THE LYMAN FOREST OF 0014+813¹

M. RAUCH AND R. F. CARSWELL

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, U.K.

F. H. $Chaffee^2$ and C. B. Foltz

Multiple Mirror Telescope Observatory, University of Arizona, Tucson, AZ 85721

J. K. Webb

School of Physics, University of New South Wales, P.O. Box 1, Kensington 2033, N.S.W., Australia

R. J. WEYMANN

Observatories of Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101

J. BECHTOLD

Steward Observatory, University of Arizona, Tucson, AZ 85721

AND

R. F. GREEN

National Optical Astronomy Observatories,³ Box 26732, Tucson, AZ 85726 Received 1991 August 1; accepted 1991 November 18

ABSTRACT

The results of 23 km s⁻¹ resolution echelle spectroscopy of the Lyman forest region of the z = 3.38 QSO 0014+813 are described. Voigt profile fits to the Lyman series absorption lines yield H I column density and Doppler parameter distributions similar to those obtained in three previous studies of other objects. There is no evidence so far of significant changes of the behavior of these distributions with redshift, except for the number of systems per unit redshift which, for log N(H I) > 13.75 (cgs), is proportional to $(1 + z)^{2.1 \pm 0.5}$. We find no evidence for a correlation between the Doppler parameter and column density and show that an apparent correlation is due entirely to selection effects of line detection and fitting. While the Lyman forest systems as a whole show no clustering, there appears to be a population of weak, narrow-lined systems which show clustering on scales of ≤ 1000 km s⁻¹. It is not clear if these are unidentified heavy element lines or a genuine Lyman forest component. A simple test for voids along the sight line to 0014+813 proved negative. However, applying the same test to the spectrum of 0420-388 reveals a 24 Mpc region where the line number density is significantly below the mean. The depletion is unlikely to be due to a single nearby ionization source.

Subject headings: integalactic medium — quasars: absorption lines — quasars: individual (0014+813)

1. INTRODUCTION

The profusion of absorption lines detected shortward of QSO Ly α emission lines, the Lyman forest, has received enormous attention in recent years, and yet the true nature of these lines still remains unclear. Many valuable phenomenological details have emerged from the fairly large body of intermediate-resolution data in the literature, resulting in some fascinating and fundamental discoveries (see, e.g., Wolfe, 1991 for a review). Nevertheless the spectral resolution of most of these data is too low to resolve individual absorption features, which hampers attempts to derive some of the important physical characteristics of the absorbing clouds.

There are still few QSO spectral studies where the signal-tonoise ratio (S/N), resolution, and wavelength coverage are all sufficient to permit the use of profile-fitting techniques to estimate absorption-line parameters for a large sample of clouds. Early high-resolution data proved valuable in allowing estimates to be made of the physical properties of a few individual

¹ Observations upon which this paper is based were obtained with the 4 m Mayall Telescope at Kitt Peak National Observatory.

² Senior Visiting Fellow, Institute of Astronomy, 1990 July 1–1991 August 1.

 $^{\bar{3}}$ Operated by the Association of Universities for Research in Astronomy (AURA) Inc. under a cooperative agreement with the National Science Foundation.

absorption systems (Carswell et al. 1984; Chaffee et al. 1985), but limited wavelength coverage precluded the assembly of adequate statistical information for a large ensemble of clouds over a wide range of redshifts. Extensive wavelength coverage at high resolution of two high-redshift objects, 0420-388(Atwood, Baldwin, & Carswell 1985) and 2000-330 (Carswell et al. 1987) allowed considerable progress to be made, leading to Doppler parameter estimates of typically 30 km s⁻¹ and power-law fits to the H I column density distribution. However, the resolution and S/N of these studies did not allow a study of the spread in Doppler widths in particular, since the error estimates were comparable to the spread in values.

This background led us to attempt the higher S/N study described here, in order to reduce analysis problems associated with line blending and to derive better estimates of the column density and Doppler width distributions of Lyman forest clouds. The Doppler widths are of particular interest since they provide upper limits to the cloud temperatures (see Pettini et al. 1990 and Carswell et al. 1991 for recent discussions). In addition, we wish to examine their spatial distribution and number evolution with redshift. To this end, we have selected 0014 + 813 for detailed study at high spectral resolution, a high redshift ($z_{em} = 3.38$) QSO which is sufficiently bright ($m_v = 16.5$) that data may be collected in a reasonable amount of observing time. Studies to this object at low resolution

revealed that it has a rich Ly α absorption spectrum (Kühr et al. 1983; Sargent, Steidel, & Boksenberg 1989). The heavy element systems have been investigated at intermediate resolution (Sargent, Boksenberg, & Steidel 1988, hereafter SBS; Khare, York, & Green 1989) and small regions of the spectrum studied at high resolution (Chaffee et al. 1985, 1986).

2. OBSERVATIONS AND REDUCTIONS

Echelle spectra of 0014+813 were obtained on the Kitt Peak National Observatory 4 m telescope using the Intensified CCD detector system on the nights of 1986 October 26–28. The total exposure time distributed over the three nights was 17.8 hr. On the first night the transparency was good, the seeing about 1"3, and the on-source exposure time 7.2 hr. The two subsequent nights were affected by clouds, and the seeing ranged from 1"2 to 1"9. The spectral coverage was from 4060 to 5345 Å, with an average full width at half-maximum (FWHM) resolution of 23 km s⁻¹.

2.1. Generation of the Summed Spectrum

The data for each integration were liberally sprinkled with cosmic rays, and each of these was flagged and the region containing it given zero weight in the individual frames. Most were recognized by a combination of thresholding and comparison with local means. Each frame was then checked and the weaker cosmic-ray events which had been missed removed interactively. Bad columns in the detector were also given zero weight in each frame. Bias subtraction and flat-field corrections were applied in the usual way. The sky-subtracted object spectra were extracted for each frame using a variant of the optimal technique described by Horne (1986), and an error estimate (based on Gaussian statistics using 23 data numbers per photon-see below) was retained. Comparison spectra were obtained immediately before and immediately after each object exposure and were extracted using the same spatial weights as for the object. Wavelength calibration was performed using the sum of these extracted comparison spectra after checking that no significant shifts had occurred during an integration.

Since wavelength shifts from night to night were significant, the data were rebinned onto a linear wavelength scale prior to forming the final summed spectrum for each echelle order. The bin size was chosen to be close to that of the original pixel size in the highest echelle order, and the sum for each order was obtained from the variance-weighted addition of individual extracted spectra. Flagged values under cosmic rays on the original frame were given zero weight in the sum. Comparison spectra were summed using the same weights at the object spectra, and the instrumental profile was determined from local comparison lines. The FWHM of the lines ranged from 26.6 km s⁻¹ at 4100 Å, through a minimum of 20.5 km s⁻¹ in the range 4700–4900 Å, to 23.0 km s⁻¹ at 5300 Å. The comparison line profiles are adequately approximated as Gaussians of the appropriate widths.

As a check on the statistical properties of the data, two partial sums of the spectra were formed, one using the first, third, fifth, etc. exposure on the object, and the other using even-numbered exposures. The difference spectrum of these two was then examined. It consisted of fluctuations about a mean level close to zero, as expected, with a standard deviation a factor of about 1.8 less than that expected from a normal approximation to photon statistics for 23 data numbers per photon. Since the data were recorded using an intensified CCD where signal from a photon event at the back of the intensifier stage is likely to fall on more than one CCD pixel, neighboring pixels will not be statistically independent. Also, the need to rebin the data to compensate for small wavelength shifts introduces some additional correlation between neighboring pixels in the reduced spectrum. As a result the fluctuations in the difference spectrum should indeed be smaller than those based on the assumption of statistically independent data in each wavelength bin.

There is an independent way to estimate the factor by which the standard deviation in the smoothed data should differ from that of the same data recorded in statistically independent bins. A measure of the degree of smoothing was obtained by determining the number of maxima in the data per bin in the difference spectrum, and comparing this result with those obtained by Gaussian-filter smoothing uncorrelated artificial data by various amounts. The results were consistent with 23 data numbers per detected photon and a standard deviation scale factor of 1.8, so these were adopted for subsequent analysis.

The procedure described above may seem unnecessarily detailed, but an understanding of the behavior of the errors is important for various parts of the analysis of the absorption line spectrum.

Regions of the spectrum used to define the continuum were chosen by comparing deviations from trial continua against those expected from photon statistics; the significance of possible absorption features was assessed by comparing the total deviation of a candidate line with that expected from the standard deviation calculated over the line width; and values of χ^2 for profile fits to the lines were used to assess the goodness of fit, and so the number of components required to satisfactorily fit each blend. For all of these the effects on the significance levels of the effective smoothing of the data were taken into account by use of the standard deviation scale factor where appropriate.

The wavelength-dependent instrumental response was removed from each order using observations of the white dwarf L745-46A, whose data were extracted in the same way as those of the object. The flux scaling factor at each wavelength was found by interpolating among tabulated flux values. After this correction was applied, the individual orders were concatenated, using variance-weighting in the overlapping wavelength regions, to yield the spectrum shown in Figure 1. The S/N varies along the spectrum and is significantly poorer at the ends of the wavelength range than in the middle. Its values per 0.11 Å channel in the continuum are ~4.3 at 4100 Å, ~16.5 at 4700 Å, and 5.5 at 5300 Å. The 1 σ wavelength precision of the final summed spectrum is 35 mÅ.

As expected, the strong absorption lines in the object spectrum have central intensities indistinguishable from zero over most of the wavelength range. One strong blend at 5253 Å has a central intensity $\sim 3 \sigma$ below zero, but the spectral region above 5200 Å containing this line was in a very noisy part of the detector, and it is quite likely that not all of the numerous noise events in that region were removed properly.

The continuum was fitted using the method described by Carswell et al. (1991), and the absorption lines were measured against this continuum using the procedure described by Young et al. (1979).

2.2. Determination of Absorption-Line Parameters

To determine redshifts (z), Doppler widths ($b = 2^{1/2}\sigma$), and the column densities (N) for ions with observed lines, Voigt

388

1992ApJ...390..387R

FIG. 1.—The spectrum of 0014+813 normalized to unit continuum. The tick marks show the position of the numbered components given in Table 1. There are a number of noise spikes in the spectrum (notably at ~4095, 4151, 4209, and 4523 Å) due to detector defects.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

profiles convolved with a Gaussian of the appropriate instrumental width were fitted to the lines using the technique described by Carswell et al. (1987).

The number of components fitted to each blend was determined by a procedure (Carswell et al. 1991) in which the reduced χ^2 value ($=\chi^2$ divided by the number of degrees of freedom, v) for the best fit is calculated as a function of the number of line components used. For a 7.15 Å (65 channel) window near 5073 Å, Figure 2 illustrates the typical behavior of χ^2/v with v as the number of components (each of which expends 3 degrees of freedom—b, N, and z) is increased. It can be seen that the reduced χ^2 is a steep function of the number of components used in the fit. The final number of components used to fit each blend was the minimum number required to achieve a probability of ≥ 0.01 that the observed χ^2 arose by chance. It should be pointed out that the reduced χ^2 is not a sensitive indicator of overfitting. In the example shown in Figure 2, the curve descends steeply until three components have been included (leaving 56 degrees of freedom out of the original 65). After a shallow minimum, the χ^2/ν recovers slowly; at lower ν , the $1/\nu$ dependence is felt and χ^2 itself decreases only slowly with the addition of further components.

However, as too many components are introduced (the transition from the steep to the flat part of Fig. 2), the parameter error estimates grow rapidly, so absorption features which have been overfitted are generally identifiable. As a final check, all fitted profiles were examined by eye during the analysis to verify that they appeared consistent with the data. Table 1 gives the results of this procedure for all identified absorption lines. Lines for which equivalent widths are not given are members of unresolved blends, and the equivalent width of the entire blend is quoted for the first line in the group. Figure 3 shows some sample fits to the data.

All fitted lines were assumed to be Ly α except for higher order Lyman lines or confirmed heavy element lines. Because of possible confusion by high-order Lyman lines, only Lyman forest systems with redshifts z > 2.695 (in which Ly α absorption is longward of the QSO Ly β emission) were analyzed. When higher order Lyman lines of a given system were sufficiently unblended, they were fitted simultaneously with the Ly α lines to provide additional constraints on b, N(H I), and z. However, the decision of whether or not to include Ly β or Ly γ was somewhat subjective and depended on the degree of blending.

3. HEAVY-ELEMENT SYSTEMS

Since the spectral coverage did not include any region outside the Lyman forest, there is little new information on heavy-element systems. However, because the resolution used here is higher than in previous studies of this object (cf. Chaffee

FIG. 2.—Reduced χ^2 vs. number of degrees of freedom v. The region fitted is shown in the inset with the best fit by three components. Each dot in the main diagram corresponds to a fit with (65-v)/3 components.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

TABLE 1 0014+813 Absorption-Line Parameters

li	1						ł	1																																									
2																																																	
B	4								3	ت	4	6,			- •	1.03	4	3	80	9	3	5	7		n d	0 0		7	ñ	9	4	4.0	1 5	. 9	9	4	4	7	4	2	5	ñ	6	20	ι Ω	<u>ر</u> ک	4		
++	0.04	0.03	0.03	0.04	0.03	0.04		++ N	85 0.0	69 0.7	78 0.3	0.0 0.0	53 0.2	0.U 08 60 08	0.0 01 7 0 01	02 0.0	74 0.0	71 2.8	95 0.0	57 0.0	94 0.0	30 0.1	12 0.4	22 0.1	22 0.1	0.0 05	10 0.0	77 0.1	85 0.4	67 0.5	15 0.0	38 0.0	1.0 05	65 0.0	72 0.0	51 0.1	95 0.1	94 0.1	18 0.1	39 0.0		85 0.1	01 0.0	45 0.1	37 0.2	64 U.I	29 U.U		
EW	0.68	0.70	0.18	0.80	1.30	1.15		log	13.	13.	14.	4	ញ់ ទ		14	4	13.	13.	12.	13.	13.	13.	13.	14	4	1.1.	2 4	13.	13.	13.	14.	13.	1 2	13.	13.	, 13.	3 12.	12.	13.	13.	; <u>1</u> 3	3 12.	3 13.	1 14.	. 13.	~ <u>1</u> 4.	- TO		
+H	0.04	0.02	0.06	0.03	10.05	0.02		++	4 3	4 43	60	6	5 7 1	о и о и	, 1 2 2 2 1	. 6	3	3 13	1 7	9 4	4 2	7 15	8 18		7 12	0 4 0 4		5 13	5 14	3 21	3	4 e	2 0	. 4	6 5	5	7 18	2	20		4	2 2 2 2	8	20 S	8 0 (÷		
(A)	9.85	3.81	6.56	8.18	1 79	3.79			03 4	9 66	03 3	01	31 6	7 0 7 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02 33	03 3	03	06 3	03 3	01 2	15 3	11 1	08 19	08 1 1 2	0 8 0 7 2	200	19 4	14 2	40 3	02 3	03 2	90 100	05 4	05 4	09 2	14 3	06 2	17 6	05 3	03	09	06 2	01	848 7 7 8	י 10 יי	00 2		
1 Avac	9 447	1 448	2 448	3 448	440 740	6 449		#	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	n.uu		
		12	12	12	1 5	12		2	70182	70564	70625	70764	70916	71840	71917	72749	73031	40095	73510	73671	73776	73949	74020	74132	74219	14322	74737	74929	75003	75055	75301	75522	21692	79968	80118	77413	77550	77908	78028	78191	78285	78370	78509	78642	78728	70005	CRZRJ		
N									Ċ,	Ċ,	Ċ,	ณ์ (ni d	N C	10	i ~i	3	4 2.	2	~	2	Ċ.	Ċ,	~ `	ni d	N C		~	2.	3	N.	ci c	i (06 2.	06 2.	ъ.	~ ``	N I	ci i	ci i	ci i	2 S	'n	сі с	NC	Ni C	4		
									'nα	γα	γα	γa	γa	y a		NO N	γa	JII 133	γα	yα	'nα	γœ	γα	'nα	γa	ya Ya	202	ý	'nα	'nα	'nα	ya ''	2 2		iIII 12	'nα	γx	γx	γa	γœ	γa	'nα	γa	γà	γà	λα	'nα		
Π	- 22	t 4		4 9	2 4	- 2 -			1 9	4 	<u></u>		4	 2		- 2	14 I	4	3 I	3 T	3 – I	3 – L	2	4 		 2	2 4	4 I		-	5	4 2		4	33 - S	13 I I	33 . I	33		. I 		5 1 1	33	4 		- 1 - 1	14		
N 1	0.0	14 0.0	61 0.0	0.0 70		76 0.0		+ >	23 0.0	96 0.0		32 0.0	14 0.0	00 60	2	8 0.0	96 0.0	22 0.0	16 0.0	51 0.0	0.0 06	60 O.O	25 0.0	37 0.0		0 0 0	16 0.0	39 0.0			28 O.C	39 0.0	15 o.0	34 0.0	57 0.0	54 0.0	16 0.0	20 0.C	18 0.0	38 0.0	53 0.0	0.0	19 0.0	48 0. 0	-		34 U.I		
E	03 1.5		01 0.5	01 2.0	1 1	05 0.7		Ш Ш	06 1.2	02 1.9		02 0.5	03 1.1	0.00		04 1.2	03 0.9	10 0.2	10 0.1	03 0.1	01 0.5	05 0.2	02	02 3.6		05 01	03 1.4	02 1.8			03 1.2	05 0.	67 07 07 07	02 1.6	01 1.5	03 0.1	08 0.	05 0.	0.7 0.5	03 0.	02 0.1	0.4	05 0.	03 1.	-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	 00		
A) 4	36 0.0	0.0	0.0	0.0	10 40 01	31 0.0		₽) (¥)	14 0.	39 0.1		34 0.	0.0	95	2	14 0.1	0.1	12 0.	39 0.	17 0.	34 0.1	87 0.1	-0 ·	50 0.		0 08	50 0.	64 0.			45 0.	12 80 0.0	000	33 0.	25 0.	06 0.	75 0.	10 0.	39 0.	52 0.	73 0.	83 . 0.	42 0.	28 0.	- 	39 0.0	40 U.		
λ _{vac} (1	4454.3	4460.9	4462.(4463.9	4468 4	4471.6		Avac (J	4500.1	4505.3		4507.	4509.0	4520 6		4531.1	4535.(4538.]	4540.0	4542.4	4543.8	4545.8	4546.	4549.8		4553	4555.1	4558.0			4562.4	4565.	4582.0	4584.	4586.	4588.0	4589.	4594.	4595.	4597.	4598.	4599.	4601.	4603.	2001	4001.	4010		
, r	111	113	114	115	117	118		ä	127	128	129	130	131	133	134	135	136	137	138	139	140	141	142	143	144	146	147	148	149	150	151	152	154	155	156	157	158	159	160	161	162	163	164	165	160	101	001		
z		1229																		8387	1229																												
	0	26 1.1																		2.5	26 1.1																												
		11 202																		yα	nII 20																												
Н		ZI ZI	~	.		~	20	2	~ `						. 9	9		<u>ک</u>	2	7 	- 2					- -	5	9	4	ر م س	ە م	- -		5	5	2	4	5	2 2	2 9	8 2	1.2	4 5	<u> </u>	2 2		1 2	02	90
+	8 0.1	4 0.0	1 0.0′	0.0	30.0	3 0.0	7 0.0	5 0.0	3 0.0	0.0 9	0.1	0.0 0.0		4 0.0	1 0.0	3 0.0	0.0	2 0.0	5 0.0	4 0.0	1	7 0.0	0.0 6	0.0 9 9		33 0.0	33 0.0	96 0.0	94 0.0	37 0.0	0.0	53 0.0 18 0.0	36 0.0	0.0	73 0.0	19 0.0	19 0.0	57 0.C			0.0	11 0.0		20 0.1	11 U.1	30 0.5	14 0.0	10 0.0	36 0.1
ΕV	9 0.8 6 0.7	3 0.1	6 0.8	16 2.2 14 - 3	5 0.6 5	9.0.6	3 2.9	5 1.1	3 2.4	4 0.2	15 I.2	13 1.2 13 1.2		0.5 0.5	04 1.5	38 0.6	0.5	0.4	15 0.4	14 0.3		0.5	14 0.1	.0 70		10 90	03 0.6	06 0.9	02 0.	04 0.9	0.0	04 4.0 03 1.4	01 0	03 2.0	04 0.	06 2.	09 0.	00 00			07 07		03 0.	05 U	0.4 2 0	5 5 5 6	.080	04 0.	.03 2.
+ (2 0.0	8 0.0	1 0.0	5 0.0	0.0 6 0.0	5 0.0	9 0.0	4 0.0	7 0.0	8 I 8		2 C		2 0 2 0 2 0	2 0.0	8 0.0	34 0.0	8 9 0.(14 O.J	88 0.1		8 0.0	90 0.0			10 10 10	33 0.0	27 0.1	56 0.	21 0.0	14 0.		73 0.	28 0.	32 0.	10 0.	49 0.	97 0.	00 70 0.	49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 7 0.	52 U.	31 0.	08 U. 71 U.	5 C	44 78 0.	76 v.	22 0.	40 0.
Vvac (A	4268.6 4276.7	4279.7	4281.6	4286.5 4907 4	4300.3	4304.9	4308.5	4312.6	4316.2	4319.7	4329.2	4331.0	4000.1 4335 B	4339.7	4342.1	4345.2	4348.6	4350.8	4353.3	4356.8		4361.1	4362.5	4364.	4206.1	4379.0	4384.(4386.2	4388.	4390.	4393.	4400. 4407	4408.	4410.	4413.	4421.	4424.	4428.	4430.	4430.	4433.	4435.	4436.	4438.	4430.	4400. 4441	4442.	4444.	4446.
Ħ	56	2 80	59	60 61	63	63	64	65	99	67	89	69	5 5	12	73	74	75	76	77	78	62	80	5	22.0	50	5.0	86	87	88	68	6	91	63 63	94	. 95	96 7	16	86	99	100		102	103	104	01108	107	108	109	110
N																																																	
	-																																																
Ξ			80		- 	. 0	6	-	-	6.	4.		0		. 80	. 01	0	5	4	=		0	22			20	80	07	07	64	60	- 90 - 80	20	04	60	60	=	60	60			90	06	07	05	6.6	- 90	04	.05
H N	3 0.1	2 0.1	7 0.0	5 0.0	1.0	1.0	15 0.0	35 0.1	0.0	22 0.0	55 0.1	0.0	0.0 1£	0.0	93 0.0	09 0.1	80 0.1	52 0.0	27 0.0	34 0.1	10 0.1	88 0.1	43 0.(58 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 0.0	04 0.0	34 0.1	39 0.1	17 0.	32 0.	34 0. 48 0.	43 0.	46 0.1	64 0.	63 0.	52 0.	81 0.	49 U.	84 87 9 9 9	27 0.	.45 .15	.57 U.	84 U.	.26 26 U.	30 0. 30 0.	. 38 U. 52 U.	22 0.	.23 0.
EV.	0.7	10 2.4	0.4	04 0.E	10 0.0 10 9.4	11 0.5	10 0.4	07 0.8	01 1.(05 1.5	08 2.4	05 1.		07 0.1	05 0.1	04 2.4	05 1.3	03 0.	03 0	05 3	08 1.	04 1.	03 0.	05 0.	.04 0.	- 1 CO	05 1.	.12 0.	.06 0.	.06 0.	.06 1.	.08 11 0.	10 0.	.02 0.	.03 2.	.12 0.	.09 1.	.11 0.	.05 2	1.03 1.	.16	0.07 0.	0.06 0.	0.05 0.	1.06 U	0 60.1 6 6 6 6	0 90	1.04 0	0.06 0
4) ±)8 0.(17 0.0	32 0.(43 0.1	10 0.		50 0.	93 0.	15 0.	00 0.	55 0.	00 5 0 0	35 U.		32 0.	50 0.	90 0.	51 0.	34 0.	78 0.	.05 0.	53 0.	.50 0.	27 0.	82.0	00.00	27 0.	.15 0	.61 0	64 0	.33 0	0 27. 0	77 0	.91 0	.74 0	.61 0	.49 0	.26 0	.62 0	080	18.	.13 0	.02 0	0 00.	70 0	2	-41 -14 -12	1.64 0	7.13 (
Avac (1	4061.0	4067.1	4068.6	4069.4	4075.4	4085.5	4089.6	4091.	4094.	4096.	4104.	4111.	4113.	4114.	4118	4122.	4128.	4130.	4131.	4133.	4144.	4146.	4151.	4153.	4161.	4166	4168.	4170.	4176.	4177.	4179.	4181	4199.	4201.	4203.	4210	4214	4219	4223	4228	4231	4237	4240	4241	4243	7747	4253	4262	4267
, n		n 6	4	າດ	0 5	- 00	6	10	11	12	13	14	۲ <u>ہ</u>	12	. 90	19	20	21	22	23	24	25	26	27	28	87 90	31	32	33	34	35	36	. ee	39	40	41	42	43	44	45	46	47	48	49	50	ភ្	27 23	54	55
																						3	92																										

