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ABSTRACT 
Within the context of disk instability theory, cataclysmic variables possessing accretion disks (i.e., non- 

magnetic systems) are expected to exhibit disk instabilities that result in dwarf nova eruptions if the mass 
transfer rates fall below a critical level, Mcrit. It is argued that the eruptive characteristics of cataclysmic vari- 
ables can therefore be used to infer relative mass transfer rates among nonmagnetic cataclysmic variables. 
Here the dwarf nova period distribution is used to constrain the variation of mass transfer with orbital period. 
For orbital periods above the gap, agreement between the observed dwarf nova period distribution with those 
constructed from various magnetic braking models is generally disappointing. The differences arise both 
because the braking laws often result in M(P) relations that are unacceptably steep, and, more specifically, 
because the braking laws offer no explanation for the observed dearth of dwarf novae with orbital periods 
between 3 and ~4 hr. The most promising braking law is that of Mestel and Spruit. Under certain conditions 
this braking law is able to produce a relatively flat M(P) relation, but the braking law is not entirely satisfac- 
tory because it offers no explanation for the complete dominance of stable over unstable accretors imme- 
diately above the period gap. Speculative ideas are presented that may eventually provide a complete and 
satisfactory explanation for the lack of dwarf novae with periods between 3 and ~4 hr. As a general point, it 
is suggested that the dwarf nova period distribution, and not only the overall period distribution, should be 
considered when applying observational constraints to theories of mass transfer in cataclysmic variables. 
Subject headings: accretion, accretion disks — binaries: close — novae, cataclysmic variables 

1. INTRODUCTION 

Considerable progress has been made during the past 
decade in understanding the secular evolution of cataclysmic 
variable stars. It is generally accepted that most, and possibly 
all, cataclysmic variables are the descendents of long-period, 
relatively high-mass binaries that have gone through a phase of 
common envelope evolution, losing much mass and angular 
momentum (Paczynski 1976; Webbink 1979). Because the 
white dwarf is usually the more massive component, cataclys- 
mic variables are stable with respect to mass transfer. In a 
hypothetical system with total mass and angular momentum 
conserved, any mass transfer from the secondary star to the 
white dwarf primary will cause the stellar separation to 
increase, and the mass transfer to cease. Mass transfer can only 
be sustained by an expansion of the secondary star (due to 
nuclear evolution), or by a loss of orbital angular momentum 
from the binary. Since the low-mass secondary stars cannot 
have evolved significantly during the age of the Galactic disk, it 
must be the case that cataclysmic variables sustain mass trans- 
fer as a result of orbital angular momentum loss. In the rela- 
tively long-period systems (P > 3 hr), magnetic braking of the 
secondary star’s rotation by its own stellar wind appears to 
drain enough angular momentum from the binary to account 
for the relatively high mass transfer rates observed (Verbunt & 
Zwaan 1981; Rappaport, Verbunt, & Joss 1983; Taam 1983; 
Patterson 1984). For the shorter period systems, angular 
momentum loss via gravitational radiation is believed to play a 
major role (Paczynski & Sienkewicz 1981; Rappaport, Joss, & 
Webbink 1982). 

The evolution of cataclysmic variables produces a bimodal 
orbital period distribution consisting typically of periods 
between 80 minutes and approximately half a day, with a sta- 

tistically significant gap between periods of ~2 and ~3 hr 
(Robinson 1983). The currently favored explanation for the 
period gap derives from the so-called disrupted magnetic 
braking model (Spruit & Ritter 1983; Rappaport et al. 1983; 
Hameury et al. 1988; McDermott & Taam 1989; Taam & 
Spruit 1989). The rapid mass loss associated with magnetic 
braking drives the secondary star out of thermal equilibrium 
causing it to bloat beyond its main-sequence radius. After the 
system has evolved to a period of about 3 hr, it is believed that 
the angular momentum loss rate is reduced significantly. That 
the secondary star becomes fully convective near this period 
(M2/Mq ~ 0.3) appears to be responsible for the reduction 
(Robinson et al. 1981; Spruit & Ritter 1983; Hameury et al. 
1987). The lower angular momentum loss rate that results 
slows the evolution, allowing the secondary star to reestablish 
thermal equilibrium and detach from its Roche lobe. The 
system then is believed to evolve in a detached state until 
angular momentum losses due to gravitational radiation 
brings the secondary star back into contact at a period of 
about 2 hr. 

Despite these successes, the details of how magnetic break- 
ing drives mass transfer in cataclysmic variables is not fully 
understood. For example, although some form of magnetic 
braking appears to be capable of driving the relatively high 
mass transfer rates thought to be present in the longer period 
cataclysmic variables, there is no one, generally favored, 
braking theory applicable to cataclysmic variables. In their 
pioneering paper, Verbunt & Zwaan (1981), were the first to 
show that magnetic braking could in principle account for the 
mass transfer in cataclysmic variables and low-mass X-ray 
binary systems. Their model, which is based on an extrapo- 
lation of the Skumanich law for slowly rotating G stars, has 
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been criticized as not being applicable to the rapidly rotating 
secondary stars in close binary systems. Since the work of 
Verbunt & Zwaan (1981), several other magnetic braking pre- 
scriptions have been put forward, but deciding between these 
different models is difficult because there are many free param- 
eters and few observational constraints. 

From an observational standpoint, much of the problem 
concerns the difficulty in comparing the mass transfer rates 
predicted by models for magnetic breaking with observations. 
As with most other fundamental parameters of cataclysmic 
variables, it has proven difficult to determine accurate mass 
transfer rates for individual systems. To determine the absolute 
level of mass transfer, the distance to the system must be 
known. If one then attempts to determine the mass accretion 
rate from an estimate of the bolometric luminosity, then cor- 
rections need to be made for orbital inclination, for contami- 
nation of the disk light by the secondary star, and for flux 
outside the observed wave band (i.e., the bolometric 
correction). In most cases these corrections are poorly known, 
making the mass transfer rates uncertain. In the majority of 
cases where the distances are unknown, the situation is con- 
siderably worse. Mass transfer rates must be estimated from 
comparisons of the observed colors with those from available 
disk models. Work by Wade (1984, 1988), in particular, has 
shown that the disk models are incomplete and that mass 
accretion rates obtained in this way are unreliable, especially 
for dwarf novae whose disks are not in a steady state. 

As an illustration of the difficulties involved in estimating 
reliable mass transfer rates, Patterson (1984), using variations 
of the above methods, was able to infer a power-law relation- 
ship between the average mass transfer rate and orbital period 
[d log M(P)/d log P ^ 3.3], while using similar data, but differ- 
ing assumptions, Verbunt & Wade (1984) found no obvious 
correlation of M with orbital period. More recently Warner 
(1987) has taken a more conservative approach and used the 
absolute magnitudes of systems with reasonably reliable dis- 
tance determinations to make statistical inferences about M. 
This approach avoids many model-dependent assumptions 
necessary to convert the observations to derived quantities. 
Warner finds that there is a significant dispersion in the abso- 
lute magnitude, and presumably M, at a given orbital period. 

