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1. INTRODUCTION 
In recent years the study of mass-ratio distribution of stellar 

binary systems (Trimble 1990; Duquennoy & Mayor 1990, 
1991; Tout 1991) has been stimulated by the advent of new 
stellar speedometers (Griffin 1985; Mayor 1985; Latham 1985) 
which have yielded many new spectroscopic orbits. In particu- 
lar, the results of systematic radial-velocity searches for spec- 
troscopic binaries are now available for large preselected 
samples of stars (Latham et al. 1988; Duquennoy, Mayor & 
Halbwachs 1991). Using the new data, the long controversy 
oyer the mass-ratio distribution of short-period binaries (e g 
Abt & Levy 1976; Halbwachs 1987; Trimble 1990) can now be 
resolved. 

The mass-ratio distribution of short-period binaries pro- 
vides important information about the formation of these 
systems (e.g., Bodenheimer, Ruzmaikina, & Mathieu 1992) 
The frequency of binaries with extremely low mass-ratios 
Duquennoy & Mayor 1990,1991) is another aspect of particu- 

lar interest. It is related to the search for brown dwarfs as 
low-mass companions to nearby stars (Latham et al 1989- 
Marcy & Benitz 1989; Mazeh et al. 1990), a subject into which 
a great deal of effort has been endowed recently. 

The derivation of the mass-ratio distribution of a given 
sample of spectroscopic binaries is hampered by two well- 
known problems (Aitken 1935). First, the mass ratio of a spe- 
cffic system can be deduced only for double-line spectroscopic 
binaries. For the single-line binaries the mass ratio is 
unknown; only the mass function can be derived directly from 
the observations. For a binary system which consists of a 
primary with mass Mt and a secondary with mass M,, the 
mass function is 

/(M2) = Mi í sin3 i, (i) 

where q is the mass ratio ( = M2/M1) and i is the inclination of 
the binary orbit relative to our line of sight. Since the inclina- 
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tion is not known, the mass ratio cannot be derived, even when 
the primary mass can be estimated from its spectral type 

Second, observational limits affect the detected binary 
sample. For example, systems with small radial-velocity ampli- 
tude are not easily detected, so that binaries with a small mass 
ratio tend to be excluded from the observed sample. 

The problem of unknown inclinations was already 
addressed back in the 1920s (e.g., Aitken 1935), and since the 
1970s by many workers (see Halbwachs 1987, Tout 1989, and 
Trimble 1990 for reviews). They have used statistical 
approaches to derive the true mass-ratio distribution. This 
work suggests a new iterative statistical algorithm, which 
replaces each binary with an ensemble of virtual systems with 
nonrandom orientations. A preliminary version of this work 
was presented at the workshop of Binaries as Tracers of Stellar 
Formation held in Bettmeralp, Switzerland, in 1991 September 
(Mazeh & Goldberg 1992). 

In order to present the new algorithm, we first ignore the 
observational selection effects and use the new method to 
analyze idealized samples of binaries. Section 2 reviews pre- 
vious methods used to derive the mass-ratio distribution for 
such ideal samples and points out their disadvantages. Section 
3 discusses in detail the classical method of Campbell and 
Schlesinger (Aitken 1935). We present two examples, typical of 
the numerous simulations we have run, for which the old 
method fails to reconstruct the correct distribution. This work 
then points out the reasons for the failure of the original 
method. Sections 4 and 5 present the modified algorithm which 
successfully reveals the true mass-ratio distribution for any 
ideal sample. Section 6 presents a new procedure to correct for 
the observational selection effect associated with the inability 
to detect spectroscopic binaries with low-amplitude modula- 
tion. We present one typical simulation to show that the pro- 
posed procedure reproduces the correct mass-ratio 
distributions. The paper concludes with a short discussion of 
some additional observational effects which should be 
accounted for m order to derive the true distribution of the 
mass ratio. 

