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ABSTRACT 
We discuss the usefulness of line-of-sight velocity distributions for constraining the potential and kinematics 

of a nonrotating spherical system when nothing is known a priori about its radial mass distribution. The virial 
theorem, because it requires an assumed radial dependence for the potential, yields only very broad con- 
straints on the total mass; the velocity dispersion profile is also insufficient to determine the potential, because 
of the unknown radial dependence of the anisotropy. To do better, one must make use of the additional infor- 
mation contained within the distribution of line-of-sight velocities at every projected radius. We develop a 
formalism, based on velocity moments, for doing so. First, we show that—if the potential O(r) is known, and 
the distribution function of the observed sample is of the form/(£, L2)—the joint distribution of positions and 
velocities vp(rp, i;p) uniquely determines that distribution function. We prove this by deriving expressions for 
the intrinsic velocity moments in terms of the projected moments, for all orders. As a by-product, we obtain 
an alternative set of Jeans equations in a very simple form. Second, we show that most assumed potentials are 
inconsistent with a given vp(rp, pp), since they imply intrinsic velocity moments that are negative at some radii, 
and hence a distribution function that is negative in some regions of phase space. The potential can therefore 
be constrained by the requirement that the inferred moments be nonnegative. We find no reason to believe 
that O(r) is uniquely determined by vp(rp, vp); however, a number of arguments suggest that it is very strongly 
constrained. 

The expressions relating the observed velocity moments of order 2n to the intrinsic moments involve the nth 
power of dQ>/dr. If we treat <I>(r) as unknown, an estimate of its most extreme functional forms can be deter- 
mined through a process of constrained optimization, where the constraints (which include positivity of the 
inferred moments) are of order n in the coefficients defining the potential. When only the velocity dispersion 
profile is known, these constraints are linear; we solve the corresponding linear programming problem to find 
the most extreme potentials consistent with a family of velocity dispersion profiles derived from a generalized 
Plummer model. We find that, when the velocity dispersion profile is mildly centrally peaked, the range of 
allowed total masses and central densities is almost as great as the range allowed by the virial theorem alone; 
thus, the velocity dispersion profile typically contains little additional information about the radial form of the 
potential. When higher order velocity moments are specified, the problem becomes a more difficult one of 
nonlinearly constrained optimization. We show, for the same family of Plummer models, that the requirement 
of positive fourth-order moments can substantially reduce the range of allowed potentials. This leads us to 
suggest that methods that explicitly or implicitly account for positive distribution functions will constrain the 
potential to the fullest. However, given the difficulty of evaluating high-order velocity moments from imperfect 
data, we suggest an alternative scheme that uses the observed positions and velocities directly, without binning 
or computation of moments. Such a scheme should be especially efficient in cases where the velocity data are 
limited and discrete, as in dwarf spheroidal galaxies. 
Subject headings: celestial mechanics, stellar dynamics — galaxies: kinematics and dynamics 

1. INTRODUCTION 

Broadly speaking, kinematical data may be used in two 
ways to constrain the dynamical state of a stellar system. If the 
underlying potential is thought to be known, and if an approx- 
imately steady state may be assumed, the data can be used to 
estimate the phase-space distribution function/of the observed 
sample, where / depends only on the isolating integrals of 
motion in the assumed potential. This is essentially the clas- 
sical “Jeans problem,” much studied in the context of our 
Galaxy. In the original, self-consistent formulation of the Jeans 
problem, the potential was calculated from the luminous 
matter. In modern astronomy, this prescription is much less 
justified, since we now know that much, even most, of the 
matter that determines the potential of a stellar system can be 
distributed in a very different manner from the light. In this 

more uncertain situation, greater demands are placed on the 
kinematical data: they must somehow yield both the phase- 
space distribution of luminous objects, as well as the functional 
form of the potential in which the objects move. Often these 
two problems are viewed as separate: for instance, the virial 
theorem appears to make a definite prediction about the total 
mass of a system that depends only on the mean square veloc- 
ity of a set of test objects, with no assumptions about their 
detailed velocity distribution. However the virial theorem can 
only be applied if the spatial dependence of the potential is 
specified in advance; in the absence of such knowledge, it 
imposes only order-of-magnitude constraints on the total 
mass. The same is true of the usual modifications to the virial 
theorem, such as the “projected mass method” of Heisler, Tre- 
maine, & Bahcall (1985): none of these is appropriate for esti- 
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mating the total mass unless the form of the matter 
distribution is known. 

An estimate of the spatial dependence of the potential can 
obviously only be made if the data themselves contain some 
information about the variation of kinematical quantities with 
position. In a few important cases, the form of the potential 
follows directly from the Jeans equation, using observable, 
low-order velocity moments of the phase-space distribution 
function of some set of test objects. For instance, the distribu- 
tion of mass in a circular galactic disk follows immediately 
from the rotation curve (assuming a geometry for the potential, 
e.g., that all the matter lies in the disk); the distribution of mass 
perpendicular to a disk is given uniquely by the variation of 
number density and velocity dispersion of some test popu- 
lation with height (assuming a plane-stratified geometry). 
However in most astrophysically interesting cases, the poten- 
tial is not uniquely specified by the observable moments. This 
is true, for instance, of spherical galaxies, in which the observed 
moments contain contributions from both the radial and 
tangential components of the intrinsic moments. In non- 
spherical, pressure-supported systems, the indeterminacy is 
even greater, since the intrinsic shape and orientation may be 
unknown, and the intrinsic velocity dispersion may have three 
independent components at every position. Most stellar 
systems apart from disk galaxies can be assigned to this cate- 
gory, including open and globular clusters, dwarf spheroidal 
galaxies, elliptical galaxies, and clusters of galaxies. The few 
studies of these systems that allow for different luminous and 
dark matter distributions generally conclude that a discourag- 
ingly large range of potentials can satisfy the data equally well, 
even under the restrictive assumption of spherical symmetry 
(e.g., Katz & Richstone 1985; Merritt 1987; Pryor & Kor- 
mendy 1990). 

In spite of this indeterminacy, a number of observational 
programs are currently underway to gather large samples of 
velocity data for stellar systems of various types, with the goal 
of determining their masses and kinematics. Examples are 
studies of globular clusters, dwarf elliptical galaxies, and the 
Galactic bulge, based on velocities of individual stars (e.g., 
Meylan & Mayor 1991 ; Mateo et al. 1991 ; te Lintel Hekkert & 
Dejonghe 1989); plans to map the external potentials of early- 
type galaxies using velocities of the globular clusters or planet- 
ary nebulae that surround them (e.g., Mould et al. 1990; Ford 
et al. 1989); and the continuing accumulation of radial velocity 
data for galaxies in clusters (e.g., Teague, Carter, & Gray 1990). 
Much progress is also being made on the derivation of kine- 
matical information from integrated spectra of elliptical gal- 
axies: line-of-sight velocity distributions near the projected 
center, where surface brightnesses are high (e.g., Bender 1990); 
or more limited information, such as mean velocities and 
velocity dispersions, in the faint outskirts of these galaxies (e.g., 
Bertin et al. 1989). These programs have been motivated in 
part by the fact that the distribution and density of dark matter 
as a function of scale size is an important datum in con- 
straining models for the formation of structure in the universe. 
However, in spite of the considerable observational effort being 
devoted to these programs, there is at present little concensus 
on how the new data can best be used. 

The most complete kinematical information that one can 
hope to obtain in a spherical stellar system, based on distant 
observations at a single epoch, is the distribution of line-of- 
sight velocities as a function of projected radius vp(rp, vp), 
where vp(rp, vp)dvp is the surface density at rp of objects (e.g., 

stars) with line-of-sight velocities in the interval vp to vp + dvp. 
(Throughout we neglect absorption, so that observed quan- 
tities are always simple projections along the line of sight.) 
Henceforth we will call vp(rp, vp) the “projected distribution 
function.” The projected number density and velocity disper- 
sion profiles are moments over vp of vp(rp9 vp), that is (assuming 
no rotation), 

vp(rp) = vp(rp, vp)dvp, (la) 
J— 00 

vp(rp)<r2p(rp) = I vp(rp, vp)v2
pdvp . (lb) 

J— 00 
Similarly, the “ velocity moment profile ” of nth order is 

Hnp(rp)=\ vp(rp, vp)vn
pdvp . (1c) 

J— 00 
Mathematically, specification of the infinite set of moments 
finp(rp) is equivalent to specification of vp(rp, vp); in practice, of 
course, only the lowest order moments are accessible to 
observation. The connection between the projected distribu- 
tion function vp(rp, vp) and the intrinsic distribution function 
/(r, vr, vT) is the rather daunting integral equation 

Vp(rp, vp) = 2 
rdr 

rp *Jr é 
dvrdvef(r,vr,vT), (2) 

where (vrp, ve) are Cartesian components along the polar coor- 
dinates (rp, 9) in the plane of the sky, and (vr, vT) are the intrin- 
sic, radial, and tangential velocity components. If /(r, vr, vT) 
could be determined uniquely from vp(rp9 vp), the problem 
would be solved, since both the phase-space density as well as 
the potential (from the Boltzmann—not the Poisson— 
equation) would be known. However, there are likely to be 
many f(r, vr, vT) consistent with a given vp(rp9 vp); nor is there 
any reason to expect that, among the infinite set of possible /, 
all imply the same potential. 

To see how vp(rp9 vp) might constrain <I>(r), it is helpful to 
make explicit use of the fact that/reflects a steady state, that is, 
that it depends on the phase-space variables only through the 
energy E = y2/2 + O(r) and the squared angular momentum 
L2 = r2Vj. This allows us to rewrite equation (2) as 

(rp, vp) = 2 j” -—=||dvrpdvef(E, I?). (3) 

In effect, we have imposed the additional requirement that the 
inferred/be constant on surfaces of constant E and L2. Equa- 
tion (3) is a complete statement of the problem : it contains not 
only the relation between observed and intrinsic quantities, but 
also the most general expression of the fact that the intrinsic 
distribution of positions and velocities must reflect a steady 
state. Now since both the (unknown) /(£, L2) and the 
(observed) vp(rp, vp) are functions of two variables, it is tempt- 
ing to conclude from a naive application of Fredholm theory 
(integrals as continuous limits of systems of linear equations) 
that equation (3) has a solution/(£, L2) for any specified poten- 
tial O(r), that is, that the kinematical data impose no con- 
straints whatsoever on O(r). As it happens, this is indeed the 
case, at least in a narrow mathematical sense; the proof is given 
in § 2 below. However, it turns out that many assumed poten- 
tials imply, through equation (3), a distribution function that is 
negative in some parts of phase space, and that can therefore 
be rejected as unphysical. The problem of inferring the poten- 
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tial of a spherical stellar system from kinematical data can 
therefore be stated very generally as follows: given the joint 
distribution of projected radii and line-of-sight velocities, one 
searches for potentials that imply—through equation (3)—a 
distribution function that is everywhere nonnegative. 

