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ABSTRACT 
A complete formalism, valid through second order in differential rotation, is developed and applied to cal- 

culate the frequencies of stellar oscillations. We improved the derivation and generalized the asymptotic for- 
mulae for g-mode splittings. 

In application to solar oscillations, we find that the second-order effects are dominated by distortion for 
/ < 500. Further, these effects are sufficiently large that they must be accounted for in any effort to seismically 
determine the Sun’s internal magnetic field. In the solar oscillation spectrum, accidental degeneracies happen 
but cannot lead to large frequency shifts. For evolved ô Scuti stars, calculated spectra are dense, and, under 
the perturbing effect of rotation, members of neighboring multiplets may overlap. The seismic potential of 
modes of mixed p-mode and g-mode character is emphasized for these stars. 
Subject headings: stars: oscillations — stars: rotation — Sun: oscillations 

1. INTRODUCTION 

Helio- and asteroseismology provide us the opportunity to learn about the internal rotation and magnetism of the Sun and some 
stars. Such knowledge is critical in efforts to understand solar and stellar activity cycles. Further, constraints on the angular 
momentum evolution in the Sun and stars are important for understanding the role of mixing in stellár interiors. 

Rotation and magnetism induce a fine structure in the oscillation spectrum of a star. Many fine-structure multiplets have been 
observed in the Sun and used to extract information about solar internal rotation and magnetism. In stars, fine structures have been 
observed, although more limited in scope. In the case of white dwarfs, oscillation data have been used to establish that these objects 
are slow rotators, McGraw & Robinson (1975), McGraw (1977), and Chlebowski (1978). Fine structure has also been observed in 
ô Scuti and ß Cephei stars. 

In stellar applications, the studies of the effect of rotation on the fine structure have been confined to rigid rotation (Saio 1981). 
Helioseismic applications include r- and ^-dependences but only for the linear effect of rotation. From helioseismic studies, we have 
learned that surface-like differential rotation persists through much of the Sun’s convection zone with an abrupt transition to solid 
body-like rotation beneath. In spite of the slow rotation of the Sun, the importance of the second-order effects of rotation, like 
distortion, was realized in the context of efforts to extract magnetic field information from the oscillation data (Dziembowski & 
Goode 1984; Gough & Taylor 1984; Dziembowski & Goode 1989, 1991; and Gough & Thompson 1990). Except for our recent 
works, the 0-dependence in the second order effect of rotation was ignored. However, none of these treatments of the second-order 
effect of rotation was complete. 

We develop here the formalism to describe the effect of rotation, through second order, on solar oscillations when the rotation law 
depends both on radius and latitude. This development also includes a treatment of accidental degeneracies, which, in principle, 
could contribute to the quadratic effect of rotation. For the Sun, the effect of distortion has been observed in oscillation data. 
However, most second-order effects are negligible at the current accuracy of oscillation data. For the stars, data on the fine structure 
will always be sparser; however, we may expect that some stars will rotate much faster than the Sun. With incomplete information, 
describing the departure from uniform spacing could well be critical in mode identification. In the future, we expect much richer 
stellar spectra data from space and ground-based observations like the Whole Earth Telescope as described in Wignet et al. (1991). 

In the next section, we develop the general problem of rotation including quadratic effects. In the subsequent sections, we perform 
explicitly the angular integrals, leaving the radial integrals to be performed numerically employing a stellar model. 

2. FORMALISM FOR PULSATIONS IN ROTATING STARS 

We sketch here the general perturbative formalism describing the oscillations of rotating stars. A detailed development may be 
found in a standard text, e.g. Unno et al. (1989, chap. 6). 

The basic variable describes the Lagrangian fluid displacement, £. This displacement can be defined by 

oc exp [i(œt + m(/>)] , (1) 

1 On leave from Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102. 
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DIFFERENTIAL ROTATION 671 

where œ is the angular frequency of the oscillation and m is its azimuthal order. The basic equation for oscillations gives 

p[ —(co + mQ)2£ + 2i(co + mQ)Qez x £ + (£ • VQ2)r sin 6es~] + = 0 , (2) 

where p and Q are the density and rotation rate and ez and es are the standardly defined unit vectors in cylindrical coordinates. The 
operator L is given by 

LÇ = \p' + p'(VO) + Q2res) + pVO)' , (3) 

where pf and O' are the pressure and gravitational potential and the prime represents an Eulerian perturbation of a dynamical 
variable. The perturbed quantities in equation (2) are given in terms of £ by 

p'= -V-(pÇ) (4) 
and 

p’ = -Pr(\ + (5) 

where F is the adiabatic exponent and A is 

^4 = p; V In p — V In p . (6) 

The perturbation of the gravitational potential is described by 

V20' = 4nGp' . (7) 

Assuming that the rotation rate is slow (Q co), we perturb about the mean radial state of the star and collect terms by their order 
in Q. Our approach here is a generalization of that of Saio (1981) who considered only the case of uniform rotation. In addition, the 
general formalism has been presented, but not developed, by Gough & Thompson (1990). Perturbing equation (2) and collecting 
terms by their order, we have for the unperturbed term 

— Po £o + £o = 0 • (8) 

The first-order term is 
— \2œ0{œ1 + K)Ç0 + <x>q £i]po + ¿o == 0 , (9) 

and the second-order term is 

[(- 2co0 (W2 - ©f - 2©!^ - 2mQ.K + r sin 0es • Vi2)p0 - ©o p2 + ¿ilÉo ~ 2©0(û>i + K)Po £1 - Po £2 + ¿o £2 = 0 > (10) 

where 

K = mQ — iQez x . (11) 

The subscripts 1 and 2 indicate the order of the perturbation. The unperturbed fluid displacement satisfies 

^taSo,i,pd3x = (l;a\Çb> = ôa'b, (12) 

where a and b are a shorthand for n, /, and m. The quantities n, /, and m are the radial order, angular degree, and azimuthal order of 
the oscillation. The perturbed eigenfunctions are required to satisfy 

<Sol£i> = <£ol£2> = 0. (13) 

Using equation (9), we obtain an expression for the first-order change in the frequency, coi, 

C01= -<£o|tf|?o>. (14) 
In a similar way from equation (10), we obtain the second-order correction co2. We choose to separate co2 into several component 
parts, 

2 
CO2 = ^ ^2 F ^2 F C02 + (l>2 • (15) 2co0 

The term resulting from centrifugal distortion is given by 

coD2=^-<M(L2-(o2oP2)\4o>- (16) 2a>0 

We ignore here the effect of perturbing the boundary; we will return to this point in § 5. In the third term we collect all terms arising 
from the explicit second-order effect of inertia, 

©2 = F- j*l-m2Q2 Idol2 + 2imii2S5 • (ez x £0) + (Ç0 • eMo * VQ2)r sin 0]pá3x . (17) 
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672 DZIEMBOWSKI & GOODE Vol. 394 

The last two terms in equation (15) arise from the first-order perturbation of the eigenfunction which is split into its toroidal and 
poloidal components, so that 

cdt2 = -<Ço\K\ÇÏ> (!8) 

and 

«!= -<Éoltf|ÉÎ>- (19) 

In the next three sections, we develop an explicit form for co^m) and (o2(m) in terms of the unperturbed eigenfunctions. 

