure 1 of Paper I. We can 
then derive the stability properties of a whole set of equilibria, 
including the critical one, with Mach numbers at the base 
ranging from 8.8 x 10“4 to 10. We choose zt = 10 kpc and 

= 0;i= 1,2;j * 2,4. 
For M* = 8.8 x 104, the system is stable, as expected from 

the results presented in Table 3. It becomes unstable for very 
low M* > M* ^ 0.004. Figure 2 illustrates the behavior of the 
imaginary growth rate co* as a function of the Mach number 
M* for the unstable configurations. It is seen that the system 
becomes more and more unstable as v* approaches the value 
v* = 157 km s“1 (at which M* = 0.68) corresponding to the 
critical solution. We find that the critical solution is instead 
fully stable, a fact that has important consequences which we 
will discuss in § 4. As explained in Paper I, the value of v* 
cannot be increased beyond 157 km s“1 in this case because 
the corresponding solutions present an O-type singularity. 
Physically meaningful solutions are found again when 

v* > 278 km s“1 (M* = 1.2). Increasing y* to supersonic 
values, IcoJ becomes smaller, and eventually the system 
becomes stable again for high M*, for the order of 10. In 
Figure 3 we present the profiles of the temperature, density and 
pressure perturbations for a typical solution (v* — 70 km s“1). 
There are two important points, resulting from an inspection 
of Figures 2-3, which we want to outline. The first is that the 
values of | cbi | are significantly greater than 1 for a large range 
of Mach numbers. Thus, the corresponding modes grow much 
faster than the thermal modes, whose typical growth time is 
comparable to the cooling time; the second is that the pertur- 
bation is not isobaric. We have also evaluated for the solution 
shown in Figure 3 the relevance of the various contributions to 
the perturbation energy, namely the dynamical, conductive, 
gravitational, and radiative terms, and we have found that the 
energetics of the perturbed flow and dominated by the action 
of convection and thermal conduction. It follows that this 
instability is favored by the presence of perturbed pressure 
gradients, and it is energetically driven by mechanisms differ- 
ent from radiative losses. Therefore, it seems more suitable to 
refer to it as a dynamical instability rather than a thermal one. 

The value of the heat flux at the actual Galactic disk cannot 
be deduced at any reasonable confidence level from the obser- 
vations. Taking this point into account, we have studied its 
influence on the stability properties of the flow. A decrease of 
(dT/dz)* reduces the thermal conduction, and the system tends 
to be more unstable for supersonic flows. As an example, when 
(dT/dz)* = 0 K cm“1, n* = 10“3 cm“3, and T* = 106 K, the 
behavior of cbi with v* is similar to that presented in Figure 2, 
as regards the subsonic part of the curve; in the supersonic 
part, I (ûf I is not a decreasing function of v* but rather tends to 
saturate. The variation of the coefficients K$fl) does introduce 
differences in the results, but they are not appreciable. 

All the above presented results referring to nonhomo- 
geneous, nonstatic configurations correspond to z* = 10 kpc. 
We have investigated the effects of varying zl9 finding that | CO; | 
is a decreasing function of zz. If the influence of the external 
medium becomes important at smaller distances from the disk. 

1.5 

1 

3. 
Û0 t o -0 

0 

-.5 

Fig. 2.—Growth rate of the dynamical instability as a function of a Mach number of the flow 
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the nontransonic configurations are more unstable. As an 
example, for zl = 3 kpc the growth time of the unstable modes 
is 30% shorter than the corresponding ones for zl = 10 kpc. If 
z* is so small that no transonic solutions can exist, then all 
equilibria are stable. 

Finally, we conducted the stability analysis of a particularly 
interesting solution, namely one resulting from the choice of 
the parameters suggested by the chimney model (Norman & 
Ikeuchi 1989). The most suitable choice for the model param- 
eters is n* = 10~3, T* = 3 x 107 K, and a velocity y* close to 
the sound speed. The results of the numerical stability analysis 
show the “ chimney ” to be unconditionally stable for a large 
velocity range (500 < v* < 700 km s_1) for the background 
flow. A peculiar characteristic of the “ chimney ” solutions, as 
shown in Paper I, is the absence of critical solutions. 