Stated in this way, it is clear that the problem of mass esti- 
mation in spherical systems is fundamentally different from the 
classical problems of determining the mass in and around 
spiral galaxies: the equation that determines 0(r) is an inequal- 
ity, that is, / > 0, in which / is defined implicitly, through a 
triple integral; and, expressed in terms of O, this equation is 
highly nonlinear. Thus we are faced with a “nonlinear implicit 
integral inequality.” We do not know of any theory about such 
equations, let alone a general method of solution. Certainly 
such a problem must be very difficult, or impossible, to solve in 
the general case. There is no obvious reason to believe, for 
instance, that 0(r) is uniquely determined by vp(rp, vp), even if 
the latter function were known exactly: it might be under- 
determined in some cases, overdetermined in others. 

This conclusion seems at first puzzling: we are accustomed 
to thinking of mass estimation in terms of equations like the 
virial theorem, which are linear, explicit relations (not 
inequalities) between known quantities (positions, velocities), 
and unknown ones (masses, densities). For instance, the clas- 
sical virial theorem for a spherical stellar system states 

<î;2> = <r • V<D> , (4) 

where angle brackets denote number-weighted averages over 
all space for some sample of objects (e.g., Goldstein 1980). 
Comparing equation (4) to equation (3), and noting that <t;2> is 
determined uniquely by vp(rp, vp), we might conclude that only 
certain <D(r) (those satisfying eq. [4]) could be made consistent 
with a given projected distribution function. In fact, we demon- 
strate below that any choice of <5>(r) that is not consistent with 
the virial theorem necessarily implies a distribution function/ 
whose second velocity moments are negative at large radii. 
More specifically, the virial theorem may be interpreted (at 
least in this context) as a condition on the potential such that 
the intrinsic second moments vcr2(r), vaf(r) corresponding to an 
observed velocity dispersion profile (7p(rp) do not become nega- 
tive at large r. As it turns out, the equations relating the intrin- 
sic second moments to the observed dispersions are linear in O; 
thus the virial theorem is a linear relation. Furthermore, the 
virial theorem does not guarantee positivity of/, even at the 
level of its second moments, at all radii; the equations which 
do so are—unlike the virial theorem—^inequalities. In the same 
way, we show that a potential that violates the higher order 
virial constraints discussed by Kent (1991) implies a distribu- 
tion function whose higher order velocity moments are nega- 
tive at large radii. However, these virial constraints, important 
as they are, do not tell the whole story: there may well exist 
potentials that satisfy a set of virial constraints, but that, 
through equation (3), still imply a phase-space distribution 
function that is negative in some parts of phase space. It is this 
more general requirement of a positive phase-space density, 
and not the less restrictive virial theorems, that fundamentally 
constrains the potential. 

In the present paper, then, we address the following two 
questions : 

1. In an assumed spherical potential d>(r), is/(£, L2) uniquely 
determined by vp(rp, vp)l 

2. To what extent is O(r) itself determined by vp(rp, vp)? 

The answer to the first question is “ yes ” : we prove this (§ 2) 
through consideration of the projected velocity moments as 
functions of rp, by deriving the equations that relate the intrin- 
sic moments to the observed moments, for every order. Thus, 
in principle, we are able to “invert” the data to derive the 
complete distribution function in the assumed potential. The 
inversion equations for the second and fourth velocity 
moments have been derived previously (Binney & Mamón 
1982; Merrifield & Kent 1990). However, our expressions, even 
for these low orders, are substantially simpler: we show that 
the intrinsic velocity moments can always be expressed as a 
single integral over known quantities. We give explicit expres- 
sions for the inversion equations up to order four, and a 
general formula from which the inversion equations of all 
orders can be computed. 

The second question is trickier. It is clear that, for certain 
vp(rp, vp), the potential is uniquely determined. For example, 
consider a spherical galaxy consisting of only circular orbits. 
The projected velocity dispersion at = 0 will be zero in such 
a galaxy. Clearly the only orbital distribution that can produce 
a vanishing central dispersion in projection is one containing 
only circular orbits; therefore the velocity anisotropy is com- 
pletely specified, and the radial variation of the circular veloc- 
ity, and hence the potential, can be inferred uniquely from 
<r2(rp). Note that, in this case, even the lowest moments of 
vp(rp, vp) are sufficient to completely solve the problem: the 
extra information contained within the full line-of-sight veloc- 
ity distribution is not needed. As we show below, this is not 
generally the case, but we might nevertheless expect that the 
lowest order projected moments will sometimes strongly, 
perhaps even uniquely, constrain the potential. 

Equally clearly, precise knowledge of the form of vp(rp, vp) at 
large vp must place rather strong constraints on the potential. 
It is obvious that 

Vp(»> Vp) = 0 for I Dpi > v7 —2<D(rp), (5) 

since stars with higher velocities would escape. This condition 
is merely the expression of our faith that no significant number 
of unbound stars can be present in a relaxed stellar system. 
Hence Dejonghe (1987, hereafter Paper II) suggested that—if 
one in addition assumes that bound stars fill all of available 
phase space—the tails of vp would directly yield 

m = - KmaXM , (6) 

with I vp m!LX(r)I the extent of the “line profile” at rp = r. This 
argument suggests the intrinsically unstable nature of a poten- 
tial function determination: clearly, very high quality data are 
required to constrain <I>(r) exactly. Other methods may conceal 
this unstable nature, but can never fully remedy it. 

These fairly general considerations suggest that the project- 
ed distribution function contains much information about the 
potential. We are not able to demonstrate here, however, that 
vp(rp, vp) uniquely specifies O(r), nor can we ascertain that such 
a theorem must exist in the general case. In the absence of such 
a proof, we pose, and show how to answer, a simpler question: 

3. How wide a range of potentials are consistent with a 
given, finite set of velocity moment profiles? 
In other words: given the dependence of, say, the projected 
number density, velocity dispersion, and fourth velocity 
moment on projected radius, how strongly is the potential 
constrained? We show (§ 5) that this question can be naturally 
posed in the language of optimization theory. When the only 
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constraints are the number density and velocity dispersion 
profiles, the problem reduces to one of linear programming, for 
which efficient and general algorithms exist. We use such an 
algorithm to derive the most extreme potentials consistent 
with ^ family of velocity dispersion profiles derived from a 
generalized Plummer model. We find—in agreement with pre- 
vious studies—that the range of potentials is generally very 
wide, and in fact that the velocity dispersion profile often con- 
tains little more information about the potential than is con- 
tained within the virial theorem alone. When the constraints 
include the fourth-order moments as a function of radius, the 
problem of constraining the potential becomes a more difficult 
one of nonlinear optimization, for which completely general 
algorithms do not exist. Nevertheless we are able to show that 
even limited information about the fourth moments can sub- 
stantially reduce the range of allowed potentials. 

Our results suggest that rather high moments of the line-of- 
sight velocity distribution are required to usefully constrain the 
radial form of the potential in spherical stellar systems. 
However it is well known that, as a practical matter, sample 
moments past the second or fourth generally have extremely 
high variances; furthermore, by converting a two-dimensional 
data set {rp, vp} into binned moments, one effectively throws 
away a great deal of information. It would clearly be useful to 
develop an algorithm for potential estimation that makes full 
use of discrete data. The results presented here suggest the 
form that such an algorithm should take. Since, in an assumed 
potential, the distribution function /(£, L2) is uniquely deter- 
mined by vp(rp, vp\ the algorithm should begin by finding the 
nonnegative / from which the data are “ most likely ” to have 
been drawn, in some assumed potential O(r). Next, it should 
test whether other potentials permit distribution functions 
with even greater “likelihoods.” To the extent that <I>(r) is 
uniquely determined (or overdetermined) by vp(rp9 vp), the algo- 
rithm should be able to find a single, “ most likely ” potential 
and distribution function, and this “most likely” solution 
should approach the correct one as the data set increases in 
size. One such algorithm is described in a forthcoming paper 
(Merritt & Saha 1992). 

One final point is in order before presenting the calculations. 
Our conclusion that low-order velocity moments place only 
very weak constraints on the form of the gravitational poten- 
tial of a hot stellar system seems, at first sight, to be at odds 
with much observational work. The ratios of dynamical to 
luminous mass densities derived from line-of-sight velocity dis- 
persions, using the standard, parametric mass estimators (e.g., 
the virial theorem, or the core-fitting formula), are remarkably 
consistent: inferred mass-to-light ratios almost always lie 
between about 1 and 10, and they depend on metallicity and 
age roughly as expected. Furthermore, the observed scatter in 
relations such as the Faber-Jackson law seems no bigger than 
would be expected on the basis of measurement errors, plus 
uncertainties about intrinsic shapes. This evidence suggests 
that velocity dispersions do, indeed, contain considerable 
information about galactic masses, and that stellar systems are 
much more uniform in their stellar populations and orbital 
makeups than they could be. At the same time, it is also true 
that the detailed form of the distribution function is unknown 
for any class of hot stellar system, aside from, perhaps, globular 
clusters (and even here, the preferred form of / is a reflection 
mostly of theoretical preconceptions, not observational 
constraints). Furthermore, in disk galaxies, where the orbital 
geometry is thought to be well understood, the dark matter 

always has a very different distribution than the luminous 
matter, and the same may well be true in the outer parts of 
elliptical galaxies. Thus, our feeling is that the impressive regu- 
larity in the kinematical properties of hot stellar systems is not 
sufficient justification for ignoring the finer details of their 
phase-space structure and mass distributions—especially since, 
as this paper attempts to make plausible, those finer details are 
in principle accessible with the kinds of kinematical data that 
are now becoming available. Although our conclusions about 
the usefulness of velocity moments may seem pessimistic, our 
larger point is an optimistic one: that is should soon be pos- 
sible to infer, rather than simply model, the dynamical structure 
of elliptical galaxies and other hot stellar systems. 