2. THE TWO DIFFERENT APPROACHES 

Two basically different statistical approaches have been used 
to address the problem of unknown orbital inclination. In the 
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direct approach, which goes back to the 1920s (see, e.g., Aitken 
1935), the expected value of sin3 i is assigned to all single-line 
spectroscopic binaries of the sample. Aitken quoted Campbell 
and Schlesinger, who had suggested using an averaged value of 
0.589 for sin3 i in an ideal unbiased sample of binaries. They 
derived this value by averaging sin3 i over all possible angles. 
(For real samples, Campbell and Schlesinger preferred a value 
of 0.679, obtained by assuming a detection probability which 
depends on the binary inclination and is proportional to sin i; 
see § 6 below.) The philosophy behind this method is clear: For 
a large enough sample, the differences between the assigned 
values of sin i and the true values are averaged to zero. 

The other statistical approach starts with an assumed quan- 
titative model for the mass-ratio distribution of the sample. 
The model prediction for a distribution of some observable 
quantity, such as the mass function divided by the primary 
mass, is then compared with the actually observed one. This 
model-fitting approach was suggested for the mass-ratio 
problem by Jaschek & Ferrer (1972) and was adopted by Halb- 
wachs (1987) and Trimble (1990). 

Trimble (1990), in her fundamental review of the problem, 
strongly advocated the model-fitting approach. She stated, 
truly, that “one of the important lessons that astronomers 
have been slow to learn (e.g., when analyzing HR diagrams of 
clusters) is that one should always transform the predictions of 
a model into the coordinates of the observations, rather than 
the other way around.” However, the analysis of binary mass- 
ratio distribution is slightly different froni the analysis of HR 
diagrams of clusters. In the latter, the astrophysics behind the 
models is clear, albeit complicated, and the evolutionary 
models have as free parameters only the cluster age and the 
chemical composition. Here, on the other hand, the astro- 
physics of binary formation is still unclear, and there is no 
unique model to predict the mass-ratio distribution. In pre- 
vious studies, the observed mass-ratio distributions have been 
fitted only phenomenologically to somewhat arbitrary analyti- 
cal functions. The model-fitting approach enables us only to 
find the best parameters of an assumed function to represent 
the mass-ratio distribution, but cannot be used to find new, 
possibly better, functions to describe the distribution. 

The preferred approach to analyze the mass-ratio distribu- 

tion might be, therefore, to use a direct method, which operates 
without assuming any preselected function. However, the 
direct method of Campbell and Schlesinger (hereafter CS) is 
inappropriate (Halbwachs 1987), because of a few subtle fea- 
tures which will be discussed in the next section. Another direct 
method, suggested by Abt & Levy (1976), introduces high noise 
into the derived distribution (Halbwachs 1987; Trimble 1990), 
due to its recursive nature (see Halbwachs 1987 for a clear 
critical description of this method). A novel approach sug- 
gested very recently by Tokovinin (1992), which uses the 
maximum likelihood technique, still reveals some problems 
when applied to relatively small samples and might need some 
modifications. Thus, despite all the effort devoted to the 
analysis of the problem, there is still a neêd for a better algo- 
rithm to analyze the observational results. 

3. THE FAILURE OF THE CAMPBELL AND SCHLESINGER 
DIRECT METHOD 

Our algorithm is a modification of the classical method of 
Campbell and Schlesinger. As this method has been used 
widely, we discuss first this method in detail, demonstrating its 
failure in a few examples. 

To do that, we applied the CS direct method to a simulated 
sample of 2000 binaries, with a uniform mass-ratio distribution 
and with random orientations. We set the period distribution 
of the sample to be uniform in log P, between 1 and 1000 days, 
and primary mass was chosen to be 1 M0. We then calculated 
the mass function for each binary by using equation (1). The 
simulated sample was then analyzed, using the only informa- 
tion available for each binary in real samples—the primary 
mass and the mass function. In this analysis we ignored the 
information about the mass ratio of each binary. 