3. FIRST-ORDER EFFECT OF ROTATION 

We consider a rotation law of the form 

Q = £2^ i + Z isV2 ¡i = cos 6 , (20) 

where Q is a measure of the mean rotation and the rjs are each a function of radius. Such a rotation law presumes that the rotation is 
symmetric about the star’s equator. If the rotation law had a part that were antisymmetric about the equator, then the anti- 
symmetric terms would have their lowest order effect on frequency in co2. We choose the law in equation (20) because we intend to 
focus much of our attention on the Sun where that law is directly consistent with the observed surface rotation and indirectly 
consistent with the internal rotation from helioseismology. 

The fluid displacement is quite generally defined by 

£ = r Z ly^JrWm <t>)er + znJJr)\H YT + Hm(r)er x VH . (21) 
n,l>m 

In zeroth order, each mode is characterized by a single n, /, and m, where modes are grouped in degenerate (n/)-multiplets and all tz’s 
are identically zero. Heretoforward, we shall drop the n, /, and m subscripts unless they are specifically required for clarity. With this 
in mind, the normalization condition is 

Í 
[y2 + Az2]pr4dr = 1 , A = /(/ + 1) 

In addition to y and z, we also use the eigenfunctions w and v defined by the pertubation of the gravitational potential, 

V<D' = giw(r)YTer + v(r)\H , 

(22) 

(23) 

where 

9 = 
GMr (24) 

3.1. Effect on Frequencies 
Inserting the rotation law of equation (20) and the eigenfunctions of equation (21) into equation (9) for the first-order change in 

frequency, coí9wq obtain 

= mñ|cL - 1 - Zo {Jus$s + sJ2,sL(2s - 1)4-! - (25 + 3)4]}jj, (25) Û), 

where the Ledoux constant, CT, is 

=i 
CL = (2yz + z2)pr4dr , 

and where the remaining radial integrals are given by 

= J »1. ;(y
2 + Az2 — 2yz — z2)pr4dr 

(26) 

(27) 

and 

72,s = Jnsz
2pr4dr . (28) 

For high-frequency p-modes, such as 5 minute solar oscillations, we have that CL 1 and J2 s > s. The angular integrals are 
given by 

4 = J/z2sl ypi24i# . (29) 

They are conveniently evaluated by a recursive relation (Dziembowski & Goode 1989), which makes explicit the polynomial 
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dependence on m2, whereby 

and 
2s- 1 

4A + 1 — 4s2 

^-,=0, £0 = 1 

{Js_1[-2m2 + 2A - (2s - l)2] + ^S_2(2s - 3)(s - 1)} . 

(30) 

(31) 

3.2. First-Order Perturbation of the Eigenfunction 
The toroidal component can be expressed in terms of y and z by taking the radial curl of equation (9). First we get 

\cûq\ X T = iQV x (ez x £0) - VQ x (m<?0 - iez x £0) 

With the use of equation (21) and well-known relations, 

/¿it = V7i77rr+1 + V/^r-1 

and 

e-ÿ- = k/7^rr+i - (/ + i)Æ YT-!, sin 

where= (l2 — m2)/(4l2 — 1). We get 

ti+j = 
2ifi 

co0(i+m+j + i) j 

(32) 

(33) 

(34) 

(35) 

where 

rj = SoAs/Jid - 1)\J + (I + l)z] - + 2)(y - lz)} 

+ z nXsfJi^ - 1 - 2s)^'Sjl-i,l+J[y + (/ + l)z] - s/J^TáI + 2 + 2s)J^s l + 1j+j{y - lz) 
s>k 

+ 2s(>/ + * s-l,l+l,l + j i + ~™2z)} , k < S , j = ±(2k + 1) 

and 

^-|/ g
2sYT Yfmdgd(¡> . 

(36) 

(37) 

Equation (33) can be used to express this integral in terms of a polynomial in m2. 
There are two ways to calculate the perturbed part of the poloidal mode eigenvector. One consists of expanding it in terms of 

unperturbed eigenvectors. Inserting this expansion into equation (9), one gets in a standard way, 

cP   V"» ^0,n,l(^0 1 ^1 z 
— lu 2 2 » 

(ñ,l)í(n,l) a)0,n,l œ0,fi,ï 

where 

and 

I £o,m> = ß j* j-O'ÿ + ÿz + zz) + Z -yz-yz + A + ^—- zsj + ^Sii,izz jpr4dr , 

s,l,l : — 1,1,1 — ^s,l,l(2S + 3)] . 

(38) 

(39) 

(40) 

The disadvantage with this method is the infinite sum. The convergence properties of the expansion are not generally clear. 
Furthermore, in a dense spectrum, like those for high-/ p-modes or acoustic gravity modes in evolved stars, the denominator may be 
small. An alternative approach is to solve equation (9) directly. Here we follow Hansen, Cox, & Carroll (1978) and Saio (1981) in 
deriving equations for the radial eigenfunctions corresponding to but generalizing to include differential rotation. This gener- 
alization results in having to consider Ç? not only being proportional to a single TJ", but also depending on Tí1 ±2j for integer j. We 
first take the horizontal divergence of equation (9), 

L0$A 2m 
co 

ÔQ 
= — <Q[(A - l)z - y] + —■ ( cot QY™ — I + —- AzY\ 

d6 
dY?\ co1 

d0 m 

and then the radial component of equation (9), 

{L^-colS,) = 2mco0 r + ojy — QzJ Y¡" . 

(41) 

(42) 
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We write the poloidal part in the form 

si=: 

DZIEMBOWSKI & GOODE 

2mÙ J'=+s 

CD X \f^~} Cí/r) *7+ 2 j + Zj(r)\H YT+ 2j] • 
'0 j=-S 

The factor was introduced for convenience in the polynomial expansion. For the lowest order, we have 

— 1 , ±1 = <fl±l<fl+l±l ’ ^/±2 = J^±l./z±3¿/z+l±3 5 etc . 

