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ABSTRACT 

The ring discovered around SN 1987A is likely to be related to the rotation of the progenitor. We have 
studied two rotational effects of the progenitor of SN 1987A: (1) mass-shedding from the equator and (2) an 
aspherical mass distribution in a stellar wind due to the direction-dependent mass loss. With approximate 
models for a rotating star and a wind, we have obtained the following results. . ..• 

First, if the rotational velocity of the progenitor at the main sequence exceeds 270 km s , mass-shedding 
can occur (i.e., the angular velocity can exceed the critical angular velocity) at the blue supergiant stage. This 
is due to the decreasing moment of inertia along the evolution with increasing mass concentration toward the 
center. However, the observed elemental abundances and the expansion velocity of the ring provide 
severe constraints on the time of mass-shedding, which suggests that the mass-shedding scenario is probably 
less likely the case. , . , , - ^ ^ ^ 

Second, the stellar wind combined with the rotation forms an aspherical mass distribution in the distant 
region from the star. The nonsphericity can be 10%-20% depending on the ratio of the rotational energy to 
the gravitational energy. This mild asphericity in the slow wind can be a seed of the ring formation due to the 
interaction with the fast wind at later stages, which should be studied with full hydrodynamical calculations of 
the wind-wind interaction. 
Subject headings: stars: individual (SN 1987A) — stars: rotation — supernovae: individual (SN 1987A) 

1. INTRODUCTION 

The discovery of ringlike circumstellar matter around SN 
1987A (Jakobsen et al. 1991) has raised a new question about 
the ring-formation mechanism. It is natural to consider that 
such a ring structure is closely related to a certain nonspherical 
structure of the progenitor due to its rotation and magnetic 
field. Aspherical structure of SN 1987A has been suggested 
from the polarization observations (Cropper et al. 1988) and 
the speckle image of the ejecta (Papaliolios et al. 1989). 

In the present paper we explore possible effects of rotation of 
the progenitor on the formation of the ring around SN 1987A. 
The rotation can reveal itself in several different phenomena. 
Here we study two effects of rotation: One is the mass- 
shedding, where the rotation directly induces the ring forma- 
tion. The other is the rotational effect on the mass loss that 
would provide a seed of the ring formation through the wind- 
wind interaction (see below). 

The mass-shedding scenario is based on the following 
thought. The rotation velocity at the stellar surface changes 
significantly as the internal structure of the progenitor changes 
during its evolution from the main sequence to the blue giant. 
Because of the decrease in the moment of inertia during the 
expansion, there may exist some stage(s) where it reaches a 
critical rotation state, i.e., a mass-shedding which occurs when 
the centrifugal force overwhelms the gravity at the equatorial 
surface (see, e.g., Eriguchi 1978; Eriguchi & Müller 1985; 
Hachisu 1986). The shed mass will expand slowly and may be 
observed as a ringlike circumstellar matter. Such a possibility 
of mass-shedding during the expansion stage has not been 

studied in detail. Therefore, we will describe the basic mecha- 
nism of such a mass-shedding with polytropic models in § 2.1 
and examine the realistic evolutionary model of the progenitor 
of SN 1987A in § 2.2. Comparison with the observed features 
of the ring will be discussed in § 2.3. 

The second scenario to form a small asymmetry in the red 
supergiant wind is motivated by the recent analyses of observa- 
tions and the modeling of the ringlike structure (Wampler et al. 
1990; Wang & D’Odorico 1991; Luo & McCray 1991; Wang 
& Mazzali 1992). Their hourglass model has shown that, if 
there is a nonspherical stellar wind at the red supergiant phase, 
the fast wind at the blue supergiant phase catches up with the 
slow red wind and the resulting interaction between the two 
winds greatly enhances the pre-existing aspherical structure. In 
their models, however, the existence of the asphericity in the 
wind at the red supergiant phase is simply assumed. Thus far 
little has been known quantitatively about the rotational effect 
on the mass loss. In the present study described in § 3, there- 
fore, we will make rather simple models, i.e., polytropic models, 
to see how much the rotation affects the distribution of the 
matter in a wind. 