Testing any method over a simulated sample, as Trimble 
(1974) did in one of her early studies of the problem, enabled us 
to use a sample as large as needed. Furthermore, we could 
consider an idealized sample in which all binaries are detected 
and therefore ignore any observational selection effects in the 
present discussion. 

The results of the simulation testing the CS model are pre- 
sented in Figure la. Clearly this method is drastically biased 
toward the low end of the mass-ratio spectrum. In Figure lb 

q q 
Fig. la Fig. lb 

Fig. 1.—Numerical simulations to test the classical Campbell and Schlesinger method for deriving the mass-ratio distribution. The histogram shows the true 
distribution of the simulated sample. The pluses represent the results of the method, (a) A simulation with a uniform distribution, (b) A simulation with a monotonie 
increasing distribution of N{q) = 2q. 
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we present a similar simulation with a mass-ratio distribution 
which rises toward q — 1. The intrinsic bias of the method is 
very prominent again. Many of our simulations yielded similar 
results. 

To understand the reasons for the failure of the CS method, 
we must first clarify its basic assumptions. Explicitly the 
method assumes that the orbits of the sample are randomly 
oriented. However, this assumption is not enough. Actually the 
CS method implicitly assumes that the orientations of binaries 
within any subset of the sample, for which the mass function is 
equal to some particular value, are also completely random. 
Otherwise it would not be possible to assign the same value of 
0.589 to every binary of the sample. 

This further assumption is not correct, because the mass func- 
tion is not an independent variable of the sample. Our basic 
assumption is that the independent variables are the mass 
ratio, the inclination, and possibly the periods of the binaries. 
The mass function depends on these variables through equa- 
tion (1) and therefore is a dependent variable. To demonstrate 
this point we plot in Figure 2 some constant mass-function 
contours on the g-sin i plane, for primary mass of unity. The 
two axis represent independent variables, while clearly the con- 
tours do not. 

Figure 2 shows in three ways that the assumption of totally 
random distribution of inclinations of any subset of the sample 
is incorrect. 

1. The figure shows that if the sample includes only binaries 
with mass ratio smaller than unity, then for any given mass- 
function value, some of the inclination angles must be 
excluded. The CS direct method, by averaging over all angles, 
incorrectly ignores this constraint and thus underestimates 
sin3 i. As a result, the mass ratio is overestimated for most 
binaries. Moreover, for quite a few systems, the assigned value 
of sin3 i is actually smaller than its lower limit, which results in 
q larger than unity. The classical direct method, by assigning 
all binaries the same value for sin3 z, ignores some specific 
additional information available for the individual systems. 

2. Any subset of binaries, with some mass function value —f 
must have some finite width df because the probability of 
finding a binary with df=0 is zero. Therefore any subsample 

Fig. 2.—“ Stripes ” of constant mass function in the mass-ratio-sin i plane. 
The three “stripes” are confined by the values (0.001, 0.002), (0.01, 0.015), and 
(0.15, 0.18), respectively. Dashed line parallel to the g-axis cover the stripes. 
Their varying length reflects the fact that the partial derivative off with respect 
to the mass ratio varies as a function of sin i. 

with nonvanishing probability will spread over a stripe in the 
g-sin i plane, with the mass function between / and f + df 
Three such stripes are plotted in Figure 2. The figure shows 
that the width of these stripes, when measured parallel to the 
g-axis, varies as a function of sin z. This results from the fact 
that the partial derivative of the mass function with regard to q 
varies as a function of sin z. The variation of the finite width 
introduces another deviation from the random distribution. 

3. Finally, Figure 2 shows that for a given subset of binaries 
with a constant mass function, the inclination distribution 
depends on the mass-ratio distribution. Therefore, in order to 
assign an averaged value of sin3 z to any binary, we need to 
know the mass-ratio distribution. This is, however, precisely 
the distribution that we try to extract from the sample ! The CS 
method assumes a uniform mass-ratio distribution when 
averaging over the inclination angles. However, this is at best 
only a zero-order approximation, which might induce some 
bias. Clearly, to overcome this problem we need some iterative 
approach. 