Although determining absolute mass transfer rates for spe- 
cific systems at specific epochs has proven to be problematic, 
Shafter, Wheeler, & Cannizzo (1986) have suggested that the 
eruptive characteristics of cataclysmic variables can be used to 
provide meaningful constraints on the rate of mass transfer as 
a function of orbital period. Specifically these authors have 
argued that the occurrence of dwarf nova eruptions can be 
used to discriminate between high and low mass transfer rates 
in systems containing accretion disks (i.e., nonmagnetic 
systems). Their argument rests on one crucial assumption: 
Dwarf nova eruptions are triggered by thermal instabilities in 
the accretion disks. There are several variations of the disk 
instability model (Meyer & Meyer-Hofmeister 1981 ; Faulkner, 
Lin, & Papaloizou 1983; Cannizzo & Wheeler 1984; Mine- 
shige & Osaki 1983), but they all share a common prediction: 
If the mass transfer rate lies above a critical value, Mcrit, the 
instability is suppressed, the accretion rate through the disk is 
constant, and dwarf nova eruptions do not occur. In general, 
dwarf novae are expected to have mass accretion rates less 
than ~10-9Moyr-1, while other cataclysmic variables pos- 
sessing accretion disks, but not exhibiting dwarf nova erup- 
tions, have mass transfer rates that generally exceed ~10-9 

M0 yr-1. Shafter et al. (1986) were the first to exploit this 
prediction, using the observed dwarf nova period distribution 
to argue against a steeply increasing M(P) relation such as the 
one found by Patterson (1984). 

During the five years since the work of Shafter et al. (1986), 
there has been a significant increase in the number of cataclys- 
mic variables with known orbital periods, making the dwarf 
nova period distribution better defined. In addition, progress 
has been made in our theoretical understanding of the pro- 
cesses that drive mass transfer in systems above the period gap. 
One example is a new magnetic braking model, proposed by 
Mestel & Spruit (1987), that has been claimed to drive mass 
transfer with an orbital period dependence more in accord 
with observations. In view of developments such as these, I 
have decided to reexamine the consistency between the 
observed dwarf nova period distribution and the predictions of 
current magnetic braking theory. My purpose is not to illumi- 
nate or focus on small deficiencies in the current state of mag- 
netic braking models, as these models are admittedly still in an 
early stage of development, but rather to emphasize the point 
that the dwarf nova period distribution, not just the overall 
period distribution of cataclysmic variables, is an important 
observational constraint that should be used to constrain 
models of mass transfer above the period gap. For example, the 
observed width of the period gap is often used to constrain 
magnetic braking models, but the fact that the period gap 
for dwarf novae (presumably low-M systems) is almost twice as 
wide as the gap in the overall distribution is not usually 
considered. 

The paper is organized as follows. In § 2 I discuss the 
observed dwarf nova period distribution. In § 3 I summarize 
the predictions of disk instability and magnetic braking theory. 
These predictions are then used to produce theoretical period 
distributions that can be compared with the observations. 
Finally, in § 4 I discuss possible avenues to explore in bringing 
the theory into better accord with observations. 

2. THE OBSERVATIONAL DATA 

Figure 1 shows the orbital period distribution for non- 
magnetic cataclysmic variables with periods less than 10 hr 
(only ~5% of known systems have longer periods). I have 
excluded the few systems with periods longer than 10 hr 
because the period distribution is ill defined and the evolved 
secondary stars in such systems make their evolution more 
complicated. The data used in the period distribution have 
been culled from the compilations of Ritter (1990a) and 
Webbink (1990) with a small number of modifications to be 
discussed below. Because I propose to use the eruptive charac- 
teristics of cataclysmic variables to discriminate between high- 
and low-M systems, cataclysmic variables that may not have 
the potential to undergo a dwarf nova outburst regardless of 
their mass transfer rates must be excluded from the sample. 
Specifically, magnetic systems, the DQ Her (intermediate 
polars), and the AM Her stars (polars) have been strictly 
excluded because the accretion disks in the former systems are 
thought to be disrupted to varying degrees by the white dwarfs 
magnetic field, while the latter systems have no disks at all. 
Within the context of disk instability theory it is impossible for 
the diskless AM Her systems to exhibit dwarf nova eruptions; 
it is unclear whether the DQ Her systems, with partially (or 
completely) disrupted disks, can undergo a disk instability. The 
suspicion that DQ Her systems are incapable of undergoing 
disk instabilities is borne out empirically as essentially no bona 
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FIG. 1.—The observed orbital period distributions for unstable accretors (dwarf novae) and for stable accretors. The heavy solid histogram represents all 
cataclysmic variables that are thought to have accretion disks (i.e., the nonmagnetic systems). The shaded region of the upper panel represents the dwarf nova period 
distribution. For comparison, the complement of the dwarf nova period distribution, the period distribution for stable accretors, is shown in the lower panel. Note 
the dearth of dwarf novae immediately above the period gap. 

fide member of this class has been observed to exhibit dwarf 
nova eruptions.1 After the exclusion of magnetic systems, the 
remaining cataclysmic variables can be divided into two 
classes: those that exhibit dwarf nova eruptions, and those that 
do not. We will sometimes refer to these two classes as unstable 
and stable accretors, respectively. 

Before proceeding further, it is necessary to discuss briefly 
the potential sources of error in the observational data, specifi- 
cally the dwarf nova period distribution. There are two sources 
of uncertainty: the reliability of the orbital period and the 
classification of the system as either a stable or unstable accre- 
tor. Generally, the orbital period is one of the more reliably 
determined parameters of any cataclysmic variable. The prin- 
cipal source of error is orbital period aliasing. Occasionally 
nonorbital photometric periodicities (or quasi-periodicities) 
are incorrectly identified with the orbital period of the system. 

1 An exception is the very long orbital period system GK Per (P ~ 2 day). 
The accretion disk in GK Per is likely to be sufficiently large that disk insta- 
bilities can occur even if the inner portion of the disk is disrupted by the white 
dwarfs magnetic field. 

In order to minimize the possibility of including systems with 
spurious periods, I have excluded systems whose periods are 
explicitly reported as uncertain. The orbital periods for the 
remaining systems should result in a reliable estimate of the 
orbital period distribution; the possibility that a few spurious 
periods are included in the final sample should not have a 
significant impact on the analysis presented here. 

The situation with regard to identification of eruptive behav- 
ior is more problematic. It is possible, even likely, that the mass 
transfer rate of a given system fluctuates around some secular 
mean value. Although the direct estimates of M are wrought 
with uncertainty, the available observational data suggest that 
there may be a considerable spread in M at a given period 
above the gap (Hameury, King, & Lasota 1989; Warner 1987; 
Patterson 1984). Since, in the disrupted magnetic braking 
model, the width of the period gap depends on the mass trans- 
fer rate above the gap, these fluctuations cannot be too large or 
the gap would become ill defined, or would disappear alto- 
gether. Thus in a statistical sense, the ratio of stable to unstable 
accretors within a given orbital period bin should not be 
affected significantly by these short-term fluctuations, and the 
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relative numbers of stable and unstable systems should provide 
a reliable tracer of the secular mean mass transfer rate. 

A more immediate difficulty is simply that the long-term 
photometric monitoring of many systems is sporadic, leaving 
open the possibility that eruptive events may have been missed. 
Fortunately, for most systems the eruptive behavior is not in 
serious doubt. In fact, a principal tenet of this study is that the 
eruptive behavior of a cataclysmic variable, while not known 
with absolute certainty in all cases, is known more reliably 
than is the mass transfer rate for that system. Once again to 
minimize the effect of misclassifications, I have excluded from 
the sample systems whose eruptive characteristics are not 
clearly established. Because the process of selecting the most 
“ reliable ” systems is necessarily subjective at some level, a few 
systems that have been omitted deserve special comment. 
These systems are listed in Table 1, along with a brief explana- 
tion of why they were omitted from the sample. 

A comparison of the dwarf nova period distribution in 
Figure 1 with that of the stable accretors reveals an obvious 
distinction. Almost all of the systems below the period gap are 
dwarf novae, while the majority of systems just above the 
period gap (3 < P[hr] < 4) are stable accretors (i.e., they do 
not exhibit dwarf nova eruptions). The extremely high inci- 
dence of dwarf novae below the gap is easily understood if we 
make the usual assumption that gravitational radiation is the 
dominant angular momentum loss mechanism acting at these 
very short periods. Henceforth, I will comment little on the 
eruptive behavior of systems below the period gap. It is the 
eruptive behavior of systems above the gap, although not well 
understood at present, that may provide useful constraints on 
models for magnetic braking. 