2. SOLUTION OF THE JEANS PROBLEM FOR 
A SPHERICAL STELLAR SYSTEM 

2.1. Preliminaries 
2.1.1. Augmented Moments 

In order to understand more fully how observed velocity 
moments may constrain our knowledge of the distribution 
function /(E, If), in a given potential O(r) = — \¡/(r), it is useful 
to first look closely at the definition of an intrinsic moment 

VnjJr) = jjj f(E, L»; vi dvr dtp dv9 (7) 

with the triple integral ranging over all velocities. When this 
integral is written more explicitly (Dejonghe 1986, hereafter 
Paper I), one sees that the integral does not really yield the 
intrinsic moment finjfJ(r), but rather a function of two variables 

r). Since we can only know /r) = íinfij[il/(r), r], the 
integral equation (7) must be highly degenerate, that is, there 
must exist many/consistent with a given /¿„^/r). This is indeed 
the case, and many explicit examples of this degeneracy have 
been given (e.g., Paper I; Paper II). We call the functions 
Am,./#* r) “ augmented moments,” and the space (\j/, r) in which 
they assume values we call “ augmented configuration space.” 

It is convenient to define 

x = r2 , (8a) 

y — rl • (8b) 

The spherical coordinates (r, (p, 9) are seen, after projection, as 
polar coordinates (rp, 9); because of circular symmetry in the 
projection, the polar angle 0 will nowhere appear explicitly. 
Since augmented configuration space is a two-dimensional 
space, we define the partial derivatives 

¿ -A 
_ #5 

In configuration space, however, only the ordinary derivative 

= / = (<3* + •/'' ^W),x] (10) 

is defined, with il/'(x) = (Dx il/)(x). 
It can be shown (Paper I) that 

f^2n, 2i, 2 j = ~ + 2 ’ 7 
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with 

/*2n,2m 
'2'if 

f(E, L2)v?nv2
T
m+1 dvrdv7 (12) 

and vT = -Jvl + v2. We will call these moments the 
“anisotropic moments,” in contrast to the true moments 
defined in equation (7), and the even simpler “isotropic 
moments” which one can define in the isotropic case f(E) 
(Paper I). In our case, the anisotropic moments are necessary 
and sufficient, and there is no real need to deal with the true 
moments (7), not even for computing the line-of-sight 
moments, as we will see. One may also show that 

Í2», iM’ x) = 
2'"+” r(w + 1/2) 

yñ r(n + m) 

f 
OA - rr+n-1d”(x"'lio,oW, *)#' , (13) 

valid for m + n > 1. Using equation (13), one proves easily the 
recursion relations 

where we made use of equation (13), 

^(/«2,o) = ? • 

After transforming equation (17) to more conventional nota- 
tions (see eq. [15]), we recover 

Dr(vo?) + ^ v^(Tr
2 - ^ + vl>r(4>) = o , (18) 

which is the familiar second-order Jeans equation. 
As a second example we consider the three nontrivial fourth- 

order moments. We expect to recover the two nontrivial 
fourth-order Jeans equations as expressions (16b) and (16c) 
which give /¿2,2 an(l Voa as a function of Indeed, using 
equation (16b) we have 

^2,2 = l^(^4,0) , 

and, using the same procedure as above, we get 

?lDx(xfi4,o) - Xll/'tl2,o] = 1*2,2 , (19) 

or 

hn,2m('l', r) = ^ d”lxmjxMn+m)j0] (14a) 

and 

f*2n-2,o('l', r) = 2n
l_ - <V/i2„,o) • (14b) 

Any augmented moment in principle suffices to determine/ 
(Paper I). In particular, this is true for the augmented number 
density v = p,00. 

Equations (14) give the following useful relations between 
the second-order moments 

Wr = 1*2,0 » (15a) 

Vff2 = val = y0,2 = dxixfii.o), (15b) 

and the fourth-order moments 

V«> = l*4,0 * (16a) 

Kvfvly = v(vlv¡) = y2¡2 = i djxfi4t0), (16b) 

V<^> = v^vfy = 3v<i;|r2> = |^0,4 = ÏSl(x2fi4j0). (16c) 

DMvt» + V- (2<v?y - 3<rr
24>) + 3v(r2Dr<D = 0 , (20) 

which is one of the sought equations. 
To recover the other Jeans equation we start from equation 

(16c), 

Hoa = îdl(x2ïi4<0) 

which equals 

l*o,4. = Î(DX - dx(xfi4^) + xn4,o] , 

or, with equation (16b), 

f*oA = Dx(2xh2 2 + jxfi4 0) - H'x(^oa + fi2 0). (21) 

Taking account of equation (19), this equation becomes 

t*0A = 4f*2,2 + 2xDxh2,2 - 2\I/’xho,2 , 
or, in more conventional notations, 

v<4> = 4v<i;r
24> + rDr(v{v2v2

T}) + rv(v2
T}Dr<t>. (22) 

2.1.2. The Jeans Equations 

Equations (14) give expressions for all moments of order 
2(n + m) in terms of the augmented moment ¿¿2n,o; since one 
augmented moment determines the distribution function com- 
pletely (Paper I), one should be able to derive the Jeans equa- 
tions from equations (14). 

We will now show that, indeed, equations (14) are the Jeans 
equations. To this end we only need to remember that the 
Jeans equations relate moments in configuration space, while 
equations (14) relate moments in augmented configuration 
space. For example, if we substitute 

sx = Dx->l/'d4, 

2.1.3. The Augmented Moments: Alternate Definition 

The augmented moments defined in equation (13) were very 
close to the ordinary moments (7), in that ïi2n,Jjl/(r\ r] = 

/x2n,m(r). While we have a clear intuition for the significance of 
moments up to the second and, possibly, the fourth orders, 
beyond that, the concept of moments becomes abstract and 
essentially of technical interest. We can therefore freely redefine 
the moments in a way that is more suitable for our purposes, 
without compromising too much of accepted practice. There- 
fore, we define new augmented moments as 

r) = dx(S/m _ i) = d™(0/0) = d”(p2¿'o), 0 < m < ¿\ (23) 

and, of course, 

in equation (15b), 

ÍHo,2 = dx(xp.2'0) = H2,o + xdx{¡i2¡0), 

o*i(r) = àiMr), r] . 

From equation (14) we obtain easily 

we obtain 

1^0,2 = 1*2,0 + xDxh2 0 - xtA'v(x), (17) 
l*2(¿ — m),m 

r(¿f - m + 1/2) 

W + 1/2) 

x- . 
(24) 
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Conversely, (24) is a set of m linear equations in m variables, 
which is most easily solved by recursion: 

, _ 1 w + 1/2) 
CUm xm r(/-m+ 1/2) 

In particular 

i = 0 i / i! 

<^0 = /¿2/,0 

and thus coo == o = v» ancl 

«O = H2,0 = V<rr 

= x (li“0,2 ~ /i2’°) = x ~ ^ ’ 

(25) 

(26) 

(27) 

= —xvajß, 

which shows a clear connection with Binney’s anisotropy 
parameter ß = 1 — oi/of. Also, 

(Oo = ^4,0 = V<t,r > > 

= X (i /Í2,2 _ /Í4’°) = X V(i(V'V»'> ~ ’ 

2/3 \ 2 
cal = ^ k /Co.4 - 3^2,2 + /Í4.0 ) = ^2 H/fr > 

- 6<vy9> + «». 

We obtained the Jeans equations from the definitions of the 
moments essentially by replacing a partial derivative in aug- 
mented configuration space by a (total) derivative in configu- 
ration space. This suggests an alternate set of Jeans equations, 
in terms of the alternate moments. To obtain these, we simply 
convert the equations (23) to configuration space: 

o/Jx) = DJœi.Ax)] - (2/ - WcoirMx). (28) 

This is a simple set of (/ — 1) equations that (recursively) 
express m^(x), m > 0, in terms of derivatives of coq and 
moments of order less than /. 

2.2. Solution of the Jeans Problem 
We now show how to retrieve the distribution function, 

given the projected moments at all radii. 
We start with equation (A 10) of Paper II, which gives an 

expression for an arbitrary moment of the line-of-sight velocity 
distribution at projected radius rp and position r along that 
radius in terms of the anisotropic moments (13): 

, , 1 2"^+1/2) 
rw 

x i (") i fV» - 1’r‘SUW, '), (29) 

which we write, with equations (13) and (8), 

H2n(x, y)= X (n) TT 8ÍxÍí2n,o('l', x) . (30) 
i=o W l- 

In practice, however, we can only know V2n,o(xX and therefore 
we introduce in equation (30) the total derivative (10). In order 
to express dx in terms of ordinary derivatives with respect to x, 

we need an explicit expression for these derivatives. One finds 

dixV2n,o('l'> x) = di
xâo('l'> x) 

= ß>o-'l DUrd+coï-j-i), 
j=0 

or, using equations (14b) and (26): 

x) = Dxa>o - {In - 1) ^ DWco^,). (31) 
7 = 0 

Substituting the last equation into equation (30), we get 
n Íy* 

V2ÁX, )>) = £ . 77 f>Í/C2n,oW l l! 

-(2n-l) X ln)^ X • 
1=0 W 11 j=o 

Using 

VÎn = 2 H2n(r, rp) 
rdr 

2"V’ PW~r2-r2
P 

+ 0° dx 
H2n(x, y) -T=, 

j- xjx-y 

(32a) 

(32b) 

we obtain 

X (”)í i + t”öi/c2n,0(x) = ^"(y) + 02"(y) (33) 
i = 0 \lJ 11 Jy yjx — y 

with 

dx 

Jx-y 
ó-(y) = (2„-I)¿ ¿(n)¿í + V(^=í) 

k=l i = k W 11 Jy 

(34) 

This is an equation for ti2n,o- The right-hand side of equation 
(33) can be considered completely known, since Q2n(y) is 
written in terms of all intrinsic moments of order n — 1, which 
are supposed to be the result of a previous iteration. One can 
easily verify that the left-hand side of equation (33) equals 

+ ® . dx 
o>S(x) 

s/x-y^ 

while equation (34) can be recast as (see Appendix A) 

ß2"(y) = (2n - l)D"y ¿ |/
+‘ ¡'du - 

fc=l I Jo 

pm‘(i i r 
X Li=o (n-k- i)!(i + fc)!JX 

:(1 - u)k 

{k - 1)! 
+ 00 dx 

(^:i)(x)-^= 
yu ~ yu 

(35) 

Hence equation (33) becomes 

f + 0° dx f1 

®S(x) -, = n H2
p
n(uy)(l - u)n 1 du 

Jy y/x-y Jo 
n f1 u' 
£ / du- 

k = l JO 
+ (2n — 1) 

(1 - u)k 

(k-iy. 

