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ABSTRACT 
We have constructed a class of self-similar solutions for relativistic winds driven by rotating magnetic fields. 

These winds are collimated to cylindrical jet flows of finite radii and may attain supermagnetosonic speeds 
with high Lorentz factors. Most of the flow acceleration results from the “magnetic nozzle” effect and occurs 
beyond the fast magnetosonic point, which is typically located a few light cylinder radii from the rotation axis. 
Approximate equipartition between the electromagnetic and flow kinetic energies is generally achieved for 
these jets, in contrast to the radial wind case in which the flow is magnetically dominated at all radii. 
Subject headings: galaxies: jets — MHD — pulsars: general — quasars: general 

1. INTRODUCTION 

Although the speeds of jets associated with active galactic nuclei (AGNs) are not easy to obtain directly, they are believed to cover 
a wide range, from a few hundred kilometers per second to nearly the speed of light (Begelman, Blandford, & Rees 1984). The 
superluminal motion observed in some VLBI jets suggests that these collimated outflows may be moving relativistically, with a 
Lorentz factor ranging from about 2 to 20. For an electromagnetically driven flow, a relativistic velocity can be achieved, in 
principle, through a combination of the so-called magnetic sling, magnetic pinch, and magnetic nozzle effects. The plasma parcels 
that are tied to rotating open magnetic field lines are slung out well beyond the light cylinder centrifugally, thereby obtaining a high 
speed. In the meantime, the backward twisting of magnetic field lines builds up the toroidal field component which serves to 
collimate the outflow, and finally the compressed toroidal field can release its pressure by transferring more magnetic energy to the 
plasma flow, thus yielding further acceleration (Camenzind 1989). 

The best studied relativistic winds operating under this mechanism are models for pulsar winds (Michel 1969; Goldreich & Julian 
1970; Kennel, Fujimura, & Okamoto 1983). Unfortunately, most workers have assumed that the wind has a radial geometry, which 
satisfies force balance across flux surfaces only on the equatorial plane. A radial wind can be shown to be a singularly inefficient case 
for flow acceleration, in which the magnetic pressure force, the main accelerating force at large distances when thermal pressure is 
negligible, is almost exactly counterbalanced by the magnetic tension force, so that the entire flow remains submagnetosonic 
(Michel 1969). An arbitrarily small thermal pressure can drive a radial flow through the fast magnetosonic point but yields little 
additional acceleration (Kennel et al. 1983). However, supermagnetosonic speed and significant acceleration can be achieved, even 
for a cold wind, if the outflow becomes collimated (Blandford & Payne 1982, hereafter BP; Sakurai 1985; Camenzind 1987; Li & 
Begelman 1992). By examining the general equations for cold relativistic MHD flows, Chiueh, Li, & Begelman (1991) were able to 
show that the flux surfaces must become collimated toward the rotation axis under rather general conditions. In a collimated flow, 
the conversion of magnetic energy to kinetic energy should be much more efficient than in a radial wind. 

In this paper we will demonstrate how an MHD wind can achieve both highly relativistic speeds and collimated flow, by 
constructing a wind solution from its source to infinity. To make this problem tractable, we will study cold flows which are 
self-similar in radius. The magnetic field configuration is determined self-consistently from the cross-field force balance equation, 
together with other flow properties (Lovelace et al. 1986). The self-similar approach has been undertaken by BP for nonrelativistic 
flows. Being relativistic, the flow in our problem possesses a natural length scale, the light cylinder radius, which is absent in the 
nonrelativistic theory. This turns out to impose a greater restriction on the class of self-similar flows than was found by BP. 

Our models illustrate explicitly how the poleward bending of flux surfaces causes the fast magnetosonic point to move inward 
from infinity to a few light cylinder radii from the axis, in contrast to the radial wind case. While the fraction of the magnetic energy 
converted into plasma kinetic energy is still small at the fast point—not much different from that in the case of Michel’s minimum 
torque solution—the “ magnetic nozzle ” effect continues to convert magnetic energy into plasma kinetic energy beyond the fast 
point until the two are comparable. This eventual approximate equipartition in a relativistic magnetized wind has been pointed out 
by Camenzind (1989) on the basis of numerical models (Camenzind 1987). 

The plane of this paper is as follows: in § 2, we present the formulation of the problem, including a brief derivation of the 
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relativistic MHD wind equations and their self-similar forms. These equations are then solved numerically in § 3. Finally, we 
summarize our results and discuss their implications in § 4. 

2. RELATIVISTIC SELF-SIMILAR MHD WIND 

2.1. Basic Equations 
Relativistic MHD winds have been studied previously by several authors, either with the radial wind assumption (Michel 1969; 

Goldreich & Julian 1970; Okamoto 1978; Phinney 1983; Kennel et al. 1983) or with full consideration of cross-field force balance 
(Camenzind 1986, 1987). An axisymmetric stationary flow along a flux tube is specified by four constants of motion. We shall first 
briefly outline the derivation of these constants of motion, and then write down the cross-field force balance equation in a form 
suitable for later self-similar treatment. A standard cylindrical coordinate system (R, 0, Z) is adopted throughout the paper, with Z 
measuring the distance along the rotation axis. 

2.1.1. Condition of F lux-Freezing 

Assume the plasma to be a perfect conductor, where the equation of flux-freezing V x ( F x B/y) = 0 holds and implies 

or, equivalently. 

- yR&(R, Z) _ 

K Bp 

V = yRQ(R, Z)4> + ^ Z- B , (2.1) 
P 

where V is the spatial part of the 4-velocity, y is the Lorentz factor, <f> is the azimuthal unit vector, p is the proper plasma density, and 
the subscripts “ p ” and “ 0 ” stand for poloidal and toroidal, respectively. The quantity Q(R, Z), the angular velocity of a field line, is 
a constant on each flux surface, since a moving field line spans a flux surface. The quantity k(R, Z) is the ratio of the mass flux to the 
magnetic flux and can also be shown to be a constant from the continuity equation (Chiueh et al. 1991). 

