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ABSTRACT 
We tabulate the most current data for the orbital period, superhump period, and mass ratio in SU Ursae 

Majoris type variables to test models of the superhump timing mechanism. Contrary to earlier reports, the 
correlation between the superhump period excess and the orbital period is not significant. However, the corre- 
lation between the superhump period excess and the mass ratio is significant at the 4.7 a level. This corre- 
lation was predicted by the Whitehurst model which explains superhumps as periodic enhancements of tidal 
dissipation in an eccentric, precessing accretion disk. 

We compare these data with the results of recent hydrodynamical simulations and with our own calcu- 
lations of coplanar, restricted three-body orbits as a function of mass ratio for mass ratios less than unity. We 
find that all reliable mass ratios for SU UMa systems are consistent with the upper limit of 0.22 placed by the 
model. We also computed the degree of instability as a function of mass ratio. We attribute the delays in the 
onset of superhumps observed in WZ Sge and WX Get to the relatively small instability expected for their 
mass ratios. The theoretical superhump period computed by Whitehurst for a mass ratio of 0.15 agrees well 
with the data, but the values computed by Hirose & Osaki are systematically too high. Stringent further tests 
of the model are afforded theoretically by trying to reproduce the observed superhump period-mass ratio 
relationship, and from observation by further exploring the time delay-mass ratio relationship. If the validity 
of the model can be established in this way, superhump timing observations can serve as a much-needed tool 
for determining mass ratios in SU UMa systems. 

Finally, we review the status of proposed models for the superoutburst cycle in SU UMa systems. 
Subject headings: binaries: close — instabilities — novae, cataclysmic variables 

1. INTRODUCTION 

SU Ursae Majoris type variables are a class of nonmagnetic 
dwarf novae with orbital periods among the shortest of any 
cataclysmic variables. Warner (1985) reviewed the observa- 
tional properties of SU UMa systems. Of the 19 systems with 
measured orbital periods, 18 have periods of less than 2 hours, 
the lower edge of the period gap. SU UMa systems undergo 
outbursts which fall into two categories: (1) normal outbursts, 
which last from 2 to 4 days and are characterized by an 
increase in total system brightness of about 3 mag, and (2) less 
frequent but quasi-periodic superoutbmsts, which typically last 
10-14 days and are roughly a magnitude brighter than the 
normal outbursts. Observationally, superoutbursts appear to 
evolve from normal outbursts (van der Woerd & van Paradijs 
1987). An additional modulation of the light curve of up to 0.5 
mag, called the “ superhump,” is observed only during super- 
outburst, and has become the defining characteristic of SU 
UMa systems. The superhump is seen in systems of all inclina- 
tions, implying a physical event in the system rather than a 
geometric effect. Superhumps do not appear until after the rise 
to maximum light, and then they recur with periods that range 
from 0.8% to 9% longer than the orbital period. While the 
superhump period in a given system is similar from one super- 
outburst to the next, four systems have exhibited a slowly 
decreasing period over the course of a superoutburst. WZ Sge 
and similar systems show longer superoutbursts and fewer 
normal outbursts than other SU UMa systems, but are better 

1 Present address : Department of Astronomy, University of Minnesota, 116 
Church Street, S.E., Minneapolis, MN 55455. 

characterized as at the extreme of a continuum rather than as a 
qualitatively different class of dwarf novae. 

Numerous models have been proposed to account for super- 
humps (Papaloizou & Pringle 1979; Vogt 1982; Whitehurst, 
Bath, & Charles 1984; Warner 1985; Osaki 1985; and White- 
hurst 1988). However, most models make no specific predic- 
tions about superhump timing, nor do they explain the period 
distribution of SU UMa systems. The model of Papaloizou & 
Pringle (1979) offered the first quantitative prediction of super- 
hump timing, but their relation produced a maximum super- 
hump period that is only 1.5% longer than the orbital period, 
in sharp disagreement with the observations. Whitehurst 
(1988) presented hydrodynamic simulations in which super- 
humps were produced by periodic enhancements of tidal dissi- 
pation in an eccentric, precessing accretion disk, and which 
reproduced the superhump period of the well-observed system 
Z Cha. In this paper we critically examine the Whitehurst 
(1988) superhump model as presented in that paper and as 
further developed by Osaki (1989), Hirose & Osaki (1990), and 
Whitehurst & King (1991). We also comment on the implica- 
tions for models of the superoutburst cycle. 

In § 2 we tabulate for all known SU UMa systems the best 
published measurements of the quantities most relevant to the 
model: orbital period, superhump period, and mass ratio. We 
also tabulate available data on candidate SU UMa systems. In 
§ 3 we compare these data with the results of the hydrodynami- 
cal simulations of Whitehurst (1988) and Hirose & Osaki 
(1990). We also present the results of coplanar, restricted three- 
body orbital stability calculations which illuminate some of the 
processes underlying the hydrodynamical simulations. In § 4 
we review the Osaki (1989) and Whitehurst & King (1991) 
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models for superoutburst cycles, emphasizing their differing 
motivations and predictions. Finally, in § 5 we summarize our 
conclusions and highlight the further theoretical and observa- 
tional work needed to test the eccentric disk model rigorously. 
An appendix contains a detailed discussion of our three-body 
calculations in relation to previous work. 

2. THE DATA 

In Tables 1 and 2 we compile the best published measure- 
ments (and uncertainties) of the three parameters necessary to 
describe superhump timing in the Whitehurst model: the 
orbital period, P0 ; the superhump period, Ps ; and the mass 
ratio, q = m2/m1, where m1 is the mass of the white dwarf 
primary and m2 is the mass of the Roche lobe-filling compan- 
ion. The final column of each table lists the literature references 
for the three quantities, with dashes where no reference applies. 
For those systems which exhibit a range of superhump periods, 
we list the maximum and minimum observed periods. 

In Table 1 we include systems for which the orbital period 
and superhump period have both been measured. Where 
published sources have inexplicably not included uncertainties, 
we have estimated them, footnoting each instance. Where 
published mass ratios based on conservative assumptions exist, 
we have listed them. Where there are no reliable estimates of 
mass ratios, we have generally estimated them by assuming the 
companion to be a main-sequence star described by Patter- 
son’s (1984) equation (7) relating orbital period to companion 
mass, and by assuming the white dwarf mass to be in the wide, 
illustrative range of 0.4-1.0 M0. In the following we discuss 
the exceptional but important cases of WZ Sge and T Leo. 