Í 

+ 0° dx 

'yu \/x yu 
(36) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
1.

 .
53

1D
 

No. 2, 1992 MASS OF SPHERICAL STELLAR SYSTEMS 537 

Finally, we complete the inversion 

2n(uy) —^L 
SW = - - Í du{\ - uf lDx f Up V-JV r 71 Jo Jx ^/y — x 

2n-l " f1, i/-1/2(l — m)*_1 

^ L \ du~ 71 k — 1 Jo (k - 1)! 

fl /¿j; r x' ~\k 

7wT^,W + a'~v)\ • 

Theorem. In a nonrotating, spherical stellar system with 
known potential, the line-of-sight velocity distribution vp(rp, i;p) 
determines the distribution function /(£, L2) completely. 

Proof. Knowledge of vp(rp, i;p) is equivalent to knowledge of 
all projected moments ^p"(rp). We have shown that then, in 
principle, all moments coS(r) = /i2„,o(r) follow. For a fixed r, 

and these functions are known for all n. These are moments 
with respect to ij/ of v^, r) for 0 < ^ < i¡/(r). Define the Laplace 
transform 

(37) 

which, upon substituting v = sin2 t, can also be written as 

f1 r f+o° 
oS(x) = DX \ du at(u) ju: 

Jo L Jxu 

Í' 

v-y XU 

+ £ «2,1«) dx'(i//'oj"k_lXx') 
k=l 

X (xuxf/2Pk¡ 
XU + x' 

XUX/J 
(38a) 

with 

I'm 
^(s, r) = I esmr)~r]v(i//\ rW . 

Then we will have recovered v(^, r) if we know i?(s, r). Now 

D”if(s, r)|s=0 = Ju2„,0(r), 

and thus 

£C(s,r)= X Hin.oWzT,- 
n>0 n‘ 

Once we know v(i//, r),f(E,l}) follows from formulae such as 
equations (1.4.28) and (1.4.33) in Paper I. 

«i(«) 
n (1 -m)"-1 

- ’ 

«2,1«) = - (2n - 1) 

IX* 31"' 

u 1/2(1 — u)k 1 

(fc-1)! 

(1 - u)',“<t“i (38b) 

and Pk(z) the Legendre polynomial of degree k. A computa- 
tionally more convenient representation is 

= 
J* + GO 

0 
dyii2p

n(y)b1(x, y) 

p + oo 
-I- J il/'(x')dx' I fc = i 

con
k-ï(x')b2,k(x’ x') y (39a) 

with 

b^x, y) = Dx 

/*min(l,y/x) 

Jo 

afujdu 

^/y — xu 

b2A
x’ x') = Dx 

min(l,x7x) / XU Xf\ 
a2fk(u)(xx'u)k/2Pkl —j= \du (39b) 

o ’ \2X/xx'u) 

3. INTEGRAL CONSTRAINTS 

Until now, we have allowed complete freedom in the specifi- 
cation of the potential. Based on the arguments given in the 
Introduction, however, we might expect that certain potentials 
will lead, by way of the inversion equations just derived, to 
nonphysical distribution functions. Here we show that the 
requirement that /be well behaved at large radii imposes an 
infinite set of integral constraints on the potential, the lowest 
order of which is the usual virial theorem. The higher order 
integral constraints are nonlinear functions of <D; thus, even 
though they are infinite in number, they need not constrain the 
potential uniquely. We stress, however, that these integral con- 
straints do not reflect all the information about O(r) that is 
contained within the projected distribution function, since a 
potential that satisfies the integral constraints may still imply 
velocity moments that are negative at some radii, and therefore 
an / that is negative somewhere in phase space. Just as the 
velocity dispersion profile contains more information about 
the potential than the virial theorem alone, so the higher order 
velocity moment profiles contain information that is lost in the 
higher order integral constraints. Furthermore, as we show, 
exact compliance with the virial theorems is required only 
when attempting to infer the intrinsic properties of a stellar 
system at large radii; the central properties are only weakly 
affected by imposition of the virial constraints. 

functions that are independent of the data. Note that the 
intrinsic moments of arbitrary order are given by single inte- 
grations of known functions. 

Once cdq is determined, we can calculate all order n moments 
with equation (28), and proceed to the determination of af0

+1. 
The algorithm guarantees that all unnormalized moments will 
be regular, that is, finite. We are thus led to the theorem : 

3.1. The Second-Order Equations 
Binney & Mamón (1982) first showed how to obtain the two 

functions <72(r) and <jl(r) from the single function <72(rp) by 
requiring that the solution so obtained satisfy the Jeans equa- 
tion in an assumed potential <D(r). Their deconvolution equa- 
tion is equivalent to equation (39) with n = 1, with one 
important difference : while the formula derived here is 
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guaranteed—because of a judicious choice of integration 
constant—to give a well-behaved solution at r = 0, their equa- 
tions imply a divergent central pressure unless the assumed 
potential is in precise virial equilibrium with the line-of-sight 
velocity dispersions. Binney & Mamón (and later Merrifield & 
Kent 1990, in their discussion of the fourth moments) inter- 
preted this pathological behavior as a consequence of noncom- 
pliance with the virial theorem. Their interpretation is 
disturbing, since it implies that the inferred, central properties 
of a stellar system are strongly dependent on the behavior of Q> 
and vp (7p at points far from the center. We show here that a 
different interpretation is possible. If the adopted potential is 
“virially inconsistent” with the observed velocity dispersion 
profile, our formulae imply that the intrinsic velocity moments 
of (r) and of(r)—while remaining well behaved at the origin— 
are ill behaved at large radii. Thus, noncompliance with the 
virial theorem means only that the inferred solution will be 
poorly behaved at radii where the data are themselves, typi- 
cally ill determined; the inferred, central values of of(r) and 
of (r) will be nearly the same as their values in a model that is in 
precise virial equilibrium. This distinction may seem a trivial 
one when dealing with the second moments, since compliance 
with the second-order virial theorem can always be assured by 
adjusting a single normalizing constant in the potential, for 
example, the total mass. The advantage of our formulation 
becomes clear when dealing with the higher order moments: 
imposition of the “ virial ” constraints corresponding to veloc- 
ity moments of order 2n would require that O(r) simulta- 
neously satisfy n(n + l)/2 integral conditions—an awkward 
state of affairs unless the potential is characterized by a very 
large number of free parameters. Our treatment demonstrates 
that knowledge of the projected properties of a stellar system 
at large radii is only necessary when attempting to constrain 
the potential or distribution function at large radii. 

We begin by rederiving the second-order equations. We first 
relate the surface density to the intrinsic number density: 

Vp{rp)=2i 

+ 0° , N rdr 
v(r) 

v^2 -1 

Introducing equation (8), we get 

vP(y) 
=r 

v(x) 
dx 

enabling us to obtain v(x) with 

v(x) = - - 
71 

Dy(v„) 

xA-y’ 

dy 

Vy- 

(40a) 

(40b) 

(41) 

Second, the observed velocity dispersion is related to v and the 
spatial velocity dispersion of and of = of = [1 — /?(r)]öf 
through 

1 
2 Vp >P) 

=r Jrp 

v(rW(r) 
rdr 

sfr1 - : 

v(rK2(r)/?(r) 
dr 

■Jr 
(42) 

This equation has a known left-hand side, but the right-hand 
side still contains two unknown functions. This indeterminacy 
can be eliminated by the Jeans equation (18), which is our third 

equation. Combining equations (42) and (18), one finds 

i 2 12 r 
2Vp<Tp 2^1 

vDr<P 

rdr 
V(7t 

'S 
: + 

1 f+ GO 

2 J ^r(v^) 
dr 

which must be solved for of (r). 
We denote 

(43) 

g(y) = - y Í vDr<p dr , (44) 
Jyy vr - y 

a known function. Equation (43) then becomes 

f+ 00 - dx f + co dx 
g(y) = vo2

r + y Dz{v^) . (45) 
Jy \/x — y Jy vx~ y 

The key point here is to note that this can be written simply as 

g(y) = Dy(y v<xr
2 j==j ’ (46) 

which can be readily integrated: 

Cy f + 0° „ dx 
g(y')dy' = y Vöf , (47) 

Jyo Jy Vx — y 

where y0 is a constant of integration. Regularity of the solution 
vof at r = 0 dictates y0 = 0, and we define G(y) = g(y')dÿ. 
Inverting equation (47) then gives 

A more common way to write this is 

(48) 

¿ f [^=+—'(£)_ g(r.)r dr. 

or, substituting equation (44) for g(r ) and simplifying further, 

v(rK2(r) = 
G(oo) 
2r3 

_ 2 f" " 
~nrjr I 

: + COS " 

X V, 
2 f00 / r3\ Jd) 

,(rp)a2
p(rp)rp drp + j (r'3 + -jv(r') — dr'. (49a) 

Using the Jeans equation (18), we find the following for the 
tangential dispersion: 

G(œ) 
4r3 

¿ft 

r(r2
p + r2) . 

—  = + COS 
Ijr 

4^) 2 
dr. p 

1 f00 d<b 
drp--3 (r'3 — r3)v(r') — dr'. (49b) 

Equations (49) are mathematically acceptable solutions for 
vof and vof. because, by construction, the integrand in equa- 
tion (48) is always well behaved: although it may not be 
obvious from equations (49), there is no further condition to be 
imposed in order that vof and vof be finite for r = 0. This is a 
consequence of the nature of equation (46) featuring a differen- 
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tial operator, which introduces an arbitrary constant in the 
solution; this constant was chosen such that the integrand in 
equation (48) always behaves. Hence, from a purely mathe- 
matical point of view, the solution for the “ pressures ” vof and 
val is satisfactory since it is nonsingular everywhere. 