TABLE 1—Continued

∥-н	I																																				
	0.05	0.17 0.14	0.18	0.09 0.35	0.13	0.24	0.06	0.48	0.08	0.03	0.15	0.18	0.10	0.03	2.92 2.81	0.20	0.11	0.03	0.10	0.38	0.36	0.11	0.09 0.14	0.18	0.04	0.22	1.07	0.04	0.05	0.30	0.13	0.09	0.04	12.0	0.13	0.07	0.13
og N	12.86	13.46 13.52	12.75	12.78 12.79	13.16 14 79	15.20	13.26 13.16	13.43	13.20	13.70	14.23 14.44	14.59	13.06 14 75	13.90	14.12	14.49	13.11 13.61	14.03	12.80 13.11	12.71	12.88 13.05	13.02	13.23 13.95	14.71 13 25	14.33	15.06	13.92 14.59	13.55	13.51	14.22 13.64	13.00	12.98	13.33	12.73	13.00	13.06	14.62 14.31
++	, س	17	12	12	7 4	4	8 5	11	11 4	с у 1	იო	ŝ	2 c 1	4	222 58	7	ء 16	• •	7	25	36 4	17	7 22	7 96	ο Ω	e j	55 11	2	4 u	0 24	10	80	<i>~~</i> ~	ч <u>с</u>	9 7	9 -	± 00 ∠
9	13	45 37	52	40 12	9	39	42 39	533	8 4	34	47	16	25 18	41	46 146	15	49	30	28 I 8	26	33 19	51	25 81	43	40 4	30	$^{51}_{24}$	39	31	47 90	28	27	17	19 78	35	28	3 28 2
чн	00002	00015	00010	00010	00006	90000	00007	00011	00008	00002	00005	00004	00006	00003	00092	00004	00014	00001	00005	00020	00003	00013	00005 00029	00004	00003	00002	00005	00005	00004	00042	00008	0000	00002	00008	00006	00004	00006
	0.0	5 0. 0.	33.0.	55 52 22	0 0.1 76 0.1	000	-0 -0 66	5 7 S	9 40 0 - 0	22 O.	2 E 5 0	95 0.	28 0. 0.0	74 0.	39 0. 14 0.	l4 0.	13 0. 54 0.	5 70	0. 0 0. 0	33 0.	28 0. 0. 0.	35 0.	94 0. 99 0.	43 0. 70 0.	0.0	60 0. 2	29 0.0	54 0.	90 0.0	38 0. 38 0.	63 0.	24 0.	55 0.	י כי 19 ני	97 0.	03 0.	0 86 86
N	2.4010	2.9000	2.9020	2.9037	2.906(2.9106	2.914(2.916	2.920(2.9212	2.923	1.111	2.9276	2.928	1.112(1.113	2.930	2.934	2.936	2.9390	2.940	2.943	2.9459	2.949	2.955(2.956	2.9593	2.961	2.962	2.965	2.967	2.975	2.976	2.982	2.983	2.988	2.992
2	1393											260	0926		2260 2260	260					260																
A	SiIV	Lya Lya	Lyα	Lya Lya	Lyα	Lya	Lya Lya	Lya	Lya Lya	Lyα	μyα Lyα	Fell 2	Lya Fell 3	Lyα	Fell 2 Fell 3	FeII 2	Lya Lya	Γyα	Lya Lva	Lyα	Lya Sill 1	Lyα	Lya Lya	$Ly\alpha$	Lya Lya	Lyα	Lyα Lva	Lyα	Lya Lya	Lya Lya	Ľyα	Lyα	Lyα	Lyα Lyα	Lya	Lya Lya	Lya Lya
-++	.02	.03		.03	04		0.03		.03	0.03	.03	0.02	04				0.02	0.03	0.02	0.02	0.03	0.03	0.03	1 20 0	0.03	0.05	- c0.(0.03	0.03	£0.0	0.03	0.03	0.02	0.02 0.03 t	0.03	0.03	0.03
EW).18 ().33 ().75 ().11 (.32 (.	181		0.33 (02.0	0.23).80 (1 20.2).20 (.18 (0.14 (1.57 (1.10).12 (0.12 (0.12 (0.11 (0.37 (0.20	0.35 - 3.53 (, pt (1.73 (1.94	1.74	0.59 (0.58	16.1	0.24	0.18	0.34	0.10 1.14 (0.27	0.34	2.46
+	0.03 (0.03 0	6	0.12 (0.02		0.06 (.05	0.02 (10.0	0.04 (0.02				0.06	0.02	0.07 0.07 0.07	0.07 (- 0.0 .04 .0	0.08 (0.04 (0.03 (1 08 (0.02	0.03	0.03 (0.03	20.0	0.08	0.09	0.03	cu.u 0.00 (0.07	0.07	0.01
(A)	0.18 0	.50	2	36 0	78 0		00 00			.87 (9.79	1.61 (14 6				8.08 1.66	.74 ().20 (.24 (1.17 (7.04 (.80 (08	.85	9.92 (9.25	5.92 (7.58	17.0	3.22 (2.57	4.15	5.65 1.61	3.24	8.30	1.64
λ_{vac}	4740	4741 4742	14.64	4745 4748	4752		4758 4761	0974	4765	4766	4109	4774	4776				4778 4780	4782	4787	4789	4791	4794	4797 4800	4805	4807	4809	481	4815	4817	1705	4823	4832	4834	4600 4841	484	4848	485
r.	224	225 226	227	228	230 231	232	233 234	235	237	238	239	241	242 243	244	245 246	247	248 249	250	251 252	253	254 255	256	257 258	259 260	261	262	263 264	265	266 267	268	269	270	271	212	274	275	277
	A.										1 1 1 1 1																										
	°	lex?																																			
		comp																																			
+	0.25	0.20	0.15	0.19 0.19	0.35	0.22	0.16	0.02	0.28	0.12	0.10	0.15	0.08	0.13	0.06 0.20	0.19	0.05	0.03	0.05	0.53	16.U	0.63	0.15	0.06	0.15	0.40	0.07	0.08	0.12	60.0	0.04	0.04	0.09	0.03 0.03	0.03	0.03	0.31
og N							~ ~														μo	99	× 7	~ ~	ົ່	5	ი ო	ø i	ω -	- 6	•	37	80 00	3.75	13.72	.66	S 22 8
	13.10	16.40 13.26	13.01	13.94 13.17	12.87	13.02	13.13	14.11	15.57	12.85	14.93 13.45	12.75	13.05 13.33	13.61	13.26 12.69	12.96	13.15 14.77	13.7	14.76 13.58	12.79	12.6 12.8	13.3	13.8 14.2	13.07	12.9	12.5	13.4	13.3	14.0 12.6	12.9	13.42	13.	12.	3 4		13	13. 1
+	30 13.10	4 16.40 9 13.26	23 13.01	2 13.94 10 13.17	29 12.87 8 12.75	16 13.02	7 13.13 6 12.98	2 14.11	3 15.57	9 12.85 5 14 02	5 13.45	11 12.75	6 13.05 14 13.33	5 13.61	7 13.26 14 12.69	19 12.96	5 13.15 3 14.77	2 13.7	3 14.76 7 13.58	72 12.79	23 12.6 9 12.8	44 13.3	6 13.8 3 14.2	4 13.0 ⁷	13 12.9	19 12.5	10 13.1 8 13.4	7 13.3	4 14.0	12.9 9 12.9	5 13.42	3 13.	7 12.	- 2	1 m	3 13	22 13. 9 13
$b \pm 1$	46 30 13.10	89 4 16.40 39 9 13.26	51 23 13.01 26 2 13.01	26 2 13.94 18 10 13.17	30 29 12.87 23 8 12.75	34 16 13.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 2 14.11 37 3 13 57	38 3 15.57	18 9 12.85 10 5 14.02	19 0 14.93 16 5 13.45	8 11 12.75	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	11 5 13.61	35 7 13.26 14 14 12.69	25 19 12.96	24 5 13.15 39 3 14.77	23 2 13.7	29 3 14.76 50 7 13.58	48 72 12.79	26 23 12.6 23 9 12.8	70 44 13.3	27 6 13.8 24 3 14.2	21 4 13.07 35 4 13.37	27 13 12.9	13 19 12.5	59 16 13.1 43 8 13.4	38 7 13.3	30 4 14.0 56 18 13 6	31 9 12.9	38 5 13.42	18 3 13.	16 7 12. 0 7 13	ч / Ц 23 2 15	31 2	28 3 13 34 e 13	42 22 13. 37 7 13
± b ± l		0002 89 4 16.40 0007 39 9 13.26	0017 51 23 13.01	0006 18 10 13.94 0006 18 10 13.17	00026 30 29 12.87 0007 23 8 12.75	0019 34 16 13.02	$0007 \ 21 \ 7 \ 13.13$ $0003 \ 10 \ 6 \ 12.96$	00002 50 2 14.11	0001 38 3 15.57	00006 18 9 12.85	0005 16 5 13.45	00006 8 11 12.75	0004 12 6 13.05 0019 32 14 13.33	0003 11 5 13.61	00005 35 7 13.26 00008 14 14 12.69	0011 25 19 12.96	0004 24 5 13.15 0001 39 3 14.77	00001 23 2 13.7	0007 50 7 13.58	00041 48 72 12.79	0007 26 23 12.6 0007 23 9 12.8	0071 70 44 13.3	$00004 \ 27 \ 6 \ 13.8$ $00003 \ 24 \ 3 \ 14.2$	00003 21 4 13.07 00004 35 4 13.32	0013 27 13 12.9	00012 13 19 12.5	0008 43 8 13.4 0.3.4	00008 38 7 13.3	00003 30 4 14.0	00008 31 9 12.9	00004 38 5 13.42	0002 18 3 13.	00005 16 7 12.	00001 23 2 13	00002 31 3	00002 28 3 13	00031 42 22 13. 00031 42 22 13.
± b ± l	9 0.00028 46 30 13.10	8 0.00002 89 4 16.40 4 0.00007 39 9 13.26	5 0.00017 51 23 13.01 0	4 0.00002 26 2 13.94 6 0.00006 18 10 13.17	0 0.00026 30 29 12.87 4 0.00007 23 8 12.75	8 0.00019 34 16 13.02	3 0.00007 21 7 13.13 6 0.00003 10 6 12.96		4 0.00001 38 3 15.57	0 0.00006 18 9 12.85	0 0.00005 19 5 14.93 2 0.00005 16 5 13.45	7 0.00006 8 11 12.75	$(3 \ 0.00004 \ 12 \ 6 \ 13.05$	0 0.00003 11 5 13.61	3 0.00005 35 7 13.26 9 0.00008 14 14 12.69	6 0.00011 25 19 12.96	0 0.00004 24 5 13.15 0.00001 39 3 14.77	9 0.00001 23 2 13.7	12 0.00007 50 7 13.58 8	5 0.00041 48 72 12.79	6 0.00007 23 23 12.6 6 0.00007 23 9 12.8	6 0.00071 70 44 13.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 0.00003 21 4 13.07 25 0.00004 35 4 13.30	9 0.00013 27 13 12.9	13 0.00012 13 19 12.5 12.5	6 0.00008 43 8 13.4	7 0.00008 38 7 13.3	14 0.00003 30 4 14.0 13 0.00030 56 18 13 6	19 0.00008 31 9 12.9	32 0.00004 38 5 13.42	33 0.00002 18 3 13.	55 0.00005 16 7 12.	55 0.00001 23 2 13	33 0.00002 31 3	39 0.00002 28 3 13	D5 0.00031 42 22 13 55 0.00031 42 22 13
$z \pm b \pm 1$	2.79629 0.00028 46 30 13.10	2.79958 0.00002 89 4 16.40 2.80424 0.00007 39 9 13.26	2.80565 0.00017 51 23 13.01 0 2.20224 0.00002 26 0 12.04	2.80734 0.00002 26 2 13.94 2.80816 0.00006 18 10 13.17	2.80880 0.00026 30 29 12.87 2.81124 0.00007 23 8 12.75	2.81308 0.00019 34 16 13.02	$2.81373 \ 0.00007 \ 21 \ 7 \ 13.13$ $2.81576 \ 0.00003 \ 10 \ 6 \ 12.96$	2.81680 0.00002 50 2 14.11 9 81800 0.00002 37 3 13 57	2.82244 0.00001 38 3 15.57	2.82400 0.00006 18 9 12.85	2.82672 0.00005 16 5 13.45 2.82672 0.00005 16 5 13.45	2.82777 0.00006 8 11 12.75	2.83018 0.00004 12 6 13.05 2.83194 0.00019 32 14 13.33	2.83240 0.00003 11 5 13.61	2.83343 0.00005 35 7 13.26 2.83449 0.00008 14 14 12.69	2.83526 0.00011 25 19 12.96	2.83710 0.00004 24 5 13.15 2.83868 0.00001 39 3 14.77	2.84009 0.00001 23 2 13.7	2.84482 0.00001 29 3 14.76 2.84608 0.00007 50 7 13.58	2.84985 0.00041 48 72 12.79	2.85077 0.00022 26 23 12.6 2.85256 0.00007 23 9 12.8	2.85726 0.00071 70 44 13.3	$2.85741 \ 0.00004 \ 27 \ 6 \ 13.8$ $2.85857 \ 0.00003 \ 24 \ 3 \ 14.2$	2.86325 0.00003 21 4 13.0 2.86325 0.00003 21 4 13.0	2.86819 0.00013 27 13 12.9	2.86883 0.00012 13 19 12.5	2.86985 0.00015 59 16 13.1 2.87216 0.00008 43 8 13.4	2.87327 0.00008 38 7 13.3	2.88044 0.00003 30 4 14.0 2 88103 0 00030 56 18 13 5	2.88349 0.00008 31 9 12.9	2.88562 0.00004 38 5 13.42	2.88733 0.00002 18 3 13.	2.88855 0.00005 16 7 12.	2.89155 0.00001 23 2 13	2.89283 0.00002 31 3	2.89389 0.00002 28 3 13 9 80591 0.00014 34 8 13	2.00021 0.00011 01 0 10. 2.89605 0.00031 42 22 13. 9.30659 0.00009 39 9 13
z ± b ± l	2.79629 0.00028 46 30 13.10	2.79958 0.00002 89 4 16.40 2.80424 0.00007 39 9 13.26	2.80565 0.00017 51 23 13.01	2.80734 0.00002 26 2 13.94 2.80816 0.00006 18 10 13.17	2.80880 0.00026 30 29 12.87 2.81124 0.00007 23 8 12.75	2.81308 0.00019 34 16 13.02	2.81373 0.00007 21 7 13.13 2.00003 10 6 12.95	2.81680 0.00002 50 2 14.11 2.81680 0.00002 50 2 14.11	2.82244 0.00001 38 3 15.57	2.82400 0.00006 18 9 12.85	2.82000 0.00003 19 3 14.93 2.82672 0.00005 16 5 13.45	2.82777 0.00006 8 11 12.75	2.83018 0.00004 12 6 13.05 2.83194 0.00019 32 14 13.33	2.83240 0.00003 11 5 13.61	2.83343 0.00005 35 7 13.26 2.83449 0.00008 14 14 12.69	2.83526 0.00011 25 19 12.96	2.83710 0.00004 24 5 13.15 2.83868 0.00001 39 3 14.77	2.84009 0.00001 23 2 13.7	2.84482 U.UUUU 29 3 14.76 2.84608 0.00007 50 7 13.58	2.84985 0.00041 48 72 12.79	2.85077 0.00022 26 23 12.6 2.85256 0.00007 23 9 12.8	2.85726 0.00071 70 44 13.3	2.85741 0.00004 27 6 13.8 2.85857 0.00003 24 3 14.2	2.86325 0.00003 21 4 13.07 2.86325 0.00004 35 4 13.37	2.86819 0.00013 27 13 12.9	2.86883 0.00012 13 19 12.5	2.60965 0.00013 59 16 13.1 2.87216 0.00008 43 8 13.4	2.87327 0.00008 38 7 13.3	2.88044 0.00003 30 4 14.0 2 88103 0 00030 56 18 13 6	2.88349 0.00008 31 9 12.9	2.88562 0.00004 38 5 13.42	2.88733 0.00002 18 3 13.	2.88855 0.00005 16 7 12. 2.88055 0.00004 0 7 12.	2.00000 U.UUUU4 9 7 12	2.89283 0.00002 31 3	2.89389 0.00002 28 3 13 2.80521 0.00014 24 8 13	2.09605 0.00031 42 22 13. 2.89605 0.00031 42 22 13. 303 9.30059 0.00009 39 9 13
$D \qquad z \qquad \pm \qquad b \pm h$	$\begin{bmatrix} y\alpha & 2.79629 & 0.00028 & 46 & 30 & 13.10 \\ y\alpha & y\alpha$	MLyα Z.79958 0.0000Z 89 4 16.40 Lyα 2.80424 0.00007 39 9 13.26	$\begin{bmatrix} y\alpha & 2.80565 & 0.00017 & 51 & 23 & 13.01 \\ 0.00000 & 0.00000 & 0.0000 \\ 0.00000 & 0.0000 & 0.0000 \\ 0.00000 & 0.0000 & 0.0000 \\ 0.00000 & 0.0000 & 0.0000 \\ 0.0000 & 0.00000 & 0.0000 \\ 0.0000 & 0.00000 & 0.0000 \\ 0.0000 &$	Lyα 2.80734 0.00002 26 2 13.94 Lyα 2.80816 0.00006 18 10 13.17	Ly α 2.80880 0.00026 30 29 12.87 (v α 2.81124 0.00007 23 8 12.75	Lya 2.81308 0.00019 34 16 13.02	Lyα 2.81373 0.00007 21 7 13.13 Γνα 2.81576 0.00003 10 6 12.95		$L_{y\alpha}$ 2.82244 0.00001 38 3 15.57	$\begin{bmatrix} U_{y\alpha} & 2.82400 & 0.00006 & 18 & 9 & 12.85 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.00003 & 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.0003 & 0.00003 & 0.00003 & 10 & E & 14 & 02 \\ 0.0003 & 0.000003 & 0.000003 & 0.000003 & 0.000000 & 0.0000000000$	Lyα 2.82500 0.00005 19 5 14.95 Lyα 2.82672 0.00005 16 5 13.45	$\begin{bmatrix} Ly\alpha & 2.82777 & 0.00006 & 8 & 11 & 12.75 \\ 0.00006 & 0.00006 & 0.00006 & 0.0000 \\ 0.00000 & 0.00000 & 0.0000 \\ 0.00000 & 0.0000 & 0.0000 \\ 0.00000 & 0.00000 & 0.0000 \\ 0.00000 & 0.00000 & 0.0000 \\ 0.00000 & 0.00000 & 0.0000 \\ 0.00000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.$	$Ly\alpha$ 2.83018 0.00004 12 6 13.05 $Ly\alpha$ 2.83194 0.00019 32 14 13.33	Lyα 2.83240 0.00003 11 5 13.61	Ly α 2.83343 0.00005 35 7 13.26 U α 2.83349 0.00008 14 14 12.69	Ly α 2.83526 0.00011 25 19 12.96	Lyα 2.83710 0.00004 24 5 13.15 Γνα 2.83868 0.00001 39 3 14.77	$\begin{bmatrix} y_{y_{\alpha}} & 2.84009 & 0.00001 & 23 & 2 & 13.76 \\ \hline y_{\alpha} & y_{\alpha} &$	Lyα 2.84482 0.00001 29 3 14.76 Lyα 2.84608 0.00007 50 7 13.58	Lyα 2.84985 0.00041 48 72 12.79	Lyα 2.85077 0.00022 26 23 12.6 Lyα 2.85256 0.00007 23 9 12.8	$\begin{bmatrix} Ly\alpha & 2.85726 & 0.00071 & 70 & 44 & 13.3 \\ 0.00071 &$	Lyα 2.85741 0.00004 27 6 13.8 Lyα 2.85857 0.00003 24 3 14.2	Lyα 2.86325 0.00003 21 4 13.07 Lyα 2.8635 0.00004 35 4 13.30	Ly α 2.86819 0.00013 27 13 12.9	Lyα 2.86883 0.00012 13 19 12.5	μγα 2.85985 υ.00013 59 15 13.1 Lyα 2.87216 0.00008 43 8 13.4	Ly α 2.87327 0.00008 38 7 13.3	Lyca 2.88044 0.00003 30 4 14.0 	Ly α 2.88349 0.00008 31 9 12.9	Lya 2.88562 0.00004 38 5 13.42	Lyα 2.88733 0.00002 18 3 13.	Lyce 2.88855 0.00005 16 7 12.	⊔уα ∠.oosaoo ∪.∪∪∪∪4 9 7 12 Lvα 2.89155 0.00001 23 2 13	Lyc 2.89283 0.00002 31 3	Ly α 2.89389 0.00002 28 3 13 1 286531 0.00014 34 6 13	Lyα 2.09051 0.00011 01 0 10. Lyα 2.89605 0.00031 42 22 13. SiTV 1303 9 30059 0.00009 39 9 13
$= ID \qquad z \qquad \pm b \pm l$	D6 Lyα 2.79629 0.00028 46 30 13.10 311 317 3	Μ.Lyα Ζ.79958 0.00002 89 4 16.40 33 Lyα 2.80424 0.00007 39 9 13.26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J4 Lyα 2.80734 0.00002 26 2 13.94 Lyα 2.80816 0.00006 18 10 13.17	$ \begin{array}{ccccc} & \ Ly\alpha & 2.80880 & 0.00026 & 30 & 29 & 12.87 \\ 13 & Ly\alpha & 2.81124 & 0.00007 & 23 & 8 & 12.75 \\ \end{array} $	$04 \mid Ly\alpha = 2.81308 0.00019 34 16 13.02$	Lyα 2.81373 0.00007 21 7 13.13)4 Lvα 2.81576 0.00003 10 6 12.95	Lya 2.81680 0.0002 50 2 14.11 Lya 2.81680 0.0002 57 2 14.11	$14 \mid Ly\alpha$ 2.82244 0.00001 38 3 15.57	$\begin{bmatrix} Ly\alpha & 2.82400 0.00006 18 & 9 12.85 \\ M & Ly\alpha & 2.82600 0.00006 10 & 5 14.02 \\ M & Ly\alpha & 0.00000 10 & 5 14.02 \\ \end{bmatrix}$	14 Γ LYα 2.82500 0.00003 19 3 14.93 Γ Lyα 2.82672 0.00005 16 5 13.45	02 Lyα 2.82777 0.00006 8 11 12.75	03 Lyca 2.83018 0.00004 12 6 13.05 04 I Lyca 2.83194 0.00019 32 14 13.33	Lyα 2.83240 0.00003 11 5 13.61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03 Lyα 2.84482 0.00001 29 3 14.76 03 Lyα 2.84608 0.00007 50 7 13.58	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lyca 2.85077 0.00022 26 23 12.6)3 Lyca 2.85256 0.00007 23 9 12.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03 Lyα 2.86325 0.00003 21 4 13.07 33 Lyα 2.8635 0.00004 35 4 13.37	$3 \mid Ly\alpha$ 2.86819 0.00013 27 13 12.9	02 Lyα 2.86883 0.00012 13 19 12.5	02 μγα 2.85985 υ.00013 59 15.1 03 μγα 2.87216 0.00008 43 8 13.4	02 Lyα 2.87327 0.00008 38 7 13.3	04 Lyα 2.88044 0.00003 30 4 14.0 T 288103 0.0003 56 18 13 6	03 Lyα 2.88349 0.00008 31 9 12.9	$04 \mid Ly\alpha$ 2.88562 0.00004 38 5 13.42	$03 Ly\alpha 2.88733 0.00002 18 3 13.3$	03 Lyα 2.88855 0.00005 16 7 12.	υο μυγα 2.665-300 υ.υυυυ4 9 / 12 03 Ι Lvα 2.89155 0.00001 23 2 13	02 Lya 2.89283 0.00002 31 3	02 Lyα 2.89389 0.00002 28 3 13 02 I	01 Lya 2.89050 0.00031 42 22 13. 03 Lya 2.89050 0.00031 42 22 13. 03 Silv 1303 3.30650 0.00003 32 3 13.
