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ABSTRACT 
We investigate statistical properties of gravitational lensing in the presence of a cosmological constant, with 

emphasis given to the study of uncertainties in cosmological factors arising from different possible physical 
and statistical formulations of the problem. We find that a substantial uncertainty associated with the distance 
formulation for the prediction of the lensing optical-depth makes the discrimination between low- and high- 
density universe models difficult for high-redshift lens-quasar systems. We find, however, that the cosmological 
constant, if it dominates over the mass density, increases the optical depth greatly, and its effect is much larger 
than the uncertainty arising from details of the problem’s formulation. Therefore, the lensing frequency can 
provide a simple and very useful test for the cosmological constant. For a low-redshift system (zs < 2) the 
formulation uncertainties are rather moderate, though the difference among different cosmology models is not 
large. The optical-depth redshift distribution is also very sensitive to cosmological models, but it is less sensi- 
tive to statistical formulations. A realistic prediction is also made for the lensing frequency taking account of 
various selection effects for some particular samples. We also study the gravitational lens effect with a cosmo- 
logical constant on the quasar-galaxy correlation and on fluctuations in the cosmic microwave background 
radiation. This paper thus attempts to present a systematic and reasonably complete discussion of statistical 
problems in gravitational lensing for A # 0 cosmological models. 
Subject headings: cosmology: theory — gravitational lensing 

1. INTRODUCTION 

The determination of the world model is one of the main goals of cosmology. If we accept the view that the universe is 
homogeneous and isotropic on large scales, the model is described by Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry 
which is characterized by a few parameters. One of them is the cosmological constant which has been regarded in general as 
anathema and usually set equal to zero without any compelling reasons. Various aspects of recent observations, however, suggest 
reconsideration of a nonvanishing cosmological constant. One example is the problem of the age of the universe. While the distance 
to the Virgo cluster center has been regarded as a matter of debate, recent work with the new technique of the planetary nebula 
luminosity function and surface brightness fluctuations applied to the Virgo cluster indicated that the distance to the center of the 
cluster is ~15 Mpc rather than 20 Mpc (Jacoby, Ciardullo, & Ford 1990; Tonry, Ajhar, & Luppino 1990; Tonry 1991), in 
agreement with the earlier results of Aaronson et al. (1986) and Pierce & Tully (1988). This distance is translated into a Hubble 
constant of 75-100 km s -1 Mpc"1. This value also receives support from the study of galaxies and clusters beyond the Virgo cluster 
(Aaronson et al. 1986; Fukugita et al. 1991 ; Fukugita & Hogan 1991). This larger value of H0 can be reconciled with the cosmic age 
indicated by globular cluster evolution (i0 > 14 Gyr) (e.g., VandenBerg 1983; Iben & Renzini 1984; Alcaino, Liller, & Alvarado 
1988) only with a positive finite cosmological constant. Another example is given by the recent number counts of faint galaxies 
(Tyson 1988; Lilly, Cowie, & Gardner 1991). The number of galaxies at faint magnitudes is even more than expected in a open (low- 
density) universe, and the observation is reproduced best with a sizable cosmological constant in a low-density universe (Fukugita et 
al. 1990b). Typical cosmological parameters favored by this analysis are Q0 ~ 0.1 for the mean mass density and 20 ~ 0.5-1.2, where 
20 = A/(3Hq) is the normalized cosmological constant. While a nonvanishing cosmological constant, if confirmed, would carry a 
significant implication for our understanding of cosmology, the ways in which one can clearly test for its existence are limited: The 
cosmological constant has little effect on the local dynamics (Peebles 1984). The effect on dynamics can hardly be observed also with 
distant clusters because it appears always to be canceled in observable quantities (Lahav et al. 1991). The effect should not be 
important in the far past since its strength diminishes as (1 + z)"3. Most promising are tests of geometry for an intermediate redshift 
zs 1-3. 

Bearing this in mind, we extensively examine the effect which the cosmological constant causes on gravitational lensing. (For 
general reviews on lensing, we refer to Cañizares 1987; Blandford & Kochanek 1987; Turner 1989.) It is not a new idea that 
gravitational lenses be used as a tool to explore the cosmological parameters (e.g., Refsdal 1964; Press & Gunn 1973). Earlier 
studies, however, have shown that the lensing properties are rather insensitive to the mean mass density of the Universe (e.g., 
Blandford & Kochanek 1987), although the possibility of distinguishing the case of Q0 = 0 from the flat (Q0 = 1) universe using the 
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statistical property of lenses has been suggested by Turner, Ostriker, & Gott (1984; hereafter TOG). Fukugita, Futamase, & Kasai 
(1990a) and Turner (1990) have independently pointed out that the cosmological constant affects significantly the lensing probabil- 
ity, and that statistical properties, which are drastically affected by its presence, can be used to test for its existence. 

There also already have been a few sporadic studies which investigated the effect of the cosmological constant on some specific 
aspects of lensing, especially in high-density universes (Paczynski & Gorski 1981; Alcock & Anderson 1986; Gott 1987; Gott, Park 
& Lee 1989). In this paper we focus upon the low-density universe that is favored by many present observations. For convenience of 
comparison we consider, for most cases, four typical choices of the cosmological parameters : 

case A: Q0 = 1 and /l0 = 0; case B: Q0 = 0.1 and À0 = 0; 

case C: £20 = 0.1 and À0 = 0.9 ; case D: Q0 = 0 and À0 = 1 . (1) 

Case A is included as a reference, since most of the studies for gravitational lensing in the past have assumed this case. Case D is the 
opposite extreme k = 0 limiting case. 

The general problem in using gravitational lensing to study the world model is that there are a number of uncertainties in the lens 
model. It is a rare case that we know the property of the lensing object in detail, and many observational quantities may depend 
rather strongly on the details of the lensing object’s mass distribution. Most of the known lenses require a study case by case. More 
important for cosmology studies is that there is an ambiguity as to the choice of the redshift-distance formula. This is associated 
with the fact that the light propagates through the inhomogeneous spacetime rather than the averaged smooth spacetime; the light 
ray feels the local metric which deviates from the smoothed Robertson-Walker metric. Therefore, even if the global parameters such 
as the density parameter and the cosmological constant are fixed, the propagation of light rays, and hence the distance formula, is 
not uniquely determined (Zeldovich 1964; Dashevskii & Slysh 1966; Dyer & Boeder 1972; 1973 hereafter DR; Futamase & Sasaki 
1989). This causes a significant uncertainty, especially for the case of Q0 + 20 = l(^o ^ 0), as large as a factor 1.5-2 in the distance. 
The lens equation is formulated in terms of the distance formula and thus the observables for lenses necessarily depend on its choice. 
At present there is no general agreement as to which distance formula represents the most realistic case. In order to circumvent this 
problem, therefore, it is crucial to know that these uncertainties in the cosmological formalism do not preclude discriminating 
among cosmological models. To examine this point, we have adopted two different distance formulae and two different formula- 
tions of the lens statistics and then look for quantities that do not depend much on their choice. We calculate various quantities with 
two extreme lens models, the point particle and the singular isothermal sphere, the latter of which is more suitable to describe a 
galaxy lens. We find that some of the effects of the cosmological constant on the statistical properties of lenses do not depend much 
on the choice of the model or on the statistical formalism. The most important is the optical depth of the lens distribution. 
Furthermore, the effect of the cosmological constant on it is very large, especially in the low-density universe, and gives a promising 
possibility to test for its value. In order to make our calculation useful for a realistic comparison with the observations, we include 
the various selection effects according to Fukugita & Turner (1991, hereafter FT; see also Kochanek 1991a) to predict lensing 
frequencies. 