2. MASS-SHEDDING FROM ROTATING STARS 

2.1. Mass-Shedding Mechanism During Expansion 
In this section, we describe the basic mechanism of mass- 

shedding during an expansion phase of the evolution of a rotat- 
ing star. To clarify the mechanism with simple models, we use 
rotating polytropic models and assume that the total angular 
momentum is conserved and that the angular velocity remains 
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uniform. The evolution of the polytrope is roughly approx- 
imated by the increase in the polytropic index N due to the 
increasing mass concentration toward the central region. (In a 
realistic stellar evolution mass is lost in a stellar wind which 
necessarily carries away the angular momentum from the star, 
whose effect is discussed in the next section.) 

For uniformly rotating polytropes a critical equilibrium 
state has been found to appear (see, e.g., Eriguchi 1978; 
Hachisu 1986). A rotating star maintains its equilibrium state 
by the balance among the centrifugal force, the gravitational 
force, and the pressure gradient. As the rotation rate increases, 
there appears an equilibrium state where the pressure gradient 
vanishes and the centrifugal force balances the gravity on the 
equatorial surface. If the star rotates more rapidly, there is no 
equilibrium state and matter will flow out from the equatorial 
surface of the star. We call this phenomenon mass-shedding and 
the most rapidly rotating state as a critical state or critical 
equilibrium. 

The angular velocity for the critical state is approximately 
given as 

GM 
o2 — ^eq^cr> (1) Keq 

where M, Req, and Qcr are the mass, the equatorial radius and 
the critical angular velocity, respectively. From equation (1) 
dimensionless critical angular velocity (cocx = 0.jjAnGpc) 
can be written as 

(D 2 cr 1_1_ Pav 
3 k3 pc 

9 (2) 

where pav and pc are the averaged density and the central 
density, respectively, and 

Here Rs is the radius of the spherical star. If we choose 

/c = 1.4 , (4) 

which is a typical value for the rotating polytropes with a large 
polytropic index (Eriguchi 1978), then the obtained critical 
angular velocities for the polytropes are approximately equal 
to those obtained from axisymmetric computation (Eriguchi 
1978; Hachisu 1986) as shown in Table 1. In this table comax is 
the critical angular velocity obtained from full axisymmetric 
computation. Also shown are the ratio, /, of the moment of 
inertia / to MR3. From this table we can find that 

/2^-~0.3. (5) 
"av 

As the evolution of a star proceeds in the direction of increas- 
es Pc/Pav> the /-value becomes smaller. Thus we can get a 

rather accurate relation for the critical rotation state as 

Q cr 
gm\112 i 
k3 J R3'2 ■ (6) 

The angular velocity of the star during its evolution can be 
estimated as follows. Since we have assumed that the angular 
momentum is conserved during the evolution, the following 
relation holds : 

fMR3 Q = constant = J0 , (7) 

where Q and J0 are the angular velocity at a certain stage of 
evolution and the initial angular momentum, respectively. This 
equation can be expressed as 

MfR2 (8) 

In the expansion phase the radius increases, so that the criti- 
cal angular velocity and the angular velocity of the star 
decrease according to equations (6) and (8), respectively. The 
factor / also decreases according to equation (5), which 
increases the angular velocity of the star. Thus if the decrease 
in/is large enough during some stage of evolution, the star 
reaches the critical state for mass-shedding. 

2.2. Possibility of Ring Formation by Mass Shedding 
for SN 1987A 

In this section we examine whether or not the mass shedding 
mechanism did work during the actual evolution of the pro- 
genitor of SN 1987A (see, e.g., Nomoto et al. 1991 for a review 
of the progenitor evolution). 