Using equation (43) in equations (41) and (42) and equations (3)-(7) corresponding to we obtain 

f^p + (3- Vg)ÿj + (Vg Co2 - Aßj - VgVj = qß - Ajz) - Sjz - ój¡0 d.Az 
dr 

and 

dzj 
dr VCcr 

A „ 
+ ( 7^2 - 1+ (2 - A)zj - — = qß -z) + 2(5j 0 5’1 y , 

where Vj is the eigenfunction corresponding to the first-order perturbation of the radial eigenfunctions of the potential and where 

and 

,Ti = 1+;¿ñ 

Âj = A + I + j(2j + 1) — 1 . 

The Qj and Sj terms arise from the angular intervals and are given by 

1 
<lj = X Vs ^s,U + 2j 

and 

s s,l,l +2j > 

Vol. 394 

(43) 

(44) 

(45) 

(46) 

; 

(47) 

(48) 

(49) 

(50) 

where the qj and s, are polynomials in m2 and so are the perturbed eigenfunctions ÿj, etc. In particular, for the three-term rotation 
law typically used to describe the Sun’s internal rotation (S = 2 in eq. [20]), we have 

(51) 

and 

and 

<Zo — S > ?±i — 4" ■^1,112) > 3±2 tfz 

s0 = »7i(l - 5^i) + - 7^2) 

s±1 = —5th + 2»/2(3 — 7J1_, — 7^2,,±2), s±2 = —14ri2 ■ 

Note that equation (31) implies that lkJ is an m2,[-polynomial. The unitless frequency is given by 

CUo a = 
ß4nG(p} 

and Vg and C are properties of the unperturbed model, where 

y — £[£ 
9 PT 

and 

C = 3 
r3M 

R3M. 

(52) 

(53) 

(54) 

(55) 

(56) 

Equations (45) and (46) have to be supplemented with two corresponding differential equations for Vj and Wj which will not be 
reproduced here because they are the same as they would be in the absence of rotation. We do not give explicit forms for the 
boundary conditions because they are easy to derive following the way in which they are derived for a nonrotating star. 

This problem must be solved numerically. This is the price for having a finite system. The case of; = 0, uniform rotation, has been 
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considered by Saio (1981). In this case a nontrivial homogeneous solution exists; therefore we must consider as an unknown 
instead of using its value from equation (47). The orthogonality condition is employed to ensure the uniqueness of the solution. For 
j # 0, we do not encounter any problem in solving the inhomogeneous problem unless there are accidental degeneracies. We treat 
the latter problem in the next section. Still another approach is useful in the case of dense spectra such as one encounters in evolved 
Ö Scuti stars ; see § 6. 

3.3. Accidental Degeneracies 
Both formulations for the poloidal mode given in the previous section presume no degeneracy in frequency between the mode of 

interest and modes differing in degree by 2, 4,... 2S. ^-dependent rotation couples such modes within linear theory. The coupling 
would occur at higher order in Q for spherical rotation. We note that in real solar oscillation data, there are accidental degeneracies. 
We formally treat the problem of accidental degeneracies assuming there are two nearly degenerate modes, a and b. Their frequency 
difference is 

Aco = co0fb - co0ta , (57) 

where Aco is a small quantity of order Q and the true mode § is a linear combination of a and b, 

Ç = BaÇ0,a + BbÇ0fb. (58) 

We determine the constant of proportionality by solving the equations arising after inserting Ç into equation (8) which is extended to 
include the — 2KÇ0 term of equation (9), 

(co2 - 2wœl a - œlJBa - 2œœ1>aib Bb = 0 
and 

where we define 

We denote the perturbed frequency by 

-lœco! a bBa + (ft)2 - 20)0)! ,, - (oZ'b)Bh = 0 , 

® = ®0,a + » 

(59) 

(60) 

(61) 

(62) 

where here the tilde serves as a reminder that in degenerate perturbation theory the general result includes terms beyond first order. 
We obtain for the frequency shift 

œ 
co< = ■ l,a,a + + Aft) + \/(ft)1)a,fl ~ (»i.i,.!, ~ Aü>)2 + 4ft^ (63) 

We remark that in the far-resonance limit, Act; | œl a>a — colfbtb \, the coupling term contributes only to the second-order frequency 
correction, specifically to the part due to the poloidal eigenvector perturbation, 

a)2,a = I. = 2,b Aco 

4. ROTATIONAL PERTURBATION OF EQUILIBRIUM 

The rotation law in equation (20) implies that Q2 may be written as 

Q2 = Q2 1 + ÏUr)^], 
j=0 J 

(64) 

(65) 

where there is an obvious relation between fjs and rjs. The centrifugal force is given by 

Q2r sin 6es = — V€>c + Fer, (66) 

where we have arbitrarily separated it into a part arising from a potential and a nonpotential part. The potential part is determined, 
up to a 0-independent function/(r), where 

and the nonpotential part is given by 

where 

^ = T” \_ß2 + /|2i] ’ 

F = rÙz ^djß
2’ +1+^+^, 

j ~ J — 1 - r dt//-! 
dj — fjj— : ^Ij-i+Tr. j J 1 2) dr 

(67) 

(68) 

(69) 
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As usual we use a Legendre expansion, and therefore, we need to change our expansion in ¡¿s to one in P’s, whereby 

^2J = X Tj,k P2k(n) 

and 

_22*(4fc+lX; + fc)!(2/)! 
lk (2/ + 2k + 1)!(j — k)\ ’ 

j>k , and 0 otherwise . 

We choose/(r) so that our expansion of the potential begins with P2 rather than P0, 

í>c = r2Ù2 X ck P2k(ß). 
it=l 

Then the force, P, is given by 

= rñ2|^ 1 + + Z Tj,odj + Z bk
p2k(f*) 

(70) 

(71) 

(72) 

(73) 

We ignore the first three terms in equation (73). This does not have any effect on the multiplet structure. Rather, it causes an overall 
frequency shift of the multiplet. We remark that a purely spherical perturbation must be considered in conjunction with the 
complete set of stellar structure equations (Gough & Thompson 1990). 