Replacing sin3 z by its expectation value introduces two 
additional error sources to the derivation of the correct mass- 
ratio distribution. First, as pointed out by Halbwachs (1987) in 
his seminal work, the specific shape of the distribution of sin3 z 
is heavily weighted toward the two extreme points, where sin3 z 
equals zero or unity (see Fig. 2 of Halbwachs 1987 and the 
discussion there). The average value of sin3 z, 0.589, used by the 
CS method, is, therefore, far from being the most probable 
value. This feature led Halbwachs to reject the CS method as 
an appropriate approach to the problem. 

Second, to obtain the correct average mass-ratio for each 
binary, one should not average sin3 z over the inclinations and 
then solve for the mass ratio, but rather average the mass ratio 
directly. This means that for each possible inclination, one 
should solve for the mass ratio, given the mass function and the 
primary mass, and then average the mass ratio over the range 
of inclinations, taking into account the correct distribution of 
inclinations (Torres 1991). 

When evaluating the CS method and its importance to the 
advance of the study of binary characteristics, we should recall 
that, despite all its drawbacks, the method was conceived and 
first used when computing machines were not available. The 
beauty of this zero-order approximation relies on the fact that 
no computing is needed, and the averaging can be done ana- 
lytically. The next section outlines our modified approach 
which takes into account all the points mentioned above. The 
new algorithm takes some amount of numerical computing, a 
feature which should not be considered disadvantageous in 
these days, contrary to the situation in the good old days of 
Aitken. 

4. THE MODIFIED ALGORITHM TO DERIVE THE 
MASS-RATIO DISTRIBUTION 

The proposed algorithm considers each observed binary as 
drawn from a subset of binaries with orientations that are not 
randomly distributed, but depends on the mass function of 
each binary. Three main features characterize each subset: 

1. For each binary we find a lower limit for the possible 
inclinations, zmin. Inserting q = 1 into equation (1) yields 

3 . ~rJ \lvl 2) sm3 zmin = - 
4/(M2) 

Mi 

The upper limit of the inclinations is, of course, sin i = 1. 

(2) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
4 

. .
59

2M
 

MASS RATIO OF SPECTROSCOPIC BINARIES 595 No. 2, 1992 

2. The inclination distribution is corrected for the variation 
of the partial derivative of the mass function with regard to q. 
We multiply any distribution of angles by a correction factor 

A(q) = (1 + qk 
3 + q ’ 

(3) 

where q, the mass ratio, depends on the inclination and the 
mass function. To do that, we have to find q, using equation (1), 
for each possible inclination. 

3. The inclination distribution of each subset with fixed 
mass function depends on an assumed mass-ratio distribution. 
Therefore, the algorithm is of an iterative nature. To begin the 
iteration we first assume a uniform distribution of g, assign 
each binary the resulting inclination distribution, and calculate 
q for this binary. We then derive the q distribution of the whole 
sample by summing over all binaries. This new distribution 
is the first-order approximation derived by the algorithm. It 
is then used as the input for calculating the second-order 
iteration, and so on. This process is continued till the nth 
order approximation is statistically indistinguishable from the 
(n-l)-th one. 

To take into account the special shape of the inclination 
distribution, we replace each binary by an ensemble of N 
virtual systems with the same period, primary mass, and mass 
function. The inclination angles of the ensemble are distributed 
according to features 1-3 discussed above. Obviously, the gen- 
erated ensembles of inclinations will necessarily be different for 
different binaries. For normalization purposes, each of the 
virtual systems represents 1/N binaries. For each virtual 
system we know the mass function, the primary mass, and the 
inclination, and therefore its mass ratio. The mass-ratio histo- 
gram of the ensembles of all binaries included in the sample 
represents our best estimation of the mass-ratio distribution of 
the observed sample. 