Since rotational equilibrium configurations of the realistic 
stars have not been computed, we assume that equations (1) 
and (2) together with equation (4) approximately hold for rea- 
listic stars. Thus we use equation (6) for the critical angular 
velocity of realistic stars. 

During the post main-sequence evolution, the core shrinks 
while the envelope expands, which increases the mass concen- 
tration toward the central region. This reduces the moment of 
inertia and possibly increases the ratio between the angular 
velocity and its critical value as mentioned in the previous 
section. 

For the blue-red-blue evolution of the progenitor of SN 
1987A we adopt the 21 Mq model at the zero age main 
sequence (Saio, Nomoto, & Kato 1988; Yamaoka et al. 1991). 
For this model we calculate the factor/at four representative 
stages: (1) the main-sequence phase (MS), (2) the blue super- 
giant phase (BSG), (3) the red supergiant phase (RSG) and (4) 
the second blue supergiant phase (r-BSG). The model 
parameters—the total mass and the radius—and the obtained 
factor/are shown in Table 2. In this table the critical angular 
velocities are also given. 

TABLE 1 
Physical Quantities for the Polytropes 

°>Li = n2/f4KGPc (o2
cr = pJ(3k3pc) pc/pm f= I/(MR2) 

  2.18E-2 2.03E-2 5.99 2.04E-1 
3   2.04E-3 2.24E-3 54.2 7.53E-2 
4   1.63E-4 1.95E-4 6.22E2 2.26E-2 
49  1.0E-7 1.25E-7 9.73E5 4.96E-4 

TABLE 2 
Physical Quantities for the Realistic Models 

Stage M/M0 R (cm) Qcr (s^1) f=I/(MR2) 

MS   21.0 4.2E11 1.17E-4 8.72E-2 
BSG  17.6 3.4E12 4.66E-6 1.12E-2 
RSG  16.0 5.0E13 7.89E-8 4.58E-2 
r-BSG  16.0 3.4E12 4.45E-4 1.52E-2 
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TABLE 3 
Fraction of the Retained Mass and the 

Angular Momentum 

Stage a ß 

MS -> BSG   0.5 0.83 
BSG —i RSG  0.5 0.90 
RSG -► r-BSG   1.0 1.0 

It is interesting that even though the averaged density of the 
blue giant is larger than that of the red giant star, the factor/is 
smaller for the blue giant. This is because the mass distribution 
is more concentrated in the radiative envelope of the blue 
supergiant due to steeper density gradient than in the convec- 
tive envelope of the red supergiant. 

The angular velocities of the star at stages (l)-(4) are esti- 
mated as follows. During the evolution, stellar mass is lost in 
a wind, which also carries away the angular momentum. 
Although the mass loss is a continuous phenomena, we assume 
that mass loss takes place discretely at each stage with a loss of 
the angular momentum contained in the wind material. We 
denote the fractions of the lost angular momentum and the lost 
mass by 1 - a and i - ß, respectively. The a values for the 
main-sequence stage and the blue supergiant stage are approx- 
imately obtained from the polytropic models of JV = 3 and 
N = 3.5, respectively (Table 3). 

The relation between two angular velocities corresponding 
to two different stages, 1 and 2, is given as 

at/-! Mi Rl fiO = fifßMJRlSl2 . (9) 

The angular velocities are expressed in terms of the angular 
velocity at the main-sequence stage QMS as 

Qbsg = 7.2 x 10“2nMS > (10a) 

Drsg = 4.5 x 10-5iiMs, (10b) 

Dr—Bsc = 2.9 x 10-2fiMS , (10c) 

where the subscript denotes the evolutionary stage. 
If the ring is formed directly by mass-shedding at the inter- 

mediate stage of the evolution, the following conditions should 
be satisfied: 

í2ms<^S, (ID 

and 

£2BSG>nar
SG, (12a) 

or 

Orsg>Û*sg. (12b) 

If we can find the allowed range of QMS satisfying the condi- 
tions (11) and either of equation (12), we may expect that mass- 
shedding does occur. 