The expansion coefficients ck and bk are given by 

— -, <5fc,o + Z T/,* "9- ô j>k AJ 

bk=l Tj^dj . 
j>k 

The Legendre expansion of the gravitational potential is written in the form 

^>2 = Z ®2,kP2k • k=l 
From the condition for mechanical equilibrium, we obtain the corresponding expansion coefficients for pressure and density, 

P2,k = -Po^Vufc 

and 

rÛ2 

P2,k — 
( ^0 ^ A —Mfc + pobfc 1 

where 

<D 
Uk = -K 

2,k 
QV 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

These equations completely specify the distortion of the stellar structure to the extent it is needed in the equation for stellar 
oscillation. Distortion of the temperature profile is not specifically needed, but we do need the perturbation of the adiabatic 
exponent T1. Fortunately, this perturbation may be significant only in the outer layers. In these chemically homogeneous layers, the 
perturbation of F! may be expressed in terms of p2,fc and p2Jt alone. 

We could have chosen a distorted geometry such that all wfc = 0 eliminating the term in equation (78) involving the derivative of 
the density which is relatively large near the surface. However, we choose to work in spherical geometry since the results are the 
same as for the distorted geometry and the equations are easier to handle. 

Poisson’s equation for the perturbed potential becomes 

A. (r2 d®2,k\ 
dr\ dr J 

where 

Our boundary conditions for the potential are 

and 

2k(2k + l)02(k = r2Q2U\ 

4nr3p 

( d In p0 
+ b¡ 

U = - 

O 2,k oc r ►0 

0> 2,Jk oc r — (2k+ 1) R. 
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5. THE SECOND-ORDER EFFECT OF ROTATION 

We evaluate co% from equation (16) using L2 obtained from perturbing equation (3) in which we replace p, p, and </> by their 
perturbed expansions given in equations (76)-(79), The eigenfunctions are given in equations (21) and (23) and used in the integral 
for cof. With this, we perform the angular integrals and some manipulations to obtain 

Ù2 

co0 k=1 fit 

dlnpT d In F 
~7\ Uk + ' alnr *] + [-; d\np\ 

-2(4 + Ca2 -U)- z2Ca2Ak + yz(A + Ak) + 2yw + 2züÄJ 

d\np 
d\nr + bk -2uk-r 

duy 
dr 

yzuk K — 2Àzuk >pr4 dr , (84) 

where 

and 

and 

^ = vg(y — c<r2z +v) 

Ak = A — K 

K = k(2k -h 1). 

The angular integrals, Mk, are related to the £>j through the following relation 

'Yj PkJ^j > 

(85) 

(86) 

(87) 

(88) 

where the PkJ are coefficients in the Legendre expansion 

P2k(ß) = Í Pk,sß2S ■ 
s = 0 

(89) 

An alternative expression for cof can be obtained from equation (84) by a series of integrations by parts in which the oscillation 
equation and equation (80) are used and the contributions from the boundary terms are ignored. These terms are proportional to p 
and p; for trapped modes, they can be made arbitrarily small by moving the outer boundary far away. The same applies to the 
boundary condition perturbation mentioned in the previous section. For further details, see the appendix in Gough & Thompson 
(1990). This alternative expression is 

= I' [Cff2{(2y2 + Kzl)[r 5 + (4- + 2z2Am* + ^ + 2ku*)} 

+ 2y(^ + y J^)Uuk ~ yw\^r ^ ~ 3t/)] ~ + 2A«t) - 2zwAuk 

- ^y2(C<r2 + 3-U) + z2Ca2Kk + yzx - y - 2yw - - y2r ^jjpr4 dr , (90) 

where 

¥* = r ^ (4 - 2t/) + ukl(4 - 2{7)(4 - [/) - 4 + 2k] + r2 + 6r ^ + (6 - 2ic)ck + Ubk . (91) 

This expression for the frequency change is what one would obtain working directly in a distorted geometry. Equation (90) reduces 
to that of Saio (1981) in the limit of rigid rotation (tjs = 0). 

The frequency perturbation due to explicit second-order inertial effects follows from inserting expressions for Q from equation 
(20) and equation (21) for £0 into equation (17), 

coi = |L ^2|2Cl - 1 - E I fíAíy2 - 4yz + (A - 2)z2]pr4dr| + Z J |^s(z
2I>s + yzEs) + r ^ (y2Gs + yzifs)jpr4drj , 

(92) 
where 

Ds = (2s -IXm2- s)Æs_ ! + [m2(2s + 7) + (2s + l)2 - A]üs + [A - (s + l)(2s + 3)]JS+1 (93) 
and 

Es = -(2s- 1)4-! + (4s + 2)4 - (2s + 3)4+1 (94) 

and 
4 = 4- 4+1 (95) 
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and 

(%) 

The dependence on m, except where explicit, comes only through the J’s like in the expressions for cof. 
Making use of equation (9) and 

<Sil^> = 0 

in equation (18) to obtain | ^) and then explicitly using equations (21) and (35), we obtain 

m 2D2 k=s+1 1 Y   ^0 ✓ pT i bT\       
0)2 ~~2 ~ co0 khs (l + 2k+ IX/ + 2k) Í 

îlk-i P1"4 dr . 

(97) 

(98) 

Here the dependence on m occurs through t2, and we may verify with the use of equations (33), (36), and (37) that it is a polynomial 
in m2. 

We determine from equation (43) and use it to obtain an explicit expression for cof, 

p CÜ2 = 
2m2Cl2 l=+s 

ÿ0z + yz0 + z0z- Y^jLqjiÿjy + hjZjZ - Zjy - ÿjz) + SjZjz] \pr*dr . (99) 

Let us recall that the perturbed eigenfunctions, like y, are proportional to i>’s, and the ¿>//s are products of the ^/’s. Thus, the œ? is a 
polynomial in m2. 

In sum, the total second-order effect of rotation is given by equation (15). The first term appearing on the right-hand side may be 
calculated from equation (25), the second from equation (84) or (90), and the third, fourth, and fifth from equations (92), (99), and 
(98), respectively. For any rotation law presented in the form of equation (20), any stellar model represented by certain radial 
functions, and eigenfunctions calculated from that model, the fine structure in any multiplet can be determined from equation (15). 
The second-order part of the fine structure is described as a polynomial in m2. 

6. 0-MODE ASYMPTOTICS 

Here we introduce 0-mode asymptotics because they are relevant for white dwarfs and ö Scuti stars and the resultant formulae are 
exceptionally simple for spherical rotation and model-independent for rigid rotation. In the formulation of the 0-mode asymptotics, 
we include the Coriolis term in zeroth order. Such a development can also be done for p-modes, but it does not lead to model- 
independent formulae. For simplicity, we limit ourselves to the case of ^-independent rotation. The treatment, however, may be 
easily generalized to the rotation law of equation (20) in § 3. 