Above the gap there is a general admixture of stable and 
unstable accretors. The distributions for the two types of 
systems, however, are not similar. A Kolomogorov-Smirnov 
test yields a two-sample statistic of 1.46. A value this high or 
higher is expected to occur with a probability of 2.8 x 10“ 2 if 
the distributions are drawn from the same parent distribution. 
The primary reason for the dissimilarity is that, arranged in 
order of period, the first 15 systems in a row out of the 68 
systems above the gap are all of one eruptive type—they are all 
stable accretors. Note that if the stable and unstable accretors 
above the gap were assumed to be distributed randomly with 

TABLE 1 
Stars Omitted From Period Distribution 

Object Class Period Reason for Rejection 

RZLeo .. 
TT Boo .. 
RWUMi 
V795 Her 
BZCam . 
WY Sge .. 
1329-294.. 
CM Del... 
UUAql ... 
EYCyg .. 
ARCnc ... 
BY Pup ... 
V794 Aql . 
ElUma ... 

DN 
DN 
N 

DQ? 
N?, VY? 
N, DN? 

UG? 
DN?, VY? 

DN 
DN 
UG? 
UG 
NL 

UG? 

0.071 
0.077 
0.081 
0.108 
0.139: 
0.154 
0.159 
0.162 
0.164 
0.181: 
0.215 
0.225: 
0.23: 
0.268 

Period uncertain 
Period uncertain 
Period uncertain3 

Class uncertain 
Period and class uncertain 
Class uncertain 
Class uncertain 
Class uncertain0 

Period alias0 

Period uncertain 
Class uncertain 
Period uncertain 
Period uncertain 
Class uncertain 

a The 0.081 d photometric modulation may not be orbital in nature. 
b AAVSO records do not support the DN classification. 
c Periods of 0.140 and 0.164 d are possible; the latter is slightly preferred 

(J. A. Thorstensen 1991, private communication). 

orbital period, the probability of a single “run” of 15 or more 
systems of one type out of a sample of 68 systems would be 
~2 x 10“3 (e.g., von Mises 1964). 

That the observed distributions of stable and unstable accre- 
tors are dissimilar is not necessarily surprising. In general the 
two distributions should be determined by the relationship 
between the mass transfer rates driven by magnetic braking 
and the critical mass accretion rate given by disk instability 
theory. Thus although there is no reason to expect the distribu- 
tions to be similar, the functional form of M(P) given by the 
magnetic braking laws provides explicit predictions for the 
ratios of stable to unstable accretors as a function of period. In 
the next section, the observed dwarf nova period distribution is 
compared with those predicted by the currently popular mag- 
netic braking prescriptions. 

3. PREDICTIONS FROM THEORY 

3.1. Disk Instability Models 
It is beyond the scope of this paper to discuss disk instability 

theory in detail. The basic idea is that material initially trans- 
ferred from the secondary star is temporarily stored in a low- 
viscosity disk surrounding the white dwarf primary. When the 
material reaches a critical temperature and surface density, an 
instability ensues, heating the material, raising its viscosity, 
and causing it to accrete onto the white dwarf. Here we only 
make use of the general result that disk instabilities (dwarf 
nova eruptions) do not occur if the mass transfer rate from the 
secondary star is above a critical rate, Mcrit. As pointed out by 
Shatter et al. (1986), the various models for disk instabilities 
give remarkably similar expressions for this critical mass trans- 
fer rate. Specifically, the models of Meyer & Meyer-Hofmeister 
(1983), Faulkner et al. (1983), Cannizzo & Wheeler (1984), 
Mineshige & Osaki (1983), and Smak (1984) yield expressions 
for Mcrit that can be approximated well by 

Mcrit ^ 1016rfb6Mr°-87 g s“1 , (1) 

where r10 is the radius of the accretion disk in units of 1010 cm 
and AÍ! is the mass of the white dwarf. If we adopt Eggleton’s 
(1983) expression relating the dimensionless radius of the 
Roche lobe to the mass ratio of the binary, and assume that the 
accretion disk fills a fraction £ of the primary’s Roche lobe, we 
can cast the expression for Mcrit in terms of the orbital period, 
P. Specifically, 

Mcrit(P) = 6.54 x 10"^KF^)]2-6^)1-73 Mq yr“1 , (2) 

where F(q) is a weakly varying function of q( = M2/M1) and is 
given by 

(1 + <Z) 
0.6 + q2,3\n(l + q~1/3) 

A comparison of Mcrit(P) with expressions for M(P) given by 
evolutionary models for cataclysmic variables will enable us to 
compute theoretical dwarf nova period distributions, which 
will then be compared with the observed distribution. 

3.2. Angular Momentum Loss Mechanisms 
To determine how the mass transfer rate varies as a function 

of orbital period I have followed the general procedure out- 
lined in Taam (1983). I assume M is driven by angular momen- 
tum losses resulting from the combined effects of gravitational 
radiation (Jgr) and magnetic braking (Jmb). As an option I 
include the angular momentum loss that results from material 
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expelled from the white dwarf during nova eruptions (Jnoya)- 
I assume that gravitational radiation acts for all periods, while 
the effects of magnetic braking are included only for periods 
above the gap. It may be the case that magnetic braking con- 
tributes to angular momentum losses below the gap, but with 
much reduced efficiency. However, since we are primarily con- 
cerned with systems above the period gap, a precise treatment 
of possible angular momentum loss mechanisms below the gap 
is not necessary in the analysis. Following Taam (1983), the 
angular momentum loss rate can be written 

Jorb = Jgt + nJmb + fh Jnova > (4) 
where r¡1 = 0(1) for periods below (above) the gap and rj2 = 
0(1) for conservative (nonconservative) mass transfer. 

Expressions for each of the angular momentum loss mecha- 
nisms require that the mass-radius relation for the secondary 
star be specified. In order to provide a consistent comparison 
between the different magnetic braking laws, I assume a 
general mass-radius relation of the form 

Re \MqJ 
(5) 

The precise form of jorh depends on whether we have conserva- 
tive mass exchange. However, a general expression for the 
orbital angular momentum, Jorb, can be written as 

jorb = 9.0 x 1051a1/2M_1/3M1M
(25 + 3^)/6 g cm2 s“1 , (6) 

where, following Patterson (1984), I have made use of the 
convenient Roche lobe approximation for small q given by 
Paczynski (1971). 

Similarly the angular momentum loss rate due to gravita- 
tional radiation is given by the well-known dipole formula, 
modified by the general mass-radius relation for the secondary 
star, 

Jgr = -1.1 x 1034a “ 7/2M “ 2l3MlM(2 9 ~ 21<^)/6 ergs . (7) 

In the case of nonconservative mass transfer, the angular 
momentum loss due to mass expelled from the white dwarf can 
be written (Taam 1983) as 

J nova 
4rbM2 

MXM 
M2 ergs , (8) 

where Jorb is given in equation (6). 
I consider three proposed magnetic braking laws: (1) the 

Verbunt & Zwaan (1981, hereafter VZ81) formulation; (2) the 
Patterson (1984, hereafter P84) law; and (3) the Mestel & 
Spruit (1987, hereafter MS87) law. Using equation (5) the 
angular momentum loss rate due to magnetic braking, Jmb, for 
the three magnetic braking laws can be cast in general form. 
I discuss each in turn below. 