For WZ Sge, Gilliland, Kemper, & Suntzeff (1986) have esti- 
mated a mass ratio of 0.09, based on measurements of the 
velocity in quiescence. However, as the phase of the S-wave 
with respect to the eclipse is not that expected for the white 
dwarf, both their assumption that the measured velocity is 
that of the white dwarf and the mass ratio derived from this 

TABLE 1 
SU Ursae Majoris Systems with Determined Orbital and Superhump Periods 

Name 
Po(°o) 
(days) 

Ps(°s) 
(days) q ( = m2/m1) References 

WZ Sge... 
SWUMa. 
T Leo  
VY Aqr ... 
V436 Cen. 
OYCar... 
TYPsc ... 
IR Gem ... 
AW Gem . 
HT Cas ... 
VWHyi .. 
Z Cha  
WXHyi .. 
SU UMa . 
BR Lup ... 
TY PsA... 
YZCnc ... 
TU Men .. 

0.0566878455(7) 
0.056810(69) 
0.058819(5) 
0.060(1)c 

0.0625(2) 
0.0631209239(5) 
0.0639(42) 
0.0684(6) 
0.073(6) 
0.0736472070(24) 
0.07427111(6) 
0.074499215(66) 
0.0748134(2) 
0.076351(43) 
0.08216(70)° 
0.08400(6) 
0.0868(2) 
0.1176(18) 

0.05714(94) 
0.05833(6) 
0.06414(4)b 

0.06445(1)° 
0.06383(2) 
0.064245(46) 
0.07014(61)° 
0.0708(4) 
0.07867(1)° 
0.076077(74) 
0.07712-0.07623f 

0.07725(2) 
0.0774(1) 
0.07882(7) 
0.0822(2) 
0.08765(1)° 
0.0920-0.0905f 

0.12625-0.12469f 

<0.23a 

0.153(0.043) 
0.51(0.04) 
0.20(0.09)d 

0.167(ÍHÍ2) 
0.102(0.003) 
0.21(0.09)d 

0.22(0.09)d 

0.25(0. ll)d 

0.15(0.03) 
0.171(0.027) 
0.150(0.003) 
0.196(0.054) 
0.26(0.1 l)d 

0.28(0.12)d 

0.28(0.12)d 

0.30(0.13)d’8 

0.35(0.10)h 

I, 2,3 
4, 5,6 
7, 8, 7 
9, 10, - 
II, 12, 11 
13, 14, 13 
14, 15, - 
16, 17, - 
18, 6, - 
19, 19, 20 
21, 22, 23 
24, 25, 26 
23, 23, 23 
27, 28, - 
29, 30, - 
31,31,- 
32, 33, - 
34, 34, 34 

a See text. 
b Using the times of superhump maxima from Kato & Fujino 1991, we perform a least-squares fit 

with equal weighting to obtain this superhump period and uncertainty. Our period is consistent with 
theirs. 

° Authors do not provide error estimates. We assume an uncertainty of 1 in the last decimal place, 
or 1 minute in cases where the superhump period is given only to the nearest minute. 

d There are no reliable data on the mass ratios in these systems. To find plausible ranges, we 
adopt Patterson’s 1984 eq. (7) relating the orbital period to the mass of the (main-sequence) second- 
ary, and we take 0.4-1.0 M0 as a wide, illustrative range for the mass of the white dwarf in 
calculating the mass ratio. 

° Author quotes private communication giving Ps at 101 minutes. We assume an uncertainty of 1 
minute. 

f Designates observed ranges in the superhump period over the course of an outburst. 
8 The upper limit to q is based on a lower limit to the white dwarf mass of 0.75 M0 from the 

HWZI of the Balmer absorption lines (Shafter & Hessman 1987). 
h The upper limit to q is based on a lower limit to the white dwarf mass of 0.54 M© from the 

HWZI of the Balmer absorption lines (Stolz & Schoembs 1984). 
References.—(1) Robinson et al. 1978; (2) Patterson et al. 1981; (3) Gilliland et al. 1986; (4) 

Shafter et al. 1986; (5) Robinson et al. 1987; (6) Ritter 1990; (7) Shafter & Szkody 1984; (8) Kato & 
Fujino 1991; (9) Augusteijn & Della Valle 1990; (10) Grauer & Bond, private communication cited 
in Warner & Livio 1987; (11) Gilliland 1982a; (12) Semeniuk 1980; (13) Wood et al. 1989; (14) 
Schoembs 1986; (15) Szkody & Feinswog 1988; (16) Feinswog et al. 1988; (17) Szkody et al. 1984; 
(18) Howell «fe Szkody 1988; (19) Zhang et al. 1986; (20) Home et al. 1991 ; (21) Vogt 1974; (22) Vogt 
1983; (23) Schoembs <& Vogt 1981 ; (24) Cook «fe Warner 1984; (25) Vogt 1982; (26) Wood et al. 1986; 
(27) Thorstensen et al. 1986; (28) Udalski 1989; (20) O’Donoghue, reported in Warner «fe Livio 1987; 
(30) O’Donoghue 1987; (31) Warner et al. 1989; (32) Shafter «fe Hessman 1987; (33) Patterson 1979; 
(34) Stolz «fe Schoembs 1984. 
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assumption are suspect. Because WZ Sge has the shortest 
orbital period of all the systems, its companion is also the least 
likely to be on the main sequence. We therefore set an upper 
limit on the mass ratio of 0.23 based on the following assump- 
tions: (1) the main-sequence mass (0.10 M0) is an upper limit 
to the companion mass and (2) the HWZI of the Balmer emis- 
sion lines (Gilliland et al. 1986) represents the velocity of the 
inner disk and may be no greater than the Keplerian velocity 
at the star’s surface, thus placing a lower limit on the mass of 
the white dwarf (0.44 M0). 

For T Leo, Shafter & Szkody (1984) give upper limits to the 
masses of the companion and white dwarf of 0.19 and 0.4 M0, 
respectively. However, their assumptions may be used to esti- 
mate a mass ratio as well. Shafter & Szkody require the orbital 
inclination, i, to be less than ~ 65° based on the lack of eclipses 
and orbital humps. Based on the observed HWZI of 1900 
km s“1, they further set a limit on the mass of the white dwarf : 

mi 
0.29 

> (sin i)2 Mö , (1) 

requiring the mass of the white dwarf to be greater than 
0.35 Mq for an inclination of 65°. Their velocity of 135 ± 8 
km s~1 and the mass function, 

ml(sin if = Kj_Po (2) 

(m2 + m^2 2nG 

place a further constraint. With the final constraint that m2 be 
no greater than the main-sequence value (which Shafter & 
Szkody quote as 0.17 M0, slightly higher than that obtained 
with the Patterson 1984 relation), the only self-consistent 
parameter set is with m2, i) equal to (0.35 M0, 0.17 M0, 
65°). The resulting mass ratio is 0.51 ± 0.04, with the uncer- 
tainty dominated by the uncertainty on 

T Leo is also unusual in having the greatest difference 
between the superhump and orbital periods, with a fractional 
superhump period excess, AP/P0 = (Ps — P0)/P0, of 0.090. We 
have rederived the superhump period from the data of Kato & 
Fujino (1991). While we find a second minimum at a period 
excess of 0.027, the rms residual of this fit (11 minutes) is twice 
that of the published figure. We therefore conclude this to be 
an alias, and support the published figure as the superhump 
period. 