However as r oo (or equivalently, at the edge of a finite 
system), these equations imply 

va; 
G(oo) 
2r3 v<t| 

GM 
4r3 ' 

In other words, unless G(oo) = 0, then either a? or al must 
become negative at large radii. Furthermore, for r -► oo, the 
“pressure” va? behaves as r-3. Therefore, if v tends to zero 
sufficiently fast, al will blow up for r -► oo, in spite of a behav- 
ing val. On the other hand, at any point along the line of sight, 
the line profile has locally, for physical reasons, a finite 
variance. That variance is a linear combination of al and al, 
and thus al must tend to — oo at large radii—as indeed implied 
by equation (49b). Thus a physically permissible solution must 
have 

G(oo) = fo g(y)dy = 0 , (50) 

or, using equation (44), 

f+ 00 „ f+ 00 d® 
3 Jo Vp<T rp ^ = 2 J ~drr dr’ 

which is the virial theorem (4). We conclude that singular dis- 
persions (not to be confused with pressures) at large radii are 
sufficient to reject the solution on the basis of negativity of the 
distribution function. The virial theorem may therefore be 
interpreted—at least in this context—as a consequence of the 
positivity and regularity of / This is consistent with the fact 
that the virial equation can be obtained by integrating the 
distribution function, which is only a valid operation if that 
distribution function is sufficiently regular. By the same token, 
a similar argument holds for any singular higher order 
moment. We will use this result in the next subsection to derive 
integral constraints from the higher order inversion equations. 

Our recovery of the virial theorem is hardly unexpected : it is 
well known that one may derive the virial theorem by inte- 
grating the spherical Jeans equation (18), multiplied by 47ir3, 
from zero to infinity, 

<y > = (r . va>> + 4n(r3val)S , (52) 

and requiring that r3val vanish at large and small radii. The 
new point to be made here is that, even if the adopted potential 
does not satisfy the virial theorem exactly, the inferred kine- 
matical solution can still be well behaved at the origin. In other 
words, the central structure of a model need not be strongly 
dependent on the behavior of vp a2

p or O at large radii—a fortu- 
nate state of affairs, since the behavior of these quantities at 
large radii is typically poorly determined. By contrast, Binney 
& Mamón (1982), in their equation (12a), effectively chose for 
their constant of integration };0 == oo, rather than y0 = 0, 
leading them to an expression for val that is equivalent to our 
equation (49a) without the term G(oo)/2r3. Thus, their algo- 
rithm gives a divergent val at r = 0 unless the velocity disper- 
sion profile is precisely “ consistent,” in a virial sense, with the 
assumed potential. In our more general formulae, a potential 
that is not “ virially consistent ” with a given velocity disper- 

sion profile will lead to a solution that begins to behave badly 
only outside of some radius, beyond which—hopefully—the 
data are poorly determined as well. In spite of this slight (but 
important) difference, our inversion equations are identical to 
theirs after imposition of the virial constraint. 

A final remark is in order on the interpretation of the condi- 
tion (51). Generally, the virial theorem is seen as a scaling 
condition on <I>. However, it might equally well be seen as a 
condition on the assumption that the distribution function 
depends on E and L only. To see this, it is instructive to look at 
equation (42) again, which is the integral equation containing 
all the observational constraints. It is clear that, if we had not 
set al = al, even the Jeans equations 

Dr V<7r
2 + ^ (2<r2 - <t2 - al) — vDrtj/ = 0 

would not have been sufficient to close the equations and 
determine the dispersions. Yet, a scaling condition such as 
equation (51) would always have to be imposed. This follows 
from noting that, even if a^ al, there always will exist a 
function f(x) such that <r3 =fol- If we now first assume such a 
f(x), the analysis of Binney & Mamón (1982) could be repeated 
and would again lead to a condition serving the same purpose 
as equation (51). We conclude that, although a condition such 
as equation (51) will always exist in any algorithm that pro- 
duces a unique solution for the intrinsic pressures, its form may 
depend on the a priori conditions and symmetries that we 
assume or impose. Hence, equation (51) is a condition on the 
two-integral assumption for the distribution function as well as 
a scaling condition on <5>, which, in this case, depends on the 
assumed phase space structure very weakly, through the 
density v(r). In the next subsection, we will see that the depen- 
dence on phase-space structure will grow stronger as we go to 
higher orders. 

3.2. The Higher Order Constraints 
In spite of the fact that the solution (39) for a>o(x) will be 

regular everywhere, the intrinsic normalized nth order moment 
will not, in general, have an acceptable behavior for x ^ + oo. 
This can be most easily seen by considering equation (36), the 
left-hand side of which tends to zero as fast as rvi//. The right- 
hand side however, that we write as R + S, with 

(53a) 

(53b) 

exhibits, for y -► + oo, polynomial behavior. In particular, we 
can easily see that R and S are, in the limit, polynomials of 
order n in 1/y of the form R + S = i(ci + ¿ùy '- Hence, the 
polynomials R + 5 must be identically zero in general, thereby 
imposing n additional constraints for every determined intrin- 
sic moment o)q. In Appendix B we show that these constraints 
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are 

lim Ti ß2
p
n(yu)umdu + (2n - í)^/n ¿ an

Km 
y-> + co LJo k-1 

x ^1il/'(yu)œn
kZ1

1{yü)um(yu)k+ll2du^ = 0 , 

0 < m < n — 1, (54a) 

with 

a'¿m = 
n — l\ (k + m)\ 
k-lj k\T(k + m + 3/2) 

x sFiik — n> —m> 1; ^ + 1, 1 — n; 1). (54b) 

The integrals in equation (54a) converge under quite generous 
conditions for the projected and intrinsic moments. Stronger 
yet, the limits will produce multiple zeros for both terms, and 
the conditions must be seen as conditions on the asymptotic 
behavior as y -► + oo. We can get rid of the multiple zeros by 
multiplying equation (54a) by ym+1, thus obtaining a stronger 
version of these constraints, only valid in case the integrals 
exist: 

^C°n2
P

n(y)ymdy + (2n - 1)^1 

X t \ll/'COn
kZ

1
1Xk + m+ll2dx = 0, k = l Jo 

0 < m < H — 1 . (55) 

As Kent (1991) has noted, the constraints (55) can also be 
obtained by taking spatial moments of the Jeans equations. 
Within our formalism, that derivation is straightforward. We 
begin by calculating the integral on the sky of a projected 2nth 
order moment 

J V2n(y)ym dA — n ^ l¿2n(y)ym dy 

f+o° mj r+o° , , dx 
= 71 ymdy \ fi2n(x9 y)—1= , 

Jo Jy yjx — y 

according to equation (32). After substituting equation (30) and 
integrating over y, we obtain 

Jo
+Vw^ = ^|o(”) 

(m -f- r + co 
X ' Oj"(x)xm + k +1'2 dx . i !T(m + i + 3/2) Jo 

We now substitute equation (31) and perform a number of 
partial integrations, with the result 

i n2n(y)ymdy = ^/nbn
0 m j xm+il2con

0dx 
Jo Jo 

-(2n+l)N/l £ blm { + C°>l/Xx)(oíZ\(x)xk+m+ll2dx , 
k = l JO 

and 

hn Hi V M + 0! 

k-m T(m + fc + 3/2) ,4 W ü 

It turns out that 

hn — °o,m — T(m + 3/2) 2F1(—n, 1 + m; 1; 1) = 0 , m <n 

while 

bn
km = 

(k + m) ! fn 
k\r(m + k + 3/2) \kj 

x 3F2(k — n, k + m+1, l;k+l, k+l;l), 1 < l <n . 

We will therefore have recovered equation (55) if we can prove 
that alm = blm, or 

ksFiik — n> —m> 1; k + 1, 1 — n; 1) 

= n 3F2(k — n, k + m+1, l;k+l, k+l;l). 

This is indeed an apparent identity upon writing it as 

u)du k j* uk~1 2J
ri(k — n, —m; 1 — n; 1 — 

= n J Mfc_1 2f
7i(k — n, k + m + 1; k + 1; 1 

= n J m"-1 2Fi(k — n, — m; k + 1; 1 

u)du 

l/u)du 

and comparing the term in (—m)^ 
Since we will need them below, we give here the integral 

constraints for orders two and four: 

^PrPdrP = X I v(r)^r3dr, (56a) 
f00 2 fc 

J. 

Cœ 2 f00 dO 
J ßt rp drp = 5] vW(3ffr

2 + 2aj) — r3 dr , (56b) 

f00 4 f00 dO 
Jo fit r3

p drp = -Jo v(r)(f7r
2 + 6<r2) — r5 dr (56c) 

3.3. Significance of the Virial Constraints 
We have argued that the virial constraints are best inter- 

preted as conditions on the potential such that the inferred 
kinematics of a stellar system are physically reasonable at large 
radii. In practice, the large-radius structure of a stellar system 
is generally poorly constrained observationally, because of 
finite sample sizes or uncertain background corrections; thus, 
noncompliance with the virial constraints leads to uncer- 
tainties in the kinematics only at radii where the data are also 
uncertain. Nevertheless, the virial constraints—to the degree 
that the terms within them depending on line-of-sight velo- 
cities can be accurately computed from limited data—do, 
themselves, constrain the form of the potential. Merrifield & 
Kent (1990) went so far as to speculate that the infinite set of 
virial constraints would be formally sufficient to fully deter- 
mine <I>(r), even in the absence of any additional information 
about the projected distribution function. We can neither 
prove nor disprove their conjecture here, since the virial con- 
straints are nonlinear functions of 0 for n > 1. However, as we 
have shown, these constraints are simply one piece of the larger 
problem: while they imply good behavior of/at large radii, 
they say nothing about its positivity at general points in phase 
space. Furthermore, converting all available velocity informa- 
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tion to global moments is an inefficient way to deal with 
limited data, since, in the process, one loses considerable infor- 
mation about the dependence of projected distribution func- 
tions on rp and vp. In a practical sense, then, we imagine that 
there must exist more efficient ways of inferring gravitational 
potentials from limited data than via the virial constraints. 

4. INVERSION EQUATIONS FOR ORDERS 2 AND 4 

Here we present explicit expressions for the intrinsic 
moments in terms of the observed moments, for orders two 
and four. We begin by assuming that the virial constraints of 
corresponding order are exactly satisfied. The two second- 
order equations are then 

vp(rp)(72
p(rp)rpdrp 

(57a) 

PV p 

x r2dr - — 
dr. p p 3r3 (V3 — r3)v(r') ~ dr', (57b) 

and the three fourth-order equations are 

= - 
i 

16nr5 

n 

dß4
p 

r(9rp + 6r4 + r2rp) . 2 £—,   p- + (9rz + 4r2) cos 

1 

‘©] 

x f” U/-54 ^ + 84r! - 21rV'J - 9/’^ + 

x(^ 
_l_ i4rs _ i4r

2
r'3 _ 54r'

5 dd> 
vW — dr'. (58c) 

dr 

An equation equivalent to equation (57a) was first derived by 
Binney & Mamón (1982); as previously noted, our expression 
is simpler, involving only a single integration. Equation (58a) 
for (v?(r)) was first given, in a different form, by Merrifield & 
Kent (1990); again, our expression contains one fewer integra- 
tion. Equations (57b), (58b), and (58c) are presented here for the 
first time. We checked that each expression gives the correct, 
intrinsic moments for the family of anisotropic Plummer 
models of Paper II. 