3.2.1. The Verbunt and Zwaan Formulation 

The VZ81 formulation assumes that magnetic braking of the 
secondary stars in cataclysmic variables can be obtained by an 
extrapolation of the Skumanich law (Skumanich 1972), which 
describes how the equatorial rotation rate of main-sequence G 
stars depends on age. The VZ81 law can be expressed as 

jvz81 = —1.8 x 1037a~1/2/^2/c2M(
2
5~^)/2 ergs , (9) 

where/is an empirically determined parameter obtained from 
the calibration of the Skumanich law and k is the radius of 
gyration of the secondary star. The value of / has been esti- 
mated to lie between 0.73 (Skumanich 1972) and 1.78 (Smith 

1979); here I adopt/ = 1. The value of k is dependent on the 
mass of the secondary star’s convective envelope. For fully 
convective stars (i.e., near the upper edge of the period gap) 
k2 ~ 0.2, while for a 0.7 M0 secondary star that would be 
typical of a system at a period of ~ 8 hr, k2 ^ 0.03 (e.g., 
Hameury et al. 1988). For simplicity, I follow VZ81 and adopt 
k2 = 0.1 independent of orbital period. The effect on the 
analysis of including the period dependence of k2 will be dis- 
cussed further below. 

3.2.2. The Patterson Formulation 

The P84 formulation makes use of observed period changes 
in close binaries to estimate the angular momentum loss rate 
directly. The expression is given simply as 

JP84 = _ 1037M2 ergs . (10) 

Because this is an empirical relation, there are no free pa- 
rameters as are found in the theoretical magnetic braking 
prescriptions. 

3.2.3. The Mestel and Spruit Formulation 

The MS87 formulation is the most recent of the magnetic 
braking prescriptions. The region surrounding the secondary 
star is divided into two regions, a so-called dead zone of closed 
magnetic field lines, and a wind zone of open field lines where 
mass, and hence angular momentum, can be drained from the 
secondary star. Because mass and angular momentum cannot 
be lost from the dead zone, the net effect of including this 
region is to reduce the effectiveness of the magnetic braking. 
The strength of the braking can be characterized by a param- 
eter, n, which relates the coronal X-ray luminosity to the mag- 
netic field strength: LxocBn (cf. Hameury 1991). The MS87 
relation can be written as 

jMS87 = -9.1 x 1035a(4“3w)/6M[
2
6+n+^4~3n)J/6 ergs . (11) 

3.3. Mass Transfer Rates 
The orbital-period-dependent mass transfer rates that we 

seek can be obtained by equating the angular momentum loss 
rates described above with the appropriate expression for Jorb. 
In the case of conservative mass transfer, 

*/>rb — 
dJor 

dt !] Jm = c 
(12) 

while if the mass accreted by the white dwarf is expelled from 
the system during nova eruptions, it seems reasonable to 
expect that would remain approximately constant during 
the secular evolution of the binary. If so, then 

J orb 
Ai 1 = const 

(13) 

Figure 2 shows the variation of M(P) for an example of 
conservative mass transfer with a total system mass, M = 1.6 
Mq. Below the period gap the mass transfer rate driven by 
gravitational radiation alone is comfortably below the critical 
mass transfer rate. It may be possible for magnetic braking to 
be acting at a diminished level below the period gap and still 
not produce a significant number of stable accretors. Above 
the gap both gravitational radiation and magnetic braking are 
assumed to drive mass transfer. The dependence on orbital 
period is shown for three representative expressions for the 
mass-radius relation of the secondary star. The simplest form, 
used by VZ81 is given by £ = a = 1. A more realistic form, 
based on observations of low-mass main-sequence stars, was 
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Fig. 2—The comparison between the critical mass transfer rate dividing stable from unstable accretion, Mcrit, and the mass transfer rates expected from 
evolutionary theory in the case of conservative mass transfer. The total system mass is 1.6 M0, and the disk is assumed to fill 50% of the primary’s Roche lobe. The 
heavy solid line represents Mcrit. The dotted line represents the mass transfer driven by angular momentum loss due to gravitational radiation. The other curves 
represent the mass transfer rates driven by the sum of angular momentum loss due to magnetic braking and gravitational radiation. The short-dash-dot curve 
represents the VZ81 braking law, the log-dash-dot curve represents the P84 braking law, and the short-dashed curve represents the MS87 braking law. The three 
panels show the effect on M{P) of varying the mass-radius relation of the secondary star. 

y = l6£_ r ’ (VZ81)’ (17) adopted by P84, who found £ = 0.88 and a = 1. Also shown 
are curves based on the mass-radius parameters adopted by 
McDermott & Taam (1989) in their magnetic braking models 

= 0.76; a = 0.78). In general, the smaller the value of the 
steeper the dependence of M on orbital period. The value of a 
essentially acts like a scale factor. The slope of the M(P) rela- 
tion, (d log M/d log P), can be approximately by a power law of 
index y. For conservative mass transfer, 

py 
M oc ——  —7 77—7 , (14) 

a[(5/3 + QMi - 2M2] 

while in the case of nonconservative mass transfer, 
py 

M 00 a[(5/3 + ml + (1 + QM1M2 - 2M|] ’ (15) 

where the value of y depends on the particular mass-radius 
relation and braking law considered. Specifically, 

y = ^fp (P84), (16) 

and, for n = 1, the MS87 braking law gives 

y = 8/3~_2f3 , (MS87). (18) 

The denominators in equations (14) and (15) are slowly 
varying functions of the mass ratio, q, for small q. For mass 
ratios aproaching unity, the slope (d log M/d log P) becomes 
larger than that given by y alone, particularly in the case of 
conservative mass transfer. This eifect would be partially offset 
if the period dependence of the radius of gyration of the sec- 
ondary star, k, were taken into account. Since the radius of 
gyration is actually a slowly decreasing function of the orbital 
period, not a constant as I have assumed, inclusion of the 
period dependence would result in a slight decrease in the slope 
of M(P). Thus y is a good estimate of the slope of the M(P) 
relation. Table 2 gives a few representative values of y for each 
of the three braking laws and mass-radius parameter £. 
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TABLE 2 
The Slope of the M(P) Relation 

y = (d log M/d log P) 

Braking Law (£ = 1.0) (Ç = 0.88) (£ = 0.76) 

P84   3.67 4.54 5.92 
VZ81   1.67 2.18 2.98 
MS87 (n = 0.5)   1.17 1.43 1.85 
MS87 (n = 1.0)   1.00 1.27 1.69 
MS87 {n = 2.0)   0.67 0.94 1.35 

Observations of nova shells suggest that the mass ejected in 
nova eruptions is at last as great as the amount of material 
accreted from the secondary star. Thus the inclusion of angular 
momentum losses from mass lost from the white dwarf during 
nova eruptions and the assumption that M x remains constant 
during the secular evolution of the system would appear to be 
a more realistic approach than simply adopting the idealized 
case of conservative mass transfer. Figure 3 shows the depen- 
dence of M(P) for an example of nonconservative mass transfer 
with Mi = 1 Mq. Once again I show the variation of M(P) for 

three representative mass-radius relations for the secondary 
star. A comparison with Figure 2 reveals that the noncon- 
servative mass transfer case yields a somewhat flatter depen- 
dence of M on orbital period. Despite this difference, the 
conservative and nonconservative cases are similar in one 
important respect: the slope ofM(P) is significantly steeper than 
Mcrit(P). ^ ^ 

Although the mono-mass examples shown in Figures 2 and 
3 are useful for didactic purposes, they are not necessarily 
satisfactory for predicting the dwarf nova period distribution. 
It is almost certainly the case that the observed cataclysmic 
variable period distribution is populated by an ensemble of 
systems having a range of masses. In addition to the expected 
variation of the secondary star’s mass with orbital period, there 
is likely to be significant dispersion in the white dwarf mass at 
a given orbital period. The variation in white dwarf mass will 
affect both the rate of angular momentum loss, and hence M, 
as well as the radius of the accretion disk, and hence Mcrit. 