In Figure 1, the solid line shows the critical angular velocity 
given by equation (6) against the radius of the spherical star 
models, and the dashed curves show the angular velocity of the 
star at different evolutionary stages that satisfies the above 
conditions. As seen from this figure there is a possibility of 
mass-shedding during the blue supergiant phase. 

log (R cm ) 
FIG. 1.—Critical angular velocity is plotted against the radius of the spher- 

ical star (solid line). The angular velocities of the star at each evolutionary stage 
which experiences mass-shedding at a certain stage are plotted by dashed lines. 
The upper dashed line corresponds to the most rapidly rotating model without 
mass-shedding at the main-sequence phase. The lower dashed curve corre- 
sponds to the slowest rotating model which experiences mass shedding at the 
blue supergiant phase. 

The smallest angular velocity at the main-sequence stage 
which might lead to mass-shedding is obtained as 

QMS = 6.5 x lO“5 s"1 . (13) 

This corresponds to the surface velocity 

VMS = 270 km s-1 , (14) 

which implies that the star at the main-sequence stage was 
rotating rather rapidly but not extremely fast. It is important 
to note that, if the mass-shedding occurs, it determines the 
angular velocity of the blue giant star. 

So far we have assumed that the angular velocity maintains 
uniformity during the evolution. However, in a realistic evolu- 
tion, especially, from the main sequence to the blue supergiant 
phase, the angular velocity distribution could be differential. 
Although it is hard to calculate the angular momentum re- 
distribution during the evolution, there remains a chance of 
mass-shedding as long as the surface angular velocity is larger 
than half of that for the uniformly rotating case. 

One may consider a case that the differential rotation during 
the blue giant phase may prevent the mass shedding at that 
stage and convection in the red supergiant establishes the 
uniform rotation which increases the angular velocity near the 
surface. The increased angular velocity may exceed the critical 
angular velocity at the red giant stage. However, the final 
uniform angular velocity at the red supergiant phase cannot 
exceed the estimated value in equation (10b) because of the 
total angular momentum conservation. 

2.3. Observational Constraints 
In the above mass-shedding scenario, the ring was likely to 

be formed when the progenitor of SN 1987A was a blue super- 
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giant rather than a red supergiant. This scenario should be 
consistent with the observed elemental abundances and expan- 
sion velocity of the ring. Elemental abundances of the ring 
estimated from the UV emission lines of CNO elements indi- 
cate large excesses of the N/C and N/O ratios over the solar 
values (Panagia et al. 1987; Fransson et al. 1989). The expan- 
sion velocity of the ring material was recently obtained as ~7 
km s_ 1 (Wang & D’Odorico 1991). 

The large N/C and N/O ratios imply that the ring contains 
the material which had been processed by the CNO cycle in the 
interior and brought to the surface by convection at the red 
supergiant phase. If mass-shedding occurred at the blue super- 
giant phase, there might be two possible scenarios to account 
for the N-rich materials in the ring. 

One is to get the N-rich material from the wind at the red 
supergiant stage that could catch up with the ring. The colli- 
sion of the red-giant wind with the ring would necessarily accu- 
mulate the N-rich materials, which could make the ring 
materials a mixture of materials with low and high nitrogen 
abundances. This scenario predicts some variation of CNO 
elements within the ring. 

The other possible scenario adopts a model that the progeni- 
tor underwent a blue-red-blue-red-blue evolution, which was 
found to occur if the degree of mixing in the semi-convection 
zone is very finely tuned (Langer, El Eid, & Barafie 1989). If 
mass-shedding to form the ring occurred at the second blue 
supergiant phase (i.e., after the first red-supergiant stage), the 
ring must be N-rich. 