To test the proposed new algorithm we applied it to the 
same simulated samples which were used to demonstrate the 
drawbacks of the CS method. The results are presented in 
Figure 3. A comparison of Figures 1 and 3 establishes the 
advantage of the proposed algorithm over the CS method. 

Numerous tests with different samples yielded the same con- 
clusion. The simulations indicate that the difference between 
our algorithm and the CS method is small for distributions 
that peak toward smaller q9 and is most pronounced for mass- 
ratio distributions that rise toward unity. 

5. SOME CAVEATS 

One of the basic assumptions of the proposed algorithm is 
that the mass ratio is smaller than unity. This assumption is 
true for most of the spectroscopic samples considered recently 
(e.g., Duquennoy & Mayor 1991; Latham et al. 1988). These 
samples include only main-sequence primaries, and therefore 
the secondary ( = less luminous) component can be more 
massive only if it is a compact object. For example, in binaries 
with a G-dwarf primary (Duquennoy & Mayor 1991), the sec- 
ondary (fainter component) can be more massive only if it is 
either a very massive white dwarf or a neutron star. These two 
possibilities are of negligible probability. For a sample with 
M-dwarf primaries, the possibility that the mass ratio is larger 
than unity cannot be excluded for all binaries, as the secondary 
(fainter) component could be a white dwarf with mass of, say, 
0.6 M©. However, even in such a sample, the frequency of the 
binaries with massive secondaries is very small. 

However, the assumption about the mass-ratio upper limit is 
not true for all samples; the sample of giants observed by 
Griffin (Trimble 1990) is one recent example. For such samples 
one can ignore this assumption and still use the algorithm. It is 
still very different from the CS method, because of the intro- 
duction of the A(q) factor (eq. [3]), and the iterative nature of 
the algorithm. 

The iterative nature of the proposed algorithm raises a few 
doubts about its effectiveness. To express these doubts more 
formally, let us consider any mass-ratio distribution as an his- 
togram of, say, M bins; any distribution being a point in an 
M-dimensional phase space. Any realistic distribution must 
follow two constraints : Each bin cannot have negative 
numbers of binaries, and the total number of binaries in all the 
bins must equal the number of binaries in the sample. The 
iteration can be regarded as a mapping of part of the phase 

q q 
Fig. 3a Fig. 3b 

Fig. 3.—Numerical simulations to test the proposed modified algorithm for deriving the mass-ratio distribution. The histogram shows the true distribution of the 
simulated sample. The pluses represent the results of the algorithm. The figure should be compared with Fig. 1. (u) A simulation with a uniform distribution, (h) A 
simulation with a monotonie increasing distribution of N(q) = 2q. 
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space into itself, the mapping being dependent on the sample. 
It was not clear a priori whether the iterations of a given 
sample converge at all. Even if they do, is the converging point 
independent of the starting point? And the most important 
doubt, is the converging point the true one? 

Our numerous numerical simulations yielded positive 
answers to all these questions, provided the input mass-ratio 
distribution for each step of the iteration is continuous. The 
resulting histogram of any iteration is obviously not contin- 
uous. We therefore used the histogram values obtained at each 
iteration step for the input distribution of the next iteration 
only at the center of each bin. To get continuous distributions, 
we linearly interpolated between those points. We ran many 
tens of simulations and found that the iterations do converge, 
usually in a few steps, that the converging point is independent 
of the starting point, and, most important, that the result is the 
true distribution. 

The requirement for continuous function as input distribu- 
tion diminishes the ability of the algorithm to detect sharp 
features of the true distribution. We regard this feature of our 
algorithm as the “instrumental profile” of the method. The 
algorithm will convolve any real sharp feature of the distribu- 
tion of the sample with the inherent profile. To demonstrate 
this profile we present in Figure 4 a simulation with a sample 
of binaries which all have exactly the same mass ratio q = 0.85, 
and the same primary mass. The figure presents the results of 
the original CS direct method and the outcome of the new 
proposed algorithm. Clearly, the response of the algorithm to 
the “delta function” input has a profile with a finite width. 
Nevertheless, the results indicate again that the proposed 
approach, even with its intrinsic profile, is advantageous over 
the original method, which is strongly biased. 