Because we want to compare the predictions of magnetic 
braking theory with the observed dwarf nova period distribu- 
tion, we must consider the selection effect favoring the dis- 
covery of systems containing massive white dwarfs (Ritter & 
Burkert 1986; Ritter & Özkan 1986; Ritter 1986). As discussed 

LOG P (hr) 
pIG 3—Same as Fig. 2, except for nonconservative mass transfer. The mass accreted by the white dwarf is assumed to be expelled from the system during a 

succession of nova eruptions occurring during the secular evolution of the binary. The mass of the white dwarf is assumed constant at 1 M0. Note that the mass 
transfer rates do not increase quite as steeply with orbital period as in conservative mass exchange. 
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^ by Ritter and collaborators, in systems where the accretion 
§ disk dominates the luminosity of the system (dwarf novae in 
S eruption and nova-like variables), the strength of the selection 
2 effect is determined primarily by the depth of the white dwarf’s 

gravitational potential well. To first order, the strength of the 
selection is proportional to (M1/R1)v/2, where Mx and Rl are 
the mass and radius of the white dwarf and v is a parameter 
that depends on both the nature of interstellar absorption and 
the spatial distribution of the systems. The selection effect is 
weakest for a disklike distribution where the effects of inter- 
stellar extinction are included. In this case v = 1. The selection 
is strongest in the case where the systems are assumed to be 
spherically distributed in an absorption-free environment; here 
v = 3. In a magnitude-limited sample with a faint limiting mag- 
nitude (so that most systems are discovered) a value of v = 1 
probably best describes the selection effect. For rather bright 
limiting magnitudes on the other hand, where only nearby 
systems are sampled, the stronger selection effect given by 
v = 3 may be more appropriate. 

To model the intrinsic dispersion in Mu I have adopted the 
theoretical mass distribution computed by Politano (1988; 
Politano & Webbink 1990). The mass distribution,/(M^, is 
reproduced in Figure 4 for three degrees of observational selec- 
tion : v = 0 (volume-limited sample ; in our approximation, no 
selection effect), v = 1, and v = 3. It is clear that selection 
effects can have a significant effect on the observed white dwarf 
mass spectrum. In particular, strong observational selection 
dramatically reduces the fraction of known systems containing 
He white dwarfs. 

The full range of white dwarf masses shown in Figure 4 is 
not always appropriate for systems at a given orbital period. 
Specifically, for a given orbital period (secondary star mass), 
there is a minimum white dwarf mass below which mass transfer 
will be thermally and dynamically unstable. The minimum 
value, Mi min(P), is indicated in Figure 4 and is given by 
M2{P)lqCrfo where qCTÏX depends on the structure of the second- 
ary star. The value of qcrii ranges from ~2/3 for low-mass 
secondary stars with deep convective envelopes to ~5/4 for 
higher mass secondary stars. Following Politano (1991), 

-.6 -.5 -.4 -.3 -.2 -.1 0 .1 .2 
Log Mwd/M0 

Fig. 4.—The theoretical white dwarf mass distribution taken from calcu- 
lations of Politano (1988, 1991). The solid line represents the theoretical dis- 
tribution, uncorrected for observational selection characterized by v = 1 and 
v = 3, respectively (see text for details). The minimum white dwarf mass, 
Mi min(U» is shown for selected orbital periods. 

I adopt 

ft (M2/Mo)<0.4, 
<Zcru Hf + 2.24(M2/Me - 0.4)1’36 0.4 < (M2/M0) < 0.8 , 

U (M2/M0) > 0.8 . 
(19) 

For the sample of cataclysmic variables adopted in this 
study, it is likely that the selection effect is adequately 
described by a value of v between the extremes of v = 1 and 
v = 3. We begin by considering the case having the weakest 
selection. Figure 5 shows the M(P) relations computed using 
the theoretical white dwarf mass distribution characterized by 
v = 1. The M(P) and McrlX(P) relations have been computed 
using the median white dwarf mass appropriate for a given 
orbital period (the median rather than the mean was used 
because the truncated mass distributions can be highly 
skewed). In this way the approximate ratio of stable to 
unstable accretors at a given orbital period can be estimated by 
visually comparing the M(P) and MCTix(P) relations. The 
requirement for thermally and dynamically stable mass trans- 
fer prohibits low-mass white dwarfs at long orbital periods and 
results in a median white dwarf mass that increases with 
orbital period. The net effect is to decrease the slope of the 
M(P) relation, and to increase the slope of the Mcrit(P) relation, 
thus bringing the two into better agreement. 

To explore the effect of varying v, Figure 6 compares M(P) 
relations computed using the three theoretical white dwarf 
mass distributions shown in Figure 4. For consistency all three 
cases assume a secondary star mass-radius relation character- 
ized by a = 1.0 and £ = 0.88. It is obvious that the character of 
the M(P) curves is not significantly affected by the precise form 
of the mass distribution. Although at first this result may seem 
surprising, it is not unexpected; the reason is simple. The selec- 
tion effect raises the average white dwarf mass for all periods 
roughly equally (the effect is somewhat stronger at shortest 
orbital periods where the largest range of masses are allowed). 
As the selection effect becomes increasingly stronger, thereby 
favoring systems with increasingly more massive white dwarfs, 
the results approach those where the white dwarf masses are 
high and independent of obital period, such as the mono-mass 
examples explored previously (see Fig. 3).2 

Since the slopes of the M(P) and Mcrit(P) relations are quite 
insensitive to the poorly determined value of v, I will retain the 
white dwarf mass distribution characterized by v = 1 in the 
analysis to follow. It is worth keeping in mind that since 
stronger observational selection can only steepen the M(P) 
relations relative to the Mcrit(P) curve and thus increase the 
fraction of dwarf novae at shorter orbital periods, a choice of 
v = 3 would only worsen the agreement with the observed 
period distribution above the period gap. 

3.4. The Theoretical Dwarf Nova Period Distribution 
In order to make a quantitative comparison of theory with 

observation, I have used the results of the previous section to 
compute model dwarf nova period distributions. Specifically, a 
comparison of M(P, MJ with Mcrit(P, MJ, will establish 
whether a system with a given white dwarf mass and orbital 
period can be expected to undergo disk instabilities. By con- 

2 Classical nova systems are subject to even stronger selection for systems 
containing massive white dwarft (e.g. see Ritter et al. 1991). In this case, mono- 
mass calculations similar to those shown in Fig. 3 may be more appropriate. 
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LOG P (hr) 
Fig. 5.—Same as Fig. 3, except that the curves are computed using the median white dwarf mass computed from the v = 1 mass distribution shown in Fig. 4. The 

median white dwarf mass is a function of the orbital period because the minimum white dwarf mass, Ml min is constrained by the requirement of thermally and 
dynamically stable mass transfer. The major effect of the variation of Mx with period is to flatten the period dependence of the mass transfer rates. The small 
irregularities are the result of the coarse binning of the white dwarf mass distribution. 

sidering an ensemble of such systems, mass-specific dwarf nova 
period distributions, N(P, can be constructed. An overall 
theoretical dwarf nova period distribution, N(P\ can then be 
obtained by integrating the mass-specific distributions over the 
range of white dwarf masses appropriate for each period and 
weighting by the white dwarf mass frequency distribution, 
/(Mi). Specifically, 

N(p) _ ÍM-h
min,P) wmp, MJdMi 

()“ W?miAP)f(M1)dM1 ’ (2Ü) 

where Mch is the Chandrasekhar mass. 
The final parameters that must be specified before we can 

compute the period distributions are those describing the 
mass-radius relation for the secondary star and the size of the 
accretion disk relative to the mean Roche lobe radius, C- 
Although a mass-radius relation characterized by a = <!; = 1 
yields the flattest M(P) dependence, these values have been 
chosen historically, not because they are the most accurate, but 
because they provide a particularly simple mass-radius rela- 
tion. Observations of low-mass main-sequence stars suggest a 
rather weaker dependence of the radius on mass. A good 

example is the relation adopted by P84, where a = 1, and 
£ = 0.88. The models computed by McDermott & Taam (1989) 
suggest an even weaker dependence. As a compromise, I have 
adopted the mass-radius relation advocated by P84 in the 
simulations. 