In the mass-shedding scenario, the expansion velocity of the 
ejected ring may be estimated by using a test particle as 
follows. Although the angular momentum of the ejected parti- 
cle is uncertain, we parameterize it by introducing a factor y as 

h = 77cr > (y > 1), (15) 

not necessarily hit the ring directly as mentioned above, con- 
sidering the shape of the ring and the collision which is not 
head-on. Thus only a fraction ft of the wind mass—a percent or 
less—may be accumulated in the ring: 

M — M0 = ¡jlM ~ M/100 . (18) 

Therefore the final expansion velocity can be written as 

^ ~ Ï55 Fw + y ~ km s ^ 

This implies that the acceleration by the red supergiant wind 
(Fw ~ 10 km s-1) is negligible while the blue supergiant wind 
of Vw ~ 500 km s_1 may lead to t;r - 5 km s-1. This might 
explain the observed expansion velocity of 7 km s ~ 

However, the observed expansion velocity sets a rather 
severe constraint that the time interval between the onset of 
ring acceleration by the blue wind and the supernova explosion 
is ~ 30,000 yr (Wang & D’Odorico 1991). To satisfy this condi- 
tion in both scenarios of nitrogen enrichment, the ring forma- 
tion must have occurred just before the transition of the 
progenitor from the blue to the red supergiant and the signifi- 
cant acceleration must have taken place during the final excur- 
sion of the progenitor from the red to the blue supergiant. 

3. EFFECT OF ROTATION ON THE STELLAR WIND 

As mentioned in § 1, the effect of rotation on the stellar mass 
loss has been poôrly investigated so far quantitatively. Here we 
use axisymmetric stationary polytropic stars for simplicity in 
order to estimate the asymmetry of the mass loss from the 
rotating red supergiant. 

Since we assume that the system is in a stationary state, we 
can use the Bernoulli’s theorem as follows : 

where ^ and jCT are the angular momentum of the ejected test 
particle and the specific angular momentum at the critical state 
of mass shedding, respectively. If the test particle is ejected 
from the surface at the radius r0, then the radial velocity of the 
particle at the distance r can be expressed as 

where v and vesc are the velocity of the particle at r and the 
escape velocity from the surface of the star, respectively. If y is 
near unity, the ejected mass expands very slowly compared 
with the escape velocity and almost stands still not far from the 
surface of the star. 

In a realistic situation, the ring must have been accelerated 
by the wind. We assume that the constant velocity wind con- 
tinuously collides with the ring and a small fraction of the wind 
is taken into the ring. Then the linear momentum conservation 
gives 

v=l M0\v M M0 

jrv-+T¡r 
(17) 

where M0, M, vr, and Vw are the initial mass of the ring, the 
ring mass after collision, the velocity of the ring, and the wind 
velocity, respectively. The mass of the colliding wind against 
the ring can be estimated by considering the solid angle of the 
ring with respect to the central star, which is roughly 1/20. 
However a large fraction of the wind in that solid angle does 

(l+N)X + <j) + ^(u2
R + u¡) + ^^ = C, (20) 

where C is a constant value along a stream line, X = p1/iV, </> is 
the gravitational potential, /0 is the specific angular momen- 
tum, and R is the distance from the rotation axis. Here uR and 
uz are R- and ¿-components of the flow velocity, respectively, 
for the cylindrical coordinates (R, z, q>). 

We can assume that there is a region in the interior of the 
star where velocity components uR and uz are negligibly small 
compared with the gravitational potential or the rotational 
velocity term. In such a region, D, the matter can be considered 
to be in a rotational equilibrium, so that the equilibrium condi- 
tion must hold on the boundary of this region (dD) as follows : 

(l+lV)Ao(0) + «Ao(0)-iÄ = Co( (21) 

where C0 is a constant throughout the region D and other quan- 
tities with subscript 0 are quantities on the boundary which 
depend on 0. Here the polar coordinates (r, 0, <p) are used. 