W ± ID z ± b ± l	74 0.06 Lyα 2.79629 0.00028 46 30 13.10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53 0.04 Lyα 2.80734 0.00002 26 2 13.94 Lyα 2.80816 0.00006 18 10 13.17	$\begin{bmatrix} Ly\alpha & 2.80880 & 0.00026 & 30 & 29 & 12.87 \\ 1 & 0.03 & Ly\alpha & 2.81124 & 0.00007 & 23 & 8 & 12.75 \\ \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lyα 2.81373 0.00007 21 7 13.13 34 0.04 Lvα 2.81576 0.00003 10 6 12.96	Lya 2.81680 0.0002 50 2 14.11 1 0.01 1.55 9.81660 0.00002 57 3 13.4.11	39 0.04 Lyo 2.82244 0.00001 38 3 15.57	Lya 2.82400 0.00006 18 9 12.85	ou u.04 μyα 2.82000 0.00003 19 5 14:35 Lyα 2.82672 0.00005 16 5 13.45	10 0.02 Lyα 2.82777 0.00006 8 11 12.75	L9 0.03 Lyα 2.83018 0.00004 12 6 13.05 74 0.04 I Lvα 2.83194 0.00019 32 14 13.33	Lyα 2.83240 0.00003 11 5 13.61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$14\ 0.03\ Ly\alpha$ 2.83526 0.00011 25 19 12.96	27 0.03 Lyα 2.83710 0.00004 24 5 13.15 10 0.03 Lvα 2.83868 0.00001 39 3 14.77	73 0.03 Ly α 2.84009 0.00001 23 2 13.70	(6 0.03 Lyα 2.84482 0.00001 29 3 14.76 [5 0.03 Lyα 2.84608 0.00007 50 7 13.58	$21 0.04 Ly\alpha 2.84985 0.00041 48 72 12.79$	1 μγα 2.85077 0.00022 26 23 12.6 12 0.03 Lyα 2.85256 0.00007 23 9 12.8	$22 \ 0.03 Ly\alpha 2.85726 \ 0.00071 \ 70 \ 44 \ 13.3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 0.03 Lyα 2.86325 0.00003 21 4 13.07 38 0.03 Lyα 2.86355 0.00004 35 4 13.37	18 0.03 Lyα 2.86819 0.00013 27 13 12.9	12 0.02 Lyα 2.86883 0.00012 13 19 12.5	19 0.02 LYCA 2.86985 0.00013 59 16 15.1 47 0.03 LYCA 2.87216 0.00008 43 8 13.4	$42 0.02 Ly \alpha$ 2.87327 0.00008 38 7 13.3	58 0.04 Lyα 2.88044 0.00003 30 4 14.0 T 2 εείης η ηλητία τα τε τε τε τε	1 μγα 2.09109 0.00008 31 9 12.9 12.9	$46 0.04 \mid Ly\alpha$ 2.88562 0.00004 38 5 13.42	$38 0.03 Ly\alpha$ 2.88733 0.00002 18 3 13.	14 0.03 Lyα 2.88855 0.00005 16 7 12.	1. γ.	$70 0.02 Ly\alpha 2.89283 0.00002 31 3 1$	65 0.02 Lyα 2.89389 0.00002 28 3 13 30 0.02 Lyα 3.86591 0.00014 34 8 13	25 0.01 μγα 2.89655 0.0031 42 22 13. 77 0.3 51/1 γα 2.8955 0.0031 42 22 13.
$EW \pm ID \qquad z \qquad \pm b \neq 1$	12 6.74 0.06 Lyα 2.79629 0.00028 46 30 13.10 2.7052 0.00028 46 30 13.10	H 0.53 0.03 Lyα 2.79958 0.00002 89 4 16.40 14 0.53 0.03 Lyα 2.80424 0.0007 39 9 13.26	D5 0.26 0.03 Lya 2.80565 0.00017 51 23 13.01	J3 1.33 U.04 Lyα 2.80734 U.UUU2 26 2 13.94 Lyα 2.80816 0.00006 18 10 13.17	$\begin{bmatrix} Ly\alpha & 2.80880 & 0.00026 & 30 & 29 & 12.87 \\ 0 & 0.11 & 0.03 & Ly\alpha & 2.81124 & 0.00007 & 23 & 8 & 12.75 \\ \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	μyα 2.81373 0.00007 21 7 13.13 12 1.64 0.04 Γνα 2.81576 0.00003 10 6 12.95	Lya 2.81680 0.00002 50 2 14.11 M 0.81 0.01 1.02 2.81600 0.00002 20 2 14.11	12 2.69 0.04 Lyα 2.82244 0.00001 38 3 15.57	Difference 2.82400 0.00006 18 9 12.85	12 1.30 0.04 μ μγα 2.82600 0.00003 19 3 14.93 Lyα 2.82672 0.00005 16 5 13.45	D5 0.10 0.02 Lyα 2.82777 0.00006 8 11 12.75	J4 U.19 U.03 Lyα 2.83018 U.00004 12 6 13.05 J3 0.74 0.04 I Lvα 2.83194 0.00019 32 14 13.33	Lyα 2.83240 0.00003 11 5 13.61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)5 0.14 0.03 Ly α 2.83526 0.00011 25 19 12.96	35 0.27 0.03 Lyα 2.83710 0.00004 24 5 13.15 11 2.00 0.03 Lvα 2.83868 0.00001 39 3 14.77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JI 1.76 0.03 Lyα 2.84482 0.00001 29 3 14.76 J3 0.45 0.03 Lyα 2.84608 0.00007 50 7 13.58	$13 0.21 0.04 Ly\alpha 2.84985 0.00041 48 72 12.79$	р 1 руд 2.859077 0.00022 26 23 12.6 38 0.12 0.03 Гуд 2.85256 0.00007 23 9 12.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1.12 0.02 Lyα 2.85741 0.00004 27 6 13.8 1 1.12 0.02 Lyα 2.85857 0.00003 24 3 14.2	05 0.21 0.03 Lyα 2.86325 0.00003 21 4 13.07 υκ 0.38 0.03 Lyα 2.86335 0.00004 35 4 13.37	λ 0.18 0.03 Lyα 2.86819 0.00013 27 13 12.9	D4 0.12 0.02 Lyα 2.86883 0.00012 13 19 12.5 Y	υο υ.19 υ.υ2 μγα 2.80985 υ.υυυ13 59 10 1.1. 04 0.47 0.03 μγα 2.87216 0.00008 43 8 13.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04 1.58 0.04 Lyα 2.88044 0.00003 30 4 14.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15 \ 0.46 \ 0.04 \ \ Ly\alpha$ 2.88562 0.00004 38 5 13.42	$04 \ 0.38 \ 0.03 \ \ Ly\alpha$ 2.88733 0.00002 18 3 13.	07 0.14 0.03 Lyα 2.88855 0.00005 16 7 12. Στοιά 0.02 Τ	υυ ν.⊥± υ.υ.3 ⊥уα: 2.86955 0.00001 23 2 1: 32 0.70 0.03 Lvα: 2.89155 0.00001 23 2 1:	01 0.70 0.02 Lya 2.89283 0.00002 31 3	01 0.65 0.02 Lya 2.89389 0.00002 28 3 13	10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.00000 10.00000 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 10.00000000
ı) ± EW ± ID z ± b ± l	8 0.02 6.74 0.06 Lyα 2.79629 0.00028 46 30 13.10	1 0.04 0.53 0.03 Lyα 2.8958 0.00002 89 4 16.40 1 0.04 0.53 0.03 Lyα 2.80424 0.00007 39 9 13.26	2 0.05 0.26 0.03 Lyα 2.80565 0.00017 51 23 13.01	6 0.03 1.33 0.04 μyα 2.80/34 0.00002 26 2 13.94 Lyα 2.80816 0.00006 18 10 13.17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.10 0.48 0.04 Ly α 2.81308 0.00019 34 16 13.02	Lyα 2.81373 0.00007 21 7 13.13 7 0.02 1.64 0.04 Lvα 2.81576 0.00003 10 6 12.96	Lyα 2.81680 0.00002 50 2 14.11 1 0.04 0.04 1.12 2 24.21	2 0.02 2.69 0.04 Lyα 2.82244 0.00001 38 3 15.57	$\begin{bmatrix} I_{y\alpha} & 2.82400 & 0.00006 & 18 & 9 & 12.85 \\ 7 & 0.0 & 1 & 0.01 & 1 & 1.02 \\ 7 & 0.00 & 1 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.00 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 14.02 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 5 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 5 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 & 5 \\ 7 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 10 & 5 \\ 7 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.00000 $	14 0.02 1.30 0.04 μyα 2.82600 0.00003 19 3 14.93 14.95 13.45	29 0.05 0.10 0.02 Lyα 2.82777 0.00006 8 11 12.75	⁽⁵⁾ 0.04 0.19 0.03 Lyα 2.83018 0.00004 12 6 13.05 7 0.03 0.74 0.04 I Lvα 2.83194 0.00019 32 14 13.33	Lyα 2.83240 0.00003 11 5 13.61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0.05 0.14 0.03 Ly α 2.83526 0.00011 25 19 12.96	ii 0.05 0.27 0.03 Lyα 2.83710 0.00004 24 5 13.15 6 0.01 2.00 0.03 Lvα 2.83868 0.00001 39 3 14.77	0 0.02 0.73 0.03 Ly 2 2.84009 0.00001 23 2 13.71	.2 0.01 1.76 0.03 μyα 2.84482 0.00001 29 3 14.76 1 0.03 0.45 0.03 μyα 2.84608 0.00007 50 7 13.58	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0.08 0.12 0.03 Lyα 2.85977 0.00007 23 12.6 1 0.08 0.12 0.03 Lyα 2.85256 0.00007 23 9 12.8	9 0.02 1.02 0.03 $Ly\alpha$ 2.85726 0.00071 70 44 13.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6 0.05 0.21 0.03 Lyα 2.86325 0.00003 21 4 13.07 1 0.05 0.38 0.03 Lyα 2.86355 0.00004 35 4 13.37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3 0.04 0.12 0.02 Lyα 2.86883 0.00012 13 19 12.5	12 0.04 0.47 0.03 ΓΥα 2.85985 0.000013 59 15.1 1 0.04 0.47 0.03 ΓΥα 2.87216 0.00008 43 8 13.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i7 0.04 1.58 0.04 μyα 2.88044 0.00003 30 4 14.0 Τ	1.00 0.09 0.19 0.03 Ly α 2.88349 0.00008 31 9 12.9	$0.05 0.46 0.04 Ly\alpha$ 2.88562 0.00004 38 5 13.42	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 0.07 0.14 0.03 Lyα 2.88855 0.00005 16 7 12. 8 0.05 0.14 0.03 Lyα 2.88555 0.00005 16 7 12.	ού ύ.υο υ.14 υ.υο Ι.μγαά Ζ.65955 υ.υυύ⊎4 9 7 12 \6 0.02 0.70 0.03 Ι.Lvα: 2.89155 0.00001 23 2 13	10 0.01 0.70 0.02 Lya 2.89283 0.00002 31 3	39 0.01 0.65 0.02 Lyα 2.89389 0.00002 28 3 13 36 0.01 0.00 0.02 12 2.80591 0.00014 24 8 13	17 0.01 0.58 0.01 Lya 2.09055 0.00031 42 22 13. M 0.01 0.58 0.01 Lya 2.298055 0.00031 42 22 13.
λ_{vac} (A) \pm 'EW \pm ID z \pm b \pm l	4618.98 0.02 6.74 0.06 Lyα 2.79629 0.00028 46 30 13.10	4624.51 0.04 0.53 0.03 Ι Δγα 2.79958 0.00007 39 9 13.26	$4626.42 0.05 0.26 0.03 \text{Ly}\alpha 2.80565 0.00017 51 23 13.01 0.000000000000000000000000000000$	4628.86 0.03 1.33 0.04 μyα 2.80734 0.00002 26 2 13.94 Lyα 2.80816 0.00006 18 10 13.17	$\begin{cases} Ly\alpha & 2.80880 \ 0.00026 \ 30 \ 29 \ 12.87 \\ 4633.22 \ 0.10 \ 0.11 \ 0.03 \ Iv\alpha & 2.81124 \ 0.00007 \ 23 \ 8 \ 12.75 \\ \end{cases}$	$4636.01 0.10 0.48 0.04 1.9\alpha 2.81308 0.00019 34 16 13.02$	Lyα 2.81373 0.0007 21 7 13.1 4639.87 0.02 1.64 0.04 Lvα 2.81576 0.00003 10 6 12.96	Lya 2.81680 0.0002 50 2 14.11 Lya 2.81680 0.0002 50 2 14.11 A449 51 0.04 0.04 1.1.2	4646.92 0.02 2.69 0.04 Ly α 2.82244 0.00001 38 3 15.57	Lya 2.82400 0.00006 18 9 12.85	4031.37 0.02 1.30 0.04 μα 2.82600 0.00003 19 3 14.93 Lyα 2.82672 0.00005 16 5 13.45	4653.29 0.05 0.10 0.02 Lyα 2.82777 0.00006 8 11 12.75	4656.25 0.04 0.19 0.03 Lyα 2.83018 0.00004 12 6 13.05 4658.67 0.03 0.74 0.04 I Lvα 2.83194 0.00019 32 14 13.33	Lyα 2.83240 0.00003 11 5 13.61	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$4662.32 0.05 0.14 0.03 Ly\alpha \qquad 2.83526 0.00011 25 19 12.96$	$4664.61 0.05 0.27 0.03 Ly \alpha$ 2.83710 0.00004 24 5 13.15 $4666.56 0.01 2.00 0.03 Lv \alpha$ 2.83868 0.00001 39 3 14.77	4668.30 0.02 0.73 0.03 Iya 2.84009 0.00001 23 2 13.71	46/4.12 0.01 1.76 0.03 μγα 2.84482 0.00001 29 3 14.76 4675.91 0.03 0.45 0.03 Γιγα 2.84608 0.00007 50 7 13.58	4680.71 0.13 0.21 0.04 Ly α 2.84985 0.00041 48 72 12.79	4683.51 0.08 0.12 0.03 Lyα 2.85256 0.00007 23 9 12.8	4689.19 0.02 1.02 0.03 Lyα 2.85726 0.00071 70 44 13.3	$\begin{array}{ccccc} Ly \alpha & 2.85741 & 0.00014 & 27 & 6 & 13.8 \\ 4690.71 & 0.01 & 1.12 & 0.02 & Ly \alpha & 2.85857 & 0.00003 & 24 & 3 & 14.2 \\ \end{array}$	4696.46 0.05 0.21 0.03 Lyc 2.86325 0.00003 21 4 13.07 4700 21 0 05 0 38 0 03 Lyc 286435 0 00004 35 4 13 33	4702.40 0.07 0.18 0.03 Lyα 2.86819 0.00013 27 13 12.9	4703.33 0.04 0.12 0.02 Lyα 2.86883 0.00012 13 19 12.5	4104.42 0.03 0.19 0.02 μγα 2.86985 0.00013 59 15 15.1 4707.21 0.04 0.47 0.03 μγα 2.87216 0.00008 43 8 13.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4717.57 0.04 1.58 0.04 Lyα 2.88044 0.00003 30 4 14.0	4720.98 0.09 0.19 0.03 Ly α 2.88349 0.00008 31 9 12.9	$4723.60 \ 0.05 \ 0.46 \ 0.04 \ Ly\alpha$ 2.88562 0.00004 38 5 13.42	$4725.73 \ 0.04 \ 0.38 \ 0.03 \ Ly\alpha$ 2.88733 0.00002 18 3 13.	4727.21 0.07 0.14 0.03 Lyα 2.88855 0.00005 16 7 12. 4728 38 0.05 0.14 0.03 Lyα 38055 0.00004 0 7 10	±1.20.86 0.02 0.70 0.03 1 Lvα 2.86935 0.00001 23 2 15 4730.86 0.02 0.70 0.03 1 Lvα 2.89155 0.00001 23 2 15	4732.40 0.01 0.70 0.02 Lyα 2.89283 0.00002 31 3	4733.69 0.01 0.65 0.02 Lyα 2.89389 0.00002 28 3 13 4735.26 0.01 0.00 0.02 12 3 26521 0.00014 24 8 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n λ_{vac} (A) \pm EW \pm ID z \pm b \pm l	169 4618.98 0.02 6.74 0.06 Lyα 2.79629 0.00028 46 30 13.10	170 2.79958 0.00007 39 4 16.40 171 4624.51 0.04 0.53 0.03 $ $ Ly α 2.80424 0.00007 39 9 13.26	172 4626.42 0.05 0.26 0.03 Lya 2.80565 0.00017 51 23 13.01	173 4628.86 0.03 1.33 0.04 $\mu_{y\alpha}$ 2.80734 0.00002 26 2 13.94 174 174 2.80816 0.00006 18 10 13.17	$\begin{bmatrix} 175 \\ 176 \\ 4633.22 \\ 0.10 \\ 0.11 \\ 0.03 \\ 1.vc \\ 2.81124 \\ 0.00007 \\ 2.3 \\ 8 \\ 12.75 \\ 2.3 \\ 12.75 \\ 2.3 \\ 12.75 \\ 2.3 \\ 12.75 \\ 12.75 \\ 2.3 \\ 12.75 \\ 12$	177 4636.01 0.10 0.48 0.04 Ly α 2.81308 0.00019 34 16 13.02	178 2.81373 0.00007 21 7 13.13 179 4639.87 0.02 1.64 0.04 $ $ Lv α 2.81576 0.00003 10 6 12.96	180 Lya 2.81680 0.0002 50 2 14.11 191 A64261 0.04 0.61 0.04 1 1.22 2 91900 0.00002 37 3 13.67	101 101210 0.01 0.01 0.01 1.04 2.02044 0.00001 38 3 15.57 15.57	183 Lya 2.82400 0.00006 18 9 12.85 184 4661 37 0.07 1 50 0.4 1 T 2 20200 0.00002 10 5 14 02	164 4031.37 0.02 1.30 0.04 1.49 2.82600 0.00003 19 3 14.33 185 Ly α 2.82672 0.00005 16 5 13.45	186 4653.29 0.05 0.10 0.02 Lya 2.82777 0.00006 8 11 12.75	187 4656.25 0.04 0.19 0.03 Lyα 2.83018 0.00004 12 6 13.05 188 4658.67 0.03 0.74 0.04 I Lvα 2.83194 0.00019 32 14 13.33	189 Lyα 2.83240 0.00003 11 5 13.61	190 4660.24 0.04 0.29 0.03 $Ly\alpha$ 2.83343 0.00005 35 7 13.26 191 4661.45 0.05 0.09 0.02 $Lv\alpha$ 2.83449 0.00008 14 14 12.69	192 4662.32 0.05 0.14 0.03 Ly α 2.83526 0.00011 25 19 12.96	$193 4664.61 0.05 0.27 0.03 Ly \alpha 2.83710 0.00004 24 5 13.15 194 4666.56 0.01 2.00 0.03 Lv \alpha 2.83868 0.00001 39 3 14.77$	$195 4668.30 0.02 0.73 0.03 Iy\alpha 2.84009 0.00001 23 2 13.71 \\ 0.02 0.73 0.03 Iy\alpha 2.84009 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.000001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00001 23 2 13.71 \\ 0.00 0.00000001 23 2 13.71 \\ 0.00 0.000001 23 2 13.71 \\ 0.00 0.00000000000000000000000000000$	196 46/4.12 0.01 1.76 0.03 μyα 2.84482 0.0001 29 3 14.76 197 4675.91 0.03 0.45 0.03 μyα 2.84608 0.00007 50 7 13.58	198 4680.71 0.13 0.21 0.04 $Ly\alpha$ 2.84985 0.00041 48 72 12.79	199 2.85077 0.00022 26 23 12.6 200 4683.51 0.08 0.12 0.03 Ly $lpha$ 2.85256 0.00007 23 9 12.8	201 4689.19 0.02 1.02 0.03 $ Ly \alpha$ 2.85726 0.00071 70 44 13.3	202 $Ly \alpha$ 2.85741 0.0004 27 6 13.8 2.35 4690.71 0.01 1.12 0.02 $Ly \alpha$ 2.85857 0.00003 24 3 14.2	204 4696.46 0.05 0.21 0.03 Ly $lpha$ 2.86325 0.00003 21 4 13.07 205 470021 0.05 0.38 0.03 Ly $lpha$ 2 86635 0.00004 35 4 13 33	206 4702.40 0.07 0.18 0.03 Lyα 2.86819 0.00013 27 13 12.9	207 4703.33 0.04 0.12 0.02 Lyα 2.86883 0.00012 13 19 12.5	205 4/04.42 0.05 0.19 0.02 μyα 2.85985 0.00013 59 15 15.1 209 4707.21 0.04 0.47 0.03 μyα 2.87216 0.00008 43 8 13.4	210 4708.65 0.03 0.42 0.02 $ _{\rm Ly\alpha}$ 2.87327 0.00008 38 7 13.3	211 4717.57 0.04 1.58 0.04 Lyca 2.88044 0.00003 30 4 14.0 213 11 282103 0.0030 56 18 13 6	212 4720.98 0.09 0.19 0.03 Ly α 2.88349 0.00008 31 9 12.9	214 4723.60 0.05 0.46 0.04 $L_{y\alpha}$ 2.88562 0.00004 38 5 13.42	215 4725.73 0.04 0.38 0.03 Ly α 2.88733 0.0002 18 3 13.	216 4727.21 0.07 0.14 0.03 Lyα 2.88855 0.00005 16 7 12. 217 4728 36 0.05 0.14 0.03 T 2.88556 0.00005 16 7 12.	لا 12 18 4730.86 0.02 0.70 0.03 اللاحم 2.89155 0.00001 23 11 12 23 15 0.00001 23 2 15	219 4732.40 0.01 0.70 0.02 Lyα 2.89283 0.0002 31 3	220 4733.69 0.01 0.65 0.02 Ly α 2.89389 0.00002 28 3 13 23 231 4735 26 0.01 0.00 0.02 12 2.00014 24 8 13	222 4736.47 0.01 0.58 0.01 1/9 22 2.89605 0.00031 42 22 13. 232 4738.64 0.01 0.58 0.01 1/9 22 2.99605 0.00031 42 22 13. 2338.64 0.03 0.75 0.03 5.1V 1303 2.3065 0.00003 32 2 3 3