In Table 2 we list systems in which superhumps have been 
observed but measurement of the orbital period is lacking, and 
we list systems whose outburst behavior makes them SU UMa 
candidates, although no superhumps have yet been observed. 
We do not estimate uncertainties or mass ratios if they are not 
provided in the original sources. We also include EX Hya in 
our list, although it is thought to be an intermediate polar (DQ 
Her), the only one below the period gap. The Whitehurst (1988) 
model suggests that the superhump behavior resides in the 
outer disk of systems with extreme mass ratios. As the outer 
disk is thought to be intact in intermediate polars, this lone 
system with an extreme mass ratio is a good candidate for 

TABLE 2 
Incompletely Observed SU Ursae Majoris Systems and SU Ursae Majoris Candidates 

Name 
Po(°o) 
(days) 

Ps(°s) 
(days) q{ = m2/

m
l) References 

WX Cet  
CYUMa ... 
EKTrA .... 
UV Per  
AQEri   
SS UMi  
RZSge   
FOAnd .... 
AYLyr  
CUVel   
EX Hya  
TTBood .... 
UZ Boo*.... 
ALCome ... 
V503 Cygd.. 
V1504Cygd 

AHErid .... 
V592 Her® .. 
RZ Leod,e .. 
CYLyrd .... 

NAa 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
0.0682338367(10) 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

0.05304(3) 
0.0593(NA) 
0.06492(10) 
0.0663(3) 
0.06703(NA) 
0.070(NA) 
0.07035-0.07000b 

0.073(NA) 
0.075970(18) 
0.0799(NA) 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
0.12C 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

-, 1,- 
-, 2,- 
- 3,- 
-, 4,- 
-, 2,- 
-, 5,- 
-, 6,- 
-, 7,- 
-, 8, - 
-, 9, - 

10, -, 10 

a The orbital of WX Cet is subject to contention. Van Paradijs et al. 1989 say the orbital 
period is uncertain, but likely near 6.98 hr. Szkody et al. 1989 list a value of 127 ± 5 minutes. 
O’Donoghue et al. 1991 note that these value are inconsistent with their observed superhump 
period near 80 minutes. 

b Designates observed ranges in the superhump period over the course of an outburst. 
c Figure quoted by authors as a plausible value, subject to large uncertainty. 
d Cited by Kuulkers 1990 as possible SU UMa candidates based on their outburst behavior. 
e Cited by Richter 1992 as possible SU UMa candidates based only on their outburst recur- 

rence time. 
References.—(1) O’Donoghue et al. 1991; (2) Ritter 1990; (3) Vogt & Semeniuk 1980; (4) 

Udalski & Mattel 1989; (5) Chen et al. 1991; (6) Bond et al. 1982; (7) Grauer & Bond 1986, 
reported in Szkody et al. 1989; (8) Udalski & Szymanski 1988; (9) Vogt 1982; (10) Gilliland 
1982b. 
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o 

Fig. 1.—Superhump period excess vs. orbital period in hours for the 14 SU UMa systems in Table 1. Uncertainties are not plotted where they are smaller than the 
symbols. Where ranges in the superhump period have been observed, we denote the ranges with vertical lines rather than with error bars with serifs. 

superhumps should there be a superoutburst. Data which com- 
plete Table 2 will be helpful in further evaluating models of 
superhumps and superoutbursts. 

Stolz & Schoembs (1984) and Robinson et al. (1987) showed 
evidence for a correlation between the orbital period and the 
superhump period. In Figure 1 we plot AP/P0 versus P0 for all 
systems in Table 1 for which the period excess is determined to 
better than ~1%, a total of 14 systems. We distinguish the 
systems with observed ranges in the superhump period from 
the others by using lines rather than error bars with serifs. The 
correlation of these two parameters for these systems is not 
significant, since the correlation coefficient is 0.43, correspond- 
ing to a significance of 1.5 <7. The low correlation coefficient is 

largely due to T Leo, although the period excess of SW UMa is 
significantly greater than that of WZ Sge despite the similar 
orbital periods. The period excess of VY Aqr (which was not 
included in the calculation) is also significantly greater than the 
excesses of other systems with similar orbital periods. 

In Figure 2 we plot AP/P0 versus q for the same 14 systems. 
Systems for which the mass ratio estimate is based on assump- 
tions of a main-sequence secondary are plotted with filled 
circles. Filled squares are used to denote systems for which no 
assumptions about the nature of the companion are made. As 
described in the next section, Whitehurst & King (1991) predict 
that this figure should show a monotonie relationship between 
the parameters. Omitting for the moment WZ Sge, for which 

o 

Fig. 2.—Superhump period excess vs. mass ratio for the 14 SU UMa systems in Table 1. Filled circles represent the observed values where the mass ratio is based 
on the assumption of a main-sequence companion. Filled squares are used when this assumption is not made. Where ranges in the superhump period have been 
observed, we denote the extent of the variations with horizontal lines rather than with error bars with serifs. The open star marks the period excess from the 
hydrodynamic simulations of Whitehurst (1988). Open squares mark period excesses from the hydrodynamic simulations of Hirose & Osaki (1990). 
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there is only an upper limit on mass ratio, we find a correlation 
between the parameters significant at the 4.7 o level 
(correlation coefficient of 0.94). 

Since orbital period is generally expected to correlate with 
mass ratio, it is no surprise to see the good correlation between 
period excess and mass ratio, given previous reports of the 
correlation between period excess and orbital period. Indeed, 
the period excess-orbital period relation remains good as a 
general rule, having but three exceptions: T Leo, SW UMa, 
and VY Aqr. But because our purpose is to determine which is 
the fundamental relationship and which the corollary, the 
identification of exceptions is central. Correlation analysis 
clearly favors models based on mass ratio (such as the White- 
hurst model) over those based on orbital period. 