Let us choose one stream line which starts from a certain 
point on the boundary. Along this stream line we can get the 
following relation from equation (20): 

(1 +N)X+ xt> + ^ (u| + u2
z) + \ 

= (1 +iVU0 + ^0 + iA. (22) 
Z Kq 
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By making use of equation (21), we obtain 

(1 +N)X + 4> + 1- (u| + «a + \§-2 = Co + ^)- (23) 

At a distant region from the star, r = r1? the gravitational 
potential behaves almost spherically and the jo/R2 term can be 
neglected. Thus we obtain 

(1 + AOA + i (w| + uj) = C'o + ^ , (24) 

where 

C'o s C0 - <j>(r). (25) 

Let us consider two directions, the direction of the rotational 
axis and the equatorial direction. If we assume that the velocity 
depends little on the direction, the density becomes 

V.e = 2(g> °) = YTÑ (C,° + R¿(0) “ 2 “0 (26a) 

for the rotational axis direction, and 

for the equatorial direction. 
Comparing these two equations and noting that 0) ~ 

uR(rl9 n/2) and j0(0) = 0, we have 

where 

Ae R2
0(n/2)Q2 

2 "" r" ApoU ^0 

Co = C'o - Wi , 

«i = Mri, nß) = MzÍG, 0) . 

(27) 

(28) 

(29) 

Since at the distant region from the star the constant Q is 
roughly equal to C0 and C0 can be evaluated from the gravita- 
tional potential of the pole on the boundary dD, we can write 

(30) 

where T and W are the rotational energy and the potential 
energy of the fluid element on the equator of the boundary dD, 
respectively. Although we do not know the precise location of 
the boundary dD, we estimate the value of T/\ W\ from the 
results of uniformly rotating polytropic equilibrium computa- 
tions. The ratio T/\ W | may be 10%-20% or less for uniformly 
rotating polytropes with N = 3-4. 

Wang & Mazzali (1992) have assumed that there is an asym- 
metry of order 20% in the mass distribution and have shown 
that its asphericity grows considerably by the expansion of and 
the interaction with the fast wind at the later stage. Therefore 
the effect of the rotation on the mass-loss flow studied in this 
section can become the seed of the ring formation in the model 
by Wang & Mazzali (1992). However it seems very hard to give 
80% nonsphericity adopted by Luo & McCray (1991). 

The mass concentration towards the equatorial plane is con- 
tradicted with the results obtained by Phillips & Reay (1977) 
who have shown the mass concentration is towards the rota- 

tion axis. However, Phillips & Reay (1977) have obtained their 
conclusion by assuming special velocity field and trajectory of 
the mass element. The velocity of the flow was assumed to be 
decomposed into the rotational component, i.e., ^-component, 
and the normal component to the deformed stellar surface. The 
velocity field in the meridional plane need not be normal to the 
surface but is likely to be inclined to the equatorial plane due 
to the rotational effect. Concerning the flow pattern, fluid 
dynamical calculation was not carried out but the trajectory of 
the mass element was assumed to be hyperbolic. Therefore their 
treatment was not fluid dynamical but geometrical so that it is 
natural for the mass to be concentrated towards the rotation 
axis. 

So far we assumed that the velocity field is isotropic as was 
done by Wang & D’Odorico (1991) or Kahn & West (1985) 
who presented models for planetary nebulae by assuming the 
directional dependent mass flux. We can consider that the 
density is isotropic and the flow velocity has direction depen- 
dence as another extreme case. For such a situation equations 
(26a)-(26b) show that the flow velocity can be faster in the 
equatorial region. We may thus believe that the mass-loss rate 
is larger near the equatorial plane comparing with the polar 
direction. In order to get a definite answer we need to compute 
models of rotating polytropes with stationary outflow. 

4. CONCLUDING REMARKS 

We have studied two possible roles of rotation of the pro- 
genitor in forming the ringlike circumstellar matter around SN 
1987A: (1) mass-shedding from the equator due to the decreas- 
ing moment of intertia along the evolution, and (2) an aspheri- 
cal mass distribution in a stellar wind due to the direction 
dependent mass loss. Though our models are approximate 
regarding the angular momentum redistribution during the 
evolution and the flow pattern of the wind, our following 
results are quite suggestive for the ring formation mechanism. 