TABLE 1—Continued

			β	_						e	2	β								Q	n a	Ø	β						β	Ø	Þ			¢	μ	μ	βγ	θ	θ	Ø	D	β	2	
н	0.11	0.16	0.06	0.13	0.18	0.24 2.92	2.81	0.20	0.21	0.042	90.0	0.03	0.04	0.10	0.07	0.24	2.92	2.81	0.20	0.11	0.11	0.09	0.03	0.18	0.07	0.07	0.09	0.09	0.03	0.04	0.07	0.07	0.09	0.05	0.88	0.80	0.09	0.05	0.34	0.09	0.30	0.09	0.62	0.40
$\log N$	12.91	12.69 13.36	14.42	12.86	14.59	14.12	14.07	14.49	12.93	13.86	13.04	13.81	13.54	13.97	13.18	14.75	14.12	14.07	14.49	13.00	14.19	13.13	13.83	12.97	13.37	13.30	13.10	13.50	14.28	14.04	14.32 13.53	13.19	13.08	13.46	14.33	13.53	14.48	13.73	13.41	13.82	14 00	14.75	13.55	13.57
+	×	12 9	2	6	n ș	222	58	7	13	8	14	5	e	ന 1	ഹം	ν <u>ς</u>	222	58	2	о ч	04	14	c, 5	211	13	œ	2 1	4 00	ŝ	ഹ	n n	ഹ	80	° ;	7 12	- 66	4	4	18	ς Ω	00 00	04	104	13
q	21	18 37	37	16	16	46	44	15	23	31	17	29	24	17	Ξ;	4 18	46	44	15	24	19	46	27 25	3 11	60	34	22	36	43	55	32	18	29	18	48	59	24	31	46	26	123	31	13	35
++	0.00007	0.00010	0.00001	0.00007	0.00004	0.00092	0.00111	0.00004	0.00009	0.00002	0.0004	0.00001	0.00003	0.00002	0.00003	0.00004	0.00092	0.00111	0.00003	0.00008	0.00004	0.00011	0.00002	210000.0	0.00011	0.00007	0.00006	0.00006	0.00002	0.00007	0.00003	0.00004	0.00007	0.00002	0.00015	0.00104	0.00003	0.00006	0.00017	0.00004	0.00013	0.000075	0.00059	0.00007
N	3.11660	3.11798	3.12261	3.12416	1.11195	1.11268	1.11314	1.11314	3.12840	3 13085	3.13321	3.13522	3.13678	3.13763	3.13845	C6111.1	1.11269	1.11314	1.11314	3.14390	3.14718	3.15188	3.15323 3.15745	3.15809	3.16003	3.16194	3.16545 3.17150	3.17280	3.17426	3.17748	3.17877	3.18290	3.18439	3.18578	3.18929	3,19179	3.19257	3.19370	3.19610	3.19713	3.19825 2 20062	3.20154	3.20299	3.20407
Ð	Lyα	Lya Lya	Lyα	Lya	Fell 2374	Fell 2374 Fell 2374	FeII 2374	FeII 2374	$Ly\alpha$	Lyoz	Lva	Lya	Lyα	Lyα	Lya Furgeore	Fell 2382 Fell 2382	Fell 2382	FeII 2382	FeII 2382	Lya L'	Lya Lya	Lyα	Lyα Lyα	Lya	Lyα	Lyα	Lya 1 we	Lya	Lyα	Lyα	Lyα Lva	Lya	$Ly\alpha$	$_{\rm Ly\alpha}$	Lya Luc	Lvor	Lya	$Ly\alpha$	$Ly\alpha$	Lyα	Lya Tue	Lya	Lya Lya	Lyα
+	.04	03	.05	.02	-04		.03		.03	70.7	- 80. 50.	.04	.03	.03	.03	en.		1		.04 04	3	.03	.04	.03	.05	.04	- 03	.04	.05	.04	0.4	.04	.04	.04	cu.		.05	.04	90.0	ç	.03	cn.	0.02	0.05
A	.18 0	.11 0 45 0	76 0	.14 0	.61 0		96 0		.17 0	0 96 0 96	22 0	88.0	.49 0	.87 0	21 0	0 12.				20 0	5 7 2	.17 0	94 0	22 0	.39 0	.40 0	22 0	.65 0	.76 0	11. 11.0	60 0 60 0	.30 0	.25 0	.51 0	n 10.		.71 0	.72 0	.77 0			00.	.19 (.88
	11 0	0.09	02 1	04 0	02		02 0		05 0	00 00 00	05 0	03 0	.02 0	01 0	03	4				06 0	-	.05 0	03 0	05 0	0 60	0 90.	05 0	03 0	.02	02	.02 06 0	.05 0	.08	0 00.00	. 02		.02 1	.03 0	.04 1	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 70.	.03 0	.05 0
A	39 0.	0.0 23 0.0	; 0 ; 0	58 0.	59 53		45 0.		93 93		67 0.	040	84 0.	97 0.	02	n na				64 0 4 0 0	Ş	0.7 0.	0 0 0	5 0 LL	98 0	66 0.	84 87 0	52 0	52 0	13 0	92 0 32 0	97 0	74 0	58 0	0 07		67 0	33 0	10 0		00 96 0	07	43 0	73 0
λ _{vac} (.	5004.	5006.0 5008.1	5011.	5013.	5015.		5017.		5018.	5021	5024.	5027.	5028.	5029.	5031.	5033.				5037.	11200	5047.	5048.	5054.	5056.	5059.	5063. 5070	5072.	5074.	5078.	5083	5084.	5086.	5088.	5093.		5096.	5098.	5102.	1011	5104.	. Inte	5109.	5110.
F	333	334 335	336	337	338	340 340	341	342	343	345 345	346	347	348	349	350	352 352	353	354	355	356 357	358	359	360 361	362	363	364	365 366	367	368	369	371	372	373	374	375 276	377	378	379	380	381	202	384 384	385	386
11																																												
									β	Β	Ł			β				β	β	<i>נ</i> ת ע	r a																			q	ם ע מ	d (d	e e	
++	0.02	0.04 0.12	0.18	0.20	0.19	0.20	0.06	0.11	0.10β	0.29 B	0.08	0.05	0.10	0.04β	0.18	0.08	0.40	0.08 B	0.03 B	0.19 B	0.03 B	0.05	0.17	0.06	0.18	0.24	2.92 2.81	0.20	0.02	0.05	0.29	0.08	0.14	0.14	0.15	0.08	0.03	0.05	0.19	0.49	0.07 A	0.05 B	0.06 B	0.07
$\log N \pm$	13.44 0.02	$13.86 0.04 \\ 14.11 0.12$	13.85 0.18	13.38 0.20	13.38 0.19	13.69 0.20	12.94 0.06	14.07 0.11	$14.07 0.10 \beta$	13.63 0.29 β	13.14 0.08	13.65 0.05	12.91 0.10	$14.17 0.04 \beta$	13.12 0.18	12.54 0.25 13.41 0.08	13.43 0.40	14.01 0.08 β	$14.09 0.03 \beta$	13.45 0.19 B	13.79 0.03 β	12.95 0.05	13.03 0.17 13.68 0.08	13.46 0.06	14.59 0.18	14.75 0.24	14.12 2.92 14 n7 2 81	14.49 0.20	13.59 0.02	13.05 0.05	13.08 0.06 12.99 0.29	13.52 0.08	13.28 0.14	13.15 0.14	12.77 0.15	13.14 0.08	13.68 0.03	13.22 0.05	13.51 0.19	13.08 0.49	13.32 0.20 p	14.42 0.05 B	$14.05 0.06 \beta$	13.14 0.07
$\pm \log N \pm$	2 13.44 0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 13.85 0.18	7 13.38 0.20	9 13.38 0.19	4 14.00 0.10 26 13.69 0.20	8 12.94 0.06	3 14.07 0.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4 13.65 0.05	10 12.91 0.10	1 14.17 0.04 β	34 13.12 0.18	20 12.34 0.23 10 13.41 0.08	65 13.43 0.40	4 14.01 0.08 β	2 14.09 0.03 β	14 13.45 0.19 β Δ 14 34 0.05 β	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 12.95 0.05	23 13.03 0.17 4 13.68 0.08	6 13.46 0.06	3 14.59 0.18	12 14.75 0.24	222 14.12 2.92 58 14.07 2.81	7 14.49 0.20	2 13.59 0.02	4 13.05 0.05 7 12.02 0.05	5 13.08 0.06 28 12.99 0.29	5 13.52 0.08	6 13.28 0.14		15 19 77 015		2 13.68 0.03	4 13.22 0.05	14 13.51 0.19	13 13.08 0.49 55 13.50 0.50 2	23 13.32 U.20 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \\ 2 \\ 14.05 \\ 0.06 \\ \end{array}$	7 13.14 0.07
$b \pm \log N \pm$	35 2 13.44 0.02	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36 9 13.85 0.18	17 7 13.38 0.20		88 26 13.69 0.20	39 8 12.94 0.06	21 3 14.07 0.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrr} 23 & 6 & 13.63 & 0.29 & \beta \\ \end{array}$	73 16 13.14 0.08	35 4 13.65 0.05	33 10 12.91 0.10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		51 10 13.41 0.08	73 65 13.43 0.40	27 4 14.01 0.08 β	33 2 14.09 0.03 β	$\begin{array}{rrrrr} 46 & 14 & 13.45 & 0.19 & \beta \\ 40 & 4 & 14.34 & 0.05 & \beta \end{array}$	35 3 13.79 0.03 β	30 5 12.95 0.05	43 23 13.03 0.17 14 4 13.68 0.08	24 6 13.46 0.06	16 3 14.59 0.18	18 12 14.75 0.24	46 222 14.12 2.92 44 58 14.07 2.81	15 7 14.49 0.20	33 2 13.59 0.02		24 5 13.08 0.06 43 28 12.99 0.29	32 5 13.52 0.08	22 6 13.28 0.14		42 19 12.(9 0.13 30 15 19 77 015	46 11 13.14 0.08	29 2 13.68 0.03	21 4 13.22 0.05	42 14 13.51 0.19	19 13 13.08 0.49 Fe of 12.00 0.00	00 20 10.02 U20 D	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	24 2 14.05 0.06 β	34 7 13.14 0.07
\pm b \pm $\log N \pm$	0.00002 35 2 13.44 0.02	0.00002 23 2 13.86 $0.040.00009$ 34 5 14.11 0.12	0.00016 36 9 13.85 0.18	0.00009 17 7 13.38 0.20	0.00012 20 9 13.38 0.19 0.00002 23 4 14.60 015	0.00044 88 26 13.69 0.20	0.00006 39 8 12.94 0.06	0.00006 21 3 14.07 0.11	0.00006 23 4 14.07 0.10 β	0.00012 23 15 13.53 0.50 β	0.00014 73 16 13.14 0.08	0.00002 35 4 13.65 0.05	0.00008 33 10 12.91 0.10	$0.00001 \ 28 \ 1 \ 14.17 \ 0.04 \ \beta$		0.00010 5 20 12.54 $0.250.00010$ 51 10 13.41 0.08	0.00067 73 65 13.43 0.40	0.00002 27 4 14.01 0.08 β	0.00002 33 2 14.09 0.03 β	0.00022 46 14 13.45 0.19 eta	0.00002 35 3 13.79 0.03 β	0.00004 30 5 12.95 0.05	0.00019 43 23 13.03 0.17 0.00003 14 4 13.68 0.08	0.00005 24 6 13.46 0.06	0.00004 16 3 14.59 0.18	0.00004 18 12 14.75 0.24	0.00092 46 222 14.12 2.92 0.00111 44 58 14.07 2.81	0.00004 15 7 14.49 0.20	0.00002 33 2 13.59 0.02		0.00030 43 28 13.09 0.29 0.00030 43 28 12.99 0.29	0.00006 32 5 13.52 0.08	0.00008 22 6 13.28 0.14		0.00013 30 15 13 72 015		0.00002 29 2 13.68 0.03	0.00003 21 4 13.22 0.05	0.00022 42 14 13.51 0.19	0.00008 19 13 13.08 0.49	0,00001 99 20 13.32 0.20 7 0,00001 99 9 14.99 0.07 8	$0.00004 37 3 14.42 0.05 \beta$	$0.00004 24 2 14.05 0.06 \beta$	0.00007 34 7 13.14 0.07
z \pm b \pm $\log N$ \pm	3.00189 0.00002 35 2 13.44 0.02	3.00858 0.00002 23 2 13.86 $0.043.01012$ 0.00009 34 5 14.11 0.12	3.01093 0.00016 36 9 13.85 0.18	3.01237 0.00009 17 7 13.38 0.20	3.01287 0.00012 20 9 13.38 0.19 2 01510 0 00002 22 4 14 50 015	3.01616 0.00044 88 26 13.69 0.20	3.02386 0.00006 39 8 12.94 0.06	3.02723 0.00006 21 3 14.07 0.11	$3.02789 \ 0.00006 \ 23 \ 4 \ 14.07 \ 0.10 \ \beta$	3.03032 0.00012 23 6 13.63 0.29 β	3.03274 0.00014 73 16 13.14 0.08	3.04563 0.00002 35 4 13.65 0.05	3.04785 0.00008 33 10 12.91 0.10	3.04925 0.00001 28 1 14.17 0.04 β	3.05158 0.00027 67 34 13.12 0.18	3.052344 0.000010 5 20 12.54 0.23 3.05330 0.00010 51 10 13.41 0.08	3.05634 0.00067 73 65 13.43 0.40	3.05729 0.00002 27 4 14.01 0.08 eta	3.05870 0.00002 33 2 14.09 0.03 β	3.06068 0.00022 46 14 13.45 0.19 $eta3.06179$ 0.00004 40 A 14.34 0.05 B	3.06334 0.00002 35 3 13.79 0.03 β	3.06753 0.00004 30 5 12.95 0.05	3.06978 0.00019 43 23 13.03 0.17 3.07069 0.00003 14 4 13.68 0.08	3.07143 0.00005 24 6 13.46 0.06	1.11195 0.00004 16 3 14.59 0.18	1.11228 0.00004 18 12 14.75 0.24	1.11269 0.00092 46 222 14.12 2.92 1 1 1 3 4 0 00111 44 58 14 07 2 81	1.11314 0.00004 15 7 14.49 0.20	3.07741 0.00002 33 2 13.59 0.02	2.80128 0.00003 19 4 13.05 0.05	3.08580 0.00030 424 5 13.08 0.06 3.08520 0.00030 43 28 12.99 0.29	3.08616 0.00006 32 5 13.52 0.08	3.08784 0.00008 22 6 13.28 0.14	3.08878 0.00015 43 16 13.15 0.14	3.09121 0.00013 30 15 19 12.79 0.15 3.00390 0.00013 30 15 19 77 0.15	3.09484 0.00010 46 11 13.14 0.08	3.09803 0.00002 29 2 13.68 0.03	3.09922 0.00003 21 4 13.22 0.05	3.10139 0.00022 42 14 13.51 0.19	3.10200 0.00008 19 13 13.08 0.49 3.10404 0.00038 50 05 13.08 0.49	3.10424 0.00003 30 23 13.32 0.20 D 3.10404 0.00001 99 9 14 99 0.07 A	3.10890 0.00004 37 3 14.42 0.05 β	3.10994 0.00004 24 2 14.05 0.06 β	3.11426 0.00007 34 7 13.14 0.07
ID $z \pm b \pm \log N \pm$	Lya 3.00189 0.00002 35 2 13.44 0.02	Lyα 3.00858 0.00002 23 2 13.86 0.04 Lvα 3.01012 0.00009 34 5 14.11 0.12	$1 \text{Ly}\alpha$ 3.01093 0.00016 36 9 13.85 0.18	$Ly\alpha$ 3.01237 0.00009 17 7 13.38 0.20	Lyα 3.01287 0.00012 20 9 13.38 0.19	$\begin{bmatrix} xy\alpha \\ y\alpha \end{bmatrix} 3.01616 0.00044 88 26 13.69 0.20 \end{bmatrix}$	$Ly\alpha$ 3.02386 0.00006 39 8 12.94 0.06	$ Ly\alpha = 3.02723 0.00006 21 3 14.07 0.11$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LVa 3.03032 0.00012 23 6 13.63 0.29 β	Ly α 3.03274 0.00014 73 16 13.14 0.08	$ Ly\alpha = 3.04563 0.00002 35 4 13.65 0.05$	$\int Ly\alpha$ 3.04785 0.00008 33 10 12.91 0.10	Ly α 3.04925 0.00001 28 1 14.17 0.04 β	LYC 3.05158 0.00027 67 34 13.12 0.18	Lyα 3.05330 0.00010 51 10 13.41 0.08	$ Ly\alpha = 3.05634 0.00067 73 65 13.43 0.40$	Ly α 3.05729 0.00002 27 4 14.01 0.08 β	Ly α 3.05870 0.00002 33 2 14.09 0.03 β	$\begin{bmatrix} Ly\alpha & 3.06068 & 0.00022 & 46 & 14 & 13.45 & 0.19 & \beta \\ 1.122 & 3.06179 & 0.00004 & 40 & 4 & 14.34 & 0.05 & \beta \end{bmatrix}$	$\begin{bmatrix} 2.9 & 3.06334 & 0.00002 & 35 & 3 & 13.79 & 0.03 & \beta \\ \end{bmatrix}$	Ly α 3.06753 0.0004 30 5 12.95 0.05	Lyα 3.06978 0.00019 43 23 13.03 0.17 1.vc 3.07069 0.00003 14 4 13.68 0.08	$\begin{bmatrix} 2.5 \\ 1.5 \\ 1.5 \\ 2.07143 0.00005 24 6 13.46 0.06 \end{bmatrix}$	FeII 2344 1.11195 0.00004 16 3 14.59 0.18	FeII 2344 1.11228 0.00004 18 12 14.75 0.24	FeII 2344 1.11269 0.00092 46 222 14.12 2.92 FeII 9344 1.11314 0.00111 44 58 14.07 981	FeII 2344 1.11314 0.00004 15 7 14.49 0.20	Ly α 3.07741 0.00002 33 2 13.59 0.02	Sill 1304 2.80128 0.00003 19 4 13.05 0.05	LVC 3.0550 U.UUU4 24 5 13.05 U.U5 LVC 3.08520 0.00030 43 28 12.99 0.29	Lya 3.08616 0.00006 32 5 13.52 0.08	Lyα 3.08784 0.00008 22 6 13.28 0.14	Lyα 3.08878 0.00015 43 16 13.15 0.14	L.v.c. 3.002/20.0.00013 30 15 19 72/015	$L_{V\alpha}$ 3.09484 0.00010 46 11 13.14 0.08	$ Ly\alpha = 3.09803 0.00002 29 2 13.68 0.03$	$\int Ly\alpha$ 3.09922 0.00003 21 4 13.22 0.05	$Ly\alpha$ 3.10139 0.00022 42 14 13.51 0.19	Lyα 3.10200 0.00008 19 13 13.08 0.49	LYCC 3.10424 0.00030 30 23 13.32 0.20 D	$ Ly_{\alpha} = 3.10454 0.00001 22 2 14.22 0.01 p$	Ly α 3.10994 0.00004 24 2 14.05 0.06 β	Ly α 3.11426 0.00007 34 7 13.14 0.07
$\pm \text{ ID } z \pm b \pm \log N \pm$	0.03 Lyα 3.00189 0.00002 35 2 13.44 0.02	0.04 Lyα 3.00858 0.00002 23 2 13.86 0.04 0.04 Lvα 3.01012 0.00009 34 5 14.11 0.12	$I_{\rm Ly\alpha}$ 3.01093 0.00016 36 9 13.85 0.18	0.03 $Ly\alpha$ 3.01237 0.00009 17 7 13.38 0.20	Lyo 3.01287 0.00012 20 9 13.38 0.19	$\Gamma_{\rm Ly\alpha}$ 3.01616 0.00044 88 26 13.69 0.20	0.03 Ly α 3.02386 0.00006 39 8 12.94 0.06	$0.03 \mid Ly\alpha$ 3.02723 0.00006 21 3 14.07 0.11	Lyα 3.02789 0.00006 23 4 14.07 0.10 β 0.04 1 Lyα 3.02084 0.00027 20 12 13.40 0.40	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000000}$ $\frac{1}{10000000000000000000000000000000000$	0.04 Ly α 3.03274 0.00014 73 16 13.14 0.08	$0.04 \mid Ly\alpha$ 3.04563 0.00002 35 4 13.65 0.05	$0.02 \mid Ly\alpha = 3.04785 0.00008 33 10 12.91 0.10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.02 Lya 3.05158 0.00027 67 34 13.12 0.18	0.02 μyα 3.05244 0.0000/ 3 20 12.54 0.23 0.03 Lvα 3.05330 0.00010 51 10 13.41 0.08	$0.03 \mid Ly\alpha$ 3.05634 0.00067 73 65 13.43 0.40	0.03 $L_{y\alpha}$ 3.05729 0.00002 27 4 14.01 0.08 β	0.03 Ly α 3.05870 0.00002 33 2 14.09 0.03 β	0.04 Ly α 3.06068 0.00022 46 14 13.45 0.19 β 1 3.06179 0.00004 40 4 14.34 0.05 β	$0.03 Ly\alpha$ 3.06334 0.00002 35 3 13.79 0.03 β	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02 Lyα 3.06978 0.00019 43 23 13.03 0.17 0.02 Lvc 3.07069 0.00003 14 4 13.68 0.08	0.02 Ly α 3.07143 0.00005 24 6 13.46 0.06	0.04 FeII 2344 1.11195 0.00004 16 3 14.59 0.18	FeII 2344 1.11228 0.00004 18 12 14.75 0.24	FeII 2344 1.11269 0.00092 46 222 14.12 2.92 FeII 2344 1.11314 0.00111 44 58 14.07 2.81	FeII 2344 1.11314 0.00004 15 7 14.49 0.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.03 Sill 1304 2.80128 0.00003 19 4 13.05 0.05	υ.υ3 μγα 3.υδ360 υ.υυυυ4 24 5 1.3.U8 υ.υδ 0.04 Lvα 3.08520 0.00030 43 28 12.99 0.29	Lya 3.08616 0.00006 32 5 13.52 0.08	$0.03 \text{ Ly}\alpha$ $3.08784 0.00008 22 6 13.28 0.14$	0.08 Lyα 3.08878 0.00015 43 16 13.15 0.14	0.03 Type 3.09121 0.00013 30 15 19 72 0.15 0.03 Type 3.00390 0.00013 30 15 19 77 0.15	0.03 Lva 3.09484 0.00010 46 11 13.14 0.08	0.03 Lyα 3.09803 0.00002 29 2 13.68 0.03	$0.03 \mid Ly\alpha$ 3.09922 0.00003 21 4 13.22 0.05	$0.03 Ly\alpha$ 3.10139 0.00022 42 14 13.51 0.19	0.03 Ly 2 3.10200 0.00008 19 13 13.08 0.49	0.04 1 TYC 0.10424 0.00000 00 20 10.02 0.20 0 1.42 3 10404 0.00001 99 9 14 99 0.07 8	$0.03 \mid Ly \propto 3.10890 0.00004 37 3 14.42 0.05 B$	0.02 Ly α 3.10994 0.00004 24 2 14.05 0.06 β	0.04 Ly α 3.11426 0.00007 34 7 13.14 0.07