One approach to the 0-mode asymptotics would be to use equations (45) and (46) with j = 0 and then let y0 + T T» etc > and 
drop the ax-terms because they are now already included in a. However, it is advantageous in the asymptotics to include the effect of 
trivial modes because the resulting formulae become valid through third order in Q. We shall see that this validity is also a 
consequence of the fact that distortion does not contribute. We start with equation (32) which expresses a toroidal component in 
terms of poloidal ones. Then, taking the radial component and horizontal divergence of equation (2), we see that the equations for 
eigenfunctions are separable in terms of a single Y? through third order in Q. Ignoring terms of order Q4 and higher, we thus get 

ry' = (vg-3 + ^jy + (j^-V^s+Vgv (100) 

and 

rs' = (Cä2h3 — Ä)y — + X — f/ — ~j~js ~ Av . (101) 

We used here the radial eigenfunction, s oc (r/g)[(p'/p) + O'], This eigenfunction is related to y and z by 

s = Ca2^zh2 — (102) 

where 

/«i = jc - /¿j + (/ + i)yi, (103) 

h2 
l 
/+ 1 

s / + 1 
¿i —7- ■■ (104) 

h3 = l-ô,-y, A. 
h2A ’ 

2mQ 
x=— 

(105) 

(106) 
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co = co + mil, 

co 

v/47tG<p> ’ 

. _ 4P2 (/ + 2)2Jl+l 

Ô,2 a + 2)(/+l)-z’ 

4a2 q-i)2j, 
r' ©2 /(/ - i) - * 

(107) 

(108) 

(109) 

(110) 

For uniform rotation, co may be regarded as the eigenvalue and it is equal to the frequency of oscillation in the corotating system. 
We remark that öl and yt would be zero in the absence of trivial modes. 

We consider the g-mode limit of co much less than the Brunt-Väisälä and Lamb frequencies while still being much larger than Q. 
With this, we are able to reduce our equations to a single, second-order equation in normal form, 

<P<1 g 
dr2 + r2 + 0(1) = 0, 

where the transformed variable, q, is related to y by 

The Brunt-Väisälä frequency, V, is given by 

y = g 

r3^p' 

(111) 

(112) 

N2 = 4tcG<p) - . (113) 

Equation (111) implies (see, e.g., Unno et al. 1989) the following implicit relation: 

dr 

Jhi r 

where and r2 are the boundaries of the g-mode propagation region and the phase constant 0Lg would be obtained from being 
explicit about 0(1) in equation (111). Equation (113) for uniform rotation in the inertial system implies that 

(n + ct )n ; 
Jn U Jh 

(114) 

n + a9 Jri r 

If we ignore the rotational pertubation of the boundary conditions and of a, we obtain 

cöjhi = co0 ■ 
Expanding the square root in equation (116), we determine that 

/ 1\ m2Q2 4A(2A - 3) - 9 
co = co0 — mill 1 — — 1 — ^ . . —— 

\ A/ coq 2A2(4A — 3) 

(115) 

(116) 

(117) 

which is equivalent to the formula obtained by Chlebowski (1978). However, the derivation here is more satisfactory because 
Chlebowski, without justification, ignored the contribution of cof in obtaining his expression. 

Applying 0-mode asymptotics to equation (90) for distortion, we find that 

cc>2 ' 
m2Q2 

(t2C . 
CO 

(118) 

where C means the average value of C for the 0-mode propagation zone. This contribution is higher order in the 0-mode 
asymptotics than the corresponding term in il2 in equation (117). 

Even though equation (117) is appealing, it may be difficult in practice for second order in Q. In particular, for / = 1 the 
second-order coefficient is only 0.025 so that higher order terms easily come into play. This was illustrated by the realistic 
calculations for white dwarfs made by Brassard, Wesemael, & Fontaine (1989)-see their Table 1. 

We note that equation (117) remains valid even if 

Q > J,0 ~ œn,l,0 (119) 

This fact is contrary to what one of us wrote in the context of <5 Scuti stars (Dziembowski 1990). In particular, in model calculations 
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of these stars, we may have that Q > con_itlf0 - œnX0 while œn lt > Q; even under these two conditions, equation (117) holds 
implying that a calculated spectral multiplet would be nearly uniformly spaced while overlapping with its nearly uniformly spaced 
neighboring multiplets. 

7. THE SECOND-ORDER EFFECT OF ROTATION IN THE SUN 

The observational data describing the fine structure in (n/)-multiplets is usually defined by 

vn,l,m 
" / ra \ ” / ra 

Vn,J,0 = ^ X ai,n,lPi\^ J ~ (120) 

where vM>m is the frequency of the oscillation, Pi is a Legendre polynomial, and the aitnjS are the splitting coefficients. The 
symmetric splitting coefficients are sometimes defined as (xUnJs because they tend to be dominated by near-surface effects. V is 5 or 6 
and L = / or A1/2 depending on the choice of the observer. In the existing helioseismic data, the a^jS are usually presented in 
nanohertz (nHz) with any effect on them of less than 1 nHz being negligible (not detectable). The antisymmetric part of the data 
arises from the linear effect of rotation discussed in § 3.1. The symmetric part of the data must contain a contribution from the 
second-order effect of rotation which was discussed in § 5. The fact that this expansion for the fine structure works tells us that to the 
limit we know it, the Sun rotates on a single axis and any perturbation which is visible in the data has the rotation axis as its axis of 
symmetry. 

Using the antisymmetric part of the 1986 data of Libbrecht & Woodard (1990 and private communication) and inverting it with 
the method used by Dziembowski, Goode, & Libbrecht (1989), we calculated the solar rotation law shown in Figure 1. The ordinate 
parameters are defined in equation (20). Each component, r¡s(r), is assumed to be constant beneath 0.31 of the solar radius reflecting 
our lack of seismic information about the rotation at those depths. We use the rotation law of Figure 1 in all subsequent calculations 
calling for the Sun’s internal differential rotation. 

The theory for the calculation of the second-order effect of rotation was developed in § 5. There all terms in<o2 were found to be 
polynomials in m2. It is straightforward to convert them to a series in P2k using the 7} fc-coefFicients defined in equation (71). 

To obtain a crude sense of the scale of the second-order effect of rotation, we note that the coefficient of equation (90) or (92) is 
Ù2/œ0 ~ 0.1 nHz. This small number is further reduced when we realize we need to divide it by / to compare it to the observed 
arcoefficients. However, a>% contains the large factor a2 (order 100-1000 for the observed mode frequencies) while col/co0, o^, and 
Co? have the factor m2 which could make this term measurable for high-/. The co2 term is the only one in equation (15) which does not 
contain terms in a2 or m2 and is everywhere negligible. 