If the adopted potential does not satisfy the second- or 
fourth-order virial constraints, then the solutions given above 
are not correct. To the two, second-order equations must be 
added 

V(rKVr(r)) == s nr'' 

r2 + (3rp — 2r2) cos 1 ( — 

X HÎ(rp)rpdrp + ^ 

+ 42r5 + 84rV3 - 12r'5 

+ 7r5 + 56rV3 - 72r' 
d4> 

v(r') — dr', (58a) 

v(r)<^(r)t)|(r)> = 
3m-5 

f00 rrj9r2
p - 5r2) 

xX 

1 
x nî(rp)rpdrp + 

+ (9r^ — 2r2) cos 1 ( — 

105r5 

i 18 ^2 + 42r5 - 42r2r'3 + 18r' 

+ 7r5 — 28r2r'3 + 108r'5 

dQ> 
x v(r') — dr' , 

dr 
(58b) 

v(rK2(r)-v(r)<7r
2(r) + ^, (59a) 

vWo-s(r) ^ v(r)fff(r) - , (59b) 

where 

f00 4 f00 d<t> 
G(a>) = 2 I vp(rp)a

2
p(rp)rpdrp - - | v(r') — r'3 dr1. (60) 

To the three fourth-order equations must be added 

v(r)<tv4(r)> ->• v(r)<D4(r)> + » (61a) 

vírX^W.Kr)) - v(rKv2(r)v¡(r)) - ; (6lb) 

v(r)<vi(r)y v(r)<i4(r)> - ~ , (61c) 

where 

f00 4 f00 dd) 
H^cc) = 2 n4(rp)rpdrp - - (3ffr

2 + 2ajW) — r’3 dr', 

(62a) 

Í00 12 f00 dO 
^ ßfrrri drP ~ 35 jo 

+ 6<T»)v(r') r'S dr' ■ 

(62b) 
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Fig. 1.—Intrinsic velocity moments derived from modified, Plummer- 
model profiles, as described in the text. 

As noted above, these formula yield solutions that are regular 
at r = 0, but that behave unphysically beyond some radius r 
whose value depends on the degree to which the virial con- 
straints are violated. 

As an illustration of the application of these equations, we 
computed the intrinsic moments corresponding to a set of line- 
of-sight moment profiles, with an assumed potential that did 
not satisfy the virial constraints. For <rl(rp) we took the aniso- 
tropic Plummer model profile of equation (73), with anisotropy 
<2 = 1, modified by the factor [1 -h (rp - r0)2]-1 for rp>r0 = 
3. The potential was taken to be the Plummer potential (74). 
Figure la shows that the inferred intrinsic moments have 
nearly the correct values at radii r < r0 and behave unaccept- 
ably only at much larger radii. Similarly, Figure lb shows the 
behavior of the intrinsic, fourth-moment profiles when ^ip(rp) is 
modified by the same factor. Again, the unphysical behavior is 
limited to radii well outside of the region where the line-of- 
sight moments deviate from the “ correct ” values. We conclude 
that—as a practical matter—no very severe penalty is to be 
paid for noncompliance with the virial theorems. 

5. USING VELOCITY MOMENTS TO CONSTRAIN POTENTIALS 

We have seen that the problem of determining the potential 
of a spherical stellar system from the lower velocity moments 
of a set of test particles is generally an underconstrained one. 
This means that—in the absence of preconceptions about the 
proper form of O or f—it almost never makes sense to search 
for a single, “best-fit” potential; rather, one should seek an 
optimal potential, that is, a potential that maximizes or mini- 

mizes (subject to the observational constraints) some 
“objective function” chosen to represent a physically inter- 
esting quantity, for example, the total mass or the central 
density. In the past, the standard approach to this problem has 
been to note that equations like equation (3), which relate 
line-of-sight velocity moments to the underlying distribution 
function/, are linear in/. One can therefore test the suitability 
of an assumed potential O(r) by using a linear algorithm to 
construct an/(£, L2) that is nonnegative and that reproduces 
the observed moments (within the observational errors) in the 
assumed O (e.g., Richstone & Tremaine 1984; Newton & 
Binney 1984; Dejonghe 1989). By trying many different forms 
for <D(r), one can eventually put limits on the mass distribution. 
The major difficulty with this approach is obvious: because it 
focuses on the construction of/ rather than O, it does not lend 
itself to an efficient search for the full range of potentials con- 
sistent with the data. 

An alternative approach is suggested by the inversion equa- 
tions (57) and (58) derived above. Note, for instance, that the 
intrinsic velocity dispersions implied by a given <r2(r) are 
related to the assumed potential through a linear equation. If 
we express this potential as a sum of basis functions with 
unspecified coefficients, 

<I>(r) = X «AM , (63) 
i 

the at can be determined through a linear programming algo- 
rithm, where the constraints include positivity of the intrinsic 
moments va2 and voj at every radius. The objective function 
need only be linear in the such functions include the total 
mass, the central or mean density, the central value of the 
potential, etc. If we require the potential to be consistent with 
higher order observed moments, say of order 2n, then the equa- 
tions relating the intrinsic moments to the potential are of 
order n in the af. Linear programming will not work in this 
case; however, in the last few years, a number of reasonably 
general and efficient algorithms for nonlinear optimization 
have been published (e.g., Schittkowski 1980). Of course, any 
technique based only on velocity moments will not yield a 
complete distribution function, and there is no guarantee that 
the derived intrinsic moments, even if everywhere positive, 
could be derived from a fully nonnegative/ On the other hand, 
it is our purpose here to explore the power of the constraints 
imposed by positive intrinsic moments, and it is hard to see 
how any of the existing methods that yield / as well can be 
made to fit logically in the scheme worked out in the previous 
paragraphs. 

In the absence of any other constraints, the “optimized” 
potential that results from such an algorithm is often strongly 
unphysical, in the sense that the corresponding mass density, 

P = -TT V20 , (64) 
47TCj 

is negative, or oscillates with radius. It therefore makes sense to 
add to the algorithm the (linear) constraints 

Z a¡PÁr) > 0 , la,^<0 (65) 

at all r, where = V2Oí/4tcG. 
The behavior of the algorithm also depends strongly on the 

choice for the objective function to be maximized or mini- 
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mized. For instance, telling the routine to find the solution with 
the maximum total mass usually produces a poor result, since 
arbitrarily large amounts of matter at large radii have almost 
no effect on the internal dynamics. Similarly, the maximum 
central mass density is poorly defined, since a central singu- 
larity of insignificant mass affects the dynamics only very close 
to the center. Two well-defined, and astrophysically inter- 
esting, choices for the objective function are the minimum total 
mass, and the minimum central density. Minimizing either 
quantity gives (as we show below) a well-defined solution. Fur- 
thermore, both quantities can be derived simply if the only 
constraint on the potential is the virial theorem (Merritt 1987). 
The minimum mass in this case is 

_ 3 |o vp(?-p)ffp(>->ptfrp 

4 fêv(r)rdr 
(66) 

and corresponds to a model in which all the matter is concen- 
trated in a central point. The minimum density (under the 
assumption dp/dr < 0) is 

9 lôv^iT^r^r^r^ 
167t j>(r)r4dr 

(67) 

and corresponds to a model in which the matter is uniformly 
distributed. Adding additional constraints beyond the virial 
theorem usually gives “minimum mass” and “minimum 
density” solutions that are similar in character (though less 
extreme) than these. 

5.1. Second Moments 
Suppose that the data comprise only the projected number 

density and velocity dispersion profiles, with nothing known 
about the higher moments. If we assume that the potential 
satisfies the virial theorem, that is, that 

vp<J2prpdrp- 
J’00 dQ> f00 d<D 

o <68> 

then the radial and tangential components of the velocity dis- 
persion are given by equations (57), which may be written 

v(r)ffr
2(r) = ^ - /(r) + E a¡ AwJ , (69a) 

v(r)<xt
2(r) = ^ J(r) + X . (69b) 

The functions I(r) and J(r) contain the kinematical information 

.2 _ „2 
P ’ 

vp(rp)a2
p(rp)rpdr (70a) 

J«=-2'w + ïl 

while Air) and ß,(r) depend on the potential basis functions 

(70b) 

Air) = I j^r'3 + i r3)v(r') ^ dr', (71a) 

if00 d<S> 
Blr) = - - j (r'3 - r3)v(r') ^ dr'. (71b) 

The additional constraints on the at are therefore 

X ai Air) - I(r) > 0 , (72a) 
i 

X a, Blr) - J(r) > 0 ; (72b) 
i 

these conditions must, of course, be satisfied at every r. In 
practice, it is sufficient to satisfy the constraints (72) on a dis- 
crete radial grid, with the number of grid points Ngrid compara- 
ble to or somewhat greater than the number of potential basis 
functions iVbasis. In most of what follows, we took iVbasis = 30, 
Ngrid = 100. 

We used a linear programming algorithm (routine DLPRS 
of IMSL) to derive optimal potentials for a stellar system with 
the “observed” number density and velocity dispersion pro- 
files 

V'-p) = 
i i 

Ml + ri)2 ’ 

vp(rp)(T2(rp) = 
3 1 1 

32 6 - (1 + r2)5/2 

(73a) 

4 l+r2
pJ 

. (73b) 

Equation (73a) is the projected density profile of a Plummer 
(1911) model, with unit total number of stars; equation (73b) 
defines a family of velocity dispersion profiles, parametrized by 
the variable q, corresponding to the anisotropic distribution 
functions derived in Paper II. These distribution functions 
were designed to reproduce the Plummer number density 
profile in the Plummer potential, 

^PlummerO*) r r 
Vl +r2 

(74) 

with unit total mass. The variable <?, which ranges from — oo to 
2, specifies the distribution function through equation (19) of 
Paper II. For our purposes, however, q may be thought of 
purely as a parameter that defines the shape of the velocity 
dispersion profile. When q= — oo, the underlying distribution 
function contains only circular orbits, so that the projected 
velocity dispersion falls to zero at the center. When g = 2, the 
distribution function is strongly weighted toward highly radial 
orbits, and the dispersion profile is centrally peaked. Hence- 
forth we will replace qby Q = q/(S — q), which ranges from — 1 
(circular orbits) to 1/3 (strongly radial orbits). For the models 
of Paper II, Q is equal to the “global anisotropy” (Tr 
— TT/2)/(Tr + 7V/2), where Tr and Tt are the kinetic energies in 

radial and tangential motions. Figure 2 shows a set of project- 
ed velocity dispersion profiles from this family. 