The value of Ç affects Mcrit and hence whether a given system 
will undergo disk instabilities; it is therefore constrained by the 
fraction of all systems observed to be dwarf novae. In comput- 
ing model period distributions, I have chosen the value of Ç to 
normalize the model distribution so that it yields the same 
number of dwarf novae as in the observed distribution. In all 
cases of interest, the required value of ( is found to lie between 
0.5 and 0.6. Although the data are limited, values in this range 
are consistent with many observational estimates. 

It is possible that ( may have a weak orbital period depen- 
dence. The maximum size that an accretion disk may attain 
relative to the primary’s Roche lobe, Çmax> is believed to be a 
very weakly varying function of the mass ratio, and hence 
possibly the orbital period of the system (Paczynski 1977). Spe- 
cifically, the value of (max increases by roughly 10% from 
Cmax — 0.85 to £max ^ 0.95, when the mass ratio decreases from 
unity to M2/M1 =0.1. For simplicity, and because observa- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
4.

 .
26

83
 

DWARF NOVA PERIOD DISTRIBUTION 277 No. 1, 1992 

.1 .2 .3 A .5 .6 .7 .8 .9 1 
LOG P (hr) 

Fig. 6.—A comparison between the Mcrit(P) and M(P) curves for differing values of the parameter, v, controlling the strength of the observational selection 
for systems containing massive white dwarfs. All panels represent calculations performed with the same secondary star mass-radius parameters (a = 1; Ç = 0.88). 
The top panel represents v = 0 (no selection), the middle panel, v = 1, and the bottom panel, v = 3 (see text for details). It is clear that the relationship between the 
Mcrit(P) and M(P) curves is insensitive to the strength of observational selection. 

tional data do not suggest that real accretion disks necessarily 
grow to the maximum allowable size, I make the assumption 
that Ç is independent of orbital period. If ( does indeed have a 
weak orbital period dependence, the effect would be similar to 
that of increasing the strength of the observational selection in 
favor of massive white dwarfs: it would increase the discrep- 
ancy between the slopes of the M(P) and Mcrit(P) relations, 
resulting in an unacceptably large fraction of dwarf novae at 
short orbital periods. 

Figure 7 shows three representative model dwarf nova 
period distributions that result from each of the three magnetic 
braking laws. Unlike the observed dwarf nova period distribu- 
tion, in all cases the ratio of stable to unstable accretors 
increases as a function of orbital period. This is especially 
evident in the case of the P84 braking law, where a particularly 
steep M(P) relation results in an abrupt transition from dwarf 
novae to nova-like systems. A %2 testing procedure confirms 
that none of the model distributions satisfactorily reproduces 
the observed dwarf nova period distribution. The x2 probabil- 
ity functions are 1 x 10"4, 6 x 10"3, and 2 x lO-1, for the 
P84, VZ81, and MS87 braking laws, respectively. It is worth 
noting that since an increase in the strength of the observa- 

tional selection for systems containing massive white dwarfs 
has the effect of reducing the dispersion in the white dwarf 
masses for a given orbital period, a more abrupt transition 
from unstable to stable accretors in the theoretical period dis- 
tributions would be expected. Thus, the inclusion of stronger 
selection in the model calculations would result in even poorer 
agreement between the observed and theoretical period 
distributions. 

The relatively flat braking law of MS87 comes the closest 
to reproducing the observed dwarf nova period distribution. 
The MS87 law with n = 1 and mass-radius parameters 
a = £ = 0.88 gives an orbital period dependence that has 
essentially the same slope as does the critical mass transfer rate. 
Unlike the braking laws of VZ81 and P84, the parameter n in 
the MS87 law can affect not only the absolute level of mass 
transfer at a given period, but also the slope of the M(P) rela- 
tion. Following MS87 and McDermott & Taam (1989), I 
adopted n = 1 for the initial analysis. However, this parameter 
is poorly constrained, and n may plausibly exceed unity. As 
pointed out by Hameury et al. (1988), the slope of the M(P) 
relation is inversely proportional to n. For example, if we 
assume Ç = 0.88 and take n = 1.45 as did Hameury (1991), we 
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FIG 7—Theoretical orbital period distributions based on a comparison of the mass transfer rates with Mcrit. The number of dwarf novae (unstable accretors) in 
each period bin has been computed using the v = 1 white dwarf mass distribution from Fig. 4. Note the tendency for dwarf novae to dominate the distribution at 
short orbital period, particularly in the case of the P84 braking law. 

find that 7 = 1.12, which is significantly smaller than the value, 
y = 1.27, obtained assuming n = 1 (see Table 2). 

Panel one of Figure 8 shows M(P) for the extreme, but plaus- 
ible values: n = 0.5 and n = 2.0. Panels two and three show 
theoretical period distributions based on these braking laws. It 
is clear that higher values of the index n reduce the slope of the 
M(P) relation, and increase the ratio of stable to unstable ac- 
cretors at orbital periods just above the gap. A x2 test shows 
that the MS87 braking law with n = 2 produces a model dwarf 
nova period distribution that is not inconsistent with the 
observed distribution. 

Although it is difficult to draw firm conclusions from the 
simulations performed here, one general point seems clear : It is 
unlikely that the mass transfer rate can increase as steeply with 
orbital period as is suggested by most currently popular 
braking laws. Including a weak period dependence for the frac- 
tional disk radius Ç, or increasing the strength of the observa- 
tional selection, will only exacerbate the problem by increasing 
the discrepancy between the slopes of the M(P) and Mcrit(P) 
relations. Steep braking laws such as the one advocated by P84 
are particularly difficult to reconcile with the observed dwarf 
nova period distribution. The relatively flat braking law of 
MS87, on the other hand, offers a significant quantitative 

improvement when the model period distribution is compared 
with observations. 

4. DISCUSSION 

Despite the fact that the MS87 braking law comes close to 
reproducing the observed dwarf nova period distribution, it 
still cannot be considered to be entirely satisfactory. In particu- 
lar, it is difficult to imagine how any simple magnetic braking 
prescription can account for the complete dominance of stable 
over unstable accretors just above the period gap. It seems 
likely that another explanation must be found to account for 
this aspect of the dwarf nova period distribution. Below I 
describe a few speculative ideas that may provide better agree- 
ment with the observed period distribution. 