EW \pm ID z \pm b \pm $\log N \pm$	0.48 0.03 Lyα 3.00189 0.00002 35 2 13.44 0.02	0.87 0.04 μyα 3.00858 0.00002 23 2 13.86 0.04 2.00 0.04 μvα 3.01012 0.00009 34 5 14.11 0.12	Lya 3.01093 0.00016 36 9 13.85 0.18	$0.74 \ 0.03$ Ly α 3.01237 0.00009 17 7 13.38 0.20	Lyα 3.01287 0.00012 20 9 13.38 0.19	$\begin{bmatrix} 2.31 & 0.00 \\ 1 & 1 & 2 \\ 1 & 2 & 3.01616 & 0.00044 & 88 & 26 & 13.69 & 0.20 \end{bmatrix}$	0.17 0.03 Ly α 3.02386 0.00006 39 8 12.94 0.06	$1.71 \ 0.03 \ Ly\alpha$ $3.02723 \ 0.0006 \ 21 \ 3 \ 14.07 \ 0.11$	Lyα 3.02789 0.00006 23 4 14.07 0.10 β 1.01 0.04 1 Lv∞ 3.02984 0.00027 29 12 13.40 0.40	1.01 0.04 2.02504 0.00012 $23 12 13.53 0.29 B$	$0.29 \ 0.04 \ Ly\alpha$ $3.03274 \ 0.00014 \ 73 \ 16 \ 13.14 \ 0.08$	$0.89 \ 0.04 \ \ Ly\alpha$ $3.04563 \ 0.00002 \ 35 \ 4 \ 13.65 \ 0.05$	$0.15 \ 0.02 Ly\alpha$ 3.04785 0.00008 33 10 12.91 0.10	1.27 0.03 Ly α 3.04925 0.00001 28 1 14.17 0.04 β	0.11 0.02 Lya 3.05158 0.00027 67 34 13.12 0.18	0.22 0.02 μyα 3.03244 0.0000 3 20 12.34 0.23 0.42 0.03 Lvα 3.05330 0.00010 51 10 13.41 0.08	$0.20 \ 0.03 \ Ly\alpha$ 3.05634 0.00067 73 65 13.43 0.40	1.26 0.03 $L_{y\alpha}$ 3.05729 0.00002 27 4 14.01 0.08 β	1.24 0.03 Ly α 3.05870 0.00002 33 2 14.09 0.03 β	2.18 0.04 Lyα 3.06068 0.00022 46 14 13.45 0.19 β Γ.ν.ς 3.06170 0.00004 40 4 14 34 0.05 β	$0.83 0.03 Ly\alpha$ $3.06334 0.00002 35 3 13.79 0.03 \beta$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.11 0.02 Lyα 3.06978 0.00019 43 23 13.03 0.17 0.63 0.02 Lyα 3.07060 0.00003 14 4 13.68 0.08	$0.42 0.02 Ly\alpha$ 3.07143 0.00005 24 6 13.46 0.06	3.88 0.04 FeII 2344 1.11195 0.00004 16 3 14.59 0.18	FeII 2344 1.11228 0.00004 18 12 14.75 0.24	Fell 2344 1.11269 0.00092 46 222 14.12 2.92 Fell 3344 1.11314 0.00111 44 58 14.07 2 81	Fell 2344 1.11314 0.00004 15 7 14.49 0.20	$0.67 0.04 \text{Ly} \alpha \qquad 3.07741 0.00002 33 2 13.59 0.02$	0.26 0.03 Sill 1304 2.80128 0.00003 19 4 13.05 0.05	0.24 υ.υ3 μγα 3.06360 υ.υυσυ4 24 5 13.08 υ.υ6 0.75 0.04 Lvα 3.08520 0.00030 43 28 12.99 0.29	Lyα 3.08616 0.00006 32 5 13.52 0.08	0.20 0.03 Lyα 3.08784 0.00008 22 6 13.28 0.14	0.46 0.08 Lyca 3.08878 0.00015 43 16 13.15 0.14	0.11 0.02 TYCC 3.09121 U.UUU13 30 15 1977 015 012 0.03 Tyv⊂ 3.003300 0.00013 30 15 1977 015	$0.28 \ 0.03 \ Lv\alpha$ 3.09484 0.00010 46 11 13.14 0.08	0.70 0.03 Lyα 3.09803 0.00002 29 2 13.68 0.03	$0.32 \ 0.03 Ly_{\alpha}$ 3.09922 0.00003 21 4 13.22 0.05	$0.44 \ 0.03 Ly\alpha$ 3.10139 0.00022 42 14 13.51 0.19	0.38 0.03 Lyα 3.10200 0.00008 19 13 13.08 0.49	1.00 0.04 μγα 0.10424 0.00000 00 20 10.22 0.20 μγα Γ.ν.~ 3.10404 0.0001 02 0 14.02 0.07 β	1.66 0.03 Lyc 3.10890 0.00004 37 3 14.42 0.05 B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.30 \ 0.04 \ \text{Ly}\alpha$ $3.11426 \ 0.00007 \ 34 \ 7 \ 13.14 \ 0.07$
$\pm EW \pm ID \qquad z \qquad \pm b \pm \log N \pm$	0.05 0.48 0.03 Lyα 3.00189 0.00002 35 2 13.44 0.02	0.03 0.87 0.04 μyα 3.00858 0.00002 23 2 13.86 0.04 0.02 2.00 0.04 Lvα 3.01012 0.00009 34 5 14.11 0.12	$ Ly\alpha = 3.01093 0.00016 36 9 13.85 0.18$	$0.03 \ 0.74 \ 0.03$ Ly α $3.01237 \ 0.00009 \ 17 \ 7 \ 13.38 \ 0.20$	Lyα 3.01287 0.00012 20 9 13.38 0.19 0.04 2.27 0.05 1 12 2.01510 0.00002 22 4 14.50 0.15	r_{10} 2.01 0.00 r_{10} 2.01616 0.00044 88 26 13.69 0.20	$0.10 \ 0.17 \ 0.03 \ Ly \alpha$ $3.02386 \ 0.00006 \ 39 \ 8 \ 12.94 \ 0.06$	$0.01 1.71 0.03 Ly \alpha$ 3.02723 0.00006 21 3 14.07 0.11	$ Ly_{x} = 3.02789 0.00006 23 4 14.07 0.10 \beta$	$\nabla \nabla $	$0.14 \ 0.29 \ 0.04 \ Ly\alpha$ $3.03274 \ 0.00014 \ 73 \ 16 \ 13.14 \ 0.08$	$0.04 \ 0.89 \ 0.04 \ Ly\alpha$ $3.04563 \ 0.0002 \ 35 \ 4 \ 13.65 \ 0.05$	$0.07 0.15 0.02 \mid Ly \alpha$ 3.04785 0.00008 33 10 12.91 0.10	$0.02 \ 1.27 \ 0.03 \ 1.9\alpha$ $3.04925 \ 0.00001 \ 28 \ 1 \ 14.17 \ 0.04 \ \beta$	0.06 0.11 0.02 Lya 3.05158 0.00027 67 34 13.12 0.18	0.04 0.23 0.02 LY 23 3.05244 0.0000 3 20 12.34 0.23 0.04 0.42 0.03 Ly 23 3.05330 0.00010 51 10 13.41 0.08	$0.06 \ 0.20 \ 0.03 \ \ Ly\alpha$ $3.05634 \ 0.00067 \ 73 \ 65 \ 13.43 \ 0.40$	0.01 1.26 0.03 \dot{Ly}_{x} 3.05729 0.00002 27 4 14.01 0.08 β	0.01 1.24 0.03 Ly α 3.05870 0.00002 33 2 14.09 0.03 β	0.02 2.18 0.04 Lyc 3.06068 0.00022 46 14 13.45 0.19 β	$0.02 \ 0.83 \ 0.03 \ \ Ly\alpha$ $3.06334 \ 0.00002 \ 35 \ 3 \ 13.79 \ 0.03 \ \beta$	$0.08 \ 0.18 \ 0.03 \ Ly\alpha$ $3.06753 \ 0.00004 \ 30 \ 5 \ 12.95 \ 0.05$	0.06 0.11 0.02 Lyox 3.06978 0.00019 43 23 13.03 0.17 0.01 0.63 0.02 Tyox 3.07069 0.00003 14 4 13.68 0.08	$0.02 0.42 0.02$ Ly α 3.07143 0.00005 24 6 13.46 0.06	0.02 3.88 0.04 FeII 2344 1.11195 0.00004 16 3 14.59 0.18	Fell 2344 1.11228 0.00004 18 12 14.75 0.24	FeII 2344 1.11269 0.00092 46 222 14.12 2.92 FeII 2344 1.11314 0.00111 44 58 14.07 2.81	FeII 2344 1.11314 0.00004 15 7 14.49 0.20	0.04 0.67 0.04 Ly α 3.07741 0.00002 33 2 13.59 0.02	0.05 0.26 0.03 Sill 1304 2.80128 0.00003 19 4 13.05 0.05	υ.υσ υ.24 υ.υδ μγα 3.085300 υ.υυυυ4 24 5 1.5.08 υ.υδ 0.05 0.75 0.04 Ι.να 3.08520 0.00030 43 28 12.99 0.29	Lyα 3.08616 0.00006 32 5 13.52 0.08	$0.03 0.03 Ly\alpha$ $3.08784 0.00008 22 6 13.28 0.14$	0.15 0.46 0.08 Lyα 3.08878 0.00015 43 16 13.15 0.14 0.11 0.11 0.02 T 2.00121 0.00012 40 10 10 70 0.17	0.11 0.12 0.03 1.40 3.09121 0.00013 3.0 15 13 12.19 0.12 0.00 0.13 0.03 1.40 3.09390 0.00013 3.0 15 13 77 0.15	0.07 0.28 0.03 Lva $3.09484 0.00010 $ 46 11 13.14 0.08	$0.02 \ 0.70 \ 0.03 \ \ Ly\alpha$ 3.09803 0.00002 29 2 13.68 0.03	$0.04 \ 0.32 \ 0.03 \ \ Ly_{\alpha}$ 3.09922 0.00003 21 4 13.22 0.05	0.04 0.44 0.03 Ly α 3.10139 0.00022 42 14 13.51 0.19	0.04 0.38 0.03 Lyc 3.10200 0.00008 19 13 13.08 0.49	1 1.00 1.00 1.00 20 20 20 1.00000 20 20 20 20 20 20 20 20 20 20 20 2	1 1 1 1 1 1 1 1 1 1	$0.01 0.95 0.02$ Ly α 3.10994 0.00004 24 2 14.05 0.06 β	$0.08 \ 0.30 \ 0.04 \ Ly\alpha$ $3.11426 \ 0.00007 \ 34 \ 7 \ 13.14 \ 0.07$
$\lambda_{vac}(A) \pm EW \pm ID \qquad z \qquad \pm \qquad b \pm \log N \pm $	4865.01 0.05 0.48 0.03 Lyα 3.00189 0.00002 35 2 13.44 0.02	4873.03 0.03 0.87 0.04 μyα 3.00858 0.00002 23 2 13.86 0.04 4875.38 0.02 2.00 0.04 μvα 3.01012 0.00009 34 5 14.11 0.12	$Ly\alpha$ 3.01093 0.00016 36 9 13.85 0.18	4878.03 0.03 0.74 0.03 Lya $3.01237 0.00009 17 7 13.38 0.20$	1 μyα 3.01287 0.00012 20 9 13.38 0.19 1881 ε 2 0 01 2 27 0 05 1 1 2 0 1 ε 10 0 00000 22 1 1 ε 0 0 1 ε	$\frac{1}{1000000}$ 0.07 2.01 0.00 $\frac{1}{1000000}$ 0.01010 0.00002 00 $\frac{1}{10000000}$ 0.00 $\frac{1}{10000000000}$ 0.00004 88 26 13.69 0.20	4891.72 0.10 0.17 0.03 Ly α 3.02386 0.00006 39 8 12.94 0.06	$4896.19 0.01 1.71 0.03 Ly\alpha \qquad 3.02723 0.00006 21 3 14.07 0.11$	$ Ly_{XC} = 3.02789 0.00006 23 4 14.07 0.10 eta$	$\frac{1}{1000000}$ 1.00 1.01 0.01 $\frac{1}{100000}$ $\frac{1}{1000000}$ $\frac{1}{20000000}$ $\frac{1}{200000000}$ $\frac{1}{10000000000000000000000000000000000$	4902.55 0.14 0.29 0.04 Ly α 3.03274 0.00014 73 16 13.14 0.08	4918.33 0.04 0.89 0.04 Ly α 3.04563 0.00002 35 4 13.65 0.05	4920.77 0.07 0.15 0.02 Ly α 3.04785 0.00008 33 10 12.91 0.10	4922.60 0.02 1.27 0.03 Lyα 3.04925 0.00001 28 1 14.17 0.04 β	4924.92 0.06 0.11 0.02 Lyα 3.05158 0.00027 67 34 13.12 0.18	4927.60 0.04 0.22 0.02 LYC 3.03244 0.0000/ 3 20 12.34 0.23 4.927.60 0.04 0.42 0.03 LYC 3.05330 0.00010 51 10 13.41 0.08	$4930.52 0.06 0.20 0.03 \ Ly\alpha \qquad 3.05634 0.00067 73 65 13.43 0.40$	4932.19 0.01 1.26 0.03 $ _{Ly\alpha}$ 3.05729 0.00002 27 4 14.01 0.08 β	4934.06 0.01 1.24 0.03 Ly α 3.05870 0.00002 33 2 14.09 0.03 β	$4937.51 0.02 2.18 0.04$ Lya $3.06068 0.00022 46 14 13.45 0.19 \beta$	4939.72 0.02 0.83 0.03 $Ly\alpha$ 3.06334 0.00002 35 3 13.79 0.03 β	4944.80 0.08 0.18 0.03 Ly α 3.06753 0.00004 30 5 12.95 0.05	4947.24 0.06 0.11 0.02 Lyα 3.06978 0.00019 43 23 13.03 0.17 4948.58 0.01 0.63 0.02 Γ.ν.ς 3.07069 0.00003 14 4 13.68 0.08	4949.55 0.02 0.42 0.02 Lyα 3.07143 0.00005 24 6 13.46 0.06	4952.32 0.02 3.88 0.04 FeII 2344 1.11195 0.00004 16 3 14.59 0.18	FeII 2344 1.11228 0.00004 18 12 14.75 0.24	FeII 2344 1.11269 0.00092 46 222 14.12 2.92 FeII 2344 1.11314 0.00111 44 58 14.07 2.81	Fell 2344 1.11314 0.00004 15 7 14.49 0.20	4956.74 0.04 0.67 0.04 Lyα 3.07741 0.00002 33 2 13.59 0.02	4958.33 0.05 0.26 0.03 Sill 1304 2.80128 0.00003 19 4 13.05 0.05	4304-00 0.00 0.24 0.03 μyα 3.06350 0.0004 24 5 13.08 0.06 4967.15 0.05 0.75 0.04 Γνα 3.08520 0.00030 43 28 12.99 0.29	Lyα 3.08616 0.00006 32 5 13.52 0.08	4969.26 0.03 0.20 0.03 Lyα 3.08784 0.00008 22 6 13.28 0.14	49/0.61 0.15 0.46 0.08 Lyα 3.08878 0.00015 43 16 13.15 0.14	4310:00 0.11 0.11 0.00 T/Åα	4977.91 0.07 0.28 0.03 Lvα 3.09484 0.00010 46 11 13.14 0.08	$4981.84 0.02 0.70 0.03 Ly\alpha \qquad 3.09803 0.00002 29 2 13.68 0.03 0.03 Ly\alpha 0.0002 29 2 13.68 0.03 0.03 0.0002 0.0000 0.000 0.000 0.0000 0.0$	4983.28 0.04 0.32 0.03 Ly α 3.09922 0.00003 21 4 13.22 0.05	$4985.58 0.04 0.44 0.03 \text{ Ly} \alpha \qquad 3.10139 0.00022 42 14 13.51 0.19$	4986.66 0.04 0.38 0.03 Lyα 3.10200 0.00008 19 13 13.08 0.49	$\pi^{330,011}$ U.U. 1.00 U.U. μ/α 3.10404 0.00000 30 20 10.02 U.U. μ/α	4994.98 0.01 1.66 0.03 Lyα 3.10890 0.00004 37 3 14.42 0.05 β	4996.39 0.01 0.95 0.02 $Ly\alpha$ 3.10994 0.00004 24 2 14.05 0.06 β	$5001.53 \ 0.08 \ 0.30 \ 0.04 \ Ly\alpha$ $3.11426 \ 0.00007 \ 34 \ 7 \ 13.14 \ 0.07$
n λ_{rac} (A) \pm EW \pm ID z \pm b \pm $\log N$ \pm	279 4865.01 0.05 0.48 0.03 Lyα 3.00189 0.00002 35 2 13.44 0.02	280 4873.03 0.03 0.87 0.04 μyα 3.00858 0.00002 23 2 13.86 0.04 281 4875.38 0.02 2.00 0.04 μvα 3.01012 0.00009 34 5 14.11 0.12	282 1.3	283 4878.03 0.03 0.74 0.03 Lyα 3.01237 0.00009 17 7 13.38 0.20	284 2015 20 9 13.38 0.19 285 489152 0.04 2.27 0.06 1 1 201510 0.00002 20 9 13.38 0.19	286 ± 0.0123 0.07 ± 0.00 ± 0.00 ± 0.00 ± 0.00044 88 26 13.69 0.20 ± 2.00	287 4891.72 0.10 0.17 0.03 Ly α 3.02386 0.00006 39 8 12.94 0.06	288 4896.19 0.01 1.71 0.03 $ Ly\alpha $ 3.02723 0.00006 21 3 14.07 0.11	289	291 $\frac{1}{2}$	292 4902.55 0.14 0.29 0.04 Lyα 3.03274 0.00014 73 16 13.14 0.08	293 4918.33 0.04 0.89 0.04 $Ly\alpha$ 3.04563 0.00002 35 4 13.65 0.05	$294 4920.77 0.07 0.15 0.02 Ly\alpha$ $3.04785 0.00008 33 10 12.91 0.10$	295 4922.60 0.02 1.27 0.03 Lyα 3.04925 0.00001 28 1 14.17 0.04 β	296 4924.92 0.06 0.11 0.02 Lya 3.05158 0.00027 67 34 13.12 0.18	29/ 4920.16 0.04 0.22 0.02 1.70 5.05330 0.00010 5 20 12.34 0.23 298 4927.60 0.04 0.42 0.03 1.7vc 3.05330 0.00010 51 10 13.41 0.08	299 4930.52 0.06 0.20 0.03 Ly α 3.05634 0.00067 73 65 13.43 0.40	300 4932.19 0.01 1.26 0.03 $Ly\alpha$ 3.05729 0.00002 27 4 14.01 0.08 β	$301 4934.06 0.01 1.24 0.03$ Ly α $3.05870 0.0002 33 2 14.09 0.03 \beta$	302 4937.51 0.02 2.18 0.04 Lyα 3.06068 0.00022 46 14 13.45 0.19 月 303 303 303 303 303 303 303 305 305 305	304 4939.72 0.02 0.83 0.03 Ly α 3.06334 0.00002 35 3 13.79 0.03 β	$305 4944.80 0.08 0.18 0.03 $ Ly α $3.06753 0.00004 30 5 12.95 0.05$	306 4947.24 0.06 0.11 0.02 Lyα 3.06978 0.00019 43 23 13.03 0.17 307 4948.58 0.01 0.63 0.02 Γ.να 3.07069 0.00003 14 4 13.68 0.08	308 4949.55 0.02 0.42 0.02 Lyα 3.07143 0.00005 24 6 13.46 0.06	309 4952.32 0.02 3.88 0.04 FeII 2344 1.11195 0.00004 16 3 14.59 0.18	310 Feil 2344 1.11228 0.00004 18 12 14.75 0.24	311 FeII 2344 1.11269 0.00092 46 222 14.12 2.92 312 FeII 3444 1.11314 0.00111 44 58 14.07 2.81	313 Fell 2344 1.11314 0.00004 15 7 14.49 0.20	314 4956.74 0.04 0.67 0.04 Lyα 3.07741 0.00002 33 2 13.59 0.02	315 4958.33 0.05 0.26 0.03 Sill 1304 2.80128 0.00003 19 4 13.05 0.05 316 4064 60 0.06 0.04 0.03 1 T	310 4904.00 0.00 0.24 0.03 μyα 3.06360 0.00030 43 24 3 13.06 0.06 317 4967.15 0.05 0.75 0.04 Lvα 3.06520 0.00030 43 28 12.99 0.29	318 Lyα 3.08616 0.00006 32 5 13.52 0.08	319 4969.26 0.03 0.20 0.03 Lyα 3.08784 0.00008 22 6 13.28 0.14	320 4970.61 0.15 0.46 0.08 Lyca 3.08878 0.00015 43 16 13.15 0.14	330 402€03 0.11 0.11 0.03 TACC 9.08121 0.0010 42 18 12.79 0.12 320 402€03 0.00 0.13 0.03 T.v.∽ 3.00330 0.00013 30 12 13.72 0.12	323 4977.91 0.07 0.28 0.03 Lyca 3.09484 0.00010 46 11 13.14 0.08	$324 4981.84 0.02 0.70 0.03 Ly\alpha$ $3.09803 0.00002 29 2 13.68 0.03$	325 4983.28 0.04 0.32 0.03 Ly α 3.09922 0.00003 21 4 13.22 0.05	326 4985.58 0.04 0.44 0.03 Ly α 3.10139 0.00022 42 14 13.51 0.19	327 4986.66 0.04 0.38 0.03 Lyα 3.10200 0.00008 19 13 13.08 0.49 339 4000 01 0 02 136 0 04 1 314494 0.00038 50 05 13.08 0.49	329 #330.01 0.03 1.30 0.04 1.50 3.10424 0.00030 30 23 13.32 0.20 7 329 1.1402 0.0001 92 3 14.22 0.77 8	$330 4994.98 0.01 1.66 0.03 1 Lva 3.10890 0.00004 37 3 14.42 0.05 \beta$	331 4996.39 0.01 0.95 0.02 $Ly\alpha$ 3.10994 0.00004 24 2 14.05 0.06 β	332 5001.53 0.08 0.30 0.04 $Ly\alpha$ 3.11426 0.00007 34 7 13.14 0.07