The Whitehurst model predicts that beyond a simple corre- 
lation the relationship should be strictly monotonie. Given the 
typically large uncertainties on mass ratio, it is more difficult 
for the data to make a strong statement here, but, since a single 
well-established exception could challenge the model, we eval- 
uate the model consistency on this point. We find that all of the 
data are consistent with AP/P0 being a strictly monotonie func- 
tion of q to within the uncertainties. In order to determine the 
significance of the strict monotonicity, we shuffled the 14 
values of q among the 14 AP/P0 values 100,000 times, noting 
the number of reorderings that were inconsistent with a 
monotonie relationship. We found 184 shufflings in 100,000 
produced such a monotonie relation, making this distribution 
inconsistent with a random distribution at the 3.0 a level. In 
Figure 3 we plot a histogram of the number of data pairs 
inconsistent with monotonicity in each shuffling. To test the 
robustness of this result, we performed the same procedure 
leaving individual points out of the data one at a time. Remov- 
ing OY Car from the data has the largest effect, resulting in 
720 reorderings that were consistent with monotonie. The dis- 
tribution is then inconsistent with random at the 2.8 cr level. 

With its large uncertainty in mass, VY Aqr is also consistent 
with a strict monotonie relationship. Such a relationship 
would require the white dwarf mass in VY Aqr to be relatively 
low, while that in TU Men must be relatively high. This conse- 
quence is amenable to an observational check (up to an ambi- 
guity about inclination) by observation of the HWZI of the 
Balmer lines of VY Aqr. 

3. DISCUSSION OF THE WHITEHURST MODEL 

3.1. F ormation of an Eccentric Accretion Disk 
The essential feature of the Whitehurst (1988) superhump 

model is an eccentric accretion disk around the white dwarf 
which precesses slowly in the inertial reference frame of the 
binary system. The superhump period is identified with the 
synodic or beat period between the orbital period of the binary 
and the precession period of the disk. Variations in tidal 
stresses on the eccentric disk over the course of the orbit modu- 
late the viscous dissipation of energy with the superhump 
period. 

Whitehurst (1988) suggests that an eccentric disk will form 
naturally as the result of a regime of unstable orbits in systems 
with sufficiently extreme mass ratios. The presence of the 
eccentric disk is determined by the relative sizes of the “ tidal 
truncation radius” and the “stability radius.” For a disk with 
low pressure and viscosity around an isolated star, the gas 
should be in a family of concentric, circular Keplerian orbits. 
One can define the extension of this family to a binary as a 
set of concentric periodic orbits in the corotating frame. 
Piotrowski & Ziolkowski (1970) defined the stability radius as 
the radius of the smallest of these orbits which, when subject to 
a small radial perturbation, deviates ever further from the orig- 
inal orbit. Define the corotating coordinate system so that the 
two stars lie on the x-axis with the origin at the center of mass. 
Consider the stability of an orbit that intersects the x-axis at a 
point x0 away from the primary with a velocity at that point in 
the y-direction with amplitude y0. Perturb the particle from 
this position a distance Ax0, simultaneously changing the 
velocity so as to conserve the Jacobi integral, 

C = -(x2 + y2 
y2) + 

1 <1 
(q + 1)^ (q + l)d2 ’ (3) 

where d1 is the distance between the particle and the white 
dwarf and d2 is the distance between the particle and the com- 
panion. The Jacobi integral is the sole conserved quantity in 
the restricted three-body problem. The stability parameter, 
identified with the Lyapunov exponent, is then 

a = 
Ax1 

Ax0 ’ 
(4) 

Fig. 3.—Histogram of the number of data pairs inconsistent with mono- 
tonicity in each of 100,000 reorderings of the data from Fig. 2. 

where Axx refers to the offset from the reference position after 
one orbit. A value of M > 1 indicates an unstable orbit. 
Paczynski (1977) noted that one also reaches a “last noninter- 
secting orbit,” beyond which orbits in this family intersect each 
other. The low-viscosity assumption must break down at this 
point, so that the last nonintersecting orbit is likely a close 
approximation to the tidal truncation radius, the point at 
which the tidal influence of the companion truncates the 
viscous expansion of the disk. See the Appendix for more dis- 
cussion of the physical interpretation of these critical radii. 

Whitehurst (1988) found that a Keplerian disk would 
develop an eccentric outer edge due to tidal interactions when 
the tidal truncation radius of the disk exceeds the stability 
radius. Paczynski (1977) found this inequality to be satisfied for 
mass ratios less than 0.22. (This has been inaccurately quoted 
as 0.25 in each of the superhump model papers discussed here.) 

In order to define more exactly the conditions under which 
this instability may affect the orbits of material in the accretion 
disk, we computed a series of coplanar, restricted three-body 
orbits, investigating the stability of periodic orbits as a func- 
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Fig. 4.—Particle frequency divided by orbital frequency vs. mass ratio for a number of critical orbits. The long-dashed line indicates the last nonintersecting orbit. 
The solid lines represent transitions in the stability parameter between stability and instability. The short-dashed line marks the local maxima of the instability 
parameter within the first unstable region. The critical points qn are discussed in detail in the Appendix. 

tion of mass ratio and the orbital frequency of the test particle, 
(op. This quantity, measured in the inertial frame of reference, is 
analogous to radius but better defined for the highly non- 
circular orbits in the outer disk. We summarize the results of 
these calculations in Figure 4, in which we plot the mass ratio 
of the system, q, against the normalized particle frequency 
cop/(o0, where co0 is the binary orbital frequency. Smaller values 
of (op/m0 correspond to larger orbital radii. 

The long-dashed line in Figure 4 indicates the frequency of 
the last nonintersecting orbit. The solid lines represent tran- 
sitions in the stability parameter, a, between stability and insta- 
bility. They delimit two unstable regions, one between the two 
lines that emanate from near œp/œ0 = 3 for low values of q9 and 
the other in the lower right-hand portion of the figure. The 
short-dashed line marks the local maxima of the instability 
parameter, |a|, within the first unstable region. A detailed 
explanation of the lines and the critical points, qn, is given in 
the Appendix. 

The model of Whitehurst invokes the first unstable region. 
This unstable region first appears at a mass ratio of 0.33, 
denoted q3, but is entirely beyond the last nonintersecting 
orbit at this point. As noted above, the maximum q that is both 
within the unstable region and interior to the last noninter- 
secting orbit is 0.22, denoted q5. For q < 0.08 (g8), the orbits 
become stable again before reaching the last nonintersecting 
orbit, as was first noted by Paczynski (1977) (cf. his Fig. 4). At 
more extreme mass ratios, the unstable region becomes 
increasingly narrow but does not entirely disappear even out to 
mass ratios of 10~1\ However, the maximum value of the insta- 
bility parameter asymptotically approaches unity at small q9 
indicating that ultimately this range of orbits is marginally 
stable, and a real disk will be able to expand viscously beyond 
this region. This can be seen in Figure 5, in which we plot the 
maximum value of the instability parameter as a function of 
mass ratio. Figure 5 peaks at a mass ratio of 0.16 (point qn on 
Fig. 4), which therefore is the mass ratio for which the insta- 
bility should be most effective. Note that the second unstable 
region can never be of interest to disks, since it lies entirely 
beyond the last nonintersecting orbit. 