4.1. Additional Angular Momentum Loss 
One obvious way to account for the abundance of stable 

accretors with periods between 3 and ~ 4 hr is to suppose that 
there is an additional angular momentum loss mechanism 
acting at periods just above the gap, resulting in mass transfer 
rates that are significantly above Mcrit. The major objection to 
this idea is that the disrupted magnetic braking model for the 
period gap places constraints on the level of mass transfer at 
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Fig. 8.—Variations of the MS87 braking law. The top panel shows the effect of varying the parameter n on the expected mass transfer rates. The lower dashed 
curve represents n = 0.5, and the upper curve n = 2.0. The lower two panels show the theoretical period distributions that result from the two cases. The rather flat 
orbital period dependence given by the MS87 law with n = 2.0 comes the closest to reproducing the observed dwarf nova period distribution. 

the upper edge of the gap. Specifically, the width of the gap 
depends on how far out of thermal equilibrium the secondary 
star is when magnetic braking is diminished, which in turn 
depends on the secondary star’s mass-loss rate. The lower the 
mass transfer rate, the narrower the resulting period gap. The 
magnetic braking prescriptions considered here can all be 
adjusted to give M(P = 3 hr) ~ 10“9 M0 yr-1, a value that 
results in the observed width of the gap. If an additional 
angular momentum loss mechanism is operating that signifi- 
cantly raises the mass transfer rate for a period of ~ 3 hr, then 
the ability of the models to reproduce the observed width of 
the gap will be destroyed. It is worth emphasizing here that the 
period gap is actually wider for dwarf novae (presumably the 
low-M systems) than it is for cataclysmic variables in general. 
If dwarf novae and stable accreting systems retain their distinc- 
tion during the secular evolution of the system, then this 
behavior is exactly the opposite of what one would expect from 
the disrupted magnetic braking model: the low M systems 
should have the narrowest gap. It therefore appears that the 
dearth of dwarf novae with periods between 3 and ~ 4 hr is 
unlikely to be the result of an unusually high mass transfer rate 
in this period range. 

4.2. Weakly Magnetic Systems 
Besides having a high mass accretion rate, another charac- 

teristic that would suppress dwarf nova eruptions would be for 
the system to have its inner disk disrupted by a magnetic white 
dwarf. It may be possible for the field to be strong enough to 
disrupt the accretion flow in the inner disk, but yet sufficiently 
weak to avoid transforming the system into a conspicuous 
magnetic accretor (displaying strong X-ray emission and 
polarization). It is not obvious why such systems would be 
particularly common between 3 and 4 hr. However, the rela- 
tively small orbital dimensions in these short period systems 
would result in a greater fraction of the accretion disk being 
disrupted by the white dwarf’s weak magnetic field. Thus weak 
field primaries in long orbital period systems may not suppress 
dwarf nova eruptions. 

The possibility that a class of weakly magnetic systems may 
exist has gained some support by the eclipse analyses of 
Williams (1989), who pointed out that the emission-line pro- 
files in many eclipsing nova-like systems do not display the 
classic rotational disturbance during eclipse ingress and egress 
that one expects for systems with accretion disks. The spectra 
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of many of these systems display prominent He n 24686 emis- 
sion, characteristic of emission from a high-temperature region 
in the system. The strength of He n emission is often used as an 
indicator of either magnetic accretion or of a high mass trans- 
fer rate. Analysis of eclipsing systems suggest that the He n 
emission is produced near the white dwarf. If the mass accre- 
tion rate is high, the temperature of the inner disk may be 
sufficiently high to produce significant He n emission. Alterna- 
tively, if the accretion is channeled onto a restricted area of the 
white dwarfs surface, as expected for a magnetic white dwarf, a 
high-temperature region can also be created. As we have just 
seen, it appears unlikely that the mass transfer rates are 
unusually high for systems just above the gap; therefore the 
possibility that magnetic accretion is playing a role in these 
systems cannot be easily dismissed. It is perhaps not surprising 
that many of the stable accretors displaying strong He n emis- 
sion and ill-defined rotational disturbances have periods 
between 3 and 4 hr. The newly defined class of novalike vari- 
ables displaying strong He n emission and large emission-line 
phase offsets, the SW Sex stars (see Thorstensen et al. 1991), are 
good examples. 

4.3. Correlation of White Dwarf Mass With Orbital Period 
If the white dwarf masses are positively correlated with 

orbital period, the systematic increase in accretion disk size 
will modify the ratio of stable to unstable accretors as a func- 
tion of orbital period. Unfortunately the masses of white 
dwarfs in cataclysmic variables are poorly known, so it is not 
possible to test the above idea observationally. Nevertheless, 
the scanty data that are available do suggest that the mean 
white dwarf mass may be weakly correlated with orbital period 
(Shafter 1983). As we have seen, from a theoretical perspective 
this is not surprising since long-period systems containing low- 
mass white dwarfs are unstable with respect to mass transfer 
on a dynamical time scale. Such systems, once formed, would 
probably experience a common envelope stage of evolution 
where they would quickly evolve to shorter orbital period. 
A further possibility that massive white dwarfs may be rare at 
short orbital periods is raised by observations of nova shells. 

Spectroscopy of nova shells shows an overabundance 
(relative to solar) of CNO elements, and in some cases (the 
“ Neon ” novae) an overabundance of neon. As it is difficult to 
produce these elements in the required abundance during the 
nova eruptions, it is thought that some fraction of the ejecta 
comes directly from the underlying white dwarf (e.g., Truran & 
Livio 1986). For these systems, not only will the mass of the 
white dwarf fail to increase during the secular evolution of the 
binary, as assumed in the case of conservative mass transfer, it 
may actually decrease as successive nova eruptions gradually 
whittle away the white dwarf. Thus as systems evolve toward 
shorter orbital period, the mean white dwarf mass should 
decrease. The smaller the mass of the white dwarf for a given 
orbital period, the smaller will be the white dwarf s Roche lobe, 
and hence the smaller will be the accretion disk. Since the value 
of Mcrit is strongly dependent on the size of the disk (see eq. 
[1]), the frequency of systems displaying dwarf nova eruptions 
will be lower in short-period systems containing low-mass 
white dwarfs than it would be if the masses were higher. 

Finally it may be possible that some of the systems with 
periods just above the period gap may contain low-mass 
helium white dwarfs. In the model simulations considered in 
the previous section, the P84 mass-radius relation gave M2 — 
0.27 M0 for a period of 3 hr. Thus, the minimum allowed white 
dwarf mass, Mx min ~ 0.4 M0, and helium white dwarfs were 

excluded. However, if the secondary stars in these systems are 
severely out of thermal equilibrium, the mass of the secondary 
stars may be significantly lower than we have assumed. In this 
case, Mi min may become sufficiently low to allow otherwise 
unstable systems to exist. 

4.4. The Role of Hibernation 
The idea that dwarf novae, novae, and nova-like behavior 

represent different stages in the evolution of the same system 
has been used to explain various problems in understanding 
the physics of nova eruptions (Shara et al. 1986). The outbursts 
of classical (and recurrent) novae are caused by a thermonu- 
clear runaway in the material accreted onto the surface of the 
white dwarf (Starrfield et al. 1972; Starrfield, Sparks, & Truran 
1974a, b). Models show that the nature of the eruption is criti- 
cally dependent on parameters such as the mass and lumi- 
nosity of the white dwarf, the accretion rate, and the chemical 
composition of the accreted material, specifically the CNO 
abundance (Shara, Prialnik, & Shaviv 1980; MacDonald 
1983). Of particular importance is the mass-transfer rate. If the 
rate is too low, it will take a prohibitively long time to build up 
a critical envelope mass, and nova eruptions will be rare. On 
the other hand, if the mass-transfer rate is too high, the accret- 
ed material will not become sufficiently degenerate prior to 
ignition, the envelope will burn nonexplosively, and a nova 
eruption is unlikely to occur. The critical mass-accretion rate 
depends on the properties of the white dwarf, but in general 
accretion rates above 10-9 M© yr_1 are not expected to 
produce strong thermonuclear runaways (Kutter & Sparks 
1980; Prialnik et al. 1982). If boundary layer heating is taken 
into account, the mass-transfer rates must be even lower 
(Shaviv & Starrfield 1987). 