в В 76 876

0.13

œ

0.08 0.11 0.08 0.12 0.12 0.08 0.04 0.07 0.07 0.06

4 8 7 8 8 7 3 4

0.00002 0.00008 0.00005 0.00002 0.00002 0.00007 0.00002 0.00004 0.00020 0.00008

0.10 0.04

0.11 H

> 0.00006 0.00003 0.00007 0.00006

3.31574

0.00006 -H

3.31659

0.04 0.05 0.07 0.12

0.04

5247.61 5249.31

440 441 442 439

0.19 $0.39 \\ 1.87$

0.060.03

5246.52

3.31803 3.32101 3.32528 2.400992.40099

3.31953

5.71

0.04

5253.99

3.32271

Lya Lya Lya Lya Lya Lya CIV 1548 CIV 1550

 $\log N$ 13.18 13.38 14.46 13.39 15.48 15.6113.23 13.97 13.97 13.30 13.66 13.4813.4213.36 13.08 14.45 13.90

н a 00 ŝ

~

A

ᆊ

ΕW

H

 $\lambda_{\rm vac}$ (A)

¤

TABLE 1-Continued

																																																			•		
		βγ	βγ					c	μ	β	β	β	β	β	θ	β	β					θ	θ	θ	θ	β				β					βγ	βγ	βγ	βγ	βγ	βγ			βγ	βγ	βγ	βγ		β	β	β	β	β	
	++	0.14	0.06	0.09	0.16	0.14	0.U5	0.05	0.35	0.26	0.29	0.08	0.13	0.09	0.15	0.40	0.64	0.11	0.17	0.05	0.04	0.22	0.12	0.07	0.12	0.03	0.03	0.04	0.09	0.62	0.51	0.14	0.05	0.10	0.08	0.11	0.19	0.19	0.30	0.06	0.06	0.04	0.05	0.17	0.44	0.07	0.10	0.09	0.31	0.36	0.21	0.09	0.13
	$\log N$	14.66	14.11	13.13	12.84	13.01	13.44	13.18	15.13	15.49	13.55	13.79	12.98	14.34	13.42	14.21	14.02	13.52	13.22	13.27	13.60	13.41	13.72	14.11	13.80	14.67	13.88	13.77	13.30	13.98	14.05	13.31	13.48	13.03	14.20	13.47	13.12	14.44	14.24	14.01	13.63	13.69	14.17	14.42	13.57	13.95	13.05	13.12	13.15	13.18	13.35	13.52	13.15
	+1	ŝ	ŝ	10	Ξ	14	4' '	ю I	-	2	36	S	10	ę	11	10	27	17	11	Ŋ	ი	2	10	Ŋ	10	-1	ŋ	4	œ	19	11	6	œ	6	4	œ	13	13	10	ę	e	4	9	ъ	65	4	7	9	20	16	17	2	13
	9	36	31	35	14	30	8	33	39	27	48	34	23	33	33	23	44	55	31	25	26	14	32	36	44	42	57	34	24	29	16	17	53	26	29	18	15	44	35	25	20	35	51	20	64	26	12	15	26	16	25	25	32
	++	0.00002	0.00002	0.0000	0.00008	0.00012	0.00004	0.00005	0.00026	0.00019	0.00017	0.00007	0.00008	0.00002	0.00013	0.00007	0.00067	0.00015	0.00012	0.00004	0.00003	0.00007	0.00011	0.00007	0.00015	0.00002	0.00005	0.00003	0.00006	0.00046	0.00012	0.00009	0.00008	0.00008	0.00005	0.00007	0.00010	0.00025	0.00023	0.00003	0.00003	0.00004	0.00007	0.00006	0.00062	0.00004	0.00005	0.00005	0.00023	0.00011	0.00010	0.00008	0.00012
	N	3.20737	3.20912	3.21560	3.21739	3.21829	3.22009	3.22302	3.22661	3.22742	3.22917	3.23037	3.23197	3.23336	3.23842	3.23944	3.23994	3.24233	3.24360	3.24924	3.25085	3.25289	3.25353	3.25573	3.25684	3.26068	3.26374	3.26563	3.26747	3.26877	3.26920	3.26990	3.27164	3.27426	3.27612	3.27713	3.27804	3.27945	3.28036	3.28279	3.29298	3.29437	3.29829	3.29967	3.30065	3.30228	3.30631	3.30772	3.30879	3.30941	3.31015	3.31103	3.31439
	e	$Ly\alpha$	$Ly\alpha$	Lyα	Lyα	Lya	μyα	Γλα	MLyα	$MLy\alpha$	Lyα	Lyα	$Ly\alpha$	Lya	Lya	Lyα	$Ly\alpha$	$Ly\alpha$	Lyα	$Ly\alpha$	$Ly\alpha$	Lya	$Ly\alpha$	Lya	Lyα	$Ly\alpha$	Lya	Lya	Lya	Lya	$Ly\alpha$	Lyα	$Ly\alpha$	$Ly\alpha$	$Ly\alpha$	Lyα	Lyα	Lyα	Lyα	$Ly\alpha$	Lyα	$Ly\alpha$	Lya	$Ly\alpha$	$Ly\alpha$	$Ly\alpha$	$Ly\alpha$	Lyα	$Ly\alpha$	$Ly\alpha$	Lyα	Lyα	Lvœ
	-++	0.05	0.06	0.05	0.04	0.04	c.u.o	0.05	0.12		0.03	0.05	0.04	0.05	0.04	0.05		0.05	0.04	0.04	0.04	0.03	0.04	0.05	0.05	0.05	0.06	0.06	0.05	0.07			0.08	0.07	0.06	0.05	0.05	0.11		0.09	0.07	0.08	0.07	0.16	0.05	0.06	0.05	0.05	0.07		0.04	0.06	0.08
	ΕM	2.04	1.32	0.30	0.16	0.19	0u	0.30	3.60		0.36	1.03	0.20	1.55	0.27	2.11		0.64	0.36	0.35	0.63	0.56	0.57	1.52	0.73	2.33	1.20	0.90	0.37	1.80			0.58	0.27	1.44	0.45	0.26	2.82		1.11	0.62	0.79	1.53	1.59	0.34	1.09	0.20	0.24	0.59		0.31	0.62	0.30
	+1	0.02	0.04	0.11	0.08	0.09	0.06	0.10	cu.u	-	0.02	0.03	0.07	0.02	0.05	0.02		0.06	0.05	0.05	0.03	0.02	0.03	0.02	0.03	0.02	0.05	0.04	0.06	0.03			0.10	0.19	0.03	0.03	0.05	0.05		0.06	0.07	0.06	0.04	0.06	0.05	0.04	0.06	0.08	0.07		0.03	0.05	0.11
	$\lambda_{\text{vac}}(A)$	5114.73	5116.97	5124.76	5127.00	5128.12	9730.26	5133.73	5138.66		5141.27	5142.65	5144.66	5146.36	5152.25	5154.05		5157.19	5158.82	5165.70	5167.63	5170.21	5171.12	5173.62	5175.21	5179.55	5183.32	5185.57	5187.86	5189.80			5192.96	5195.87	5198.35	5199.65	5200.67	5202.77		5206.32	5218.86	5220.56	5225.11	5227.04	5228.59	5230.13	5235.02	5236.75	5238.46		5239.69	5240.76	5244.88
	ä	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438
	,																									39	9 5																										

with no apparent local maxima within them require two or sometimes three components to be adequately fitted by Voigt profiles convolved with the instrument profile. In such cases the components listed without a wavelength given apply for the feature with wavelength and NoTES.—Vertical bars indicate blended features. In a number of cases broad Lya lines

ββ

2.13

23

0.00002 0.00092

3.36752

0.01

Lya Lya Lya Lya

> 0.221.33 1.38

> 0.100.01

5303.14

0.03

0.09 0.04

4 5 29 10

2.79989 2.80124

Lya SiIV 1393 SiIV 1393

3.36230 3.36524 3.37571

0.530.19

3.33951 3.34549

Lyα

0.290.920.60

0.15 0.08 0.07 0.08

443 4445 4445 4446 4446 4446 4449 4450 4451 452 453 453 453

0.05 0.05 0.11 0.09 0.07 0.05 0.05 0.06

0.06 0.08

0.32

0.09 0.05 0.07

5258.13

0.500.36

0.08

5265.58

5274.13 5275.38 5282.73 5296.08 5297.74 5306.71 5309.465319.58

Sometimes severe line blending results in highly uncertain parameter estimates. These cases are marked by an asterisk (*) in place of the parameter error estimates. Greek letters in equivalent width given above them.

the last column indicate the higher order Lyman lines used to further constrain the fit to the Lya listed. RAUCH ET AL.