We also discuss the effect of the cosmological constant on some other aspects of statistical lensing, (1) the quasar-galaxy 
association and (2) anisotropy enhancement of the cosmic background radiation (CBR). Webster et al. (1988; hereafter WHHW; see 
also Fugmann 1988) showed that the apparent number density of galaxies is enhanced in the vicinity of a quasar, and interpreted 
this as an effect of gravitational lensing. It has been claimed, however, that the enhancement factor that Webster et al. found was too 
large to be accounted for (Narayan 1989; Kovner 1989) by lensing. We consider the effect of the cosmological constant with the 
hope that it might boost this effect. Another aspect concerns the lensing effect in the CBR anisotropy. Kashlinsky (1988) and Tomita 
(1988) suggested that the small-scale anisotropy might be decreased by randomly distibuted lenses. It was recognized soon, however, 
that lensing actually increases the rms anisotropy, but the effect is too small to be detected observationally (Cole & Efstathiou 1989). 
The presence of a large cosmological constant might naively be expected to enhance the effect substantially. We also include a brief 
discussion, although it is not on a statistical property, on the effect of cosmological constant on the differential time delay, which 
may be used to derive the Hubble constant. 

In summary, this paper has two major goals. First, it is intended to catalog a more comprehensive and systematic set of 
gravitational lens calculations in nonzero A cosmologies than has previously been presented in various papers (FFK; Turner 1990; 
FT; Gott et al. 1989; Alcock & Anderson 1986) which have been devoted to particularly chosen aspects of the problem. Thus, we 
attempt to cover a wide variety of topics in lensing theory, not all closely related, which have or might be thought to have an 
interesting dependence on the cosmological constant. Second, it is to compare the uncertainties resulting from current ambiguities 
in the formulation of problems in lens statistics with the size of the various cosmological effects, particularly the A dependent effects. 
Barring qualitative improvements in our understanding of these fundamental theoretical problems, these uncertainties limit what 
can be learned from lens statistics, however, accurate the input data and no matter how numerous and reliable the observations 
become. 

The plan of this paper is as follows. In § 2, we write down the basic equations for describing statistical properties of lenses for each 
of the lens models. We discuss the choice of the distance formula in § 3. In § 4 the results of calculations are summarized. In § 5, the 
quasar-galaxy association and the effect on CBR anisotropies are discussed. Our conclusions are summarized in § 6. In an Appendix 
useful cosmological factors are tabulated for known candidate lens systems and a brief discussion of the differential time delay is 
given. 

2. BASIC EQUATIONS FOR STATISTICAL LENSING 

To discuss statistical properties of gravitational lenses we assume that the universe is well approximated by the FLRW geometry 
on large scales. As mentioned in § 1, this does not determine uniquely the distance formula. We may assume, however, that the 
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relation between the affine distance of the null geodesic and the redshift of the source object in a clumpy universe is the same as that 
in the FLRW geometry. This may be regarded as a mathematical expression of the assumption that the universe is described by 
FLRW geometry on large scales. This is supported by theoretical as well as numerical arguments (Futamase & Sasaki 1989; 
Watanabe & Tomita 1990). We write the basic equations for the statistical lensing for two models of the lensing object; i.e., (1) point 
masses, which are an appropriate model for stellar mini-lensing or concentrated sources such as black holes, and (2) singular 
isothermal spheres (p oc r~2), which would model the matter distribution of an isolated galaxy. We assume that the comoving 
number density of the lensing object is conserved in cosmic time. In the following we use the notation 

Dol = ^(0? zl) > Dls == ^(zl> zs) ? Dos = d(0, zs), (2) 

where d(zu z2) is the angular diameter distance between the redshift zr and z2, and the arguments zL and zs are the redshift of the 
lens and the source, respectively. The formulation and notation of TOG is basically followed in this paper. 

2.1. Point Masses 
We first define the length aCT which characterizes the effective radius of the lens, 

2 4GM DolDls acr = —i“ —ß  » (3) c uos 

where M is the mass of the lensing object (Press & Gunn 1973; TOG). Then the cross section a for “strong” lensing events as 
defined by TOG is given by 

g = 7ca2
r. (4) 

The differential probability dx of a beam encountering a lens in traversing the path of dzL is given by 

c dt 
dz = nt(0)(l + zl)3<t — dzL dzL 

= |í2í.(0)(l+Zt)3 Dql Dls 1 cdt dz 
RoDos Ro dzL 

(5) 

where QL(0) = 8nGMnL(0)/3Hl is the lens density parameter which is the ratio of the local lens density to the critical density, R0 is 
the Hubble distance (R0 = c/H0 with H0 the Hubble constant), and t stands for the lookback time. This yields the correct 
probability for the standard FLRW distance. The expression, however, might have to be modified when the Dyer-Roeder distance is 
employed (Ehlers & Schneider 1986) as will be discussed in § 3 below. The quantity c dt/dzL is calculated in the FLRW geometry to 
be 

cdt = _Ro 1  

dzL 1 + >/Q0(l + zL)3 + (1 — Q0 — 20)(1 + zL)2 + 20 

where Q0 is the total mass density of the universe. By integrating the differential probability along the line of sight to the source, we 
obtain the total probability 

Ázs) = 
dx 
dzr 

dzj (7) 

Another interesting quantity is the mean image separation at a given zL, and its average over the lens redshift distribution. The 
former is obtained by averaging the image separation with respect to the impact parameter at zL. 

— Ipys - 16 acr Ipyio - 16^2 /rA1/2 (DqlDlsY2 

[l) 3 Dol 3 \Rj Dol\ RoDos) 
(8) 

where RL = IGM/c2 is the Schwarzschild radius of the lensing object. If we normalize the angle in terms of A0O = (RL/R0)1/2, we 
have 

The average image separation is obtained by 

(9) 

(10) 

2.2. Singular Isothermal Spheres 
Let us give the corresponding quantities in the case of the singular isothermal sphere. The lens model is characterized by the 

one-dimensional velocity dispersion v. The deflection angle is given for all impact parameters to be a = 4nv2/c2. The lens produces 
two images if the angular position of the source is less than the critical angle ßcr = ocDls/Dos. Then the critical impact parameter is 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



1 9
92

A
pJ

 . 
. .