In order to investigate the role that the presence of critical 
solutions plays in determining the stability properties of hot 
radiative flows, we have studied a number of different cases 
with values of n*, v*, T*, (dT/dz)* for which no critical solution 
is present. We always find that all the existing configurations 
(evidently, either completely subsonic or supersonic) are stable. 
We will discuss this point within a more general context in the 
following section. 

4. SUMMARY AND CONCLUSIONS 

In this paper we have investigated the linear stability proper- 
ties of the hot component of the Galactic halo, studying the 
evolution of small perturbations which satisfy realistic bound- 
ary conditions. Using a normal modes technique, we have 
derived the growth time and the spatial profile of the most 
unstable perturbation as functions of certain parameters of the 
gas at the disk level, such as density, velocity, temperature, heat 
flux, and heating. 

We have found that in a static homogeneous configuration, 
the critical length for the system to be thermally unstable is 

systematically larger than the one obtained by Field using 
periodic boundary conditions. The condensation mode can be 
stabilized, no matter what is the length of the system, by the 
presence of either sufficiently large homogeneous velocity fields 
or equilibrium gradients, whose effect is to enhance convection 
and conduction, respectively. Both the Mach numbers and the 
level of nonhomogeneity sufficient to eliminate thermal insta- 
bilities may reasonably exist under Galactic halo conditions. 

In nonhomogeneous flows, a new instability appears whose 
growth rate | co* | is strongly dependent on the Mach number of 
the flow. Referring to the steady state configurations presented 
in Paper I, we found that | d); | is an increasing function of M* 
until the value corresponding to the transonic solution is 
attained, while, in the supersonic regime, it decreases 
approaching, in some cases, an asymptotic value. We have 
shown that this instability has a typical growth time ^ 10“ 2 of 
the cooling time, that its energy balance is dominated by con- 
vection, and that the corresponding perturbations are not iso- 
baric. Moreover, when a transonic solution does not exist for 
any value of the disk Mach number, all the configurations are 
stable, whereas, when the transonic solutions does exist, it is 
the only one stable. 

It is impossible, with the analysis performed in the paper, to 
derive the subsequent evolution of the instability : to this aim, a 
full nonlinear treatment is required. However, we sketch here a 
tentative scenario, which, although not completely proved, 
represents a reasonable step toward the comprehension of the 
results concerning these instabilities. We have extensively dis- 
cussed throughout the paper that a “ feedback ” effect due to an 
external medium pressure should be very important in the 
evolution of the system towards its final state. We have simu- 
lated this feedback with a particular choice of the boundary 
conditions that time-dependent perturbations must satisfy. It 
has been shown that the stability properties of a given configu- 
ration do not depend on this choice. What matters is the pres- 
ence of some conditions at the external boundary producing 
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the “feedback” and the consequent fact that the configuration 
is free to rearrange the values of some parameters at the disk 
level, during the time evolution. It is reasonable to argue that 
the existence of dynamical instabilities with the above 
described properties is the signature of the natural tendency of 
the system to relax on a transonic solution whenever it is 
allowed to rearrange dynamically the values of the parameters 
at the base. This conclusion is strengthened by the fact that 
critical solutions themselves are stable and the instability of the 
other solutions is faster when the external medium counter- 
pressure producing the feedback becomes relevant closer to the 
disk. This result indicates that when the gas present in the 
interior of superbubbles, if allowed to blow out of the disk, has 
the time to reach a steady state, then it is more likely to gener- 
ate a supersonic Galactic wind rather than nongravitational 
condensations. The nature of such a wind and the time scales 
of its onset can be studied only through a nonlinear analysis, 
presently underway. 

The presence of a supersonic wind has important implica- 
tions for the Galaxy. If a systematic mass loss of presumably 
high metallicity material takes place, this should be properly 
taken into account in any realistic model for the chemical 
evolution of the Galaxy (Tosi 1991). Furthermore, shocks may 
form in the interaction between the wind and preexisting halo 
material, and they should become detectable with forthcoming 
observational facilities. 