Gough & Thompson (1990) calculated the second-order effect of rotation assuming a specific spherical rotation law for the Sun, 
and they found that the effect of distortion dominated. Also, they wondered whether the aforementioned terms containing an m2 

factor could be important for higher l values than they considered. 

7.1. Distortion 

For high-frequency p-modes that are the 5-minute solar oscillations, equation (90) may be simplified. We may ignore quantities 
like yz and z2 compared to y2, unless they are multiplied by A or Vg Co2 = œ2r2/c2 because for low /-values, the motion is nearly 
radial, and for large /-values, we have A > 1. Further, we ignore the effect of perturbing the gravitational potential (v and w = 0). We 

Fractional Radius Fractional Radius 

Í3 
C3 

Fig. la Fig. lb 
Fig. 1.—The Sun’s internal rotation law calculated from the data of Libbrecht & Woodard (1990, and private communication) and employing the method from 

Dziembowski et al. (1989). The rotation law is expressed in terms of eq. (20). 
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then obtain 
h) a 
CM 
O'! 

cl>2 : 5! 
co0 14 

rà7 + (4 U)uk 2 
1 dbu 

2Ca2 dr 
,. , d2ck 1 , ô In F 

+ zA.l + yz, + ^ bk (Pr dr . (121) 

We note that the integral is of the order of unity. In addition to the aforementioned leading terms, we retain terms involving the 
second derivative of r¡k for reasons that will become clear in § 7.2. Most of the contribution to co% comes from the outer layers where 
one may additionally assume that C æ 3(r/R)3, uk ä ck9 and 1/ æ 0. 

In Figure 2 we show cc2 and a4 as a function of / arising from the effect of distortion as given in equation (90). In these calculations, 
we used the rotation law in Figure 1. The / ranges shown are between 1 and 50 and between 50 and 500. Not surprisingly, distortion 
causes a much larger quadrupole than hexadecupole distortion. Higher order terms, like a6’s, are negligible like the a4’s. The 
apparent discontinuities in Figure 2 arise because we include no mode below 1.5 mHz and no mode above 4.5 mHz. The a’s are 
fairly independent of degree with a slight tendency to increase with /. The tendency arises because the higher l modes are more 
confined to the outer layers where the effect is larger. Similarly, the slight departure from an almost linear increase of the a’s with a 
occurs because the higher frequency modes are also more confined to the surface region. 

£ 
o 

-to 

0 -to 

1 

£ 

-40 

- -30 

▼ Last Mode Beneath 4.5mHz 

v Average Over 1.5-4.5m.Hz 
• First Mode Above 1.5mHz 

J I I I I  

00 200 ¿ 300 400 500 

Fig. 2b 
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-2 
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I\D 
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10 

b 
00 C-K 
O 
e-K 
O 

I 
I 

fa 
00 e-K 
O 
<r-K 
O 

Fig. 2 — 
respectively. 

Fig. 2c 
The calculated effect of distortion on (a) ot2 for l from 1 to 50 and {b) l from 50 to 500 for every tenth l (c) and (d) a4 for the same ranges as in (a) and (b). 
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1.2. Effect of Steep Gradient in Rotation in the Outer Layers 

We cannot completely trust the rjs(r) in the outermost layers where the disproportionate part of the contribution to the 
second-order effect of rotation arises. That is, the available helioseismic data do not contain sufficiently high /-values. This implies 
that a steep change in rotation there could have a significant effect (Goode & Dziembowski 1983). We note that Libbrecht & 
Woodard (1990) report large symmetric a-coefficients for the summer of 1988. Could large coefficients arise from a sharp change in 
rotation rate near the surface? We check this by considering a6 so that we need only consider i/2 = 2rç2> and we writeQ2 = Qr¡2. We 
use here the expression for co2 given in equation (121) to evaluate 

d(l - d) for rphot — D <r < rphot and 0 outside this range , (122) 

where d = (rphot — r)/D. Then we express uk « ck and bk in terms of i/ employing equations (74) and (75). Finally, equations (31) and 
(88) are used to evaluate lk9 and equation (74) is used to convert m6 to P^(m/L). We then have 

a6 —15R Q 
AQ ~ 1386 D (o0 C„ [*' - - ‘‘kc’2 ^l,H " - H2 - Co2 pr* dr . (123) 

We see from Figure 3 that an abrupt change in the rate near the surface makes a negligible contribution to a6 even generously 
assuming that AQ2 is 100 nHz which is above the maximum the splitting data will allow. This miniscule result is a bit of a surprise 
because the order-of-magnitude estimate of the coefficient on the right-hand side of equation (123) is unity, rather than the actual 
value of 15/1386. 

7.3. Inertia 
Equation (92) for a>2 contains the factor m2, and therefore one might anticipate that this term cbuld be large for high /-values. 

However, for the case of uniform rotation and high-frequency p-modes, there is a nearly exact cancellation in the calculation of co2 
between the first and third terms on the right-hand side of equation (15). This can be seen by inspecting equations (25) and (92). In 
this regard, we emphasize that CL ~ 10-2 to 10“ 3 for solar oscillations. The Sun exhibits a very roughly uniform rotation so we 
must consider together the aforementioned two terms in equation (15). Still, before calculation the degree of cancellation between 
the two terms is not clear. For the solar case, their sum is well approximated, to leading order, by 

œi + (124) 

where, for instance, 

<ñs> = j* ñsiy2 + Az2)d3x . (125) 

In Figure 4, the a2’s from »2 + (a>J/2ct)0) are plotted. The a;2’s used in that calculation follow from equation (92). The a2’s grow with 
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Fig. 3.—The calculated values of a6 through the 5 minute band following from a 100 nHz jump in Q2 spread over three ranges in depth 
Fig. 4.—The calculated effect of inertial terms, + (o>f/2cu0), from eqs. (92) and (25) shown as a2 vs. / 
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/, as could have been anticipated from equation (104), but, perhaps surprisingly, are still considerably smaller than expected from 
order-of-magnitude estimates. This is largely due to the cancellation between terms in the brackets of equation (124). The corre- 
sponding a4’s and a6’s behave very much like the a2’s. 

7.4. Poloidal Mode Effects and Accidental Degeneracies 
From examining equation (64), one may anticipate that cof is exceptionally large. Near-degeneracies occur in the spectrum of 

5-minute solar oscillations for the pairs (n, /) and (n — 1, / + 4) if n = / + 1 or / + 2. In Table 1, we list the higher /-value member of 
each pair present in the 1986 Big Bear data, Libbrecht & Woodard (1990 and private communication), which have an observed 
frequency difference of less than 1 mHz. All pairs, except the last one in the table, are of the first type (n = / + 1). 