39
3 
 

3F
 

6 FUKUGITA ET AL. Vol. 393 

defined by aCI = DOL ßcr and the cross section is given by 

The differential probability of a lensing event is 

<r = 7ra„ = lÓTrl - 

cdt 

vyfDoL Dls 

Dn (11) 

dx = n0(l + zL) a 3— dzL 

= F(1 + zLy 

dzL 

3/ £ol£ls\2 ±_CJ±dzL' 
Ro Dos J Ro dzL 

(12) 

where F measures the effectiveness of matter in producing double images (TOG) 

F = 16n3n0[^j R3
0 . (13) 

The total probability is obtained by integrating the differential probability along the line of sight to the source as in equation (7). 
The mean image separation for the lens at zL takes a simple form 

Ä0 = 2a ^ , (14) 
Dos 

and the average over the lens redshift is obtained by an integration similar to equation (10). 

3. AMBIGUITIES IN THE DISTANCE FORMULA 

There are ambiguities in the distance formula and hence in the predicted lensing properties. The earliest studies of gravitational 
lenses have paid little attention to this problem and used the standard Friedmann-Lemaitre distance formula which we call the 
standard distance (e.g., Refsdal 1964). It was soon realized, however, that gravitational lensing takes place only in a clumpy universe 
and light rays from distant galaxies have propagated through intergalactic space in which the density is much lower than the 
averaged density. Thus the distance formula derived by solving the null geodesic in such a realistic clumpy universe should be 
different from that derived in the homogeneous universe. The distance formula which takes this effect into account was proposed by 
Zeldovich (1964), Dashevskii & Slysh (1966) and later by DR in more general form, which is now known as the Dyer-Roeder 
distance. They assumed that a certain mass fraction a of all matter is distributed uniformly, whereas the rest is clumped into galaxies, 
and that light rays travel well away from all clumps of matter, feeling only the effect of the fraction a of all matter. It has been shown 
that their formula gives a good approximation to the one more generally derived, when their assumptions are satisfied (Futamase & 
Sasaki 1989). Many of the previous studies of gravitational lenses have used this distance (Vietri & Ostriker 1983; Press & Gunn 
1973; Cañizares 1982; TOG). 

On the other hand, a possible inconsistency in the use of the DR distance in a calculation of the statistical property of lensing is 
pointed out by Ehlers & Schneider (1986, hereafter ES). In the derivation of the probability of a source being multiply imaged by a 
galaxy along the line of sight, one integrates along a random line of sight to the source. ES argued that the direction to the source 
cannot be a random variable in the clumpy universe, since the assumption is crucial in the DR distance that the light rays are well 
away from all clumps of matter. By choosing the position of the source on a sphere of z = zs as a random variable, they proposed a 
new derivation of the probability which we call the ES probability. 

A recent numerical study (Kasai, Futamase, & Takahara 1990) shows that which angular diameter distance is appropriate 
depends upon the angular scale that one considers. Whereas the standard distance gives the correct description for the angular scale 
comparable to or larger than the mean separation of clumps, a substantial deviation from the standard distance is observed for 
smaller angular scales. Monte Carlo simulations for small angular scales showed that the distance is statistically distributed; i.e., it is 
not uniquely described by the standard or the DR distance, although the latter is probabilistically slightly more favored (Kasai, 
Futamase, & Takahara 1990). In this sense neither the standard nor the DR distance formula may be regarded as quite appropriate 
for a realistic case, and the ES prescription also lacks compelling justification. 

Under this circumstance we calculate quantities of interest using the various formulations, and look for those quantities which are 
insensitive to different distance measures and statistical formalisms. We shall employ in this paper both the standard distance and 
the DR distance with the two alternative derivations of the lensing probability. For the DR distance we only consider the extreme 
empty beam (namely, a = 0) case. 

For convenience we summarize the distance formulae for each case of the cosmological parameters and the ES expression for the 
lensing probability. 

Case 1 : Standard Distance.—The angular diameter distance is given by 

ds(zi, z2) = 

Ro 
(1 + z1)s/Í20 + 20 — 1 

Ro 
(1 + z2) 

(X2 - Xi) 

Ro 

- (i + i í2q ;.0 

sin {x2 - Xi) 

sinh (x2 - Xi) 

for k = +1 , 

for fc = 0 , 

for /c = — 1 , 

(15) 
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where 
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dz 
Vl^O + ¿o - 1 I [ 

Jzi + z)3 + (1 - iio - ^o)(l + z)2 + A0 

for /c 0. (For fe = 0 universes, the square root in front of the integral should be omitted.) For A0 = 0 it simplifies to 

2R0 
ás(Zl’Z2)-Qg(l+ZlXl+Z2)2 {(2 - Q0 + ü0 Z2)\/T+QoZi - (2 - Q0 + Q0 zjy/l + üoZ2} 

and for Q0 + A0 = 1, 

^s(Zl5 Z2) — "j 7 
1 + Z2 JZ1 

dz 

This case is often referred to as the filled beam. 
Case 2 : Dyer-Roeder Distance (empty beam).—It is given by 

^dr(zi> z2) — ^o(l + z 

Vfio(l + *)3 + (1 - fio) ' 

dz 

(1 + z)yfi0(l + z)3 + (1 - Í20 - ^oXl + 2)2 + ^0 ' 

(16) 

(17) 

(18) 

(19) 

In Figure 1 we present the angular distance d(0, z)/R0 for the cases 1 and 2 for the four sets of the cosmological parameters A-D. 
Case 3: Lensing Probability of Ehlers-Schneider.—We use the DR distance in this case. The probability of lensing as given in 

equations (5) and (12) is modified into 

L ^s(0, zs) J |_dDR(0, zl)J 
(20) 

4. STATISTICAL PROPERTIES OF LENSES 

The formulae given in § 2 show that the distances appear in two typical combinations Dls/Dos and DOL Dls/Dos in various 
expressions for the observables. Before giving the results for statistical properties, we first show these combinations of the distances 
as a function of the lens redshift for the two choices of distances. Dls/Dos is given in Figures 2a and 2b and DOL Dls/Dos in Figures 
3a and 3b, where the source redshift is assumed to be zs = 3. In Figure 2a we see almost no difference in the ratio Dls/Dos between 
the flat (case A) and the open (case B) universes; a rather large difference in the standard distances themselves (see Fig. la) cancel in 
this combination. This is, however, not the case for the DR distance; an appreciable difference is visible between cases A and B. In 
both cases the ratio DLs/Dos becomes appreciably larger with a cosmological constant. Figures 3a and 3b show that the ratio 
Dol^ls/Dos is substantially larger in the presence of the cosmological constant compared to the change due to the increase of the 
mass density parameter (Q0 = 0.1 -► 1) in the = 0 models for both choices of the distance. In the Appendix we present Z)’s and 
their combinations for many known candidate lenses. 