3.2. The Range of Mass Ratios : Model and Data 
Based on the foregoing discussion, we expect the onset of 

instability in tidally truncated disks in systems with mass ratios 
up to 0.22. As the mass ratio decreases below 0.16, the insta- 
bility becomes progressively weaker, so that we may expect its 
onset to be delayed, or not to occur at all for sufficiently low 
mass ratio systems. Whitehurst & King (1991) postulated that 
viscous forces could enable the disk to grow somewhat beyond 
the last nonintersecting orbit, making it possible to achieve 
instability at mass ratios beyond 0.22, out perhaps to the edge 
of the unstable region (q3 = 0.33). The validity of this postulate 
is beyond the scope of a three-body calculation, since the inter- 
section of the particle orbits implies that such a disk must be 
treated hydrodynamically. Hirose & Osaki (1990) performed 
hydrodynamic simulations for a range of mass ratios from 0.05 
to 1.0 and found processing disks only for mass ratios from 0.10 
to 0.20, but not for 0.05 or 0.25 and above, consistent with the 
expectations based on the restricted three-body calculations. 

The quoted lower limits of 12 of the 14 SU UMa systems in 
Figure 2 are consistent with an upper limit on the mass ratio of 
0.22. Our nominal lower limit on TU Men is 0.25, assuming a 
main-sequence companion of 0.25 M0 and a 1.0 M© white 
dwarf. However, a mass ratio less than 0.22 is very plausible if 
the companion is slightly undermassive (as is expected just 
above the period gap) or if the white dwarf is in the 1.1-1.3 M© 
range. 

The lower limit on the mass ratio of T Leo described in § 2 is 
0.47, based on measurements of Kl9 the HWZI of Balmer emis- 
sion, and an upper limit on the inclination. This is in serious 
disagreement with the model expectations. The mass ratio of 
T Leo can be reduced to 0.22 only by reducing by 6 <7 to 87 
km s"1. (Allowing an inclination up to 90° reduces the change 
in Kx to 5 a. Reducing the mass ratio only to 0.33 reduces the 
change in to 3.4 <r.) Since we have already seen that the 
apparent Kx velocity in WZ Sge does not reflect the motion of 
the white dwarf in that system, it seems more likely that the 
Whitehurst model can be used here to point out a problem in 
interpretation of the Kx velocity of T Leo than that the T Leo 
mass ratio presents a problem for the Whitehurst model. 
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o 

Fig. 5.—Maximum absolute value of the instability parameter vs. mass ratio 

All 14 upper limits on mass ratio in Figure 2 are consistent 
with a lower limit of 0.1. As seen in Figure 5, the maximum 
value of the instability parameter at this mass ratio is still 
within 40% of its overall maximum, although it is rapidly 
dropping at this point toward lower mass ratios. While we 
have no firm value for the mass ratio of WZ Sge, the empirical 
result of a monotonie relationship between period excess and 
mass ratio implies that it has the smallest mass ratio of the 
systems in Figure 2. The superhumps of WZ Sge are distinctive 
in that it took a record 13 days from the commencement of the 
1978 superoutburst for the superhumps to appear (Patterson et 
al. 1981). We suggest that this longer time scale is consistent 
with the model, since the much smaller degree of instability in 
this extreme mass ratio system would increase the time 
required to develop the disk eccentricity fully. In general, we 
expect the superhump start-up time to be directly correlated 
with mass ratio (and hence period excess) for the lower mass 
ratio systems. O’Donoghue et al. (1991) reported that WX Cet 
did not show superhumps until at least 4 days, and perhaps as 
many as 7 days, after the start of the superoutburst. While 
neither the mass ratio nor the orbital period of this system is 
known, its superhump period is the shortest known, suggestive 
of a low mass ratio system. The start-up time is between that of 
WZ Sge and OY Car (which showed superhumps by 3 days 
after maximum in 1985 May; Naylor et al. 1987). Hence we 
predict a period excess for WX Cet between 0.8% and 1.8%, or 
an orbital period between 75 and 76 minutes. 

We conclude that all current data on SU UMa systems are 
consistent with the 0.22 M0 upper limit on the mass ratio 
imposed by the Whitehurst model. There is no observational 
need to suppose that the tidal radius significantly exceeds the 
radius of the last nonintersecting orbit. We also find that the 
observation of longer superhump start-up times in very low 
mass ratio systems provides additional support for the model. 

3.3. Superhump Timing: Model and Data 
Hirose & Osaki (1990) show analytically that the transition 

to instability is due to a 3:1 parametric resonance between 
particle orbits and the companion star. Whitehurst & King 
(1991) show with restricted three-body calculations that a 

family of doubly periodic orbits exists (i.e., orbits in a 3:1 
resonance), and that the first unstable orbit is a member of this 
family. (See the Appendix for a further description of this.) 
Whitehurst & King find further that, in their hydrodynamic 
simulations, an outer rim forms around the disk which has a 
doubly periodic orbit. The superhump period is identified as 
the time for material in the rim to complete its double loop. 
This is a special case of the general identification of the super- 
hump period with the beat period between the orbital period of 
the binary and the precession period of the disk. 

For the isolated particle in a resonant orbit the superhump 
period is easy to compute, being twice the particle period in the 
corotating frame: 

P0 a>Pl«>o - 1 ’ 

The relevant values of œp are those of the top solid line in 
Figure 4, which range from 3 at 0.22, increase by several 
percent going toward lower q, and then asymptotically return 
to 3 for very large q. Hence, in the mass range of interest, the 
period excess for isolated particles in a doubly periodic orbit is 
never positive, contrary to all of the data. The analytic formula 
of Hirose & Osaki (1990) estimates precession rates as a func- 
tion of particle radius and mass ratio in the more general, 
nonresonant Keplerian case. This formula yields only positive 
period excesses, with greater values at larger radii or larger 
mass ratios. We performed numerical simulations which 
confirm the general properties of their formula away from res- 
onant orbits, although the actual values differ by as much as a 
factor of 2 in the region of interest. (This discrepancy is not 
surprising given the approximations of small radius and mass 
ratio intrinsic to the derivation.) Precession in a successful 
model, therefore, must be in either a nonresonant orbit, a non- 
Keplerian orbit, or both. 