If we label different flux surfaces by a poloidal flux function 0(R, Z) defined from 

Bp =* <¡>, 

then we have Q(R, Z) = fi(0) and k(R, Z) = k(0). 
2.1.2. Momentum Equation 

For a stationary flow, the special relativistic momentum equation (Goldreich & Julian 1970) is 

pVWV) = PeE+J—-\P + yp\\ Í7 |\ GM, 1 
Cy (R2 + Z2)1'2] 

(2.2) 

(2.3) 

where £ = 1 + jdP/pc2 is the specific enthalpy, p and P are the proper density and proper pressure, respectively; M* is the mass of 
the central star or black hole; and pe is the charge density in the laboratory frame. The presence of an electric force in the MHD 
description is a result of relativistic effects. The quantities E and pe are determined from 

and 

V x B RQ0 x Bd Í2 ,  = — *- = — — V0 
cy c c 

which are combined to give the electric force 

Pe 
V • E 

4tc 
--VW), 

PeE = ~v -{asm. (2.4) 

Since the electric force is in the cross-field direction, it does not change either the energy or angular momentum along a flux surface. 
However, the electric force turns out to be crucial for maintaining the force balance between different flux surfaces. 

2.1.3. Energy and Angular Momentum Equations 

The conserved specific energy is obtained by taking the dot product of the momentum equation (2.3) with ^ F/p : 

where 

í#) = iyc2 - 4nk 
(2.5) 

GAÍ* 
(R2 + Z2)1/2 ' 
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The conserved specific angular momentum is obtained by taking the azimuthal component of equation (2.3): 

w - 4^ - ¿M(f - ¿)s‘+H ■ 
(2.6) 

Equations (2.5) and (2.6) can be used to express and B# in terms of e and / : 

g (1 - QeR2/lcl)lQ/cl 
y cl 1 — 4nk2Ç/p — R2Q2/cl 

and 

(2.7) 

4nlk (1 — QeR2/lcl) 
R 1 — 4%k2£>lp — R2il2/cl * 

(2.8) 

With the help of the flux-freezing condition, we can rewrite the identity y2 = 1 + F 2/c2 + F^/c2 using equations (2.7) and (2.8): 

lQ/cl(l - R2Qe/lcl l2 = (kÇB\2 _ 1 - R2ne/lcl 

£2 Lcl 1 ~ 4nk2Ç/p - R2Q2/c2J \ pc ) \£Rc) _ 1 - 4nk2Ç/p - R2Q,2/cl 
Because £ is a function of p, equation (2.9) relates p to Bp along a flux surface, and since Vp = kBp/p is a function of Bp only, the 
acceleration of the flow can be determined immediately if the field geometry is known. We shall hereafter refer to equation (2.9) (and 
its self-similar version, eq. [2.19] below) as the energy equation. 

(2.9) 

2.1.4. Cross-Field Force Balance Equation 
To obtain the cross-field force balance equation, we project equation (2.3) onto the unit vector c = Bp/Bp x </>, which is in the 

cross-field direction pointing towards the rotation axis. The result is 

kB2
p 1 - 

47ck2{ Q2R: 

— c 1 — ^ ^ IV + V ^ + 47rypV[£y(c2 — c2)] + 47rpc2V^ 

BnRQ 2BM2 

V^ • VÍ1 + —^— \i¡/ - VR - ( F2 • 
47rp 

IV VR , (2.10) 

where k is the local curvature of the poloidal field lines and jcB2 = c • (Bp • V)Rp. 
Using equations (2.2) and (2.9) together with the definition of k, one can write equation (2.10) as a two-dimensional second-order 

partial differential equation for ij/, in which all second-order terms appear on the left-hand side (Lovelace et al. 1986). As in the 
nonrelativistic case (BP), this equation admits three critical points along each field line, corresponding to the slow magnetosonic, 
Alfvén, and fast magnetosonic wave modes (Lovelace et al. 1986). By demanding that the flow pass smoothly through these points, 
some arbitrary parameters at the base of the flow can be fixed. The three critical surfaces are generally so complex that no attempt 
has yet been made to study flows with the most general boundary conditions. All past studies involve major simplifying assump- 
tions, and our study is no exception. We are interested in relativistic flows which are sufficiently far away from the central compact 
source that gravity and thermal pressure probably play a dynamically insignificant role and can be neglected, i.e., G -► 0 and R -► 0 
or <!; -► 1. These simplifications make it possible to seek scale-free (or self-similar) flow solutions. However, because of these 
assumptions, processes in the wind production region near the base of the flow, where gravity and thermal pressure may be 
important, cannot be adequately addressed. 

2.2. Relativistic Self-similar Equations 
Dimensional analysis demands that the intrinsic lengths of the problem, R, Z and the light cylinder radius RL = c/Q(i/f), must scale 

similarly on each flux surface. Extracting a common ij/ dependence, we require 

{R’z’Ri-)=^x’y’l)’ (211) 

where the dimensionless quantities x and y have to vary in the same way on every flux surface, i.e., have to be independent of \¡/. The 
geometric meaning of this self-similarity is shown in Figure 1. All poloidal field lines at the points intersected by any straight line 
emerging from the origin have the same slope. Self-similarity also demands that Q(^) scale as R_1, so that the linear velocity is the 
same at the base of each flux tube. This condition, which can be very restrictive indeed, follows from the fully relativistic nature of 
our treatment, and does not occur in the model of BP. The magnetic field strengths B^ and Bp must scale with ij/ according to 

(Rp,^) = -^(hp,^), (2.12) 

where bp and b# are the dimensionless field strengths. Finally, from the flux-freezing condition, one can write the velocities in the 
form 

(K’ = c(<rbpTX2, yx + ab^xx2), (2.13) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
4.