4.1. Lensing Probabilities 

4.1.1. Singular Isothermal Sphere Case 

We present in Figures 4a, Ab, and 4c the total probabilities t for singular isothermal sphere lenses with the use of the standard 
distance, the DR distance and the DR distance with the ES probability. Figures 5a, 5b, and 5c show the corresponding differential 

Fig. la Fig. lb 
Fig. 1. Angular diameter distances in the (a) standard and (b) Dyer-Roeder (DR) formalisms as a function of redshift z. The distances are shown for the four 

cases: (A) Q0 = h := 0; (B) Q0 = 0.1, = 0; (C) Q0 = 0.1, À0 = 0.9;(D) Q0 = 0, = 1, and are normalized by the Hubble distance R0 = e/H0. 
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Fig. 2a Fig. 2b 
Fig. 2.—Ratio 0„/Dos as a function of lens redshift zt for source redshift fixed at zs = 3; (a) the standard distance, (ft) the DR distance. The meaning of curves are 

the same as Fig. 1. 

probability dt/dzL for zs = 1 and 3. The total probability is normalized by the effectiveness parameter of lenses F, and the differential 
probability is normalized to total probability of unity. Let us note that for case D (fi0 = 0, A0 = 1) the total probability is (l/30)Fz| 
and the normalized differential probability is 30z|(zs - zt)2/z| independent of the formalism. 

It is apparent that the cosmological constant strongly affects both quantities. The probability of lensing increases much faster as 
the source redshift increases for cases C and D than for cases A and B, irrespective of the choice of the formalism. This may be 
understood by noting that the combination DOL DLS/Dos that is affected strongly by a cosmological constant appears in the 
expression of dr. In addition, the fact that the number of galaxies per redshift (dt/dzL) increases with A and that the average redshift 
of relevant galaxies deepens (see discussion in the next paragraph) with A are all partly responsible for the accumulated large 
increase of the optical depth in cases C and D. 

At a more quantitative level there is a sizable difference among the behaviors of curves with three different formulations (1), (2), 
and (3) especially at a redshift zs > 2. The ES probability gives values appreciably larger than others for all cosmological models. 
For the Q0 = 1 (case A), the value of tes at zs = 3 is larger by almost a factor of 2 than the corresponding t. For the open universe, 
on the other hand, tes is larger than r only slightly, and the two curves for cases A and B agree closely with formulation (3). The fact 
that the difference from the formulation dependence is larger than that among cosmological models A and B diminish^ the hope, 
proposed by TOG, of using the total optical depth for high-redshift (z > 3) quasars in distinguishing the Q0 = 0.1 model from the 
G0 = 1 model, unless the correct formulation can be determined. On the other hand, the effect of the cosmological constant, if it is as 
large as in case C, is enough to distinguish the case from that for 2 = 0 even in the presence of the ambiguity associated with the 
formulation. For a small source redshift (zs < 2) the formulation dependence is moderate, and one can discriminate between case A 
and B using the total optical depth; however, t is quite small, so a large and well-understood lens sample would be required. 

The differential probability is also affected significantly by the cosmological constant; it increases the average lens redshift 
substantially. We plot in Figure 6 the position at which dT/dzL reaches a maximum as a function of the source redshift. Figure 5 and 

0 0.5 1 1.5 2 2.5 3 

Fig. 3a 

0 0.5 1 1.5 2 2.5 3 

Fig. 3b 
Fig. 3. Combination DOL Dls/Dos R0 as a function of zL for zs — 3; (a) the standard distance, (b) the DR distance. The meaning of curves are the same as Fig. 1. 
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I ■ i r--.r-r 

isothermal sphere 
filled beam 

tL, 
0.4 - 

 case (A) 
 case (B) 
 case (C) 

- case (D) 

Fig. 4b 

Fig. 4c 

Fig. 4.—Probability of a beam encountering with a lens event (lens optical 
depth) for a source at zs normalized by the lens efficiency parameter F defined 
in eq. (13). The lens is modeled by a singular isothermal sphere, (a) is for the 
filled beam (standard distance) and (b) for the empty beam with the DR dis- 
tance. In (c) the Ehlers-Schneider prescription is adopted for the probability 
(with the empty beam). 

more clearly. Figure 6 show that the formulation dependence is less in this quantity. The position of peak redshifts resolves not only 
between cases B and C, but also cases A and B. Fukugita, Futamase, & Kasai (1990) and Kochanek (1991b) have proposed A tests 
based on this effect. 

From the fact that the A dependence of the lensing probabilities is much larger than the uncertainty caused by the choice of the 
lens model and of the distance and probability formulae, we conclude that both the total and the differential probabilities are the 
quantities suitable to test the existence of the cosmological constant. The differential optical depth is less sensitive to the ambiguities 
in the formulation, and it may clearly test even the density parameter of the universe. 

4.1.2. Point Mass Case 

We show in Figure 7 the total probabilities, which are normalized by the lens density QL(0). As seen in these figures, the point 
mass lens model yields results very similar to the singular isothermal sphere case, though the ratio of the optical depth of C to A or B 
is smaller in the point mass case (compare eq. [12] with eq. [5]). The distribution oîx~1dx/dzL and its dependence on cosmological 
parameters and formalism are very similar to those for the isothermal sphere case, except for the behavior close to zL ~ zs, where the 
distribution falls as oz\zs — zL \ rather than oc\zs — zL\2 in the case for the singular isothermal sphere. All discussion given for the 
singular isothermal sphere case also applies to the point mass case. In general, this means that much larger microlensing effects are 
expected in A-dominated models. 

4.2. Image Splittings 
4.2.1. Singular Isothermal Sphere Case 

We now present calculations of the statistics of angular separations between the two outer images. The image separation for the 
isothermal sphere model is given by 

Ad = 2a 
Dos 

Dls 
Dqs 

(21) 

We note that the expected value <A0> = a for the standard distance when Q0 + 20 = 1, as also pointed out by Gott, Park, & Lee 
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O 0.5 1 1.5 2 2.5 3 

0 0.5 1 1.5 2 2.5 3 
ZL 

Fig. 5c 

0 0.5 1 1.5 2 2.5 3 

Fig. 5b 

Fig. 5.—Differential probability of a lens event for singular isothermal 
spheres normalized to a total probability of unity. Curves are shown for zs= 1 
and zs = 3. {a) is for the filled beam, (b) for the empty beam, and (c) with the ES 
formalism. The meaning of curves is the same as Fig. 4. 

zs 
Fîg. 6. -Positions at which the differential probability (Fig. 5) takes a maximum as a function of the source redshift. Clustered three curves correspond to the 

t ree ormahsms, the filled beam, the empty beam, and the ES prescription in order from the top to the bottom. The four clusters correspond to the different 
cosmology models A-D. 
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* I i I i I i I i  
0 1 2 3 4 5 

zs 

0 1 2 3 4 5 
zs 

Fig. 7c 

0 1 2 3 4 5 
zs 

Fig. lb 

Fig. 7.—Lens optical depth for point mass lenses for a source at zs, normal- 
ized by the lens density parameter QL(0). The meaning of lines is the same as 
Fig. 4. 

(1989). This relation does not hold for the DR distance, but the image separation is in any case insensitive to the cosmological 
parameters and to the choice of the distance formula (Fig. 8). 