FIG. 3.-Examples of fitted profiles to the Lya lines. The dotted curves show profiles with the same H I column density and redshift as the best-fit values, but with Doppler parameters 1 σ from the best-fit value. Table 1 gives the parameters for each component.

et al. 1985), it is of value to seek velocity structure in the known systems, as well as to identify any new systems so as to minimize the contamination of the Lyman forest sample by misidentified heavy-element lines.

The procedure used to identify heavy-element systems is similar to that described by Bahcall (1968), which in essence seeks significant excesses of identifications at all possible redshifts within some wavelength tolerance. We use the line list provided by Morton, York, & Jenkins (1988), or subsets containing only the most frequently seen lines. In the present case, a line is listed as a possible member of a heavy-element system if its measured wavelength is within +100 mÅ of the predicted position of a metal line at the appropriate redshift. Apart from a requirement that $Ly\alpha$ be present if it would fall in the observed wavelength range, and that multiple transitions from a single ion have equivalent widths consistent (within the errors) with their oscillator strengths, no further constraints were imposed during the automatic search. The lines of heavyelement systems identified in this way are listed in Table 2.

3.1. The z = 1.11 System

This system was also found by SBS in their C IV survey and exhibits a series of strong Fe II lines $\lambda\lambda 2260$, 2344, 2382. A satisfactory fit seems to require four to five components, but the number is quite uncertain since the lines are very strong and broad. The more reliable components in the edges of the profile yield a *b*-value in the range $15-18 \text{ km s}^{-1}$. There is also a redshift coincidence with Zn II $\lambda\lambda 2026$, 2062 lines at z = 1.1123.

If the Zn II identification is correct, then we can estimate the Fe II and Zn II column densities in the z = 1.1123 component by simultaneously fitting Voigt profiles to the Fe II $\lambda\lambda 2260$, 2344, 2367, 2374, and 2383 and Zn II $\lambda\lambda$ 2026 and 2062 lines, requiring that the Fe II redshift and b-value match those for Zn II. This condition has little effect on the values obtained but does reduce the resulting error. For this component, we find $z = 1.11229 \pm 0.00002$ and $b = 12 \pm 5$ km s⁻¹, log N(Fe II) = 14.62 ± 0.24 and log N(Zn II) = 12.83 ± 0.11 . Since both zinc and iron are likely to be mostly singly ionized, the Zn II/Fe II value of log $N(\text{Zn II})/N(\text{Fe II}) = -1.8 \pm 0.3$ can be compared directly with the solar Zn/Fe value of -2.9. This implies an iron depletion of about a factor of 10 in the z = 1.11 cloud. In

the Galactic interstellar medium, iron is depleted by of order a factor of 100 because of its adherence to grain surface, whereas zinc, which is not refractory, retains its solar value (e.g., de Boer, Jura, & Shull 1987). It is thus possible that some depletion of iron onto dust grains has occurred in the z = 1.11cloud, though it is less than in the Galaxy.

3.2. The Z = 2.401 System

This system has a number of lines at z = 2.401 including Ly α $(z = 2.4011, b = 34 \text{ km s}^{-1}, \log N = 14.91)$. The most reliable parameters come from the strong C IV doublet (z = 2.4010, b = 11 km s⁻¹, log N = 13.97) and Si IV 1393 (z = 2.4010, b = 13 km s⁻¹, log N = 12.86). A possible C II 1334 at z = 2.40095 seems to be very narrow and has rather uncertain parameters.

3.3. The z = 2.4933 System

SBS identify a system at z = 2.4933, whose Si IV lines should lie in our wavelength range. They erroneously identify λ 4899.54 as Si IV 1393 rather than as Si IV 1402 which would be consistent with their redshift value of 2.4928. However there is no corresponding Si IV 1393 visible and so the reality of the λ 1402 identification is doubtful.

3.4. The z = 2.7997, 2.8012 System

This system exhibits strong Lya absorption which is well fitted by z = 2.79958, b = 89 km s⁻¹, log N = 16.40. The component structure of Si IV 1393, 1402 (z = 2.79989 and 2.80124, b = 13 and 21 km s⁻¹, log N = 13.48 and 13.42) suggests that Ly α must be double, but a two-component fit to the featureless Ly α line provides no additional constraints. For the z = 2.80two-component there is also a convincing Si II identification (z = 2.80128, b = 19 km s⁻¹, log N = 13.05). Two Si III 1206 components (z = 2.7997 and 2.80118) may be real but are blended with further unidentified lines. SBS have also detected C IV 1548, 1550 in this redshift system longward of the QSO Lya emission line.

3.5. The z = 3.227 System

This redshift is derived from fits to $Ly\alpha$, $Ly\beta$, and $Ly\gamma$. We find no heavy-element lines in our spectrum, but on the basis

		Н	eavy Element	Absorption S	YSTEMS		
n	$\lambda_{ m vac}$ (A)	ID	z	±	Ь	±	log N
			z = 1.11				
241	4774.58	FeII 2260	1.11195	0.00004	16	3	14.59
309	4950.86	FeII 2344					
338	5014.73	FeII 2374					
351	5032.72	FeII 2382					
243	4775.34	FeII 2260	1.11228	0.00004	18	12	14.75
310	4951.64	FeII 2344					
352	5033.07	FeII 2382					
339	5015.53	FeII 2374	•				
58	4279.78	ZnII 2026	1.11229	0.00002	4	2	13.24
79	4356.94	ZnII 2062			-		
340	5016.48	FeII 2374	1.11268	0.00092	46	*	14.12
245	4776.25	FeII 2260					
311	4952.58	FeII 2344					•
353	5034.02	FeII 2382		•			•
246	4777.27	FeII 2260	1,11314	0.00111	44	*	14.07
312	4953.64	FeII 2344					
341	5017.45	FeII 2374					
354	5035.10	FeII 2382					
247	4777.28	FeII 2260	1.11314	0.00004	15	7	14.49
313	4953.65	FeII 2344		0.00001	10	•	1 10 10
342	5017.56	FeII 2374	•	•	•	•	•
355	5035.11	FeII 2382	•	•	•	•	•
			z = 2.40	•		•	·
23a	4132.77	MLva	2.39958	0.00006	64	10	14 25
23b	4134.66	MLya	2 40114	0 00004	34	8	14 91
223	4738.04	SiIV 1393	2.39952	0.00002	32	2	13.48
137	4538.12	CII 1334	2.40095	0.00002	3	*	13 71
446	5265 58	CIV 1548	2.10000	0.000002	11	3	13.07
447	5274 13	CIV 1550	2.10000	0.00002		5	10.01
224	4740.18	SiIV 1393	.2.40100	0.00002	13	3	.12.86
			z = 2.80				
170	4619.04	MLyα	2.79958	0.00002	89	4	16.40
155	4584.33	SiIII 1206	2.79968	0.00005	44	4	13.65
450	5296.08	SiIV 1393	2.79989	0.00002	13	4	13.48
156	4586.25	SiIII 1206	2.80118	0.00005	46	5	13.72
451	5297.74	SiIV 1393	2.80124	0.00004	21	5	13.42
255	4791.24	SiII 1260	2 80128	0.00003	19	4	13.05

SiII 1304

 $MLy\alpha$

 $MLy\alpha$

TADLE 2

 $\log N$

14.59

14.75

13.24

14.12

15.13

15.49

 \pm

0.18

.

0.24.

0.57

0.20

.

0.49

0.05

0.02

*

0.12

0.05

0.20

0.06

0.07

0.06

0.06

0.05

0.35

0.26

Notes.-Lines denoted as MLya belong to systems with metal absorption lines. In some cases, severe line blending results in highly uncertain parameter estimates. These cases are marked by an asterisk (*) in place of the parameter error estimates. Additional Lya components in some of the fitting regions are included in Table 1.

0.00026

0.00019

39

27

7

2

z = 3.23

3.22661

3.22742

of SBS's detection of C IV at this redshift, the system was omitted from our Lyman forest sample.

4958.33

5138.16

5139.15

315

394

395

width-limited samples to examine evolutionary characteristics in the forest. Unfortunately, at low resolution it is difficult to separate the contributions of column density and Doppler parameter to the measured equivalent width.

However, with the ever-increasing quality of available Lyman forest data, it is becoming possible to examine column density-limited samples, since the resolution of line profiles allows us to remove the Doppler parameter, column density degeneracy through line-fitting techniques such as we have employed here. Such analysis permits us to estimate the number of clouds associated with each measured line, and to infer the value of the Doppler parameter which provides an upper limit to the cloud temperature.

4. PROPERTIES OF LYMAN FOREST ABSORPTION SYSTEMS

4.1. Number-Density Evolution

Ultimately, we are interested in the evolution of the physical characteristics of the clouds themselves-e.g., the number of clouds of a given size, aspect ratio, ionization fraction, mass, density, and temperature as a function of redshift. Since the equivalent width is one of the more easily measured characteristics of any line, many existing analyses have used equivalent

1992ApJ...390..387R

398

 TABLE 3
 Redshift Windows for Line Counts

QSO	Redshift Range
0014+813	2.695-3.273
0420-388	2.470-3.070
1100-264	1.840-2.104
2000-330	3.057-3.160
	3.210-3.420
	3.460-3.540
	3.570-3.645

We examine the redshift dependence of the number of Lyman forest clouds by combining the 0014+813 data presented here with those published for 0420-388 (Atwood et al. 1985), PKS 2000-330 (Carswell et al. 1987) and 1100+264 (Carswell et al. 1991). In order to avoid any proximity effects, we restrict our attention only to clouds whose redshift places them sufficiently far from the QSO that its radiation does not dominate their environment (except for 0420-338, where a Lyman limit system at z = 3.08 removes the ionizing flux from the QSO as seen by systems at lower redshifts). So that we may compare our results directly to those of Lu, Wolfe, & Turnshek (1991), we adopt this distance to be 8 Mpc. The redshift ranges covered by the data for each QSO are summarized in Table 3.

The number-redshift relation is conventionally parameterized as a power law of the form $dN/dz \propto (1 + z)^{\gamma}$, and it is instructive to investigate the sensitivity of γ to various conditions placed on the same input data. Table 4 summarizes the values of γ derived using three different line selection criteria. Cases A and B set line selection thresholds based on the inferred cloud column density rather than the measured line equivalent width. The column density threshold in case A was chosen so as to select as large a complete sample as possible; that in case B was chosen so that the rest equivalent width at b = 33 km s⁻¹ is 360 mÅ, the equivalent width threshold adopted by Lu et al. (1991). Although the evidence for positive evolution in the number of clouds with redshift is clear, there is no evidence in our data for any difference in evolution between high- and low-column density clouds.

In case C we restrict our sample to those lines, whether single or blended, whose integrated rest equivalent width exceeds 360 mÅ. The number-density evolution of this sample can then be compared directly to that inferred by Lu et al. (1991), who adopted the same limit for a complication of 952 lines from 38 QSOs. Even though the resolution of our data is considerably higher than that of Lu et al., Parnell & Carswell (1988) have shown γ to be relatively insensitive to resolution, so that this comparison may be a valid one.

We infer $\gamma = 1.68 \pm 0.80$ from our equivalent width-limited sample while Lu et al. infer $\gamma = 2.75 \pm 0.29$ from theirs. Although the difference between these values is within the 1 σ error bars of the separate determinations, it is interesting to

		TA	BLE 4			
POWER-LAW	EXPONENTS	FOR	THREE	Line	SELECTION	Criteria

Case	Selection Criterion	Number of Lines	γ
A	$\log N > 13.75$	301	2.08 ± 0.53
B	$\log N > 14.27$	120	1.59 ± 0.82
C	$W_{\rm rest} > 360 {\rm m\AA}$	127	1.68 ± 0.80

note that Lu et al. present evidence for a break in the power law at z = 2.32 and fit a double power law with $\gamma = 2.28$ above and 4.21 below that redshift. Our sample contains only five lines with $W_{\text{rest}} > 360$ mÅ below this redshift, so we find good agreement between Lu et al.'s high redshift result and ours but are unable to comment on the presence of a steepening of the power law at lower redshifts. However, we note that such an effect is likely to be in conflict with the result of Morris et al. (1991) who find a significant excess of lines near zero redshift compared to the number predicted by extrapolating from high redshift; a steeper power law will lead to an even smaller predicted number of clouds.

4.2. The Column Density and Doppler-Width Distributions

In order to study the column density distribution of the Lyman forest clouds toward 0014+813, proper account must be taken of the selection effects which arise in identifying lines in the observational data. Line-finding routines tend to impose a noise-dependent cut off at low equivalent widths, such that in regions of lower S/N the weaker lines will be missing. To examine the $N(H \ I)$ distribution, we have selected only those lines above the 4 σ level with respect to the continuum in order to minimize the number of spurious features. Under this restriction, a line with $b \leq 80 \text{ km s}^{-1}$ is detectable for log $N(H \ I) \gtrsim 13.3$. Since there are few lines with larger inferred *b*-values (five of 295), this H I column density provides a reasonable completeness limit.

The "proximity effect-free" sample for which $\log N \gtrsim 13.3$ contains 166 lines in a redshift interval $2.695 \le z \le 3.273$ at a mean redshift of 2.996. The distribution of the number of systems \mathcal{N} per unit redshift versus column density is well represented by a power law, $d\mathcal{N}/dN \propto N^{-\beta}$, $\beta = 1.74 \pm 0.06$ (Fig. 4). A K-S test gives the probability for a power-law representation as 0.51. The mean *b*-value for the sample is 36 km s⁻¹ with a first moment about the mean of 16 km s⁻¹; the median value is 33 km s⁻¹.

The full log $N \gtrsim 13.3$ sample (ignoring proximity effects) contains 189 lines in the redshift interval $2.695 \le z \le 3.376$ at a mean redshift of z = 3.03. The inferred value of β is 1.72 ± 0.05 , and the mean, median, and first moment of b are unchanged from the proximity effect-free sample. Because the two samples are indistinguishable, we use the full sample in what follows.

FIG. 4.—The H I column density distribution of the complete sample

FIG. 5.—Doppler parameter b vs. log N (H I) for the full line sample

4.3. Doppler-Width, Column Density Relationships

For the sample described in the previous section, a correlation coefficient of 0.101 is found between b and log N(H I)which has a probability of 0.19 of occurring by chance for uncorrelated distributions in the variables. There is thus no evidence for any significant b-log N correlation for the log $N \gtrsim 13.3$ subsample.

However, when we consider all 295 lines we have identified as Lya arising in Lyman forest systems, Figure 5 illustrates that those with log $N \ge 13.75$ appear to have fewer lines with $b \le 20$ km s⁻¹ (six of 98) than do those with log N < 13.75 (41) of 198). Furthermore, there is a positive correlation between band log N for column densities below $\simeq 13.75$ dex which is absent for higher column densities. To investigate this effect further, we split the sample into two subsamples: (a) the 197 lines with log $N(H_{\rm I}) \leq 13.75$, and (b) the 98 with log N(H I) > 13.75. A *b*-log *N* correlation coefficient of 0.014 and a random probability of 89% is obtained for the higher column density subsample, suggesting that, like the complete sample, it exhibits no significant b-log N correlation. However, the lower column density subsample has a correlation coefficient of 0.35, with chance probability for uncorrelated data $< 10^{-6}$.

In fact, as we now show, these apparent correlations of Doppler parameter and column density can be accounted for entirely by biases in the line-finding and fitting procedures applied to a given line sample. To demonstrate this, we have chosen to simulate a spectrum containing Lya lines with a simple, known distribution of Doppler parameters and column densities and to search for and fit lines in the usual manner. The spectrum was generated from a sample of lines, which, for simplicity, occupy a horizontal bar in b-log N parameter space, being confined to the intervals 20 < b < 60 km s⁻ $12.5 < \log N < 15.7$. The lines were distributed randomly in redshift and Doppler parameter with the same number density as the real 0014+813 spectrum (although covering a slightly reduced redshift range so that the total number of lines observed is smaller than in 0014 + 813). The column density distribution obeyed the empirically determined $\propto N_{col}^{-1.74}$ power law. The simulated spectrum was convolved with the (Gaussian) instrumental profile, and noise was introduced to mimic the resolution and S/N of the observed spectrum.

Qualitatively, Figure 6, which presents the b-log N(H I) plot resulting from Voigt profile fits to the spectrum that arises

FIG. 6.—The b vs. log N for the fitted results for a simulated line sample. (Input parameters were confined to those within the rectangular box.)

from this rather featureless sample, reproduces the basic features of the real data surprisingly well:

1. A number of "runaways" with high Doppler parameters arise from unresolved blends.

2. Another group of lines appears beyond the low b-low log N corner of the box-shaped input sample, implying that some fits result in unrealistically narrow weak lines. These lines undoubtedly arise from S/N effects.

3. There is a triangular zone, bordered by log N = 12.5, $b = 60 \text{ km s}^{-1}$ and the diagonal line joining log N = 13.2, $b = 60 \text{ km s}^{-1}$ and $\log N = 12.5$, $b = 20 \text{ km s}^{-1}$, in which lines have almost completely disappeared, despite their having been a high line number density in the input sample to this region. This zone of avoidance results because the line detection threshold is set by the S/N over the entire line profile, which at any given equivalent width is lower for broader, shallower lines, and thus these will be preferentially rejected.

4. The region with log $N \gtrsim 13.5$ and $b \lesssim 25$ km s⁻¹ appears to have been systematically depopulated as well. This seems likely to arise from the fact that lines produced by clouds with these column densities have a better determined b because of their position on the curve of growth. This results in a reduced vertical scatter in Figure 6 compared to lower column densities, with most points (apart from the "runaways") confined to the initial condition box. The depopulation of lower bsystems within the box then arises from an apparent systematic broadening of lines due to blending. Low-b lines may be more sensitive to blending than lines which have a truly higher bsince in cases where a narrow log $N \le 13.5$ line is blended with a broader log $N \ge 13.5$ one, χ^2 (and hence the parameter error estimate) is dominated by the broad component.

These selection effects combine to imprint a highly significant correlation of 0.39, similar to that observed in the real data, on the uncorrelated parent line population, and suggest that the observed correlation seen in Figure 5 results entirely from these effects. (We note that in spite of these changes, the mean Doppler parameter of the sample is not significantly modified—we obtained $\bar{b} = 39.6 \text{ km s}^{-1}$ for the simulated sample compared to an unblended mean of 40.)

While the above analysis was undertaken for a resolution of \sim 23 km s⁻¹ to understand selection effects in the 0014+813 data, similar work at resolution $\sim 8 \text{ km s}^{-1}$ by Webb & Carswell (1991) yields the same general results.

1992ApJ...390..387R No. 2, 1992 On the basis of the results from the simulation, we suggest there is no evidence for a difference in the Doppler parameters for high- and low-column density clouds. If there is a true intrinsic difference, it will be difficult to separate from the systematic biases described above.

4.4. Does the Doppler Parameter Measure Thermal Motions?

The controversy aroused by the low Doppler parameters $(<10 \text{ km s}^{-1})$ reported by Pettini et al. (1990) and the equanimity with which we present Doppler parameters estimates in excess of 60 km s⁻¹, point to the important astrophysical issue behind such measurements. So long as Doppler parameters were found to be of the order of 20 km s⁻¹, their interpretation as thermal motions in clouds seemed consistent with models of galaxy-sized, mostly ionized clouds heated by the integrated intergalactic UV radiation field. However, neither the low *b*-values proposed by Pettini et al. nor those much in excess of 20 km s⁻¹ are consistent with this "standard" model for the hydrogen-only clouds, although in the former case, Duncan, Vishniac, Ostriker (1991) have shown that inclusion of adiabatic cooling as the confining pressure drops may substantially lower the cloud temperature.