 .
45

9L
 

462 LI, CHIUEH, & BEGELMAN Vol. 394 

R 
Fig. 1.—A configuration of self-similar magnetic field lines (solid lines) in meridional plane. The dashed line can be any straight line drawn from the origin, and the 

angles between the solid lines and the dashed line are all equal. 

where we introduce two additional dimensionless quantities, 

4nk2(il/) 
p(\l/, x)x2 

QW 
4nc3k(\l/) * 

(2.14a) 

(2.14b) 

In a self-similar model, both t and a must be flux-independent. In the radial wind literature, a is called the magnetization parameter; 
its magnitude characterizes how relativistic a flow can become (Michel 1969; Goldreich & Julian 1970). 

The curvature tc, bp, and b# are readily expressed in terms of x, y9 and the first two derivatives of y with respect to x (y, y). We have 

kR ~ xÿ 
(1 + r2)3,2y3 ’ 

(2.15) 

and the two components of bp : 

From equation (2.8), one has 

1 d(\nil/) 
x(xy — y) d(\n Q) ’ 

Z d(\n i/0 
x(xy — y) d(\n Q) 

(2.16) 

(2.17) 

where we have defined the dimensionless specific total energy fi = e/c2, the dimensionless Alfvén radius xA = (lQ/e)1/2, and an 
auxiliary dimensionless quantity 

-*2/xj 
1 — (1 -h t)x2 ’ 

(2.18) 

to simplify expressions. Physically, rj is the fraction of the angular momentum carried by the magnetic field, and at large distances 
(x > 1) t is ratio of the kinetic energy flux to the Poynting flux. The variable t is related to the magnetic field structure through the 
energy equation (eq. [2.9]) which, in dimensionless form, reads 

/i2d -x2
Ar,)2 = l+ (axbpx

2)2 + ^ (1 - # ■ (2.19) 

It is easy to verify (using eq. [2.18]) that the energy equation is a quartic in t, and that neither dimensionless height y nor its 
derivative with respect to x comes in except implicitly through bp (via eq. [2.16]). Therefore the flow acceleration as a function of x 
will be fixed once bp is known. 
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While the above analysis holds for a rotation law Q(i^) of arbitrary functional form in xj/, self-similarity of the cross-field force 
balance equation (2.10) requires that Q(^) be a power law in xj/. This requirement can be checked easily by inspection. Therefore, we 
let 

n = nTe{X-
ß, (2.20) 

where Qref and ß are constants and % = i/0Aref >80 that 

<#) = ¿ref > #) = /ref / > K^) = Kef , B = (4™Kef ^ • (2.21) 
The quantities with a subscript “ref” are evaluated along an arbitrary reference flux surface labeled i^ref. From equation (2.16), we 
have 

= _L >/i + 
p ßx2 1 - yl(xy) ' (2.22) 

Note that if the flow becomes radial asymptotically, then one should have ÿ -► y/x -> const as x -<• oo, which leads to b x2 oo. 
In this case, the energy equation (2.19) cannot be satisfied, which means that radial flow (i.e., flow on cones) is incompatible with the 
assumption of self-similarity. 

Using the power-law functional form for Q(iJ/), we can simplify the cross-field equation (eq. [2.10], with £ -► 1 and c* -» c) by 
factoring out the i// dependence in each term and casting it in the form 

G(x, y, ÿ,t) ■ ÿ = H(x, y, ÿ, r), 

with 
(2.23) 

and 

"-7 

+ - 

where we have defined 

(2.24) 

(2.25) 

and the relativistic Alfvén and fast Mach numbers 

r = JL 
b2

px
2’ 

and 

VfJ b2 + b2
p(l - X2) 

ThpX2 

with the Alfvénic and fast magnetosonic 4-speeds given by (Camenzind 1986) 

and 

V2 — V A — 
gg[i - (R/RLn 

Anp 

(2.26) 

(2.27a) 

(2.27b) 

v2 B2X\ - (R!RLn + Bl 
f 4np 

The left-hand side of equation (2.23) derives from terms on the left-hand side of equation (2.10). It contains the entire term 
proportional to k, and those parts of the \(B2

p/2) and V(B|/2) terms which are proportional to ÿ. The terms of the left-hand side of 
equation (2.10) which are not proportional to ÿ are collected inside the first square brace in H(x, y, ÿ, r), whereas the three terms 
inside the large brace in H(x, y, ÿ, t) correspond to the three terms on the right-hand side of equation (2.10). 

Thus far, we have reduced the cross-field equation to the second-order ordinary differential equation (2.23). This equation, 
together with the algebraic energy equation (2.19), will be solved numerically for the shape, y = y(x), of the reference flux surface 
^ = *Aref• Before presenting the numerical integration, we analyze the critical points as well as both the near-field and asymptotic 
behaviors of the flow solutions. 
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2.3. Critical Points 
In an MHD wind there exist three critical points, at which the poloidal flow velocity equals the propagation speed of each of the 

three different types of small disturbance—the slow magnetosonic wave, the Alfvén wave, and the fast magnetosonic wave (Weber & 
Davis 1967 ; Camenzind 1986). For a cold wind, the neglect of thermal pressure implies the absence of a slow magnetosonic point. 