Let us now predict the distribution of image separations. In order to estimate the distribution of the velocity dispersion p, we 
assume the Schechter form for the luminosity function 

<&(L)dL = (j) (22) 

and use the empirical relationship between the luminosity and v, i.e., L oc p4 for ellipticals or lenticulars (Faber & Jackson 1976; de 
Vaucouleurs & Olson 1982) and L oc v2 6 for spirals (Tully & Fisher 1977) in the B band. From equations (12) and (22), we find that 
the differential optical depth of lensing in traversing dzt with the angular separation beteen (j) and (j> + dÿ is given by 

d2r 
dz^ d(f) 

d<j)dzL = F*(l + zL)3 Dql Dls\2 1 cdt 
Ro Dos R0 dzL F(a + 2) \D 0 exp 

[-fe 

d$ 

j 0 
dz. (23) 

for ellipticals (lenticulars), where <l> = Ad/Sn(v*/c)2 with r* the velocity dispersion corresponding to the characteristic luminosity L* 
in (22) an F* = F(v = r*). After integrating over the lens redshift zL, we obtain the angular separation distribution 

— = -L fzs 

d(t> <Zs) Jo dzL d<t> Zl ’ ^ 
which is shown in Figure 9, together with that for spirals obtained in a similar way. (To write this figure we used parameters 
specified in eq. [26] below, and a in eq. [22] is set equal to -1.1.) For a flat universe (24) reduces to equation (16) of FT which uses 
the variable D = (l + zL)D0L/(l + zs)Dos. 

4.2.2. Point Mass Case 
Top two panels of Figure 10 show the mean image separations averaged over impact parameter for point mass lens model as a 

function of zL with use of the standard and the DR distances, respectively. With the standard distance the mean image separation 
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Fig. 8.—Image separation angle averaged over a uniform distribution of isothermal sphere lenses as a function of zs. Curves are given for the three formalisms 
and normalized by the intrinsic bend angle a. The meaning of curves is the same as Fig. 4. 

0 1 2 3 4 5 6 

A0 (arcsec) 
Fig. 9a 

0 1 2 3 4 5 6 

A0 (arcsec) 
Fig. 9c 

Fig. 9.—Distribution of the image separation angle for isothermal sphere 
lenses for ellipticals and for spirals for a source at zs = 3. In (a) (filled beam) 
curves for models A, C, and D, i.e., Q0 + >l0 = 1, are degenerated and are 
represented by a thick line. In (b) and (c) the curve for model D is identical with 
that for Q0 + A0 = 1 in (a) and may be used as a reference for comparison. 
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0 1 2 3 4 5 

Fig. 10.—The same as Fig. 8 for point mass lenses. The separation angle is normalized by the ratio of the Schwarzschild radius to the Hubble distance 
A0O = 2GM/c2R0. 

angle for case C, i.e., the case with the cosmological constant, falls in the middle of cases A and B for any zs and zL. With the DR 
distance the separation angles for cases B and C almost coincide. The image splitting thus is not a quantity suitable to test the 
cosmological constant. 

The image splitting angle does depend sensitively on the lens model. In the point mass model the averaged angle diverges as 
zs -» 0, while they stay close to the constant a in the isothermal sphere model. Thus statistical studies of image splitting are more 
suitable to explore models for the lensing object than to test the cosmological constant. 

4.3. Gravitational Lensing Frequencies 

We now predict lensing frequencies, assuming that lensing objects are essentially galaxies and that properties of galaxies are given 
by those of the local sample (Turner 1990; FT). We first assume that the mass distribution of galaxies is described well by singular 
isothermal spheres. We also discuss the selection biases and the effect for the departures from singular isothermal sphere models as 
discussed in FT (see also Kochanek 1991a) for more general cases. 

The lensing frequency is basically controlled by the F parameter introduced in equation (13). An estimate of F with the best 
modern data from the local sample of galaxies was given in FT, which yielded 

Í0.019 ± 0.008 for E 
F = j 0.021 ± 0.009 for SO , ( ’ 

(0.007 ± 0.002 for S 

for the morphological composition E:S0:S = 12 + 2:19 + 4:69 + 4. The errors include uncertainties in the local luminosity 
function and those in the luminosity-velocity relation. The velocity v* for a galaxy with the characteristic luminosity L* was also 
estimated to be 

Í276Í 24 km s_1 for E 
u* = S 252i24 km s'1 for SO . ^ j 

(l34ii2 km s'1 for S 

The expected number of lenses is given by 

Nt = J dzs t(zs) ’ (27) 

where dNQ/dzs is the redshift distribution of quasars. As examples of the predictions, we take two quasar samples given by Hewitt & 
Burbidge (1987; 1989; hereafter HB) and by Boyle et al. (1990, hereafter BFSP) (aee also Boyle, Shanks, & Peterson, hereafter BSP). 
The former contains 4250 quasars, but it is not a homogeneous survey for lenses. The latter is more homogeneous as a quasar 
survey, but contains only 420 quasars. Furthermore, there is a bias against lens images with certain A6 in the BFSP survey. The 
reported dN^zs)/dzs for HB (BFSP) sample rises till zs = 23(2.2) and then sharply drops beyond this redshift. Table 1 shows our 
prediction of the expected number of lensing event with the three formulations and for the four cosmological parameter choices. 
Here corrections or selection effects are not taken into account. 
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TABLE 1 
Nominally Expected Number of Lenses with F = 0.047 

CaseA:Q0=l, Case B: fl0 = 0.1, Case C: Q0 = 0.1, CaseD:i2o = 0, 
Distance Formula /Iq = 0 = 0 20 = 0.9 /l0 ^ 1 

HB Sample (4250 quasars) 

Filled beam (standard distance)   2.9 5.0 17.9 45.9 
Empty beam (DR distance)  2.3 4.8 16.1 45.9 
Empty beam (ES)  3.7 5.2 19.7 45.9 

BFSP Sample (420 quasars) 

Filled beam (standard distance)   0.25 0.41 1.32 2.74 
Empty beam (DR distance)  0.20 0.40 1.21 2.74 
Empty beam (ES)  0.29 0.42 1.40 2.74 

4.3.1. Corrections and Selection Effects 

The main effects considered by FT are (1) finite core radii of galaxies, (2) angular resolution selection effects, and (3) magnification 
bias selection effects. For elliptical galaxies core radii are generally quite small (Lauer 1985; FT). In Lauer’s study only 14 out of 42 
ellipticals have resolved cores, and more than a half (23) have unresolved cores. FT argued that the core of some of ellipticals might 
be extremely small (<3 pc). Under this circumstance we asáume that one-third of ellipticals obey the regression line rc = 
— 140/i-1(MBro — 5 log /z + 19.9) 4- 160/z-1 obtained from 14galaxies of Lauer’s study (FT). With this relation the ratio of the core 
radius to the critical radius of singular isothermal sphere acr = 4nv2DLSDOL/Dos that controls the suppression of lensing cross 
section is fairly constant as the luminosity of galaxies changes (L->4L* modifies rc/aCT only by 16%). We assume that another 
one-third have a core with rc ~ 10 pc and the remaining one-third have, somewhat arbitrarily, j of rc prescribed by the above 
relation. Using the model cross section by Hinshaw & Krauss (1987) we obtain the reduction factor c ~ 0.65. By changing the 
assumptions in a reasonable range we found that c is always in the range 0.5-0.7. We assume that the suppression factor for SO’s is 
the same as for E’s. On the other hand, most of spirals have larger cores >0.5-1 kpc as inferred from the rotation curve by, e.g., 
Rubin, Whitmore & Ford (1988; see their Fig. 3), and this makes only 0.1%-1% of lensing event surviving the finite core radius 
effect. The study of Rubin et al., however, suggests that ~ 10% of spirals may have unresolved core. Taking this into account, we 
may estimate that c ~ 6%-8% assuming that 10% of spirals have cores smaller than 10 pc. 