Whitehurst (1988) performed hydrodynamic simulations to 
obtain a superhump period excess of 3.5% for a mass ratio of 
0.15. He used a short episode of mass transfer to initiate the 
development of an eccentric disk. Whitehurst & King (1991) 
note that the positive period excess found in the simulations is 
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due to the interaction of the rim with the disk, pushing it to a 
longer orbit. Hence their superhump model calls for resonant 
but non-Keplerian orbits. They claim that the magnitude of 
this effect is determined entirely by the mass ratio (not by the 
viscosity) and should increase with increasing mass ratio. Thus 
they predict a strictly monotonie relationship between period 
excess and mass ratio, although the detailed shape of this func- 
tion awaits further computation. As the hydrodynamic effects 
must push the particle period several percent longer just to 
reach a superhump period excess of zero, it is possible that 
negative period excesses will result from simulations of very 
low mass ratio systems. 

We plot the Whitehurst (1988) theoretical period excess with 
a star in Figure 2, where it is in good agreement with the SU 
UMa data. As discussed in § 2, the data are also entirely consis- 
tent with a strictly monotonie relationship, as Whitehurst & 
King (1991) require. 

Hirose & Osaki (1990) determined period excesses from 
hydrodynamic simulations of mass ratios of 0.1, 0.125, 0.15, 
0.175, and 0.2 using a constant mass transfer rate. We plot 
these results with open squares in Figure 2, and note that they 
fall systematically well above the SU UMa data and the White- 
hurst (1988) model datum. Hirose & Osaki also differ from 
Whitehurst and King in their interpretation of the simulations. 
While they note the importance of the resonance for initiating 
the instability, their superhump model calls for particles in 
nonresonant orbits at slightly smaller radii. In this model, a 
decreasing radius through a superoutburst cloud naturally 
lead to a decreasing superhump period, as seen in some 
systems. 

We conclude that the eccentric disk model provides a simple 
theoretical reason for the monotonie relationship between 
period excess and mass ratio, and has shown promise for 
reproducing the details of that relationship, although there are 
significant discrepancies between the results of different work- 
ers at present. In particular, the importance of the resonant 
orbit for the superhumps remains in dispute. In general, a 
strong test of the models will be to reproduce the details of the 
empirical period excess-mass ratio relationship with no free 
parameters, particularly the systems at the extremes: WZ Sge 
and T Leo. If this is done, the model can serve as a useful tool 
for determining reliable mass ratios from observations of 
period excess. 

A second test of the models will be to reproduce the spatial 
distribution of light on the disk from superhumps revealed by 
eclipse mapping. While none of the models are advanced 
enough yet for detailed comparison, we note that the three 
enhanced regions found by O’Donoghue (1990) in his map of 
Z Cha correspond to the three points at which the doubly 
periodic orbit intersects itself (as seen, for example, in Fig. 3a of 
Whitehurst & King 1991), providing preliminary support for 
the importance of resonant orbits. 

4. THE NATURE OF SUPEROUTBURSTS 

While there is a consensus that normal outbursts are the 
result of thermal instabilities in the accretion disk, the nature of 
superoutbursts remains unclear, and even their precise defini- 
tion is in dispute. Observations have established a number of 
characteristics that any superoutburst model must address: (1) 
superhumps occur only during superoutbursts; (2) super- 
outbursts evolve from outbursts (van der Woerd & van 
Paradijs 1987); (3) normal outbursts are unpredictable, but 
superoutbursts occur at more predictable intervals (Vogt 

1980); (4) in VW Hyi the average energy emitted in normal 
outbursts in the time between superoutbursts is found to be 
correlated with the phase of the superoutbur^t cycle (van de 
Woerd & van Paradijs 1987). 

The superoutburst property that is in dispute is their orbital 
period distribution. Some workers restrict the name “super- 
outburst” to only those systems which show superhumps, 
which, as we have seen, are the relatively short-period, extreme 
mass ratio systems. Others also include in the definition of 
superoutburst the wide outbursts of longer period systems 
such as SS Cyg, which shows a pattern of alternating wide and 
narrow outbursts (e.g., Hempelmann & Kurths 1990). There is 
as yet no observational distinction (beside the absence of 
superhumps) to exclude long-period systems. However, there is 
also no theoretical necessity to include these systems, since the 
alternating patterns may find an explanation in the details of 
the thermal instability model (e.g., Smak 1984). 

Osaki (1989) suggested a model for superoutbursts which 
assumes that the rate of mass transfer from the companion is 
constant, and combines the effects of the thermal disk insta- 
bility with those of the tidal instability. Thermal instabilities in 
the disk cause periodic episodes of accretion which are seen as 
normal outbursts, but the size of the disk is small enough that 
tidal torque is inefficient, so the enhanced viscosity of the out- 
burst leads to expansion of the outer disk. The outer radius of 
the accretion disk expands farther with each successive out- 
burst until the rim exceeds the tidal stability radius. With the 
next outburst, efficient tidal torque drives the eccentricity that 
produces superhumps and clears the outer disk. The heavy 
accretion from the outer disk enables the thermal instability to 
last longer and reduces the disk radius back to its starting 
point. 

In this scenario, wide outbursts in long-period systems 
without superhumps would be accounted for by a separate 
mechanism, since the tidal instability that produces the super- 
humps also drives the superoutburst. The scenario naturally 
explains the evolution of a superoutburst from a normal out- 
burst. The quasi-periodic nature of the superoutbursts is 
explained by the constant rate of mass transfer from the com- 
panion. The increasing normal outburst energy with super- 
cycle phase may be explained as an increase in tidal torque 
with increasing disk radius. An important test of this model 
would be observational verification of the variation of disk 
radius with supercycle phase. 

Whitehurst & King (1991) argue for the importance of the 
accretion stream in triggering the development of superhumps, 
noting that with no accretion stream the time scale for the 
instability is much longer than observed. They suggest, there- 
fore, that the essence of the superoutburst is a period of 
enhanced mass transfer from the companion. A normal out- 
burst presumably serves as the trigger for the enhanced mass 
transfer, accounting for the evolution of a superoutburst from 
a normal outburst. This model accounts naturally for super- 
humps occurring only during superoutburst. In this scenario 
wide outbursts in long-period systems may be accounted for by 
the same trigger as for the short-period systems. The lack of 
superhumps is merely an indication of the greater mass ratio. 
However, with no mechanism yet given for how the trigger 
operates, items 3 and 4 on our list remain unexplained, as does 
the alternating pattern seen in the wide systems. Whitehurst & 
King also cannot rule out the Osaki (1989) model yet, as they 
have not computed the time scale for the instability in the 
presence of a steady accretion stream. 
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5. CONCLUSIONS 

Using data from 14 SU UMa systems, we show that the 
previously reported correlation between orbital period and 
superhump period excess is no longer significant. However, we 
show for the first time that the superhump period excess is 
significantly correlated with binary mass ratio and, further- 
more, is consistent with a strictly monotonie relationship. 