We have checked the new algorithm on simulated small 
samples of binaries. Again, when using the interpolation 
scheme we were able to reconstruct the true mass-ratio dis- 
tribution in all the cases we have tried. We therefore conclude, 
albeit without proof, that the algorithm is robust and unbiased 
and can be used to derive the true mass-ratio distribution. 

Another subtle question is how to handle the double-line 
spectroscopic binaries (SB2) in the sample. The SB2’s provide 

direct information about the mass ratio and therefore do not 
require replacement by an ensemble of virtual systems. We 
therefore suggest that one find out first the mass ratio distribu- 
tion of the single-line binries (SB1) with our algorithm, and 
then add the SB2’s. Again, many numerical simulations in 
which we included some of the high mass-ratio binaries as 
SB2’s proved this approach to be correct. Obviously one can 
always ignore the information about the mass ratio and handle 
the SB2’s as SBTs (Halbwachs 1987). In principle, the results 
shoud not be substantially different, albeit more noisy. Indeed, 
many simulations we have tried proved this point. 

When analyzing real samples, one has to account for the 
observational selection effects, in order to derive the true mass- 
ratio distribution. For many samples, the selection effects for 
the SB1 and the SB2 binaries are different. Therefore, the uni- 
fication of the two populations of binaries, as suggested here, 
should be done with extreme care. The corrections for unde- 
tected binaries of the two groups should be applied separately, 
before combining one distribution with the other. 

6. COMPENSATING FOR THE UNDETECTED BINARIES 

We turn now to discuss one of the observational selection 
effects found in samples of spectroscopic binaries, the one 
associated with the inability to detect binaries with low- 
amplitude radial-velocity modulation. We suggest a new pro- 
cedure to compensate for this effect. 

Specifically, we consider a radial-velocity survey of a well- 
defined preselected sample of stars, of which any binary with 
an amplitude > Kmin is detected. This selection effect 
applies, to first-order approximation, to the large surveys of 
Latham et al. with the CfA stellar speedometer (Latham et al. 
1988) and those of Mayor et al. with the CORAVEL machine 
(Duquennoy & Mayor 1990, 1991; Duquennoy et al. 1991). 
Note that this observational selection effect is very different 
from the one assumed by Trimble (1974, 1990), Staniucha 
(1979), and Halbwachs (1987), because the recent samples are 
very different from samples included in any catalog of known 
spectroscopic binaries (e.g., Batten, Fletcher, & Mann 1978). 

The detection threshold of the radial-velocity amplitude 

Fig. 4a Fig. 4b 

Fig. 4.—^Numerical simulations to test the two methods for deriving the mass-ratio distribution. The histogram shows the true distribution of the simulated 
sample—all binaries have q = 0.85. The pluses represent the results of the algorithm, (a) The results of the modified algorithm, (b) The results of the old CS method. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
4 

. .
59

2M
 

MASS RATIO OF SPECTROSCOPIC BINARIES 597 No. 2, 1992 

introduces an observational selection effect on the binary incli- 
nations, due to the dependence of on sin i: 

K1 = 212.9P"1/3M}/3 /4 - sin i (km s“1), (4) 
(1 + q)213 

where P is the orbital period in days and Mi is in solar mass 
units. We considered, for simplicity, only circular orbits. Con- 
sider now a subsample of binaries, all with the same binary 
period, mass ratio, and primary mass, and with a given dis- 
tribution of inclinations. Out of this subsample, all systems 
with an inclination smaller than some minimal inclination, i0, 
are not detected. One gets from equation (4) that 

sin z0 = 4.697 x 10“3KminP
1/3Mr1/3 - . (5) 