The possible singular points in the energy equation are revealed by differentiating equation (2.19) once, so that 

i r 
dx (1/mX — l)2(l/mj — 1) |L(72T2h2x9 

K1 ~ 4)+Txii<- 0 “ T - Æm 0}+Tfci ~ 0 [1 
x + yÿ 

(i + fm 
(2.28) 

The above equation is singular when the denominator vanishes while the numerator remains finite. At such a point, two root 
branches of t(x) in the quartic energy equation (2.19) merge, and switch from imaginary to real or from real to imaginary. It is only 
at a 66 regular ” singular point, where the denominator and the numerator vanish simultaneously, that two real root branches can 
cross each other and remain as real branches after crossing. The Alfvén point is such a point, since it (mA = 1) always occurs 
automatically at x = xA from the requirement that the toroidal field strength vary continuously cross the Alfvén point (cf. eq. 
[2.18]). This situation also arises in a radial wind. As a result, the requirement of trans-Alfvénic flow does not impose any 
constraints on the flow parameters via the energy equation. What is not so obvious, however, is the fast point (mf = 1) is also always 
a “ regular ” singular point of equation (2.28), so that solutions can pass through it smoothly, without imposing any constraint. This 
situation differs drastically from that of a radial wind (Goldreich & Julian 1970; Kennel et al. 1983). It is the presence of ÿ in 
equation (2.28) that makes the picture entirely different. In fact, whenever mf = 1, equation (2.23) can always be so arranged as to 
yield an expression for ÿ that makes the numerator of equation (2.28) vanish simultaneously. The extra degree of freedom afforded 
by curvature of the flux surfaces makes this self-adjustment possible. 

Analysis of the cross-field equation, equation (2.23), reveals the true singularities of the problem, at which constraints on the flow 
parameters must be imposed in order to obtain smooth passage of the flow. From the expression for G(x, y,y, t), it is apparent that 
the singularities of equation (2.23) occur at the Alfvén point, mA = 1, and at a modified fast magnetosonic point, m2 = 1 + 
[(x + yy)/(xy — y)]2. The former occurs quite generally in axisymmetric winds which satisfy cross-field force balance (Sakurai 1985 
gives a detailed discussion for nonrelativistic flows), and a regularity condition H(xA, yA, yA, zA) = 0 has to be imposed in order to 
ensure that the solution passes through it smoothly. The latter is equivalent to mf sin 0 = 1, where 0 = sin-1{ |xÿ — y |/ 
[(x2 + y2)(l + y2)]1/2} is the angle between the tangent of the field line at point (x, y) and the spherical radius passing through that 
point (see Fig. 1). The peculiar angular modification of the critical point condition arises from the assumption of self-similarity, 
which imposes the constraint that all flow properties along any radial cone should be similar. A wave propagating in the flow must 
have the same phase at all points on the cone, and therefore can propagate only in the polar direction. In this direction, the Alfvén 
wave has a wave speed VA sin 6 and the fast magnetosonic wave has a speed Vf. Since a critical point is physically a location at 
which the flow speed matches the wave speed in the direction of propagation, the relevant component of the flow speed to compare 
is therefore Vp sin 0. It immediately follows that the critical points should occur at the locations indicated above. These arguments 
have been given by BP, who first recognized the importance of the modified fast point. 

A solution to the cross-field equation (2.23) which passes smoothly through the Alfvén point can be obtained by applying 
FHôpitaPs rule. Since this approach has been fully elaborated in other works, we will not dwell on it. The modified fast point, 
however, is something relatively new in the MHD wind literature, and therefore deserves further attention. As we show in the next 
section, a wide range of solutions which pass the Alfvén point may subsequently encounter the modified fast point. These solutions 
are distinguished by different values of the specific energy p. Solutions are always found to be singular where they encounter the 
modified fast point at a finite height. The only way around this difficulty is to adjust the value of p such that the modified fast point 
moves to an infinite height so as to be avoided. 

2.4. Near-Field Expansion 
Near the base of the flow, the magnetic field lines are rigid and nearly force-free. It can be shown that it is impossible for all field 

lines to emerge from the origin, to maintain cross-field balance and still to be self-similar. Therefore, we shall focus on situations 
where the field lines on a given flux surface are anchored to a thin equatorial disk (y = 0) at some finite radiusR0[ = x0c/Q(\l/), 
where subscript “0” denotes quantities evaluated at base of the flow]. Immediately above the base of the flow, the poloidal velocity 
is taken to be zero, and the plasma is assumed to corotate with the field line. From this start-up flow condition, we find, from 
equation (2.19), that 

Ml - x2
a) = V1 - x2

0 , (2.29) 

that is, Alfvén point is located at xA = [1 — (1 — Xo)1/2/a01/2> which is always inside the light cylinder. Since we have neglected 
gravity, there is no force to compete with the centrifugal force. Therefore, as long as the field lines have a component directing 
outward, parcels of plasma can always be accelerated centrifugally, regardless of the angle at which the field line is anchored to the 
disk (in contrast to the case considered by BP). The poloidal velocity of the parcels scales with the radial distance from the base of 
the flow as (<5x)1/2 for small <5x = x — x0. Given the form of the poloidal velocity, we can expand equations (2.19) and (2.23) about 
x = x0, y = 0, and t = 0 (from up = VJc = oTbpx

2) to obtain the shape of the field lines and the velocity profile. We find that both 
the energy equation (2.19) and the cross field balance equation (2.23) are satisfied by the following expansions : 

y = y^x + y2Sx312 + • • • (2.30a) 
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and 

T = z^dx112 + T2 (5x + • • • 

where t15 y2, and t2 are related to the initial slope of the field line by 

with 

1 ->?0 / 2r0x0(l - xl) 
floXo \¡r0xl + (l-x%) 