We compute coplanar, restricted three-body orbits to 
describe regions of stability for systems with mass ratios less 
than unity. In particular, we computed the degree of instability 
as a function of mass ratio of the unstable zone which White- 
hurst (1988) suggested to be the source of disk eccentricity in 
SU UMa systems. We find that this zone extends to arbitrarily 
small mass ratios, but with an asymptotically vanishing degree 
of instability. 

We find that the data support the Whitehurst (1988) model 
for superhumps in a number of ways. All reliable estimates of 
SU UMa mass ratios are consistent with the upper limit 
allowed by the model (0.22). Whitehurst & King (1991) argue 
that the period excess should be a unique, monotonie function 
of mass ratio, which we find to be true. There is evidence that 
systems with mass ratios below 0.1 show increasing time delays 
before the onset of superhumps, consistent with the decreased 
degree of instability in these systems. The model value for 
period excess for a mass ratio of 0.15 found in hydrodynamic 
simulations by Whitehurst (1988) agrees well with the data, 
although the values found by Hirose & Osaki (1990) are sys- 
tematically high. 

Further theoretical work should focus on determining a 
model period excess-mass ratio relationship, and on resolving 
the importance of the resonance to the observed superhump 
period. If more complete calculations are in consonance with 
the data presented here, this would be a powerful verification 
of the model. It would also be an extremely useful tool for the 
identification and further study of other puzzling properties of 
SU UMa systems. For example, the Whitehurst paradigm 
identifies the Ki velocity of T Leo as anomalously high, adding 
it to the puzzle of the anomalous phase of the Kx measure- 
ments in WZ Sge. Also, with some assumptions about the 
companion masses, the distribution of white dwarf mases in 
SU UMa systems could be determined. Also needed are theo- 
retical investigations of the delay in the onset of superhumps 
and the decreasing superhump period observed in some 
systems. 

In order to test the model further, detailed observations 
should focus on systems at the extremes of period excess : their 

mass ratios and superhump start-up times. To make use of the 
model, orbital and superhump periods should be sought for 
the systems listed in Table 2. 

The question of the superoutburst mechanism itself remains 
open. Simulations of superhump onset times with varying mass 
transfer rates may determine whether the root is in a disk 
instability (as suggested by Osaki 1989) or in a mass transfer 
instability (as suggested by Whitehurst & King 1991). An 
observational test of the former model is measurement of disk 
radii throughout a superoutburst cycle. The latter model needs 
to be extended to have a mechanism for triggering the mass 
transfer instability. This mechanism can be tested by the 
varying recurrence properties of superoutbursts as a function 
of orbital period. 

Note added in manuscript.—One may use the empirical 
period excess-mass ratio relationship presented here to evalu- 
ate whether anomalous periods in other systems may arise 
from the same disk resonance. Grindlay et al. (1988) found an 
optical modulation in the X-ray burst source 4U 1915—05 
with an 0.84 hr period, 1% longer than the X-ray dipping 
period. Rappaport & Joss (1984) derived a companion mass 
between 0.008 and 0.1 M0, which implies q in the range 0.006- 
0.07 assuming a 1.4 M0 neutron star. It is not immediately 
clear how to apply the superhump model, since the optical 
period is more stable than the X-ray period, so superhumps are 
not being directly observed in the optical as in the case of 
SU UMa systems. Nonetheless, a period excess of +1% is 
consistent with q = 0.07, or a period excess of —1% may be 
consistent with a smaller q, so it is reasonable to try to develop 
a superhump model for this system. 

By contrast, Tuohy et al. (1990) found a photometric period 
in the cataclysmic variable 1H 0709 — 360 that is either 2.1% 
longer or 2.8% shorter than the orbital period (the two pos- 
sibilities being aliases of each other). A superhump model 
would be applicable for a mass ratio near 0.15 or much less 
than 0.1, respectively. But these values are inconsistent with the 
estimate of Bailey (1990) that q > 0.6 or the general expecta- 
tion of a high value of q for a system in a 2.4 hr orbit, so a 
superhump model does not seem reasonable for this system. 

We thank Joe Patterson, Yoji Osaki, and an anonymous 
referee for valuable comments. This research has made use of 
the Simbad data base, operated at CDS, Strasbourg, France, 
This paper is dedicated to the memory of our coleagues and 
friends Christoph Goertz, Dwight Nicholson, Linhua Shan, 
and Robert Smith, who died on 1991 November 1 at the Uni- 
versity of Iowa. 

APPENDIX 

As described in § 3.1, in Figure 4 we plot normalized particle frequency versus mass ratio for several critical orbits, based on our 
own prograde, coplanar, restricted three-body orbit calculations (Copenhagen class g orbits; Szebehely 1967). The long-dashed line 
in Figure 4 indicates the frequency of the last nonintersecting orbit. The solid lines represent transitions in the stability parameter, a, 
between stability and instability. The short-dashed line marks the local maxima of the instability parameter, | a |, within the first 
unstable region. We mark eight critical points qn on Figure 4 to which this discussion will refer. Although portions of these results 
have been described in previous publications (Piotrowski & Ziolkowski 1970; Paczynski 1977; Whitehurst & King 1991), we wish 
to present a more comprehensive description which builds upon those works, filling in some gaps. 

In this Appendix we will describe in more detail the number and nature of these crossings as a function of mass ratio, plotting for 
several representative mass ratios the families of singly and doubly periodic orbits as a function of the Jacobi integral, C, and the 
points at which the orbits cross the x-axis with velocity perpendicular to the x-axis. Using the notation of Paczynski (1977), orbital 
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radii at the x-crossing opposite the companion are designated r1? and the radii at the x-crossing between the two stars asr2. Doubly 
periodic orbits that have velocity perpendicular to the x-axis on the rl side we label class I doubly periodic orbits, and likewise those 
on the r2 side we label class II doubly periodic orbits. 