The a-coefficients in the table were obtained numerically—using equation (64) and assuming the observed frequency difference, 
vz+4 — Vj. We quote only values of the a’s for the higher /-value of each pair. The other member of each pair has the opposite sign 
and is somewhat smaller in magnitude. From the table, we see that the observed frequency difference is always smaller than the 
calculated one. The far resonance limit of equation (64) is justified even for the closest resonance pair. It is clear from the table that 
the effect on the ak is not significant even in the case of the closest near resonance. 

We cannot exclude the possibility that in reality the near resonance is closer than implied by the table. With this in mind, we show 
in Figure 5 the frequency difference, Av, between the modes of azimuthal order m and 0 for / = 20 and n = 21. For this multiplet, the 
observed frequency difference between its centroid and the / = 24 partner is only —0.11 mHz—the smallest difference in the table. 
The frequency differences, Av and the B\ are those of equation (58). The calculations were performed for vz+4 — v* = 0 and —0.11 
mHz. To roughly compare Av with the a’s, we need to divide Av by the /-value. From this we see that even in the case of an exact 
resonance, the largest frequency shifts are about at our 1 nHz limit of observability. On the other hand, Figure 5 makes it clear that 
the mixing of modes is quite different depending on whether there is a near resonance or an exact resonance. In the long run, 
measuring this mixing would provide an interesting diagnostic. 

One might also expect a significant contribution to the even a’s from co2 for very large /-values. This is due not only to the 
aforementioned m2 factor, but also because con l — conj±2 and (onJ — can z±4 are decreasing with /. Woodard (1989) studied the 
observational consequences of the eigenfunction perturbation in such cases. He used the eigenfunction expansion given here in 
equation (38). In our calculation of cof, we used equation (99) and obtained the y, and Zj by solving equations (45) and (46). The 
result is that even for / = 500, the largest effect is for a4 and is less than 0.2 nHz. Thus, the effect is negligible. 

7.5. Comparison with Data 
Distortion causes the only detectable second-order effect of rotation in existing solar oscillation data. Further, only the 

a2-coefíicients are large enough to be detected. This signature is clearly visible as the only trend in the 1986 data of Libbrecht & 
Woodard taken at solar minimum. In Figure 6, we show the full second-order effect of rotation compared to the 1986 and 1988 Big 
Bear datasets. The nearly constant offsets between the 1986 and 1988 data sets are presumably due to magnetic field effects 
associated with activity (Libbrecht & Woodard 1990; Woodard et al. 1991). 

8. RESULTS FOR 3 SCUTI STARS 

In the interpretation of the spectra of 3 Scuti stars, the formula, 

7n2fi2 

co = (CL — l)mQ + Dl , (126) 
COo 

is commonly used to describe effects of rotation through second order. The CL- and DL-coefficients were calculated by Saio (1981) 
who employed a polytrope of index 3. This formula is valid for rigid rotation. We used equation (90), assuming rigid rotation, in our 
calculations of DL. We shall consider the validity of equation (126) for realistic models, examining the frequency range which may be 

TABLE 1 
Poloidal Mode Splitting Coefficients from Accidental 

Near Degeneracies in Frequency (nHz) 

Avnl Av., 

0.47. 
0.43. 
0.46. 
0.45. 
0.60. 
0.65. 
0.66. 
0.52. 
0.57. 
0.56. 
0.58. 
0.45. 
0.28. 

-0.11. 
-0.59. 

0.52 
0.91 
1.09 
1.22 
1.25 
1.24 
1.23 
1.22 
1.21 
1.18 
1.12 
1.09 
1.10 
1.09 

-0.96 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
24 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.02 
-0.03 

0.08 
0.02 

-0.00 
-0.00 
-0.00 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.02 
-0.03 

0.08 
0.01 

0.01 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.03 
0.03 
0.04 
0.06 

-0.16 
-0.03 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
4.

 .
67

0D
 

DZIEMBOWSKI & GOODE 684 

<1 

1 

<1 

- -0.3 

■0.2 

-0.1 

- 0.0 

0.1 

- d) Exact Resonance- 

TYTtT 

-20 -10 

_L 

0 

m 

to 

î\3 

to 

i\0 
O 

1 .2 

0.9 

0.6 

0.3 

0.0 

-0.3 

- -0.6 

- -0.9 

to 

i\0 

to 

ÎV) 
o 

10 20 

Fig. 5.—A comparison of mode mixing for the most nearly degenerate pair in Table 1. For the near resonance (a) the frequency change within the / = 20, 
multiplet as a function of m and (b) the amount of mixing of the / = 24 partner. Assuming an exact resonance, (c) and (d) correspond to (a) and (b), respectively. 

n = 21 

excited in ô Scuti stars. In Table 2, we compare the CL- and DL-coefficients from the polytrope with those from two realistic models. 
Our polytropic model coefficients, CL and DL, agree sufficiently well with those of Saio (1981). The solar models are for M = 2M0. 
The first of the two models is essentially ZAMS having Xc = 0.699 and log Teff = 3.965. Xc is the central stellar hydrogen 
abundance. We can see that the poly tropic values agree quite well with those from this model. The second model (Xc = 0.313 and 
log Teff = 3.925) is an evolved one from which we have two additional modes in the frequency range under consideration. These two 
modes have a very different character. The two modes are trapped in the vicinity of the convective core boundary, and their 
importance for stellar evolution theory has been recently discussed by Dziembowski & Pamyatnykh (1991). We note here that 
because they have such different fine-structure coefficients (see Table 2), the modes would be detectable through observed splittings. 

Most well-studied ô Scuti variables are more evolved stars which have exhausted their core hydrogen. In the models of such 
objects, the Brunt-Väisälä frequency has a large maximum close to the center which results in a dual character for all non-radial 
modes in the relevant frequency range. They propagate as high-order 0-modes in the deep interior, while remaining low-order 
p-modes in the outer layers. 