A useful set of potential basis functions, rooted in the 
Plummer model, has been defined by Clutton-Brock (1973): 

3>i(r) = - 
Uß) 

ßTT?’ 
(75) 

where the Ui are Chebyshev polynomials of the second kind: 

[/¿(cos 0) = 
sin [(i + 1)0] 

sin 0 
(76) 

The corresponding mass densities are 

P,{r) = 
Kj Uß) 

4nG (1 + r2)5/2 ’ 
K¡ = 4i(i + 2) + 3 . (77) 

Note that pp(r) = 3/(47tGXl + r2) 5/2, the Plummer (1911) 
density law with unit total mass; similarly <l>0(r) = dw, (r). 
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Fig. 2.—Velocity dispersion profiles, for Q = — 1, —0.8. —0.6, —0.4, —0.2, 
0., 0.2, and 1/3. 

If the matter generating the potential is assumed to be dis- 
tributed in the same way as the test particles, then the potential 
corresponding to these profiles is simply the Plummer poten- 
tial, for which 

M = 1 , p(0) =-7- = 0.2387  
47T 

If we relax the assumption that “ mass follows light,” the virial 
theorem (in the form of eq. [66]) constrains the total mass to be 
greater than 

Mmin = ^ = 0.2945...; 

the lower limit on the central density implied by the virial 
theorem (eq. [67]) is zero in this case, which may be traced to 
the fact that the projected number density of a Plummer model 
falls off more rapidly than r-3. Notice that the minimum mass 
is independent of Q, a consequence of the fact that all of the 
velocity dispersion profiles correspond to models with fixed 
kinetic energy. 

Figures 3 and 4 illustrate the lower limits on the total mass 
and central density when the velocity moments vof and vof 
inferred from vp o2

p are constrained to be nonnegative at all 
radii. For Q = —1, only a single potential satisfies the con- 
straints, the Plummer potential (74). This is because the 
Q = — 1 velocity dispersion profile is that of a model con- 
structed from circular orbits, and, as argued in the Intro- 
duction, such a profile uniquely defines the potential. However 
as Q increases above — 1, the minimum central density drops 
rapidly to a value of ~ 0.02, about a factor of 10 below its value 
in the mass-follows-light model, after which it remains roughly 
fixed. Similarly, the minimum mass drops smoothly from 1 at 
g = — 1 to ~ 0.3—only slightly above the lower limit set by 
the virial theorem—at g æ 0.2. Figure 5 shows that the 
minimum-density solutions come in two types, separated by 
ß « — 0.67 (where a “ kink ” occurs in the plot of Fig. 3). When 
ß < —0.67, the minimum-density solution is strongly tangen- 
tially anisotropic close to the center; the central density is 
apparently constrained by the requirement that > 0 at small 
r. When ß > —0.67 (to the right of the “kink” in Fig. 4) the 
minimum density solutions are radially anisotropic at large 
radii, and their central densities are limited by the requirement 
that of > 0 at large r. By contrast, all of the minimum mass 

Fig. 3.—Minimum central mass densities, as a function of Q. Lower solid 
line: lower limit imposed by the constraint that the intrinsic velocity disper- 
sions be positive; upper solid line: lower limit when the fourth-order virial 
constraints are added. 

solutions have the same qualitative character: the anisotropy 
becomes strongly tangential at large radii. The behavior of 
these solutions is easy to understand in a qualitative sense. 
When the matter defining the potential is centrally concen- 
trated, orbital velocities fall off rapidly with radius, so that 
trajectories at large radii must be nearly tangential in order to 
project the maximum fraction of their velocity along the line of 
sight. Similarly, when the matter is very extended, orbits must 
become relatively more radial at large radii, so that a small 
fraction of their velocity it projected along the line of sight. 

These figures demonstrate—rather discouragingly— just 
how poorly velocity dispersion profiles constrain the under- 
lying matter distribution. This is especially true when (as often 
occurs in nature) the velocity dispersion profile is centrally 
peaked: Figures 3 and 4 show that, for ß > —0.2, the con- 
straints imposed by the complete velocity dispersion profile are 
only marginally better than those imposed by the virial 
theorem alone. For the most strongly peaked profiles, that is, 
ß > 0.1, even a model in which all of the mass is within about 
1/10 of the Plummer model scale length can be made to fit the 
data. The velocity dispersion profile is therefore primarily 

Fig. 4.—Minimum total masses, as a function of Q. Dashed line: lower limit 
imposed by the virial theorem; lower solid line: lower limit imposed by the 
constraint that the inlrinsic velocity dispersions be positive; upper solid line: 
lower limit when the fourth-order virial constraints are added. 
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Fig. 5.—Character of the velocity-dispersion-constrained optimal solutions. Left: Q= —0.8; right : Q = 0.2. Solid lines: mass follows light; dashed lines: 
minimum central density; dash-dot lines: minimum total mass. 

useful, not for constraining the potential, but rather for indicat- 
ing the nature of the kinematical solution corresponding to an 
assumed potential. 

Of course, if one knew enough about galaxy formation to 
cast doubt on certain kinematical states, then some of these 
solutions could be rejected. For instance, it is often argued that 
pressure-supported stellar systems should become radially 
anisotropic at intermediate to large radii, whether they formed 
via a slow or a rapid collapse. However, these arguments give 
no clue about where to draw the line between “acceptable” 
and “unacceptable” solutions. Should mildly tangentially 
anisotropic solutions be permitted, or only solutions that are 
substantially radially anisotropic? Should galaxies that show 
evidence for past interactions or mergers be expected to have 
qualitatively different distribution functions from isolated gal- 
axies? Given the current, dismal state of knowledge about 
galaxy origins and evolution, we believe that it is dangerous to 
exclude models on the basis of “ plausibility ” alone. Instead, 
one should make use of the additional information contained 
within the full line-of-sight velocity distribution. 

5.2. Fourth Moments 
Next we consider how the additional information contained 

within the fourth-order velocity moments further constrains 
the potential. We begin by adding, to the constraints (65) and 
(72), the requirement that the solution satisfy the two fourth- 
order “ virial theorems,” 

f00 ? f00 d<t> 
Jo 

rPdrP = 5 jo 
v(rX3<J'r + 2<t|) — r3 dr , 

f00 4 f00 d(t> 
jo VUI drp = - Jo v{r\o2

r + 6^) — r5ár. 

In other words, we imagine that the data are sufficiently good 
to yield the velocity dispersion profile accurately at all radii, 
but that only the radially averaged fourth moments are known. 
In terms of the ah these constraints may be written 

I í ntrp drp = X + X a¡ aj Dlu > (78a) 
Jo i ij 

¥ í f4rl drP = X ai C‘I + X «i aj Dij > (78b) 
Jo i ij 

with 

f00 d® 
Cf = - I [3/(r) + 2J(r)] dr , (79a) 

f00 <M> 
C" = - I [/(r) + 6J(r)] -J^r2dr, (79b) 

D!j = + 2B,{r)] ^ dr , (79c) 

Dij = j^UXr) + 6BM] 5 r2 dr . (79d) 

By satisfying these constraints, we guarantee that the distribu- 
tion function wil be positive and regular at large radii, at least 
to the extent that the fourth-order moments are able to do so. 

The additional constraints are quadratic in the ah which 
means that we can no longer use a linear programming routine 
to find the optimal potentials. Instead we used the 
“nonlinearly constrained minimization” routine NCONG of 
IMSL. This routine—like virtually all nonlinear optimization 
routines—does not guarantee that the solution it finds is glob- 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

39
1.

 .
53

1D
 

546 DEJONGHE & MERRITT Vol. 391 

ally optimum; in general, the routine will select a solution that 
depends on the starting point, that is, on the initial guess for 
the However, a number of tests suggested that the solution 
in our case is insensitive to the starting point; results below 
were calculated from the “feasible” starting vector a0 = 1, 
at >0, i > 0, corresponding to the Plummer potential. 
Although the nonlinear routine ran quite quickly (more 
quickly, in fact, than the linear programming routine), it often 
failed to give a solution when Nhasis was chosen larger than 
about 10. (A different routine, E04VCF of NAG, was found to 
fail in the same way.) The failures seemed to be due to certain 
coefficients in the constraint equations which, for large Afbasis, 
can be very small (see, e.g. Gill, Murray, & Wright 1981). 
Results presented here were obtained with iVbasis = 10; they are 
therefore probably not as accurate as the values presented in 
the previous subsection, calculated with ATbasis = 30. 

Figures 3 and 4 show that the addition of the fourth-order 
virial constraints does, indeed, limit the range of central den- 
sities and total masses more strongly than the velocity disper- 
sions alone. The minimum central density is typically ~ 50% of 
the constant-M/L value, while the total allowed mass is always 
greater than ~75% of the Plummer model mass. Figure 6 
shows, however, that the range in mass density profiles allowed 
by the fourth-order virial constraints is still rather great: it 
includes matter distributions that are both significantly more 
and less centrally concentrated than the “ luminous ” objects. 

The numerical difficulties that we encountered with the non- 
linear optimization routine deterred us from investigating how 
much more strongly one could constrain the potential using 
the full, projected fourth-moment profile. However, Figure 4 
suggests that fip(rp) would probably impose rather stringent 
lower limits on at least the total mass for this family of 
Plummer models. 