Following the above discussion, it seems clear that, if hot 
outflows from the Galactic plane exist, HVCs can hardly be 
produced by a thermal instability. Suitable conditions for the 
formation of overdense regions are achieved if mechanical 
heating is provided to the system, thus leading to an almost 
homogeneous and quasi-static configuration of the back- 
ground flow. Our knowledge of the heating mechanism in the 
halo is rather poor; nevertheless Bregman (1988) pointed out 

that given the large scale height of Type I supernovae, they 
could represent an effective heating source in the halo. Unfor- 
tunately, it seems likely that their effect may disrupt the flow. 
On the other hand, the kinematic structure of the halo is far 
from simple and large systematic velocities are definitely 
present (Danly 1989, 1991) so that a quasi-static halo configu- 
ration does not seem to be an appropriate one. 

Hence, one is led to consider different answers to the 
still unresolved question of the origin of the HVCs. Several 
interpretations of the available data are possible, mostly 
because the distance to the clouds cannot be derived easily 
from Hi 21 cm observations. As an example, Bajaja et al. 
(1989) report evidence of small clouds with negative velocities 
about 160 km s_1 in the direction of the Galactic center, to 
which they refer to as very distant objects falling into the 
Galaxy. The above result is consistent with the explanation 
that at least some clouds are intergalactic material which is 
accreted by the Galaxy, or remnants of the protogalaxy col- 
lapse. Also, H i fragments with ballistic motions may be 
created at low latitudes by several processes. Franco et al. 
(1991) suggest that diffuse clouds may be raised at high Galac- 
tic latitudes by the “ photolevitation ” effect in which the clouds 
are driven into a soft Galactic fountain. Furthermore, the frag- 
mentation of the walls of the chimney may produce dense 
blobs of neutral material which fall at high velocities on the 
disk (Lockman 1991). Given the many possible scenarios, a 
realistic picture of the nature of HVCs needs more theoretical 
work and observational input; however, we feel that a non- 
unique explanation may represent more suitably the com- 
plexity of the problem. 

It is a pleasure to thank the referee D. P. Cox for useful 
remarks and stimulating comments. We thank M. Murphy for 
a careful reading of the manuscript. 

APPENDIX 

In order to solve the differential system equations (2.6)-(2.8) numerically with a finite difference scheme, it is necessary to put it in 
the form of two coupled second-order differential equations. Here we give the expressions of the reduced equations in terms of the 
following coefficients Ah Bh : 

— v0 , (Al) 

A-2 ~ Po » (A2) 

A3 = ico + F^o + v'0 , (A3) 

A4 = Tp0 + p'o ; (A4) 

Bi = T0, (A5) 

B2 = PoV0, (A6) 

B3 = Po, (A7) 

B4 = v0 v'q + ~ pz + T'o , (A7) 

B5 = icop0 + Po , (A8) 

B6 = Po ; (A9) 

Ci = - — n'2, (a io) 
^cd 
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c2 = v0p0 - 5 — Tll2T0 , Tcd 

C3 = icopo + v0p'0- yv0p'0 +fpl r¿_1 - Ty2(T0f + | . 

^4 = Po To + T0 p0 — yT0 Pq 9 

— VqTq — yv0 T0 , 

C6 = ï(yT0 - iycoT0 + i;0 T'0 + 2p0 T
f

0 . 

Furthermore we define the following quantities <7,- which are combinations of the previous coefficients: 

g = A2 B5 — B2 A4 , 

g1 = A2 B5 + A2 B5 — B2 A4 B2 A^g , 

where the prime has the usual meaning of a spatial derivative. 
We finally obtain 

042 B2)T" - (g1 A2 B3 - Af
2 B3 - A2 B'3 — A2B6 — A4 B3)T - K A2 B6 - A'2 B6 - A2 B'6 - A4 B6)T + (A2 B1 - B2 AJp" 

- ßi(^2 ßi - B2 A,) - (A’2 B, + A2 B\ -B’2Al-B2 A’2) - (A2 B4-B2A3) + aj±-^ (A2 B, - B^^p' 

(All) 

(A 12) 

(A13) 

(A14) 

(A 15) 

(A16) 

(A 17) 

171(^2 B4 — B2 A3) — (A2 B4 + A2B4 — B2 A3 — B2 A3) + a —^ (A2 B4 — B2 A3) 

C1T" + (C2--^A2B3)Ti + IC3-^A2B6 )t + :5-^(a2b1-b2a 
c 

(a2 b4 — B2 A3) 

ijp = 0 ; 

i]p = o. 

; (A18) 

(A19) 
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