4 ro34(i — >/o)2 r r0 xl 1 
3 í/oTiX0(l-xg) L rox^ + (l-xg)J 

 r0 x0  r XpTf , 2^1 _ I ~ >?o) 
r0xg + (1 - xg) [l - V xlrij r]0xl 

 3ti(1 - xg)y2  
2j'1(l + yî)[r0xg + (1 - xl)] ’ 

(2.30b) 

(2.31) 

1 - (x0/xA)2 _ß2ß2x\nly\ 
\-xl ’ 0 <72(l+34) • (2.32) 

Finally, we can obtain the poloidal dimensionless 4-velocity from 

Up - atbpx
2 3^2 

2yi(l + yi) 
(2.33) 

The near-field solutions can be used to initiate the numerical integration at the base of the flow. The free parameter yl—the slope 
of the field line at the base—is to be fixed by requiring the solution of the force balance equation (2.23) to be regular at the Alfvén 
point. 

2.5. Far Field Solutions 

Asymptotic structures of hydromagnetically-driven winds have been studied by Heyvaerts & Norman (1989) in the nonrelativistic 
limit, and by Chiueh et al. (1991) in the relativistic limit. Asymptotic flux surfaces may converge to “cylinders” (if R ->const as 
Z ->• go), “ paraboloids ” (if R/Z -► 0 and K -► oo as Z -► co) or “ cones ” (if R/Z -► const as Z -► oo). As discussed in § 2.2, conical flux 
surfaces are excluded in a self-similar wind. 

We first consider asymptotically paraboloidal flux surfaces. Let (■ - •] , denotes a quantity evaluated asymptotically. It is evident 
from equation (2.22) that {bpx

2)a¡ cannot vanish in a self-similar flow. In the limit of finite (b.x2)^ and R/RL -► oo, the cross-field 
force balance equation (2.10) reduces to 

±(B£^çiV 

# V Vp 

(Chiueh et al. 1991). Upon substituting the self-similar scalings, the above equation becomes 

(1 
ref 

2/bJLx 
VJc 

= 0. 

(2.34) 

(2.35) 

E,q^?P ^2'35^can be satisfied only if Æ which corresponds to the current-carrying (Type I) paraboloids discussed by Chiueh et al. (1991). ^ 
Asymptotically current-carrying paraboloidal flux surfaces were also found by BP in their far field analysis of a nonrelativistic 

self-similar wind. The fast critical points for these solutions are always located at infinity. However, because of relativistic effects and 
the fact that our velocity scaling law (Q oc ^ x) differs from that used by BP, the above statement is not necessarily true in our case 
A numerical example to illustrate this point is given in § 3. 

For current-carrying paraboloids, all of the current I is concentrated asymptotically on the rotation axis. This is because the total 
current/J<A) enclosed by an arbitrary flux surface i¡, asymptotically is Im = (B^R)m c/2 = (b^x)tyj c/2 = const when ß= Lin our 
previous paper (Chiueh et al. 1991), we regarded the current-carrying paraboloids as unphysical because of the singular axial line 
current. We include them in this analysis for the sake of comparison with the work of BP. 

Next we consider asymptotically cylindrical flux surfaces. We shall show that this type of flux surface exists only for ß < 1. To do 
this, we find it more convenient to use i = Iny as the independent variable and to treat x as the dependent variable Equation (2 23) 
can then be rewritten as v • / 

d2x _ F x'N(t, x, x\ t)~| 
dt2 [_ D(t, x, x\ t) J (2.36) 

where a prime denotes the derivative with respect to t, and expressions for N(t, x, x’, t) and D(t, x, x', t) are given in the Appendix. An 
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asymptotically cylindrical surface demands that x -► (finite) and x' -> 0 as i -► oo. In this limit we obtain, to the leading order, 

D(t, x, x', t) -> (x')2D1(x00, tJ , N(t, x, x', t) -> iVoix^, tj , (2.37) 

where expressions for D^x^, t^) and z^) are also given in the Appendix. It is easy to check by inspection that an 
asymptotically cylindrical solution cannot exist unless N^x^, Too) = 0- Otherwise x^^ becomes infinite. 

Since NqÍx^, t^) must vanish, the lowest nonvanishing term in the Taylor expansion of iV(i, x, x', t) about x^ is proportional to 
x', i.e., N(t, x, x', t) -> x' N^x^, t^), so that 

3; = ^ = CiAx"“1 , (2.38a) 

in the vicinity of x^, for small Ax = x^ — x. The quantity Cj is an integration constant, and the exponent 

«i 
Ni(xx, rj _ 1 

A(Xao> ^ J J 
(2.38b) 

has to be positive in order that y 00 as Ax -► 0. 
The condition NqÍx^, 0 = 0 and the energy equation (2.19) at the asymptotic cylinder radius yield two coupled algebraic 

equations for the two unknowns x^ and t^, which are solved numerically given the constants x0, <7, ß, and fi. We find that physical 
solutions with finite, positive x^ are possible only for ß < l, and that x^ -► 00 as jS -> 1. Solutions with ß > 1 cannot extend 
asymptotically to cylinders and contain unphysical infinite current densities on their axis, since the current enclosed within a radius 
R scales as R(i ~ß)lß. When the limiting radius lies far beyond the light cylinder (x^ > 1) and the asymptotic flow is highly relativistic 
(Mqq > 1), the energy equation (2.19) reduces tou^^ fi — a/ß, which can be used to obtain since = crz^bp x2)^ ^ azjß (cf. 
eq. [2.22]). The radius x^ turns out to be a monotonically increasing function of ß for given a and ¿1, but is insensitive to x0 as long 
as x0 is small. Physically, a smaller ß means that the magnetic field is relatively stronger at a given radius according to the scaling 
B oc R1/ß~2, and thus it also implies better collimation. In Figure 2, we have plotted log10(x^) against ß for x0 = 0.1 and g = 5.0, 
10.0, and 50.0, assuming n = 2 a. The latter assumption is approximately true for critical solutions with <7 > 1, as will be evident 
from § 3.3 below. 