As described in § 3.3, Whitehurst & King showed that the first unstable orbit is in fact the orbit at which a class of doubly periodic 
orbits crosses the family of singly periodic orbits. It turns out more generally that each transition in the stability parameter is 
marked by such a crossing. The upper solid line, extending from œp/co0 just above 3 for small values of q out through the critical 
points q5, qs, q^ to q6, is determined by the intersection of class II orbit families with the singly periodic orbit family. The lower 
solid line, extending from œplœ0 just below 3 for small values of q out through the critical points q8 and q4 to just below q3, is 
determined by the intersection of class I orbit families with the singly periodic orbit family. From the point on the lower solid line 
just below q3 over to q of unity, it is determined by the intersection of a class II orbit family with the singly periodic orbit family. 
Hence there are between one and three doubly periodic orbit families, depending on the mass ratio. Those discussed in Whitehurst 
& King (1991) are only the one family at each mass ratio with the highest frequency. 

Our Figure 4 is a more precise version of Figure 1 of Whitehurst & King (1991). They use their figure (which has analytic 
approximations of the 2:1 resonance, the 3:1 resonance, and the last nonintersecting orbit) to argue in general terms for the 
relevance of the 3:1 resonance to disk instability. (Note that they use the labels 3:1 and 3:2 interchangeably.) A comparison of the 
figures indicates some limitation of their argument. Since they represent the 3:1 resonance as a single line, rather than the two lines 
in our figure, the separation into two regions of instability described in § 3.1 (and indeed in the text of Whitehurst & King) cannot be 
represented. The intersection of the 3:1 resonance and the last nonintersecting orbit lines (q5 on Fig. 4) is well represented in their 
Figure 1, although the value ofq5 is given as 0.33 rather than 0.22. The intersection of the 2:1 resonance and the last nonintersecting 
orbit lines in their Figure 1 implies that a new unstable region begins at that point (q = 0.025). However, we find no such region. Just 
as the 3:1 resonance is related to doubly periodic orbits in the corotating frame, the 2:1 resonance is related to singly periodic orbits 
in the corotating frame. The last nonintersecting singly periodic orbit is itself the manifestation of the 2:1 resonance. Note that the 
last nonintersecting orbit goes to an orbital frequency of 2 in the limit of small q. 

We organize our detailed description of the behavior of the single and doubly periodic orbits by describing the situation at a mass 
ratio of unity fully and then noting for descending mass ratio what changes take place at each critical point. 

Al. 4 = 1.0 

In Figure 6a we plot, for a mass ratio of unity, C as a function of the ^ crossing for two families of singly periodic orbits. The lines 
are solid for stable orbits and dashed for unstable orbits. Figure 6b is a similar plot of the r2 crossings. Particle orbits in accretion 
disks would evolve down the branch with the higher value of C. This is the Copenhagen first phase, while the other family is the 
Copenhagen third phase (Szebehely 1967). Note that the first-phase orbits are double-valued in Figure 6b. The point of inflection 
here, which we mark with a filled circle in both Figures 6a and 6b, is the last nonintersecting orbit. 

Also appearing in Figure 6b is a class II family of doubly periodic orbits, marked with a short-dashed line. The point at which this 
family of orbits intersects the singly periodic family is marked with a filled square in both Figures 6a and 6b. As discussed above, this 
is also a transition from unstable to stable orbits. There are two other transitions from unstable to stable, which occur at extrema in 
the value of C. Note, however, that all of the orbits out to the last nonintersecting orbit are stable. 

A2. 41 = 0.734 

At qx the phase 1 and phase 3 orbits connect at the points of C extrema, and thereafter there is a phase consisting of the stable 
portions of phases 1 and 3, and another phase consisting of the unstable portions of phases 1 and 3. Figures la and lb are similar to 

A r2 

Fig. 6a Fig. 6b 
Fig. 6.—Periodic orbits for a binary system with mass ratio 1.0. Singly periodic orbits in the corotating frame are marked with solid lines if stable or with 

long-dashed lines if not. Doubly periodic orbits are marked with a short-dashed line. 
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Fig. la Fig. lb 
Fig. 7.—Periodic orbits for a binary system with mass ratio 0.73 

Figures 6a and 6b, but for the q = 0.73 case to illustrate the orbits after this connection. The last nonintersecting point is still an 
inflection on the r2 side, but after the reconnection this inflection is a small deviation. The lone stability transition occurs at the 
intersection with the class II orbit family. 

A3. q2 = 0.130 

At q2 the inflection on the r2 side that had determined the last nonintersecting orbit has straightened out. The last nonintersecting 
orbit, therefore, is suddenly at a larger radius determined by the double-valued r1 curve. Paczynski (1977) notes this bifurcation in 
his Figure 2 at this point but does not investigate the region in detail. 

A4. 43 = 0.33 

At q3 a new region of instability begins, marked by the appearance of two new families of doubly periodic orbits, both class II. 
Also at this point, the former class II family suddenly becomes a class I. This is the first appearance of the unstable region of the 
Whitehurst model. Figures Sa and Sb are similar to Figures 6a and 6b, but for the q = 0.32 case to illustrate behavior just beyond q3. 
We mark the intersections of all three doubly periodic orbits with the singly periodic family, noting the change to instability, back 
briefly to stability, and again to instability. The new region of instability lies outside the last nonintersecting orbit. 

A5. 44 = 0.31 

At 44 the outer class II family crosses the class I family. Nonetheless, both above and below q^ each intersection with the singly 
periodic orbits indicates a transition in stability. 

Fig. 8.—Periodic orbits for a binary system with mass ratio 0.32 
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A r2 

Fig. 9a Fig. 9b 
Fig. 9.—Periodic orbits for a binary system with mass ratio 0.22 

A6. 45 = 0.22 

At q5 the intersection with the first class II family now coincides with the last nonintersecting orbit. Figures 9a and 9b are similar 
to Figures 6a and 6b, but for the q = q5 case. For smaller values of q the outer portion of an accretion disk truncated near the last 
nonintersecting orbit will be unstable. Hence q5 is the important critical point for the Whitehurst (1988) model. 

A7. q6 — 0.16 

At q6 the lower class II orbit, which had been moving to steadily lower C values, ceases to intersect the singly periodic orbit 
family. This corresponds to the abrupt termination of the class II line in Figure 4. 

A8. 47 = 0.16 

At 47 the peak magnitude of the instability parameter between the upper class II orbit and the class I orbit reaches a maximum of 
1.28 as shown in Figure 5. 

A9. q8 = 0.08 

At q8 the class I family intersects the singly periodic orbit family at the last nonintersecting point. For smaller values of q only an 
annulus of an accretion disk truncated near the last nonintersecting orbit will be unstable. As q goes to zero, this annulus does not 
disappear but becomes an ever narrower band around particle orbits at 3 times the orbital frequency. The maximum value of the 
instability parameter also decreases, going asymptotically to unity. 
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