While our resolution is not as high as those obtained in a spectrum of 1100-264 by Carswell et al. (1991), and Pettini et al. (1990) in their spectrum of 2206 - 199, the equivalent width detection limits are similar. Thus we are able to make a comparison between the relative frequencies of narrow lines in each of the objects, provided only that the threshold dividing the low- and high-Doppler parameter subsamples is well above that corresponding to the poorest spectral resolution. It is thus difficult to comment on the number of very narrow systems toward 0014+813 (e.g., with Doppler parameters ~ 10 km s^{-1}) because our spectral resolution is too poor to measure these reliably. However, choosing a threshold of 20 km s⁻ about 12% of the putative Ly α systems in our sample have Doppler parameters less than this value. This value is in good agreement with the sight line toward 1100-264 (Carswell et al.) where about 18% of the lines which are not identified with heavy elements may have Doppler parameters less than 20 km s^{-1} . The comparison with Pettini et al. is more difficult because the lines they chose to fit were those which were both unsaturated and unblended so there will be some additional biases in their sample (see § 4.3 and Webb & Carswell 1991). If we ignore this problem, their profile fits yield 63% for the narrow-line fraction.

It is possible to reconcile high measured *b*-values with the standard model by proposing that any observed line whose inferred *b*-value substantially exceeds 20 km s⁻¹ results from an unresolved blend in the data. In order to investigate the consequences of such an interpretation, we have adopted b = 20 km s⁻¹ for all components, thus leaving only column density and redshift as free parameters, and have reapplied our fitting procedure to all Ly α lines in Table 1.

A satisfactory fit can always be obtained by inserting enough sufficiently narrow components into a given observed feature. However, if the fit is to be optimized by minimizing its reduced χ^2 , fixing the Doppler parameter at a preconceived value that is lower than the "true," a priori unknown, value may force overfitting of the line to compensate for the incorrect assumed Doppler parameter. In other words, it is difficult to determine whether a bad χ^2 indicates too few fit components or merely reflects an unsuitable line width of one or more of them. In order to proceed in a consistent manner, we adopted the procedure of inserting additional components until the probability for the achieved reduced χ^2 exceeded 1%. This procedure results in an average reduced $\chi^2 = 1.24 \pm 0.05$, well above that usually obtained for fits with free Doppler parameters at the same probability threshold. To achieve even this result 54% more components were needed to fit the ensemble of lines.

The availability of $Ly\beta$ for a subset of the $Ly\alpha$ lines should provide a further constraint on the fitting parameters. Such $Ly\alpha + Ly\beta$ fits invariably required about twice as many components as did the corresponding $Ly\alpha$ fit alone. This occurs because $Ly\alpha$ lines are more saturated than the corresponding $Ly\beta$ lines, and what may appear to be a satisfactory fit by, for example, two suitably spaced components to a mildly saturated $Ly\alpha$ tends to be clearly inadequate for its corresponding $Ly\beta$.

However, only a minority of systems exhibit unblended $Ly\beta$ lines so that this additional constraint cannot be applied to the entire $Ly\alpha$ line set. Its application to only part of the set would inevitably lead to a bias whereby $Ly\alpha + Ly\beta$ systems would appear to have more components than $Ly\alpha$ only systems. In order to avoid such a bias, $Ly\beta$ was not used to constrain the $Ly\alpha$ fits.

The two-point correlation function (TPCF) of the resulting sample of 453 components with b = 20 km s⁻¹ is shown in Figure 7 and clearly displays an increased amplitude on small scales ($\Delta v < 100$ km s⁻¹), because several narrow components are needed to reconstruct the observed line. There is an excursion of 4.3 σ which peaks at about 45 km s⁻¹, and the clustering appears to extend out somewhat further. It is clear that because of the effects mentioned above the actual number of components per blend is likely to be significantly higher, so that the clustering amplitude shown in Figure 7 must be seen as a strict lower limit if b = 20 km s⁻¹.

Thus, high inferred b-values can be reconciled with standard "warm" cloud models if they are really unresolved blends of b = 20 km s⁻¹ lines, although such an assumption produces a strong TPCF hitherto associated with only the metalcontaining systems, though at much smaller spacings. Alternatively, the Doppler parameter could reflect the existence of nonthermal bulk motions. In either case, very high resolution and S/N observations of such systems should show incipient structure, asymmetries, or other departures from Voigt profiles.

FIG. 7.—The two-point correlation function for 453 lines with fixed Doppler parameter $b = 20 \text{ km s}^{-1}$. The bins are 10 km s⁻¹ wide.

1992ApJ...390..387R

400

4.5. Voids in the Lyman Forest

There have been a number of attempts to search for voids in the Lyman forest, and conflicting conclusions have recently been put forth for their existence. In particular, Crotts (1987, 1989) has presented evidence for possible voids in the forest toward Q0420-388, while Carswell & Rees (1987) find no such evidence. Bechtold (1990) has shown that there are weak Ly α lines in the possible void toward Q0420-388, and Duncan, Ostriker, & Bajtlik (1989) have found little evidence for voids. Recently, however, Dobrzycki & Bechtold (1991) have found a void in the Ly α line distribution toward Q0302-003.

The extended wavelength coverage in 0014+813 invites a search for large-scale gaps or regions of low line density in the forest, and in order to do so we performed the following simple statistical test. The distribution of maximum intervals expected if Lyman forest clouds are randomly distributed along the line of sight [subject to an underlying trend of $dn/dz \propto (1 + z)^2$] was derived using a Monte Carlo simulation of a large number of spectra. The line number density and redshift range used was chosen to match that of 0014+813 over the redshift interval 2.6956 < z < 3.3362. The lower limit corresponds to the Ly β emission line and the upper limit to 3000 km s⁻¹ below the Ly α emission line, to avoid environmental effects in the QSO vicinity. In this region, we count 187 Ly α absorption lines with log N greater than our adopted completeness level of 13.3 (including those with associated heavy element absorption).

We generated 10,000 line lists, the number of lines in each being selected at random from a Poisson distribution with a mean of 187. Line blending was ignored since the spectral resolution is high and is unlikely to introduce any significant systematic effects on large scales. In Figure 8 we plot the probability distribution of maximum intervals containing 0, 1, 2, and 3 lines. The four arrows above the curves illustrate the observed values for 0014+813. In each case the observed maximum interval lies close to the mean of the simulated distribution, and this simple test yields no obvious evidence for large scale voids or regions of low absorption line number density.

Out of curiosity, we applied the simple method described above to the spectrum of 0420-388, in which Crotts (1987) has reported the existence of a statistically significant void, measuring as before the maximum intervals in the data containing 0, 1, 2, and 3 lines. Once again, we restricted our analysis to the redshift range beginning at $Ly\beta$ emission and ending 3000 km s⁻¹ below Ly α . For 0420-388, this corresponds to $2.4762 \le z \le 3.0788$. The data quality is somewhat lower than that for 0014+813, and only lines above a completeness level of log N = 13.75 were included (100 lines in the adopted redshift window). Using probability distributions analogous to those for 0014+813 in Figure 8, we find that the probabilities of the 0, 1, 2, and 3 line maximum gaps arising by chance are 9.3, 6.3, 15.9, and 0.81%.

The 0 line maximum interval corresponds to Crotts's gap (although since we adopt a detection threshold of log N = 13.75 our gap extends over the slightly larger range 2.59775 < z < 2.55556). We conclude therefore that this feature is not statistically significant. However, the spectral region around this feature does appear to have a meager forest and a much more significant effect is seen if we allow the maximum interval to contain three lines. Thus while we disagree with Crotts's specific claim, there is a significant line deficit over the range 2.65259 < z < 2.55556, corresponding to a scale length of $\sim 8100 \text{ km s}^{-1}$ or approximately 24 Mpc (adopting $H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}$ and $q_0 = \frac{1}{2}$).

If such an apparent void results not from a real dearth of matter, but from increased local ionization in its vicinity, such a source should be detectable. Indeed, the scale over which the line deficit extends is so large that it seems extremely unlikely that a single ionizing source could have escaped detection. To illustrate the point, we compute the number of lines in this interval expected on the basis of a $q_0 = \frac{1}{2}$ universe, a uniform background radiation of 1.0×10^{-21} ergs s⁻¹ Hz⁻¹ cm⁻¹, and an "un-ionized" initial mean number of clouds with column densities log $N \ge 13.75$ of 12.7 (derived using $\gamma = 1.987$ and a

FIG. 8.—The distribution of maximum redshift intervals. The four curves are derived from Monte Carlo runs of randomly distributed absorption lines and from right to left correspond to intervals containing 0, 1, 2, and 3 lines. The four arrows illustrate the observed values toward 0014+813.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

line number density at z = 0 of 10.3—work to be presented elsewhere). If we assume the offending ionization source lies optimally on the line of sight, then in order to reduce the observed number of lines to 3, we require a source with a flux at its Lyman limit of $f_v \approx 2.7 \times 10^{-26}$ ergs s⁻¹ Hz⁻¹ cm⁻², which allowing for k-corrections (Evans & Hart 1977) and using the empirical expression given by Tyler (1987) translates to a fairly conspicuous $m_v = 14.8$.

On this basis it appears that the observed line deficit is either a statistical fluke or is the result of some other physical mechanism banishing Ly α clouds from the region. QSO variability might offer at least a partial explanation so it would seem worthwhile to make a detailed search of the regions at $z \sim 2.6$ close to the line of sight to 0420-388. Christiani & Shaver (1987) report the discovery of a very faint object, Q0420-388B $(m_v = 20.8)$, lying about 1.7 Mpc from the line of sight at z = 2.40, so this is unlikely to produce the low observed cloud number density.

Another possibility is the presence of a nearby supercluster at $z \approx 2.6$, perhaps located in a region of high ambient pressure, unfavorable to the formation or survival of Ly α clouds. Christiani & Shaver (1988) detect an absorption system at z = 2.403, presumably associated with 0420-388B, in the spectrum of its higher redshift neighbor. As they point out, the redshift difference between the foreground QSO and the associated absorption suggest the presence of a cluster. It would be valuable to make a detailed, high S/N study of 0420-388 longward of the Ly α emission line to search for peculiarities in the number density of C(IV) doublets which might be associated with such a structure.

4.6. Clustering in the Lyman Forest

In order to search for possible clustering of Lyman forest clouds, we present in Figure 9 the TPCF for all 295 Ly α lines. The dashed line marks the standard deviation expected from a Poissonian distribution of line-pair velocity separations, and the plot is normalized to a value of $\xi = 0$ for the range from 1050 to 3050 km s⁻¹. There is no convincing evidence for clustering on any scale. Chernomordik (1988) noted the double appearance of selected features toward 0014+813 and suggested a possible interpretation of some Ly α clouds as shocked shells in the intergalactic medium. However, the absence of any clear signal on scales ~100 km s⁻¹ suggests this is not a general feature.

Although there is no evidence for general cloud clustering, one unusual aspect of the low-b clouds seems to survive selec-

4000

Velocity (km s⁻¹)

6000

2000

FIG. 10.—The two-point correlation function of the narrow-line sample

tion biases: an examination of the redshifts of such clouds suggests that they tend to occur in groups, mostly separated by less than 3 Å from their neighbors. To check whether this is a general characteristic of the whole sample or a special feature of the narrow lines, we compare the TPCF of the 48 line subsample having $b \le 20$ km s⁻¹ with the remaining 247 lines having b > 20 km s⁻¹.

In Figure 10 the TPCF of the narrow-line sample is plotted in 200 km s⁻¹ bins over a range from 50 to 3050 km s⁻¹. There is a 2.6 σ excess on scales to about 250 km s⁻¹ and some marginal evidence that there is clustering to scales of order 1000 km s⁻¹. This contrasts with the TPCF shown in Figure 9 for all 295 systems measured where there is no evidence for clustering on any scale.

It remains possible that the narrow-line population is distributed uniformly, and evidence for clustering is introduced spuriously by the relative ease of detecting narrow lines in regions in which stronger broad lines are absent. To test whether this effect could cause artificial clustering on the scale in question, we replaced the lines with $b \le 20 \text{ km s}^{-1}$ in the full observed sample by a population of 160 lines with the same values of b and N but randomly distributed in wavelength with number density 0.19 Å⁻¹ over the whole spectrum. This number density was adopted in order to produce ≈ 50 detectable narrow lines.

From the full list we then generated an artificial spectrum in which the lines were fitted automatically by Ly α Voigt profiles. The TPCF for the resulting sample of the 60 detected lines with $b \leq 20$ km s⁻¹ is shown in Figure 11 and displays no evidence of significant clustering. The artificial spectrum differs from the real data in that we assumed constant instrumental resolution and S/N and a uniform number density of narrow lines with wavelength. Nonetheless, it seems likely that had the correlation seen in the real data (Fig. 10) been caused by a bias favoring the detection of weak lines in regions bereft of strong, broad lines, then that correlation should have appeared clearly in the artificial data (Fig. 11).

Closer scrutiny reveals that the positive signal in the narrowline TPCF is dominated by nine lines in the range 2.808 < z < 2.835, five of which are within a 500 km s⁻¹ window. Since the clustered component is easily identifiable, and the velocity splittings are comparable to those typically found in heavy-element systems, we examine the Ly α lines at $z \sim 2.8$ in detail to see if they might be heavy element lines which we failed to identify. Most possibilities are excluded by

8000

S.I

1+£(∨)

0.5

1992ApJ...390..387R

No. 2, 1992

FIG. 11.-The two-point correlation function of a simulation with 60 narrow lines.

the absence of other lines, either from the same ion (e.g., Mg II, Fe-II), or from other abundant ions (particularly $Ly\alpha$) at the same redshifts.

However, we cannot rule out an identification with some solitary heavy element line such as Al II 1670. If this were the correct identification, other metal lines at the same redshift that would fall within our observed wavelength range would be too weak to be detected.

An alternative possibility is that the narrow lines clustered at $z \sim 2.8$ are Lya lines of low column density, heavy-element systems, where heavy-element cooling would reduce the thermal width of the lines produced in the clouds. Such an explanation seems rather ad hoc, for while there is some evidence that moderate-to-low column density systems may in fact contain metals (Lu 1991; Blades 1988), the metal abundance is probably too low to contribute significantly to the cooling. Evidently, 0014+813 invites further study at higher resolution and S/N.

5. CONCLUSIONS

We summarize our principal results as follows:

1. The observations of 0014 + 813 reported here are solely of the Lyman forest region, so little new information has been obtained on heavy-element systems. One case is worthy of note: a heavy element system at z = 1.11 has a component in which it appears that the Zn/Fe ratio is significantly higher than the solar value. If the identification of the two Zn II lines is correct, this suggests that the iron is depleted, presumably onto dust grains.

The picture we present for the bulk of the $Ly\alpha$ lines is similar to that which has been found in earlier QSO studies at $\simeq 20$ km s^{-1} resolution where all the lines observed have been analyzed:

2. Our data combined with those at similar resolution and S/N for three other QSOs suggest that the number of Lyman forest clouds per unit redshift is well represented by a power law in (1 + z) with an index of 2.1, though the value of the index is sensitive to the redshift range of the available line sample, and the particular set of criteria used to define the sample.

3. The H I column density distribution for clouds with 2.7 < z < 3.4 is well described by a power law with numbers per unit column density $\propto N^{-1.74\pm0.06}$ for log N(H I) > 13.3. This agrees well with determinations in other objects at other redshifts: $N^{-1.7\pm0.1}$ for log N > 13 and 1.84 < z < 2.15toward Q1100-264, Carswell et al. (1991); $N^{-1.89\pm0.14}$ for log N > 14.0 and 2.47 < z < 3.08 toward Q0420-388, Atwood et al. (1985); $N^{-1.76}$ for log N > 13.75 and incomplete coverage in the range 3.3 < z < 3.8 toward PKS 2000-330, Carswell et al. (1987). Taken together, these results suggest that the column density distribution function maintains its shape over the redshift range $2 \leq z \leq 3.5$ for log $N \geq 13.5$.

4. Doppler parameters have a range of values, with a median of about 35 km s⁻¹. For those systems with log N > 13.3, where few of the high *b*-value lines will be missed because of selection effects, the median value of b is 33 km s⁻¹. This is similar to the values found toward Q1100-264 (34 km s^{-1} for log N > 13), Q0420-388 (35 km s^{-1} for log N > 13.75), and PKS 2000 - 3300 (37 km s⁻¹ log N > 14).

5. The fraction of low Doppler parameter ($b < 20 \text{ km s}^{-1}$) lines seen in 0014 + 813 is ~ 12%. This is comparable with the fraction found in 1100-264 (Carswell et al. 1991), but inconsistent with the 63% found from the analysis of 2206-199 by Pettini et al. (1990). The spectral resolution in the data described here is not high enough to investigate the existence or otherwise of very narrow $b < 10 \text{ km s}^{-1}$ Ly α lines.

6. There is no convincing evidence for a correlation between b-value and H I column density for the systems with $\log N >$ 13.3. There is an apparent excess of weak narrow lines corresponding to lower H I column densities, but this excess is likely caused by a combination of our missing any broad weak lines and/or to increased errors at low equivalent widths.

7. A search for voids, regions along the line of sight to 0014+813 where the line number density is significantly lower than the mean, proved negative. However, the same technique applied to 0420-388 revealed a region of approximately 24 Mpc where the line density differs from the expected value at a significant level of around 99%. This low-density zone is unlikely to be caused by a nearby ionizing source.

8. The Ly α lines as a whole show no clustering in the redshift range 2.7 < z < 3.4, but if we consider only the narrow lines which have not been identified with heavy elements then there is significant clustering on scales of ≤ 250 km s⁻¹ with some evidence that the effect extends out to ~ 1000 km s⁻¹. The peak in the two-point correlation function which yields this result is due almost entirely to a group of nine lines identified as Ly α with $z \sim 2.8$. It is possible that these are unidentified heavy element lines, but we have been unable to find any evidence to support such an identification.

We are grateful to the Kitt Peak mountain staff for assistance with the observations, and the U.K. Science and Engineering Research Council for provision, through STARLINK, for the computing facilities used to perform much of the data analysis. F. H. C. gratefully acknowledges the hospitality of the Institute of Astronomy and the support of a Royal Society Guest Research Fellowship. C. B. F. acknowledges support from NSF grant AST 90-01181.

REFERENCES

Atwood, B., Baldwin, J. A., & Carswell, R. F. 1985, ApJ, 292, 58 Bahcall, J. N. 1968, ApJ, 153, 679

Bechtold, J. 1990, in Evolution of the Universe of Galaxies, ed. R. G. Kron (ASP Conf. Ser., 10), 234

Blades, J. C. 1988, in QSO Absorption Lines: Probing the Universe, ed. J. C. Blades et al. (Cambridge: Cambridge Univ. Press), 147 Carswell, R. F., Lanzetta, K. M., Parnell, H. C., & Webb, J. K. 1991, ApJ, 371, 36

1992ApJ.

- Carsweil, K. F., Morton, D. C., Smith, M. G., Stockton, A. N., Turnshek, D. A., & Weymann, R. J. 1984, ApJ, 278, 486 Carswell, R. F., & Rees, M. J. 1987, MNRAS, 224, 13P Carswell, R. F., Webb, J. K., Baldwin, J. A., & Atwood, B. 1987, ApJ, 319, 709 Chaffee, F. H., Foltz, C. B., Bechtold, J., & Weymann, R. J. 1986, ApJ, 301, 116 Chaffee, F. H., Foltz, C. B., Röser, H. J., Weymann, R. J., & Latham, D. W. 1985, 292, 362 Carswell, R. F., Morton, D. C., Smith, M. G., Stockton, A. N., Turnshek, D. A.,

- Khare, P., York, D. G., & Green, R. F. 1989, ApJ, 347, 627 Kühr, H., Liebert, J. W., Strittmatter, P. A., Schmidt, G. D., & Mackay, C. D. 1983, ApJ, 275, L33

- Lu, L. 1991, ApJ, 379, 99 Lu, L., Wolfe, A. M., & Turnshek, D. A. 1991, ApJ, 367, 19 Morris, S. L., Weymann, R. J., Savage, B. D., & Gilliland, R. L. 1991, ApJ, 377, L1

- L1 Morton, D. C., York, D. G., & Jenkins, E. B. 1988, ApJS, 68, 449 Parnell, H. C., & Carswell, R. F. 1988, MNRAS, 230, 491 Pettini, M., Hunstead, R. W., Smith, L., & Mar, D. P. 1990, MNRAS, 246, 545 Sargent, W. L. W., Boksenberg, A., & Steidel, C. C. 1988, ApJS, 68, 539 (SBS) Sargent, W. L. W., Steidel, C. C., & Boksenberg, A. 1989, ApJS, 69, 703 Tytler, D. 1987, ApJ, 321, 69 Webb, J. K., & Carswell, R. F. 1991, in Proc. ESO Mini-Workshop on Quasar Absorption Lines (ESO Report 19), in press Wolfe, A. M. 1991, in Proc. ESO Mini-Workshop on Quasar Absorption Lines (ESO Report 19), in press Young, P. J., Sargent, W. L. W., Boksenberg, A., Carswell, R. F., & Whelan, A. J. 1979, ApJ, 229, 891