Once x^ and z^ are known, the exponent a! given by equation (2.38b) is readily calculable, since D^x^, t^) can be obtained by 
direct substitution and iV1)x00, t^) by l’Hôpital’s rule. As noted above, ax must be positive to ensure a valid solution. 

Given a and /? < 1, we can find a radius x^ for every ¿1 > 1. However, solutions initiated from the base of the flow with a given 
value of ju are not necessarily able to approach this limiting-cylindrical radius x^ smoothly. In fact, as we shall show below 
numerically, only one “critical” solution, with a unique specific energy fic, can actually reach the limiting cylinder. Solutions with fi 
not equal to nc will have a turning point at some finite height and radius, where the initially transversely expanding flux surfaces will 
start to pinch back towards the rotational axis (see also BP). Reconvergence of the flux surfaces beyond the turning point makes ÿ 
negative, and eventually the quantity bp x2 begins to decrease. 

According to the energy equation (2.19), one obtains two different solution behaviors in the limits x l,bpx
2 -► 0 and l: 

f °bpx
2 

(supermagnetosonic) (2.39a) 

ß 
Fig. 2.—The limiting cylinder radius is plotted as a function of the parameter ß for a = 5.0 (solid), 10.0 (dashed), and 50.0 (chain-dotted). We have assumed 

H = 2o and x0 = 0.1. 
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or 

mf =~3 (bp X2)2 (submagnetosonic) (2.39b) 

depending on which branch the solution is on. On the supermagnetosonic branch (mf > 1), the fast Mach number mf increases as 
bpx

2 decreases, whereas on the submagnetosonic branch (mf < 1), the opposite holds. This is analogous to the hydrodynamic 
“ nozzle ” effect and is thus termed the “ magnetic nozzle ” effect. The solutions on the former branch have total energy p < nc where 
the rapid increase of m/ leads my sin 0 to approach unity and hence to encounter the modified fast point (§ 2.3) at some finite height, 
whereas the solutions on the latter branch have fi> fic and apparently stop at the point at which bp x2 = 0. 

3. NUMERICAL INTEGRATIONS 

3.1. Critical Cylindrical Solutions 
As pointed out in § 2.3, the relativistic Alfvén point at x = xA is a critical point of the cross-field equation (2.23), at which a 

regularity condition H(xA, yA, yA, ta) = 0 has to be imposed. The Alfvén radius xA is fixed once the flow constants x0, o, ß < 1, and n 
are given. By eliminating ta from the energy equation (2.19) in favor of the slope yA and the height yA at the Alfvén point, one can 
calculate yA, and thus yA (using THopital’s rule on eq. [2.23]), for a given value of j;A. This alows for integration of equation (2.23) 
both inward and outward from the Alfvén point. The undetermined height yA can be fixed by matching the inward integration from 
the Alfvén point onto the outward integration from the base of the flow using the near-field expansion developed in § 2.4. This 
process simultaneously fixes the parameter y1? the slope of the field line at the base. Clearly, the regularity condition completely 
determines the inner part of the solution up to the Alfvén point and does not impose any constraint on the flow constants. 

Once the smooth solution from the base of the flow to the Alfvén point is found by iteration, there is no difficulty in shooting 
outward from the Alfvén point, passing automatically through both the light cylinder and the conventional relativistic fast point 
mf = 1, which is generally located at only a few light cylinder radii from the rotation axis when a (the relativistic parameter) is 
comparable to or larger than unity. In practice, due to the rapid increase of y with respect to x, we change variables and switch to 
integrating equation (2.36) in order to obtain solutions extending to a great distance from the source. 

The solutions beyond the fast point generally do not yield physically meaningful asymptotes. They fall into two categories, as 
mentioned towards the end of § 2.5. Both categories of solution eventually bend back toward the rotation axis as the flow travels 
upward, presumably because the outward inertial force becomes too weak to counteract the unbalanced magnetic pinch force. One 
category of solution has a smaller fi, and the flow accelerates as it gets pinched, until the modified fast point is reached. The other 
category has a larger ¿¿, and the flow decelerates as it is pinched; this continues until the flow stops. Nonetheless, there exists a 
critical nc at the boundary of the two types of solution, for which the outward inertial force just balances the electromagnetic force, 
in such a way that the flow expands outward until it reaches a limiting radius. 

Plotted in Figure 3 are the results of integrating equation (2.23) from the source x = x0 to a point just outside the fast point and 
then switching to integration of equation (2.36) beyond. For illustrative purposes, we have chosen <j = 10.0, ß = 0.95, andx0 = 0.1. 
In these plots, different curves correspond to different choices for the total specific energy: /z = 21.8620 (dotted), 21.8625 (solid), 
22.2200 (dashed). Figure 3a shows the shapes of the field lines, which are nearly degenerate out to several light cylinder radii for the 

Fig. 3a 

log.iy) 

Fig. 3b 
Fig. 3.—(a) Log-log plots of the magnetic field structure for three different energies: p = 21.8620 (dotted), 21.8625 (solid), and 22.2200 (dashed), and (b) their 

corresponding fast magnetosonic Mach numbers as function of the height. 
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Fig. 4 Fig. 5 
FjG 4 The poloidal magnetic field lines (solid) and the lines of the poloidal current density (dashed), for the critical cylindrical solution in Fig. 3 (solid). The 

crossing of the two sets of lines is evident. .. . .... 
Fig. 5—Solution topologies of the energy equation (2.19) for the critical solution in Fig. 3 (solid) and a radial wind (dashed) with the same magnetization 

parameter = 10. The Alfvén point (labeled A) and the fast magnetosonic point (labeled F) correspond to intersections between the “physical branch ol the 
solution of the equation and other solution branches. 