6. DISCUSSION 

In a general way, the points made here—that the potential 
®(r) implied by a set of kinematical data is often strongly 
underdetermined; that the only fundamental constraints on 
arise from the necessity that the inferred distribution function / 
be positive; that these constraints are nonlinear functions of O; 
that the virial theorems, both the usual second-order expres- 
sion as well as the higher order integral constraints, may be 
interpreted (at least in this context) as consequences of the 
positivity and regularity off; and that limited data often place 
a more stringent lower limit on the total mass of a stellar 
system than on its central density— are relevant to any 
attempt to infer the potential of a spherical stellar system from 
line-of-sight velocities. Put simply, the determination of the 
matter distribution of hot stellar systems from kinematical 
data is a difficult problem, and qualitatively different from the 
classical problems of determining the mass in and around 
rotating disks. 

When the kinematical data are limited to a projected veloc- 
ity dispersion profile, we have shown that the most extreme (or 
otherwise “optimal”) potentials can be inferred through a 
straightforward process of linear programming, and that the 
range of allowed potentials is generally very great. This tech- 
nique can, and probably should, be applied to real data: it is at 
least as simple as other, linear techniques based on the con- 
struction of / (e.g., Richstone & Tremaine 1984; Dejonghe 
1989), and has the advantage that the form of <I>(r) need not be 
specified a priori. Perhaps its greatest disadvantage is the 
necessity to specify vp and ap at all projected radii. In practice, 
this requirement would typically mandate some sort of smooth 
extrapolation of the observed profiles, certainly at large radii 
(where surface brightnesses are low), and sometimes at small 

r r 
Fig. 6.—Character of the optimal solutions constrained by velocity dispersions and by the fourth-order integral constraints. Left: Q = —0.6; right: Q = 0.0. Solid 

lines : mass follows light ; dashed lines : minimum central density ; dash-dot lines : minimum total mass. 
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radii as well, as when searching for dynamical signatures of 
black holes. We note also that the application of an algorithm 
like ours to real data would almost certainly result in greater 
formal uncertainties in O(r) than previous authors have 
quoted, since, in the past, masses have almost always been 
inferred from formulae or algorithms that contain implicit 
restrictions (generally motivated by mathematical simplicity, 
not physical plausibility) on the form of ^ or/ It should also 
be possible to extend this technique to spherical systems with 
rotation, and perhaps even to axisymmetric subsystems in 
spherical potentials, after making an assumption about the 
angle between the symmetry axis and the line of sight. 

In principle, one can do better with higher order moments. 
We do not believe that this approach is likely to be very fruitful 
in practice: first, because the numerical algorithms become 
much more complicated when moments above the second are 
included as constraints (i.e., nonlinear optimization vs. linear 
programming); second, because the accuracy with which 
moments of order n can be determined from limited data falls 
off sharply with n; and third, because the higher order 
moments are likely to be strongly affected by contamination, 
substructure, slight departures from sphericity, or other effects 
which are difficult to treat with any generality in an algorithm 
such as ours. Furthermore, when the kinematical data are 
discrete—as they are in most cases, excluding distant, unre- 
solved elliptical galaxies—it is often the case that even the 
projected velocity dispersion profile cannot be meaningfully 
approximated, much less the higher order profiles. For 
instance, the largest data sets currently available for dwarf 
spheroidal galaxies contain only about 30 velocities (e.g., 
Mateo et al. 1991). 

There is, however, no fundamental reason why the determi- 
nation of potentials should be based on velocity moments. One 
could equally well interpret a set of observed positions and 
velocities as an approximation to the joint distribution 
vp(rp, vp) and ask (using eq. [3]) what potentials are capable of 

reproducing this two-dimensional data set (within the observa- 
tional uncertainties) with a nonnegative / Of course, a very 
large number of positions and velocities, perhaps thousands, 
would be required to yield a reasonably exact estimate of 
vp(rp9 vp). However, there is some reason to believe, as argued 
in the Introduction, that even less-than-complete knowledge of 
vp(rp9 vp) might yield usefully strong constraints on <l>(r). For 
instance, Merritt (1987) used the roughly 300 radial velocities 
of galaxies in the Coma cluster to construct N(vp), the overall 
distribution of line-of-sight velocities, and concluded that 
models in which the dark matter was less centrally concen- 
trated than the galaxies were most likely. In the case of Coma, 
the velocity histogram was noticeably skew, a probable conse- 
quence of contamination by foreground galaxies. However, 
individual galaxies and star clusters are typically much more 
isolated and relaxed than galaxy clusters, and it seems reason- 
able to hope that as few as ~ 100 radial velocities in such a 
system would usefully constrain its potential, even in the 
absence of any a priori knowledge about the radial distribution 
of matter. Probably the simplest way to proceed is to assume a 
potential, then to find an/from which the data—in the form of 
discrete, unbinned positions and velocities—are “ most likely ” 
to have been drawn; repeating the procedure with different 
<I>(r) would then yield a “ most probable ” potential (or, more 
likely, a range of potentials, all of which are equally probable). 
The behavior of one such algorithm is discussed by Merritt & 
Saha (1992). We are optimistic that the application of such 
algorithms to real data will soon remove the indeterminacy 
that has heretofore always plagued the observational study of 
elliptical galaxies and other hot stellar systems. 

This work was supported in part by NSF grant AST 90- 
16515 to D. M. We benefited from conversations with S. Kent, 
J. Kormendy, M. Merrifield, D. Richstone, and P. Saha. This 
work was begun while both authors were visiting the Aspen 
Center for Physics in 1990. 

APPENDIX A 

In this appendix we calculate the function 

d: 
(2n - 1) 

The symbol Dy 
n is shorthand for n successive integrations, which introduce additional constants. The regularity of the intrinsic 

moments at y = 0 dictates that we choose 

D;T<KyK  ¡-P 
I» - 1)! Jo 

dt(y - tf í(¡>{t), 

and thus we consider 

with 

{n —r - D! Jo 

* ” fn\ i1 

dtiy-tr' X ( . -Dr*[/(i)] 

m = 

Successive partial integration transforms equation (Al) to 

1 " (n\ (-) 

iJ il 

+ 00 dx 

£ (n ~ 1)! i=k \ij »! 

y* -f 

Dritxy - tr^mdt, 

(Al) 

(A2) 

Jo 
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or 

v ín) i Yk  
h VJ i'- Jo n) j=oj!(i - k — j) l(i — j) \(n -1-i +j + fc)! 

i-j(v _ f\n — 1 — i + j + k t‘~J(y - ty 

We introduce p = i — j, and rewrite the above equation as 

V f* f(my-trí+k-’’ " Ín\ (-y~p(i - k)] 
?=fc Jo ”Un — 1A A ^ L \ ; p=kjo P'-(p-k)\(n-l + k-p)l ¿‘„yij (i-p)li\ 

The sum can be evaluated by noting that 

f M(-rp(i-fc)! n\(p-k)\    
1 J ”^= Z—IT777 2^i(p - n, p - k + 1; p + l; l) i=P \ij (i-pV-i'- (n-pY-P'- 

(p — k)\(n + k — l — pY 

which in turn reduces equation (79) further to 

(k 

(n-pY(k- 1)! 

1 i'y n~k rïv — ttn_1_i 
l(y '» 

i=o (n-k - i)!(i + k)! ’ 

or 

(k 
1 u'(l-u)"“1-'' _ 1)! Jo duf(yu)u Z (n_k_ i)!(. + k). 

together of course with equation (Al). 

(A3) 

(A4) 

(A5) 

APPENDIX B 

CALCULATION OF THE INTEGRAL CONSTRAINTS 

We now determine more explicitly the functions R and S, defined in equation (53). This we do by expanding the polynomials 
(1 — t/y)' that appear in their definitions. This is particularly easy for R, and we get 

K = n¿ Cmy~m l 

with 

The calculation of 

cm = n 
n- 1 

m K-r p.ln{i)tmdt. 

s = "l dmr
ra-1, 

,-m-l 

(Bla) 

(Bib) 

(B2a) 

is more complicated. First we determine the coefficient in y m 1 by simultaneously expanding (1 — t/yf 1 and (1 — t/yi" ‘ ‘ in 
equation (53b). We get after some manipulations 

dm = (-r(2n- 
+co,í „-i ^ i/'coZ-} 

sß - 1 ’ 
(B2b) 

with 

<ÏLn 
m\(n — m 
(k- l)\(n 

Interchanging summations in ql m yields 

m\(n — m — l)1 

i + kj \m — i — j 

=_ ^ y /fc-iVn-fe-i 
qk'm (fe-!)!(«-!)! ,4 \i + kj 3=max(fl„+)t,o,V ) 

(B3) 
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The inner sum in this expression can be written as 

(W-fc-Q! min(m— i,/c - 1) (_fc + l)/-m + ,)/ 
(m - i)\(n -k-m)'. j=m^-n+k,0) (n-k-m + l)jj\ 

When m — n + k<0, equation (79) reduces to 

(n — k — i)\ r1 / i 7 < ^ — 
2Fi( — k + 1, —m + i; n — k — m + 1; 1) =  

(B4) 

(m — i) \(n — k — m)\ 

while, when m — n + k> 09 expression (79) can be transformed to 

(k-l)\ 
(n — m — l)\(m — n + k)\ 

yielding again the same result. Thus gj* m now becomes 

ml 

2F1(m — n+1, /c — n + — n + /c+l; 1) = 

(n — m — l)!(m — i)\ 

(n — i — 1) ! 

min(n - k, m) 

qlm = (k — l)!(n — 1)! i?o 

n 
i + k !(-)' 

(n-m- l)!(m - i)! ’ 

(m-i)! ’ 

which is, after some manipulations, fairly concisely written as 

Cm = ; 
1 

3F2(k — n, — m, 1; /c + 1, 1 — n; 1). 
(k-l)\ \kj 

In the limit y -► + oo, the coefficient (cm + dm)y ~m~1 must be zero, and thus follow the n constraints 

(B5) 

= 0 0<m<n—1. (B6) 

After interchanging of the integrations, we get 

Um [T — + (2n - 1)^1 ¿ an
k m f xk + U2 ^1 = 0- 0 

p->-+oo LJo \y/ y k=i jo \y/ yj 

with 

Cm = 
n — 1 (/c + m) ! 

\^k — Ij k\r(k + m + 3/2) 

or, if we put u = ÿ/y, respectively u = x/y , 

3F2(k — n, —m, 1; /c + 1, 1 — w; 1), 

< m < n — 1 , (B7a) 

(B7b) 

lim T j Hpn(yu)umdu + (2n — ^ 
^-*• + 00 LJo fc = l 

\l/'(yu)(Dk-{(yu)um(yu)k+1/2 du =0, 0<m<n—1. (B7c) 
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