<1 

We therefore define a detection function, DKmin(P, q, M^, 
which is the fraction of detected binaries out of all binaries with 
the same P, q, and Mx : 

DKmitt(P, q, Aii)= P vam = v7! - Sin2 io , (6) 
Jsinio 

where *¥ is the random distribution of the angles. Putting 
equation (5) into equation (6) gives for circular orbit 

DkJP, q, Mt) 

= 1 7 x \0-3P1/3KminM; 1/3 (1 + q)2/3' 
(7) 

The detection function was derived by assuming that the 
same value of Kmin prevails for the whole sample. This is obvi- 
ously only a zero-order approximation. In practice, Kmin may 
depend on the binary period (e.g., Duquennoy & Mayor 1991), 
the primary spectral type, and possibly other parameters of the 
system. For eccentric orbits equation (4) should be modified, 
and some possible dependence of Kmin on the eccentricity 
should also be taken into account. Moreover, Kmin might be 
different for SB1 and SB2. We symbolically denote the Kmin 
variability by 

= (8) 

to be inserted into equation (7). 
The zero-order dependence of D on P and q, as expressed in 

equation (7), is plotted in Figure 5, for Kmin = 2 km s'1, Mx = 
1 M0, and for circular orbits. The possible dependence of Kmin 
on P was neglected. The function is close to unity for most 
values of P and q, except for low q, where the function is very 

steep. The low values of D for small q indicate that any sample 
of spectroscopic binaries is vulnerable to large statistical errors 
in this range of the mass ratio domain. We therefore regard the 
derived mass-ratio distribution for small q values as highly 
uncertain, unless Kmin is very small. 

The detection function enables us to assign each binary a 
correction factor, 

C(Kmin, P, q, Mi) = ¿ , (9) 

if we know its period, primary mass, and its mass ratio in 
particular. To compensate for the undetected binaries, we con- 
sider each binary as representing C number of systems with the 
same parameters. Unfortunately, the mass ratio of each binary 
is not known in real samples, and the correction factor cannot 
be applied. The correction factor procedure can work, 
however, within the proposed new algorithm. Each virtual 
system is assigned a mass ratio, and therefore its correction 
factor can be derived and used. 

The advantage of the procedure outlined above is its capa- 
bility to apply the correction for the undetected binaries to 
each virtual system independently. However, for small enough 
mass ratios, even a single virtual system is not assigned; the 
specific values depend on the range of observable periods of the 
survey and on Kmin. In such a case, the individual correction 
procedure cannot be applied, and the number of systems with 
small mass ratios has to be extrapolated. The extrapolation 
must assume some period distribution, the natural choice 
being the observed period distribution of the whole sample. 
This correction introduces again, a large uncertainty to the low 
end of the derived mass-ratio distribution. In the recent 
surveys of the CORAVEL and the CfA stellar speedometers 
this problem usually appears only for mass ratios smaller than 
0.1. 

To demonstrate the effectiveness of the new procedure we, 
again, used a simulated sample of binaries. We used the same 
sample with uniform mass-ratio distribution. Out of this 
sample we generated a subsample of the “ detected ” binaries, in 
which we included only binaries with an amplitude larger than 
a threshold detection of Kmin = 2 km s” ^ We first applied our 
modified iterative algorithm, to find the mass-ratio distribution 
of the detected sample. We then used the correction factor to 
find out the true distribution of the whole sample. The results 
are depicted in Figure 6, together with the CS method result, 
where we assigned to each binary a value of 0.679 for sin3 i. 
The figure suggests, again, that the combination of the iterative 
proposed algorithm with the individual correction factor pro- 
cedure might be useful in some cases. 