parameters chosen. Plotted in Figure 3b are the fast Mach numbers as functions of the height above the equatorial plane. Clearly, 
the behaviors of the solutions far beyond the light cylinder are completely different for these different energies. The solution with 
H — 21.8625 = iic asymptotically goes to a cylinder, whereas the other two are representative of the two distinctive types of solutions 
with n less than and greater than /¿c, respectively. The one with n < nc becomes singular at mf sin 0=1, while the one with n > fi 
starts to decelerate at some finite height and eventually stops, as mentioned earlier. In Figure 4 we plot, for the critical cylindrical 
solution (n = He), lines (dashed) of the poloidal current density jp, which cross the poloidal magnetic field lines (solid) and are 
responsible for most of the flow acceleration along the flux surfaces. _ . 

To contrast the self-similar critical solution with the critical solution of a radial wind, we solve for t from the energy equation 
(2 19) a quartic equation in r. Plotted in Figure 5 are the real roots of the energy equation for the critical solution discussed above 
(solid lines), and for a radial wind (dashed lines, from Michel 1969) with the same <r. The physical roots in both cases are marked. 
Near the origin, each case has only two real roots, one of which has t < 0 and is therefore unphysical. Two additional roots appear 
at some point inside the Alfvén radius. One of the new roots intersects the physical root at the Alfvén point (labeled A). A second 
intersection between one of the new roots and the physical root occurs at the fast magnetosonic point, which is located at xf = 3.3 
(labeled F) for the self-similar case but which lies at infinity for the radial case (Goldreich & Julian 1970). 

Most of the flow acceleration for the critical solution occurs beyond the fast critical point. If we plot the specific kinetic energy y as 
a function of radius (Fig. 6), then it is evident that the specific kinetic energy at the fast point yf = 2.87 is close to the cube root of the 
total energy ¿¿c

1/3 = 2.80, as in the case of radial wind, while the asymptotic Lorentz factor = 11.30 is much larger. Thus, major 
acceleration indeed takes place after the fast point is passed. We find that this property is common to all critical solutions with large 
(7, as long as ß is close to unity. 

3.2. Critical Paraboloidal Solutions 

Paraboloidal flow solutions with /? = 1 have the same topologies as cylindrical solutions with ß < 1. In particular, given x0 and <r, 
we find that there exists one /xc that makes the solution extend smoothly from the base of the flow to infinity. Other solutions either 
are terminated at the modified fast point when ji < /ic or slow down to zero velocity when /x > ßc- Plotted in Figure 6 is the 
acceleration curve for the critical paraboloidal solution with jc0 = 0.10 and <r = 10.0. The fast magnetosonic point is located at a 
finite distance, which is different from the family of paraboloidal solutions found by BP. 

3.3. Energy Partition in the Flow 

The value of the critical energy gc is determined by x0, ß, and more importantly, <j. It turns out that fic is insensitive to x0 as long 
as Xq is small, i.e., provided the linear speed of the rotating magnetic field at the base of the flow is much less than the speed of light. 
Table 1 shows how jic, the terminal Lorentz factor ym, and the limiting cylinder radius depend on o and ß, for x0 = 0.1. Several 
features are clear from Table 1. First, we notice that nc 

is also insensitive to the value of ß; therefore the approximate relation 
nc- a/ß derived in § 2.5 implies that the larger ß is the greater acceleration there will be. Second, most of the ¿¿„’s in Table 1 

are about twice as large as their corresponding o’s, except for those of small <7 (the column <r = 1.0 in Table 1). Thence we deduce 
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X 
Fig. 6.—Acceleration curves of the critical cylindrical solution in Fig. 3 (solid) and the critical parabolic solution (dashed) with ß = \, o = 10, and x0 = 0.1. 

from the foregoing approximation for that, if ß is close to unity, the kinetic energy approaches about half of the total energy, or 
equivalently, that the kinetic energy flux will come nearly into equipartition with the Poynting flux. 

4. CONCLUSIONS AND DISCUSSION 

We have explored a class of relativistic, hydromagnetic jet flows which exhibit self-similar scaling in radius. We find, in agreement 
with BP’s work on self-similar nonrelativistic winds, that all such flows collimate along the rotation axis. It turns out that the 
asymptotic behaviors of the flow solutions are determined by the scaling of the rotation law, £loci¡/-p. The flux surfaces are 
asymptotic to cylinders when ß < 1, and become paraboloidal when ß = 1. Our flows can attain highly relativistic speeds, with most 
of the acceleration occurring beyond the fast magnetosonic point through the “ magnetic nozzle ” effect. 

The applicability of our solutions to realistic astrophysical systems is limited by the restrictions necessary to obtain a self-similar 
solution. The assumption of self-similarity demands that no length scale be present in the problem. Since a special relativistic 
treatment imposes a velocity scale, c, we require that all components of the velocity be the same at corresponding points of all flux 
surfaces. This implies that the angular velocity at the base of the flow must scale according to Q oc R-1. Thus, we are unable to treat 
a relativistic wind emanating from a Keplerian disk (as was treated by BP in the nonrelativistic limit), although such a wind is 
certainly possible in principle. We are also unable to include the effects of gravity and pressure within the self-similar framework. 