Although, at present, relatively few orbital periods are 
known for novae, the available data seem to suggest that novae 
occur primarily in systems with periods above the period gap. 
As pointed out by Ritter (1990b), the requirement that novae 
have mean mass-transfer rates below ~10-9M© yr-1 is not 
easy to reconcile with the disrupted magnetic braking period 
gap models, which require that M(P = 3 hr) ~ 2 x 10“9 M© 
yr-1. Thus, on immediate inspection, it would appear that 
models of thermonuclear runaways on white dwarfs and the 
magnetic breaking models are incompatible. 

Ritter (1990b) has reviewed possible resolutions of the M 
conflict of novae. Perhaps the most promising resolution lies in 
the “ hibernation ” scenario of Shara and collaborators (Shara 
et al. 1986). In this picture, the mass that was transferred with a 
high accretion rate to the white dwarf immediately following a 
nova eruption has time to cool and become degenerate during 
the subsequent period of hibernation (Prialnik & Shara 1986). 
After the system emerges from hibernation, mass transfer 
resumes and a nova eruption soon follows. As long as the mean 
mass-transfer rate throughout the inter-eruption cycle is 
greater than ~2 x 10“9 M© yr-1, the period gap model is 
not affected. Thus the conflict between models for the period 
gap and those for thermonuclear runaways on white dwarfs 
disappears. 

An implication of the hibernation scenario is that novae, 
dwarf novae, and nova-like variables represent cyclical stages 
in the evolution of the same systems. In particular, a nova-like 
stage is expected to occur immediately prior to and following a 
nova eruption if the mass-transfer rate becomes high enough to 
suppress disk instabilities. On the other hand, during the tran- 
sitions into and out of hibernation, the mass-transfer rates 
should be such as to permit dwarf nova eruptions. The 
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observed frequency of each type of system within a given 
period range will depend on the fraction of time that the 
system spends in each cyclical stage. If the hibernation is suffi- 
ciently deep (i.e., if the mass transfer is greatly diminished or if 
it ceases altogether) and the transition into and out of hiberna- 
tion is sufficiently rapid, the observed frequency of dwarf novae 
may be quite small. Calculations by Livio & Shara (1987) 
suggest that hibernation will be deepest, at a given period, for 
systems with mass ratios near unity, or, in the case of a given 
mass ratio, for systems with the shortest orbital period. Note 
that these are the conditions that are expected to prevail at 
periods between 3 and 4 hr if the white dwarf mass is correlated 
with the orbital period as discussed in the previous section. If 
systems with orbital periods between 3 and 4 hr spend a large 
fraction of their time in deep hibernation, the observed ratio of 
stable to unstable accretors may therefore not reflect the ratio 
expected based on a simple comparison of Mmb with Mcrit. 

5. CONCLUSIONS 

I have argued that the eruptive characteristics of cataclysmic 
variables can be used to infer mass-transfer rates for non- 
magnetic cataclysmic variables. Theoretical M(P) relations 
that result from models of angular momentum loss due to 
magnetic braking were used to construct theoretical dwarf 
nova period distributions. Agreement between the observed 
dwarf nova period distribution with those constructed from 
various magnetic braking models was generally disappointing. 
The differences arise both because the braking laws often 
resulted in M(P) relations that were unacceptably steep, and, 
more specifically, because the braking laws offer no explana- 
tion for the observed dearth of dwarf novae with orbital 
periods between 3 and 3.8 hr. These results are robust in that 
increasing the strength of observational selection for systems 
containing massive white dwarfs, or allowing for a possible 
orbital period dependence in the fractional size of the accretion 
disk relative to the primary’s Roche lobe, (, would only exacer- 
bate the discrepancy. 

The most promising braking law was that of Mestel & 
Spruit (1987). Under certain conditions this braking law was 
able to produce a relatively flat M(P) relation that resulted in a 
model dwarf nova period distribution formally consistent with 
the observed distribution. Despite this result, the MS87 
braking law cannot be considered entirely satisfactory because 

Campbell, R. A., & Shafter, A. W. 1991, in Proc. San Diego Workshop on 
Fundamental Properties of Cataclysmic Variables, ed. A. W. Shafter (San 
Diego : A. W. Shafter), 4 

Cannizzo, J. K, & Wheeler, J. C. 1984, ApJS, 55, 367 
Eggleton, P. 1983, ApJ, 268, 368 
Faulkner, J., Lin, D. N. C, & Papaloizou, J. 1983, MNRAS, 205, 359 
Hameury, J. M. 1991, A&A, 243,419 
Hameury, J. M., King, A. R., & Lasota, J. P. 1989, MNRAS, 237, 39 
Hameury, J. M., King, A. R., Lasota, J. P., & Ritter, H. 1987, ApJ, 316,275 
 . 1988, MNRAS, 231,535 
King, A. R. 1989, MNRAS, 241,365 
Kovetz, A., Prialnik, D., & Shara, M. M. 1988, ApJ, 325,828 
Kutter, G. S., & Sparks, W. M. 1980, ApJ, 239,988 
Livio, M., & Shara, M. M. 1987, ApJ, 319,282 
MacDonald, J. 1983, ApJ, 267,732 
McDermott, P. N., & Taam, R. E. 1989, ApJ, 342,1019 
Mestel, L., & Spruit, H. C. 1987, MNRAS, 226, 57 (MS87) 
Meyer, F., & Meyer-Hofmeister, E. 1981, A&A, 104, L10 
 . 1983, A&A, 121,29 
Mineshige, S., & Osaki, Y. 1983, PASJ, 35,377 
Paczynski, B. 1971, ARA&A, 9,183 
 . 1976, in IAU Symp. 76, The Structure and Evolution of Close Binaries, 

ed. P. Eggleton, S. Mitton, & J. Whelan (Dordrecht: Reidel), 75 
 . 1977, ApJ, 216,822 
Paczynski, B., & Sienkewicz, R. 1981, ApJ, 248, L27 

it was unable to account for the dominance of stable over 
unstable accretors immediately above the period gap. Mag- 
netic braking models, even the MS 87 models, generally predict 
that dwarf novae should be relatively common in this period 
regime. It is unlikely that this discrepancy can be removed by 
hypothesizing that the mass-transfer rates are anomalously 
high in the 3-3.8 hr regime because the observed width of the 
period gap places an upper limit to M(P = 3 hr) of ~2 x 10-9 

Mq yr“1, even if there were a known physical process avail- 
able to drive the additional mass transfer. Alternative explana- 
tions include suppression of disk instabilities in these 
short-period systems by weakly magnetic white dwarf pri- 
maries, deep hibernation for short period, near-unity mass 
ratio systems, or suppression of disk instabilities in systems 
having low-mass white dwarfs as the disks in such systems 
would be relatively small. Despite these rather speculative 
ideas, it is fair to say that no compelling explanation for the 
dominance of stable accretors between periods of 3 and 3.8 hr 
has yet been identified. 

As a general point, I have argued that the dwarf nova period 
distribution, and not only the overall period distribution, 
should be considered when applying observational constraints 
to theories of mass transfer in cataclysmic variables. The lack 
of dwarf nova systems in the 3-3.8 hr period range causes the 
width of the period gap for dwarf novae to be essentially twice 
as wide as the traditional 2-3 hr period gap for cataclysmic 
variables in general. Furthermore, since essentially all non- 
magnetic novalike variables have periods “longward” of the 
period gap and the vast majority of AM Her systems have 
periods below the gap, the traditional period gap is only clearly 
defined for dwarf novae in any case ! Finally, the fact that the 
disrupted magnetic braking model for the period gap predicts 
a narrower gap for low-M systems than for high-M systems 
again seems to be in serious conflict with the observations. 
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