For the selection effect on angular image separation, we assume that the lensing event with the separation angle larger than </)c is 
observed. The fraction of a lens giving an image separation larger than <f>c is given by 

P(><Pc) [œ^dô = JL[ZS
(1+ ^fPoL^Ls)2 1 cât rÇa + 2, (<f>cDoS/DLs)2] 

L d<t> V t(zs) Jo 1 Zl) V RoDosJ *0 dzL F(a + 2) 
dzL , (28) 

where F(a, x) is the incomplete gamma function defined by F(a, x) = ta~1e~tdt. In Figure 11 we plotP(></>c) for sources atzs = 3 
for elliptical and spiral lenses. The curves do not change with zs or with £20 for the flat (Í20 + = 1) universe (FT). For the case of 
the HB sample, we calculated the factor P( > 2") in Table 2. The factor P( > 2") for the BFSP sample does not differ from that for the 
HB sample by more than 5% and is therefore omitted from the table. The factor is basically determined by P(>0C, zs ^ 1.5-2), 
where the number of quasars reaches its maximum. The cut at 2" leaves 30%-35% of the elliptical lenses for these samples (this 
increases to 40%-50% if the cut is made at 1"5). For spiral lenses only a very small fraction (< 1% for </>c = 2") survives this cut. 
Together with the strong suppression by the finite core radius effect, we conclude that spiral lenses should be rather unlikely to be 
found in a survey. 

The magnification bias effect as formulated in FT does not depend on the world geometry nor on the formulations discussed here. 
(Let us note that the formula given by eq. [3.5] of TOG contains an error; the 1/.4 factor in their equation should be omitted; see 
also FT.) It is given by 

B(m) = I" ^r2(tn + A)P(A)dA I^ (29) 
Jo dm J dm 

at apparent magnitude m. Here A = 2.5 log A (A = magnification factor) and P(A) = 7.37 x io-0-8A for A > 2.5 log 2. An explicit 
evaluation of B(m) with the standard dNQ/dm (Hartwick & Schade 1990) is given in equation (22) of FT, and we adopt their estimate. 

TABLE 2 
Fraction of Lensing that Survives Angular Resolution Selection Effects (<f) > 2"): 

An Example for the HB Sample 

Case A: Q0 = 1, Case B: Q0 = 0.1, Case C: Q0 = 0.1, CaseD:i2o = 0, 
Distance Formula /Iq = 0 = 0 >l0 = 0.9 /l0 = 1 

Filled beam (standard distance)   0.28 0.23 0.28 0.28 
Empty beam (DR distance)  0.21 0.22 0.25 0.28 
Empty beam (ES)  0.23 0.22 0.25 0.28 
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0(arcsec) 
Fig. 11a 

0(arcsec) 
Fig. 11c 

0(arcsec) 
Fig. lib 

Fig. 11.—(a-c) The fraction of lensing events that survives the cutoff of the 
specified angular separation for singular isothermal sphere lenses. The source 
is assumed at zs = 3. Note that the curve for model D always coincides with 
models A, C, and D in the case with the standard distance (a), serving to give a 
reference. 

In Table 3 we present a summary of multiplication factors for the corrections discussed here, as well as the average probability for 
finding lensing events for a given quasar in various samples. Here the reduction factors for finite core effects and angular selection 
functions are calculated by 

f=TJFiciP,{ct>>r), (30) 
i 

where the summation is taken over E, SO, and S. Because cs < 0.1 and Ps < 0.01, however, we can almost ignore the spiral 
contributions. As we assume that cB « cs0, we write 

f=c £ F¡P,# > 2"), (31) 

and c and Y F¡ P¡ are tabulated separately. We show here only the case for the filled beam. In this table incluf 
quasar samples, those by Schneider, Schmidt, & Gunn (1989a, b, hereafter SSG) and by Schmidt & Green (1983, hereafter BQS). The 
former is characterized by large redshifts (z > 4), which enhance the lensing probability, and the latter by bright magnitudes. In case 
for BOS the magnification bias amounts to a factor of 38. The size of these samples, however, is too small for our purpose. 

The final numbers of expected lensing events are given in Table 4 for the HB and BFSP samples. The uncertainty for these 
numbers is about ±45%. Complete detectability is assumed for lenses that satisfy 0 > 2" for both cases. We note that the systematic 
formulation uncertainties are small in the final predictions. In particular, the use of the standard distance yields results virtually 
identical with those given by the ES formalism, if lenses with </> > 2" are selected. The power of lensing statistics for discriminating 
among cosmological models is apparent in this table. We need, however, a well-studied sample in excess of 10 quasars for a decisive 
result. 

4.4. Comparison with Observation 

The present status of lens observations is somewhat confusing. The HB sample contains nine reasonably convincing candidate 
lens systems (see Table 5 in Appendix). It has been argued, however (Blandford & Kochanek 1990; Kochanek 1991b), that only four 
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TABLE 4 
Expected Number of Lenses Including Corrections and Selection Effects 

Case A: Q0 = 1, Case B: Q0 = 0.1, Case C: Q0 = 0.1, CaseD:Qo = 0, 
Distance Formula = 0 = 0 X0 = 0.9 = 1 

HB Sample (4250 quasars) 

Filled beam (standard distance)   3.7 5.2 24.5 64.8 
Empty beam (DR distance)  2.1 4.8 19.5 64.8 
Empty beam (ES)  3.6 5.2 24.0 64.8 

BFSP Sample (420 quasars) 

Filled beam (standard distance)   0.12 0.17 0.69 1.48 
Empty beam (DR distance)  0.07 0.16 0.57 1.48 
Empty beam (ES)  0.12 0.17 0.68 1.48 

Notes.—(1) 50% error should be implied for numbers listed in this table. (2) A survival fraction given in Table 3 is adopted for the 
finite core radius suppression. (3) A cut 0 > $c = 2" is applied for angular image separation. (4) Magnification bias is estimated 
following FT. (5) Complete detectability is assumed for lenses that satisfy (2). 

of them could be accounted for by the sort of isolated single galaxy lensing events modeled here, and furthermore two of four are 
lensed by spiral galaxies (see Table 5) (which should rarely occur, according to our argument above). Therefore, it can be argued that 
the relevant observed number for the HB sample is between 9 and 2 (FT). On the other hand, the HB catalog was not intended to be 
a complete list of lens systems, and it seems at least possible that one-third of the lens systems, say, might be missed. Therefore, we 
may have to compare the number of lens candidates with numbers in Table 3 after some reductions, multiplying by a factor f, say 
(FT). We plot in Figure 12 the expected number of lenses for the HB sample as a function of20 for the three choices ofQ0 in order to 
see the dependence on these two cosmological parameters. The curves are drawn with the standard distance, and the error bars 
represent for the uncertainties in the lensing efficiency parameter F, the correction for finite core radii, as well as the ambiguity 
arising from the choice of the distance formula. Consulting with Table 3 and Figure 12, we may conclude that X > 0.95 is probably 
excluded with case C being marginally allowed for the flat universe, the same conclusions obtained in FT. 