Nevertheless, our solutions capture several important aspects of relativistic MHD winds which are likely to apply to non-self- 
similar flows as well. In particular, they exhibit the tendency toward asymptotic collimation and approximate equipartition between 
the kinetic energy flux and the Poynting flux of the flow. These features were found, for example, by Sakurai (1985, 1987), who 
constructed numerical models of nonrelativistic winds, assuming a split monopole field geometry at the flow base. The most 
thorough investigations so far on relativistic winds driven by rotating magnetic fields were carried out by Camenzind (1986, 1987). 
In his model calculations, the magnetosphere is assumed to be sparsely populated with plasma. Not only the Alfvén radius is located 
at the light cylinder, but also the plasma current was negligibly small so that all field lines cross the light cylinders horizontally; the 
flow begins to collimate only beyond the light cylinders. The finite plasma current is included in our treatment, as is evident from the 
fact that field lines cross the light cylinder with a finite slope. Therefore, collimation may occur even well inside the light cylinder. 
Another difference between Camenzind’s calculations and ours is that he assumed that the fast point lies far beyond the light 

TABLE 1 
Dependences of the Critical Energy fic and the Terminal Flow 

Lorentz Factor on Parameters a and ß for x0 = 0.1 

<7 
Flow   

Variables ß 1 5 20 50 

Hc   0.95 3.58 11.80 41.93 102.01 
0.90 3.55 11.75 41.85 101.93 
0.80 3.51 11.68 41.74 101.76 
0.70 3.50 11.63 41.68 101.69 

y«,   0.95 2.42 6.47 20.85 49.37 
0.90 2.32 6.12 19.60 46.36 
0.80 2.10 5.32 16.70 39.24 
0.70 1.86 4.33 13.04 30.23 
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cylinder in order to allow for a simple outer boundary conditions, whereas the fast point in our self-similar flows is located typically 
only a few light cylinder radii from the rotational axis. Common to both calculations is the fact that, at the fast point, the flow 
attains a Lorentz factor of order ¡i113 and most of the energy flux is stored in the form of Poynting flux. It is only through the 
so-called magnetic nozzle effect beyond the fast point that the Poynting flux continues to be converted into kinetic energy flux. 

It is worth noting that neglecting the inertia of the wind plasma yields a family of force-free solutions which are confined within 
the light cylinder (Sulkanen & Lovelace 1990). These solutions are not simply the highly magnetized wind solutions in the high a 
(i.e., low mass-loading rate) limit. The inclusion of the plasma inertia, however small it is, would remove the singularities at the light 
cylinder that prevent the force-free solutions from crossing. In fact, the important processes of flow acceleration, especially those 
occurring beyond the light cylinder, are not captured at all in force-free solutions. 

To contrast our relativistic self-similar solutions with those found by BP, we first note that the scalings of flow variables at the 
base are different in the two cases. It is therefore not suprising that we do not necessarily recover all of their results, even in the limit 
of low a (nonrelativistic). In particular, the family of asymptotically paraboloidal solutions they found always have mf = \ at 
infinity, whereas a similar family of solutions (with ß = 1) in our case do not have such a property in general. Furthermore, an 
additional electric field (due to special-relativistic effects) contributes to the cross-field force balance in our case. This new piece of 
physics permits us to have asymptotically cylindrical solutions. 

Finally, we write down the total power output enclosed within some flux surface \¡/out 

I* ifrout 
L = J /#)/ic2#, (4.1) 

where /#) is the mass flux per unit magnetic flux, which has the scaling \\ix~2ß. For a rough estimate, we shall take [i in equation 
(4.1) to be 2 a (see § 3.3). Since /i is independent of ij/ and /? < 1, the above integral is dominated by the outer flux surfaces, except in 
the limit of ß 1 where all flux surfaces contribute equally to the power output. Making use of the definition of a (cf. eq. [2.14b]), we 
have L ^ ^2

utü
2

ut/[47r(l — ß)c], that is, the total power output enclosed within a flux surface is proportional to the square of the 
product of the angular momentum on that surface and the magnetic flux it encloses. 

To summarize, our study of self-similar, relativistic winds has yielded the following results: 
1. We demonstrate the existence of complete current-carrying, magnetized jet solutions. These results support the conclusions of 

our previous work on the collimation of relativistic MHD winds (Chiueh et al. 1991), which dealt only with asymptotically far-field 
solution. 

2. For these collimated relativistic jets, the conversion of electromagnetic energy into plasma kinetic energy is much more 
efficient than for radial winds. We find that the final kinetic energy flux is comparable to the Poynting flux in general. 

We thank Ellen Zweibel for useful conversations. This research was partially supported by National Science Foundation grants 
AST88-16140 and ATM85-06632, NASA Astrophysical Theory Center grant NAGW-766, the Alfred P. Sloan Foundation, and the 
National Science Council of Taiwan grant NSC79-0208-M008-32. 

APPENDIX 

The self-similar cross-field force balance equation (2.23) can be rewritten in the form of equation (2.36) when we use i = Iny as 
independent variable, where the denominator and the numerator in the square bracket of equation (2.36) are given by 

and 

(Al) 

(A2) 

where F, mA, and mf are defined in the text (eqs. [2.26] and [2.27]), and are not dependent on t explicitly. In fact, t comes into 
equation (2.36) explicitly only through 

In general, near an asymptotically cylindrical surface of finite radius, one should have i -> oo, x' -► 0, and asx-^x^.In this 
limit, ÿ~2 <£ x' 1, and thus D(t, x, x', t) and N(t, x, x', t) approach the forms of equation (2.37), with the asymptotic constants 
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öi(*oo> O and N0(xx, rj given by 

and 

m2
A 

N0(x, t) = - (\ 
ßj mf 

+ 1 - 
TX 

1 -- 

where all quantities are to be evaluated at the limiting cylinder xa 

(A3) 

(A4) 
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