Firstly, we have shown that mass-shedding can occur (i.e., 
the angular velocity exceeds the critical angular velocity) at the 
blue-super giant stage if the rotational velocity of the progeni- 
tor at the main-sequence stage exceeds 270 km s-1. To be 
consistent at least with the elemental abundances and the 
expansion velocity of the ring, however, mass-shedding must 
have occurred during the transition from the blue to the red 
supergiant. This requirement would restrict the parameters of 
the progenitor’s initial configuration to a rather narrow range, 
which suggests that the mass-shedding scenario is probably 
less likely. 

Secondly, we have shown that the stellar wind combined 
with rotation may form an aspherical mass distribution in the 
distant region from the star. Nonsphericity can be 10%-20% 
depending on the ratio of the rotational energy to the gravita- 
tional energy. This mild asphericity in the slow wind can be a 
seed which will be enhanced to the ringlike configuration later 
due to the interaction with the fast wind (Luo & McCray 1991 ; 
Wang & Mazzali 1992). Whether or not this amount of 
asphericity is enough for the seed should be studied by full 
hydrodynamical calculations of the wind-wind interaction. 

The present work was supported in part by the Grant-in- 
Aid for Scientific Research (02302024, 02234204, 02640198, 
03218202, 03250204) of the Japanese Ministry of Education, 
Science and Culture. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



1 9
 9

2A
p J

 . 
. .

39
2.

 .
24

3:
 

248 ERIGUCHI ET AL. 

REFERENCES 
Cropper, M., Bailey, J., McCowage, J., Cannon, R. D., Couch, W. J., Walsh, 

J. R., Strade, J. O., & Freeman, F. 1988, MNRAS, 231,695 
Eriguchi, Y. 1978, PASJ, 30,507 
Eriguchi, Y., & Müller, E. 1985, A&A, 146,260 
Fransson, C, Cassatella, A., Gilmozzi, R., Kirshner, R. P., Panagia, N., Sonne- 

born, G, 8i Wamsteker, W. 1989, ApJ, 336,429 
Hachisu, 1.1986, ApJS, 61,479 
Jakobsen, R., et al. 1991, ApJ, 369, L63 
Kahn, F. D., & West, K. A. 1985, MNRAS, 212,837 
Langer, N., El Eid, M. F., & Baraffe, 1.1989, A&A, 224, L17 
Luo, D., & McCray, R. 1991, ApJ, 379,659 
Nomoto, K., Shigeyama, T., Kumagi, S., & Yamaoka, H. 1991, in Supernovae 

and Stellar Evolution, ed. A. Ray & T. Velusamy (Singapore: World 
Scientific), 116 

Panagia, N., Gilmozzi, R., Clavel, J., Barylak, M., Gonzalez Riesta, R., Lloyd, 
C, Sanz Fernandez de Cordoba, L., & Wamsteker, W. 1987, A&A, 177, L25 

Papaliolios, C, Karovska, M., Koechlin, L., Nisenson, P., Standley, C, & 
Heathcote, S. 1989, Nature, 338,565 

Phillips, J. P., & Reay, N. K. 1977, A&A, 59,91 
Saio, H., Nomoto, K., & Kato, M. 1988, Nature, 334,508 
Wampler, E. J., Wang, L., Baade, D., Banse, K., D’Odorico, S., Gouiffes, C, & 

Tarenghi, M. 1990, ApJ, 362, L13 
Wang, L., & D’Odorico, S. 1991, preprint 
Wang, L., & Mazzali, P. A. 1992, Nature, 355,58 
Yamaoka, H., Saio, H., Nomoto, K., & Kato, M. 1991, in IAU Symp. 143, 

Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, 
ed. K. Van der Hucht & B. Hidayat (Dordrecht: Kluwer), 571 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