The case for BFSP sample is given for an illustrative purpose to show how many lenses are expected for such a sample. The actual 
sample is not only too small in its size to use for selecting cosmology models, but also suffers from a selection bias against the lens 
systems because of the selection criteria imposed on the COSMOS survey searching for stellar images (Boyle 1991).6 

Crampton et al. (1989) and Surdej (1989) suggested a 20%-23% lensing rate in two quasar samples. Our calculation shows that 
these numbers are at least one order of magnitude larger than are expected even if the lensing search was made down to a very small 
image angular separation. 

5. OTHER STATISTICAL LENSING EFFECTS AND THE COSMOLOGICAL CONSTANT 

5.1. The Quasar-Galaxy Correlation 
WHHW reported a significant excess of quasars in the vicinity (0 < 6") of foreground galaxies and suggested that it be ascribed to 

gravitational lensing. It has then been found, however, that the enhancement by lensing should be smaller than the reported value 
(~4.2) by, at least, a factor of 2 (Narayan 1989; Kovner 1989). Here we discuss what amount of enhancement is generally expected in 
the galaxy-quasar correlation in the presence of the cosmological constant. 

6 We thank Brian Boyle for clarifying this point. 

Fig. 12.—Expected number of lenses for the HB sample as a function of 20 for a given Q0 for the case of a filled beam. The sample completeness is assumed. Error 
bars are uncertainties of the prediction. 
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Narayan has also shown that if M is a magnification associated with a gravitational lens and B0 represents the limiting magnitude 
of the quasar survey under question, then the enhancement factor is given by 

q(M, B0) = 1 Nq[ < (B0 + 2.5 log M)] 
M Nq(<B0) 

(32) 

where NQ(<B) represents the number of quasars per square degree brighter than magnitude B. The factor M-1 is due to the 
reduction of the effective area by lensing. 

For isothermal sphere lenses, the magnification factor M reads 

Dr 
m = 1+4'|-|5ÏW 

where 6S is the angular position of the source, and 

(33) 

(34) 

with 0L = 6" and 0+ = 4n(v/c)2DLS/Dos. In the WHHW observation the brightness of the galaxies is Bj = 20.5-21 mag. This 
magnitude is translated into the mean redshift of zL = 0.3 (case A), 0.28 (case B), and 0.26 (case C) using the canonical luminosity 
evolution model of galaxies (Arimoto & Yoshii 1986; Fukugita et al. 1990b). With typical source redshift zs ^ 1.5, we estimate 
<M> ^ 1.6 (case A), 1.7 (case B), and 1.8 (case C) for typical L* of elliptical galaxies with the filled beam formalism. Therefore, the 
enhancement factor q is expected to be 1.2-1.8 (A), 1.2-1.8 (B), and 1.2-2.0 (C) where the range accounts for uncertainties in the 
estimate of N(B0) (Hartwick & Schade 1990; BSP) as well as for a possible incompleteness of the WHHW survey close to the 
nominal limiting magnitude B0 = 18.9 mag (see Narayan 1989). With the largest estimate the difference between the prediction and 
the WHHW observation is still 3 a (for cases A and B) to 2.5 <7 (for case C). This means that the inclusion of a finite cosmological 
constant improves the situation only slightly. 

5.2. Anisotropies in the Cosmic Microwave Background Radiation 
There has been some recent interest in the possible effect of gravitational lensing upon fluctuations in CBR. The suggestion was 

made that the lensing might decrease the fluctuations by random scattering (Kashlinsky 1988; Tomita 1988), but it was recognized 
soon that gravitational lensing leads rather to enhancement of the temperature anisotropies on scales smaller than the intrinsic 
coherence angle of the CBR anisotropy (Cole & Efstathiou 1989; Sasaki 1989). It was also found that the effect is too small to be 
observationally relevent. We re-examine the effect here, since we found that the cosmological constant greatly increases the lensing 
optical depth for a high-redshift source.7 

Let us define the autocorrelation function C($) of the temperature field TfoJ 

C(0) = (TixJTix,)} (35) 

where 9 is the angle between the directions xt and x2. When the temperature field is perturbed by the gravitational deflection, the 
perturbed autocorrelation function C(0) is given approximately by (Blanchard & Schneider 1987; Cole & Efstathiou 1989) 

m « C(6)~ C(0), (36) 

where 9~2 = — [l/C(O)][d2C(0)/d02]0=o and <7 = <(§ — 0)2>1/2/21/2 is the one-dimensional dispersion of the change of the angle 0 
under the influence of the gravitational deflection. This approximation should be valid for angles 0 <4 0C. 

We calculate <r according to Cole & Efstathiou, 

(72(0, z) = 
64n2G2 

c2Hld(0, z) 
Cz d(z'9 z)p2(z') 

Jo (1 + z')4(l + OO 
£(/, A, z')dA (37) 

where x(z') — 0d(O, z'), ^(r, z) = (1 + z)~3(r/r0)~y with y = 1.8, r0 = 5.4h-1 Mpc, and we ignore the cutoff in £ which has a negligible 
effect for small 0. The result is given in Figure 13 for o/QL. The standard distance formula is adopted in this calculation and the last 
scattering surface is assumed to be at z = 1000. For a small 0, g is proportional to 00-6, and typical values at 0 = 1" are<7/ilL = 2'T 
for case A, 2”1 for case (B), 6"8 for case C. When normalized by QL, the dispersion (cr/QL) increases with the cosmological constant, 
as is expected (If QL is identified with Q0, a itself rather decreases from case A to case C, however.) 

In the presence of lensing the mean square temperature fluctuation as measured in a two beam switching experiment 
<(AT/r)2> = 2[C(0) — C(0)], acquires the additional term, 

-s2 = 2C(O)[<t(0)/0c]
2 . (38) 

We note that 9C and C(0) are also functions of Q0 and 20, the evaluation of which requires model calculations for structure 
formation. Without detailed model calculations, however, we can argue that the effect of a nonzero cosmological constant does not 
increase the importance of the extra fluctuations induced by lensing: since 0C corresponds to the coherence length of the last 

7 See Dürrer & Kovner (1990) for a quite different approach to this problem. 
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Fig. 13.—The dispersion <r(0) of deflection angles normalized by the density of lensing objects (see eq. [36]) as a function of the beam separation 6 for three cases 
A, B, and C using the standard distance. 

scattering surface, roughly speaking 6C is inversely proportional to the angular diameter distance to that surface. For three cases that 
we consider, <¿(0,1000) is 0.0019R0 (Case A), 0.0165Ro (Case B) and 0.0049Ro (Case C). The change of a hence is almost compensated 
by the change of 0C, and the contribution of ô2 relative to the asymptotic value ((AT/T)2)#^ = C(0) depends only weakly on the 
cosmological parameters. Therefore, the conclusion for the Q0 = 1 case derived by Cole & Efstathiou (1989) that the effect of 
gravitational lensing is quite small in various models also holds in the presence of a nonzero cosmological constant. 