Fig. 5.—The detection function as a function of the binary mass ratio, for different values of the period P (10,100, and 1000 d). The detection threshold was taken 
as ^min = 2kms~1. 
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q 
Fig. 6a Fig. 6b 

FIG. 6.—Numerical simulations to test the two methods for deriving the mass-ratio distribution. The continuous-line histogram represents the true distribution of 
the original simulated sample, including all binaries. The distribution used is a uniform one. The broken-line histogram shows the distribution of the detected 
binaries, (a) The results of the modified algorithm—the circles represent the derived distribution of the detected binaries, while the pluses show the obtained total 
distribution, (b) The results of the old CS method, assuming a detection probability which depends on the binary inclination and is proportional to sin i. 

7. CONCLUSIONS 

We have proposed a modified algorithm to derive the mass- 
ratio distribution of an observed sample of spectroscopic 
binaries. The effectiveness of the algorithm was demonstrated 
with several illustrative numerical simulations, in which we 
were able to reconstruct the initial distribution of idealized 
samples of binaries. 

The derivation of the observed distribution is only the first 
step to obtain the true mass-ratio distribution of any real 
sample of binaries. As already pointed out by previous 
researchers (Halbwachs 1987; Trimble 1990; Duquennoy & 
Mayor 1991), the correction for the different selection effects of 
each survey might be more important than the specific algo- 
rithm to derive the mass-ratio distribution. We have outlined a 
new procedure to correct for one important observational 
effect associated with the detection limit of the radial-velocity 
amplitude. However, a few more effects should be accounted 
for when deriving the true distribution of any sample. Some 
famous examples are the bias introduced by binaries detected 
by visual means, and the distortion caused by a magnitude 
definition of the survey limits (Öpik 1924; Branch 1976; Halb- 
wachs 1987; Trimble 1990). Another extremely important 

Abt, H., & Levy, S. G. 1976, ApJS, 30,273 
Aitken, R. G. 1935, in The Binary Stars (New York: McGraw-Hill), 218 
Batten, A. H., Fletcher, J. M., & Mann, P. J. 1978, Publ. Dom. Astrophys. Obs., 

15,121 
Bodenheimer, P., Ruzmaikina, T., & Mathieu, R. D. 1992, in Protostars and 

Planets III, ed. M. S. Mathews & E. Levy (Tucson: Univ. Arizona Press) in 
press 

Branch, D. 1976, ApJ, 210,392 
Duquennoy, A., & Mayor, M. 1990, in New Windows to the Universe, Proc. 

Xl-th European Regional Astronomy Meeting of the IAU, ed. F. Sanches & 
M. Vasquez (Cambridge: Cambridge Univ. Press), 253 
 . 1991, A&A, 248,485 
Duquennoy, A., Mayor, M., & Halbwachs, J. L. 1991, A&AS, 88,281 
Griffin, R. F. 1985, in Stellar Radial Velocities, IAU Colloq. 88, ed. A. G. Davis 

Phillip & D. W. Latham (Schenectady: L. Davis), 121 
Halbwachs, J. L. 1987, A&A, 183,234 
Jaschek, C, & Ferrer, 0.1972, PASP, 84,292 
Latham, D. W. 1985, in Stellar Radial Velocities, IAU Colloq. 88, ed. A. G. 

Davis Phillip & D. W. Latham (Schenectady: L. Davis), 21 
Latham, D. W., Mazeh, T., Carney, B. W., McCrosky, R. E, Stefanik, R. P., & 

Davis, R. J. 1988, AJ,96,567 

point is the relative weight of the double-line binaries (Trimble 
1990), a feature that can distort completely the high end of the 
distribution. All these selection effects should be taken into 
account when analyzing real sample of spectroscopic binaries. 

The analysis of the very recent samples of binaries (Latham 
et al. 1988; Duquennoy & Mayor 1991) is deferred to sub- 
sequent work, where our algorithm will be applied and the 
observational selection effects will be addresed thoroughly. 
Hopefully, the new data will enable us to determine soon the 
true shape of the mass-ratio distribution of stellar binaries. 
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