In Table 3, we give CL- and DL-coefficients for a chosen model, in a selected range of the spectrum which is close to that of the 
radial p2-mode (second overtone). For each mode, we also give the fraction of the total energy which belongs to the p-mode region. 
All these modes but one (a = 3.454) should be regarded as being predominantly p-modes. We can see that the CL-values for all these 
modes are close to the asymptotic ones for p-modes : CL = ^ for 1=1 and CL = ^ for 1 = 2. On the other hand, the Devalues are far 
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Fig. 6.—The solid boxes represent the a2’s following from binning the 1986 Big Bear data. The crosses represent their 1988 data. The solid line is the calculated 

a2, including all second-order effects, binned for each /-value. This latter binning is done by weighting each mode using the errors in the 1986 Big Bear modes. The 
solid line would not change if the 1988 modes were used instead. 

TABLE 2 
Fine Structure Splitting Coefficients for <5 Scuti Stars 

Mode DL Model 

Pi 
1.949 
2.087 
2.083 

0.030 
0.012 
0.015 

- 3.351 
-4.005 
- 3.906 

Polytrope 
Xc = 0.699 
Xr = 0.313 

P2 ■ 
2.680 
2.799 
2.833 

0.034 
0.012 
0.159 

- 7.720 
-8.647 
- 5.737 

Polytrope 
Xc = 0.699 
Xr = 0.313 

P3 ■ 

Pa. • 

3.411 
3.477 
3.478 

4.143 
4.148 
4.147 

0.034 
0.017 
0.010 

0.031 
0.021 
0.007 

13.489 
14.055 
14.235 

20.624 
- 20.737 
- 20.844 

Polytrope 
Xc = 0.699 
Xc = 0.313 

Polytrope 
Xc = 0.699 
Xc = 0.313 

r 1.651 
2 \ 2.053 

12.252 

0.253 
0.040 
0.054 

-0.319 
- 0.682 
- 0.772 

Polytrope 
Xc = 0.699 
X =0.313 

Pi 

Pi ■ 

r 2.255 
< 2.505 
12.699 

r 2.984 
< 3.076 
(-3.185 

0.154 
0.216 
0.060 

0.082 
0.119 
0.145 

- 1.082 
- 1.150 
- 1.319 

- 2.313 
-2.300 
- 2.331 

Polytrope 
Xc = 0.699 
Xc = 0.313 

Polytrope 
Xc = 0.699 
A\ = 0.313 

Pz • 
3.718 
3.738 
3.788 

0.054 
0.064 
0.096 

- 3.842 
- 3.856 
- 3.810 

Polytrope 
Xc = 0.699 
Xr = 0.313 

Pa ■ 

9c 
9c 

4.450 
4.413 
4.477 

2.651 
4.325 

0.040 
0.043 
0.090 

0.428 
0.139 

- 5.679 
- 5.564 
- 4.805 

- 2.827 
1.063 

Polytrope 
Xc = 0.699 
Xc = 0.313 

Xc = 0.313 
Xr = 0.313 
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TABLE 3 
CL and Dl for Modes near p3{l = 0) from Modes 

with = 0 and log Teff = 3.88 

/ (T CL DL / 

1   3.199 0.488 -0.110 0.958 
3.367 0.447 - 1.984 0.881 
3.454 0.092 - 10.834 0.205 
3.580 0.482 - 0.138 0.946 
3.802 0.495 0.055 0.967 

2   3.250 0.157 -0.424 0.888 
3.344 0.154 - 0.338 0.922 
3.442 0.143 - 0.428 0.902 
3.535 0.129 - 0.580 0.856 
3.629 0.138 - 0.545 0.862 
3.738 0.151 -0.593 0.865 

from the asymptotic values. This is related to the problem of small asymptotic values for / = 1 as discussed in § 6. The mode which is 
predominantly acoustic is trapped in the envelope and this mode is of special interest. Dziembowski & Królikowska (1990) 
speculated that such a trapped mode, among a sea of other unstable modes, may be preferentially excited to a visible level. For this 
trapped mode, CL- and DL-coefficients are very much like the one for modes of similar frequency in Table 2(1 = 1, p3). 

In a few ô Scuti-type objects, notably in 4 CVn (Breger et al. 1990) and O2 Tau (Breger et al. 1989), closely spaced peaks are found 
in the periodograms. The peaks have been interpreted as a manifestation of rotational splitting. Here we would like to point out 
problems one may encounter with this picture, considering that the objects are relatively rapidly rotating and evolved. In particular, 
an overlapping of multiplets may take place, and there is a significant departure from uniform spacing. These may lead to 
considerable confusion in mode identification. 

With this in mind, we calculated the complete spectra for /= 1 in a selected frequency range using the model of Table 3. The 
equatorial rotation velocity is 100 km s_1. The model parameters are not far from the ones describing O2 Tau. In this calculation, 
equations (100) and (101) were solved. These equatidns are accurate to Q3 except for the effect of distortion. The correction due to 
this effect was calculated separately and added in for each m-component of a multiplet using equation (90) for rigid rotation. The 
results are shown in Figure 7. The frequencies here are given as would be reported by an observer in an inertial system. The ordering 
of the modes in each multiplet is such that the leftmost one is the prograde mode. Significant departure from equal spacing occurs 
only in the trapped mode multiplet. This is a consequence of the effect of distortion being large only in that multiplet (see Table 3). 
Each member of this multiplet remains trapped, and the trapping spreads to the closest members of adjacent multiplets. In this 
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Fig. 7.—The surface amplitude in terms of the radial eigenfunction corresponding to the radial component at the surface vs. mode frequency. The modes shown 

are the / = 0 and / = 1 multiplets in the frequency range used in Table 3. Members of a multiplet are identified with the same symbol. The circle represents the / = 0 
mode, and the asterisks represent the members of the trapped multiplet. The assumed surface rotational velocity is 100 km s~ L In the calculation of)/slirf, we assume 
all modes have the same inertia, eq. (22). The amplitudes shown may be suggestive but should not be regarded as a prediction. However, the larger the ysurf value, the 
greater the trapping, and a larger value may reflect preferential excitation. 
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regard, the reader may be misled by the use of an inertial system in Figure 7. The transformation to the inertial frame reverses the 
mode ordering from that in the intrinsic frame. We emphasize that with the assumed velocity of rotation, there are significant 
departures from the splitting law of equation (126). 

Suppose that the amplitudes in Figure 7 are real and, say, modes exceeding 1 in amplitude are detectable. Then one might well 
interpret the spectrum as two rotationally split triplets. If we do not have observationally determined m and /, model calculations 
like the ones reported here are necessary for proper mode identification. 

Just as the 0c-mode in the model with xc = 0.313 was distinguishable from its p-mode neighbors on the basis of its splitting 
characteristics, here the trapped mode is distinguishable from its p-mode neighbors. This is important because it will allow us to test 
the hypothesis of preferential excitation of the trapped mode. 
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