6. CONCLUSIONS 

We have studied statistical properties of gravitational lenses, especially in the presence of the cosmological constant. A particular 
emphasis was given to systematic uncertainties arising from the various possible formulations of lensing calculations. In the present 
study we have employed two different distance formulae, the standard distance and the DR distance, and two different formulations 
of the lensing probability, TOG and ES. We have found that there generally exist substantial uncertainties associated with the 
adopted formulations in the prediction of the optical depth of lenses. For zs ;> 2.5, the uncertainties becomes large so that 
discrimination among the models with different cosmological mass densities (e.g., Q0 = 1 and Q0 = 0.1) is difficult. However, the 
cosmological constant strongly affects the optical depth, so that its effect is much larger than the ambiguity arising from the 
uncertainty of the formalism for any zs. Therefore, the optical depth, i.e., the probability of finding lenses in a given quasar sample, 
provides us with a simple and very useful means to test the cosmological constant. For zs < 2-2.5 the uncertainties are rather 
modest and all four cases of cosmological models can probably be discriminated by the optical depth given large, homogeneous lens 
samples. An estimate is also made of selection effects and corrections to the model in order to predict lensing frequencies for a 
realistic case. Our provisional conclusion drawn from the comparison of the prediction with the current observation indicates that 
an excessively large A (e.g., X0 > 0.95 in the flat geometry) is excluded, in agreement with FT. 

We have also examined the effect of the cosmological constant on the lensing effect with respect to the observed quasar-galaxy 
correlation, and we found that it is not sufficiently large to alleviate the difficulty in explaining the reported large correlation. The 
effect of the cosmological constant on the lensing effect for temperature fluctuations in CBR is also found to be unimportant. 

APPENDIX 

While our prime interest is in statistical lensing, it is often useful to give cosmological factors for known lens systems. In Table 5 
we provide DOL, Dos, DLS, Dls/Dos, DolDls/Dos and Dls/DolDos for reasonably convincing candidate lens systems (Turner 1989). 
The ratio Dls/Dos controls the effective bending angle, and the quantity DOLDLs/Dos is the inverse of the critical surface density for 
the uniform-density lens model. The last quantity Dls/DolDos (see Fig. 14) appears in the differential time delay, which is used to 
derive the Hubble constant from lens systems (Refsdal 1964; Falco, Gorenstein & Shapiro 1985). From Table 5 it is seen that the 
choice of world model little affects derived values of the Hubble constant. For the best-studied 0957 + 561 case A -► case B makes H0 
7.5% larger and the change caused by case A -► case C is even smaller (H0 becomes 3.5% larger); the large change in DLS is canceled 
by that in DOL and Dos. We note that there is also a strong dependence on the distance formulation, especially for a large zs and zL. 
This uncertainty may be as large as 14% for 0957 + 561. (For the 0142 — 100 and 2016+112 systems, the uncertainty increases to 
30% and 60%, respectively.) This means that the arrival time difference is not a quantity useful for discrimination among 
cosmological models, even if the Hubble constant were known by other means. 
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TABLE 5 
Angular Diameter Distances and Their Ratios for Known Lens Candidate Systems 

Vol. 393 

Name 

0142-100... 
Case Dls/Dq ■'OLlyLS/lyOS Dls/Dol Do Notes 

0957 + 561. 

1115 + 080. 

2.7 0.49 

1.4 0.36 

1.7 

1120 + 019  1.5 0.6 

1413 + 117  2.6 
1635 + 267  2.0 
2016+112  3.3 

? 
? 

1.0 

2237 + 031  1.7 0.04 

2345 + 007  2.2 

A 
B 
C 
A 
B 
C 

A 
B 
C 

A 
B 
C 
A 
B 
C 

0.243 (0.252) 0.260 (0.385) 0.162 (0.197) 0.624 (0.513) 0.151 (0.129) 
0.271 (0.272) 0.421 (0.451) 0.256 (0.267) 0.609 (0.591) 0.165 (0.161) 
0.314 (0.316) 0.503 (0.599) 0.376 (0.422) 0.749 (0.704) 0.235 (0.223) 
0.210(0.215) 0.295 (0.355) 0.177(0.191) 0.598 (0.538) 0.125 (0.116) 
0.227 (0.228) 0.394 (0.405) 0.238 (0.241) 0.603 (0.595) 
0.256 (0.257) 0.491 (0.520) 0.346 (0.357) 0.704 (0.687) 

2.570 (2.031) 
2.246 (2.173) 

0.235 (0.223) 2.384 (2.228) 
' 2.854 (2.510) 

0.137 (0.136) 2.653 (2.609) 
0.181 (0.177) 2.749 (2.672) 

0.262 (0.277) 0.294 (0.360) 0.127 (0.133) 
0.299 (0.301) 0.399 (0.412) 0.175 (0.176) 
0.353 (0.357) 0.498 (0.531) 0.272 (0.278) 

0.293 (0.329) 
0.363 (0.369) 
0.447 (0.460) 
0.037 (0.037) 
0.038 (0.038) 
0.038 (0.038) 

0.241 (0.390) 
0.420 (0.460) 

0.105 (0.121) 
0.175 (0.181) 

0.484 (0.613) 0.276 (0.306) 
0.290 (0.367) 0.276 (0.342) 
0.407 (0.422) 0.386 (0.400) 
0.506 (0.549) 0.492 (0.530) 

0.430 (0.370) 
0.438 (0.429) 
0.546 (0.524) 

0.434 (0.310) 
0.417 (0.394) 
0.571 (0.499) 
0.950 (0.934) 
0.949 (0.947) 
0.971 (0.967) 

0.113 (0.102) 1.643 (1.337) 
0.131 (0.129) 1.463 (1.423) 
0.193 (0.187) 1.544 (1.467) 

0.127 (0.102) 
0.151 (0.145) 
0.255 (0.230) 
0.035 (0.035) 
0.036 (0.036) 
0.037 (0.037) 

1.483 (0.940) 
1.147 (1.068) 
1.277 (1.085) 
25.45 (25.00) 
25.19 (25.13) 
25.32 (25.23) 

Notes. Case A Q0 1, A0 0, case B Q0 0.1, A0 — 0; case C íí0 — 0.1, A0 = 0.9. All distances are normalized by R0 = c/H0. 

Isolated galaxy lens 

Large cluster 
Perturbation 

Isolated galaxy lens 
(spiral?) 

Very large splitting 
For isolated galaxy 

Isolated galaxy lens 
No lens detected 
Two lensing galaxies; 
One dominant? 

Isolated galaxy lens 
(spiral) 

Cluster? 

Fig. 14. Combination DOL Dos/Dls as a function of zL for zs = 3; (a) the standard distance, (b) the DR distance. The meaning of curves is the same as Fig. 1 
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