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ABSTRACT 
Nonlinear growth of two-dimensional Rayleigh-Taylor (R-T) instabilities are numerically studied to apply to 

the mixing in the supernova ejecta. We first present much refined calculations of mixing in the realistic model 
of SN 1987A with a better code and various mesh resolutions. The results show that the mixing width (or the 
extent of mixing) due to Rayleigh-Taylor instabilities is still too small to account for the observations even 
with relatively large initial perturbation. The mixing width is found to depend only slightly on the mesh 
resolution when the initial amplitude is larger than ~5% of the expansion speed. 

To clarify the basic properties of the R-T instabilities and the dependence of the mixing width on the initial 
density structure, initial perturbation, and numerical resolution, we consider much simplified ideal models of 
R-T instabilities of compressible gas with an adiabatic constant y = 4/3. The ideal R-T instabilities are calcu- 
lated for various mesh resolutions, the numerical accuracy (second-order and third-order), the density ratio, 
the initial amplitude of the perturbations, and the mode of the initial perturbation (random from mesh to 
mesh and sinusoidal waves). It is found that when the initial amplitude of the velocity perturbation is larger 
than 1% of the sound speed, the mixing width in time depends hardly on the mesh resolution, numerical 
accuracy, or the mode of the initial perturbation. The mixing width depends mainly on the initial amplitudes 
and the density ratio. This suggests that the mixing width in the supernova ejecta depends mainly on the 
initial amplitude of the perturbation and on the density structure of the presupernova models (density ratio), 
which confirm the results on the real mixing in ejecta of SN 1987A. 
Subject headings: hydrodynamics — instabilities — stars: interiors — supernovae: general — 

supernovae: individual (SN 1987A) 

1. INTRODUCTION 

Observations of SN 1987A have strongly suggested the 
occurrence of a large-scale mixing in the ejecta during explo- 
sion (see, e.g., Kumagai et al. 1989, and references therein). A 
large-scale mixing in the ejecta is also suggested for other types 
of supernovae (Types II-P and Ib/Ic supernovae) from the light 
curve modeling (e.g., Shigeyama et al. 1990) and spectrum 
analysis (e.g., Filippenko & Sargent 1989). In these systems, the 
most promising mechanism to mix the ejecta is the Rayleigh- 
Taylor (R-T) instability. The nonlinear growth of the R-T 
instability has been numerically followed by several groups 
and a pronounced growth of mushroom-like (or cactus-like) 
fingers has been confirmed in the models of SN 1987A (Arnett, 
Fryxell, & Müller 1989; Hachisu et al. 1990; Den, Yoshida, & 
Yamada 1990; Fryxell, Müller, & Arnett 1991 ; Müller, Fryxell, 
& Arnett 1992; Yamada, Nakamura, & Oohara 1990; Herant 
& Benz 1991, 1992). Similar calculations for Type Ib/Ic super- 
novae have been performed by Hachisu et al. (1991) and large- 
scale mixing has also been confirmed in the helium star models 
of Type Ib/Ic supernovae. 

For SN 1987A detailed comparison between the numerical 
calculations and the observations has been made. Although 
numerical results can account for basic features of the observed 
properties of mixing, the expansion velocities of ~ 3000 km s “1 

observed from the IR line width of heavy elements (e.g., Wit- 
terborn et al. 1989) and the line width of gamma-rays (Tueller 
et al. 1990) have failed to be reproduced in the calculations. 

The effect of 56Ni decay is too small to accelerate the mixed 
elements to the observed velocities (Herant & Benz 1991). We 
have to examine how the calculated mixing width depends on 
the numerical resolution and whether a better zoning can 
resolve the discrepancy. Hereafter we use the term mixing width 
to indicate the global extent of the mushroom fingers, i.e., the 
length of the mushroom heads from the bottom of the mush- 
rooms. 

Another problem found in the previous studies is that the 
R-T instability needs relatively large initial velocity pertur- 
bations to grow large, primarily because the duration of the 
instability is limited to within the time in which the shock 
propagates and breaks out of the star surface. Our preliminary 
numerical results (Hachisu et al. 1990) suggested that the initial 
amplitude of the velocity perturbation must be larger than 5% 
of the expansion velocity, i.e., >200 km s-1; the expansion 
velocity near the H/He interface is about 4000 km s-1 for 
model 14E1 (Shigeyama & Nomoto 1990) of SN 1987A when 
the shock arrives at the bottom of the hydrogen-rich envelope. 
The maximum velocity of 200 km s-1 is about a half of the 
sound speed before the shock passage. The convective motion 
in the presupernova star might be the source of the velocity 
perturbation. However, the mean velocity of the convective 
motion is as small as ~ 20 km s “1 in the helium zone and ~ 1 
km s_1 in the hydrogen-rich envelope (based on the mixing 
length theory). If we start the calculation from such small 
amplitudes of perturbation (smaller than 1 %), the development 
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(t = 14,003 s, R = 3.87 x 1012 cm). 

of mixing is too small to reproduce the observations (Hachisu 
et al. 1990). 

To examine whether these difficulties stem from the numeri- 
cal problems, we first show in § 2 our new results on the mixing 
width in the SN 1987A model by using a third-order accurate 
method with several mesh resolutions. We find that the mixing 
width depends only slightly on the mesh resolution when the 
initial amplitude is relatively large, i.e., at least, larger than 
~5% of the expansion speed as summarized in § 2 together 
with physical properties of the R-T mixing. Thus the difficulty 
to reproduce the observed large mixing width in SN 1987A 
remains to be resolved. These difficulties seem to be common 
to the previous studies in spite of significant differences in the 
numerical methods and initial models. 

An interesting idea to resolve the above problem has been 
given to us by Takabe (1989) who has pointed out the possi- 
bility of an inverse cascading growth of the R-T instability: in 
general, shorter waves have larger growth rates in the R-T 
instability (e.g., Chandrasekhar 1961, chaps. X-XI; Mitchner 
& Landshoff 1964; Plesset & Hsieh 1964). Therefore, the very 

short waves may grow to excite longer waves much faster than 
the linear growth rate for the corresponding longer wave 
through a nonlinear coupling. In usual numerical calculations, 
however, numerical viscosity suppresses the growth of such 
short waves. If the inverse cascading growth of the R-T insta- 
bility operates in the ejecta of supernovae, we may resolve the 
difficulty mentioned above. 

It is thus important to reinvestigate ideal R-T instabilities of 
compressible fluids for a wide range of parameter space. This 
would lead to our clearer understanding of the mixing in the 
supernova ejecta (the pattern and width of the R-T mixing), 
especially the effects of the inverse cascading growth. 
(Although there are several numerical calculations on the ideal 
R-T instability [see, e.g., the review by Sharp 1984], the param- 
eter ranges in their studies are too narrow to apply for the 
present problems.) We formulate our numerical calculations of 
ideal R-T instabilities in § 3. The numerical accuracy of our 
method is examined in § 4 by comparing the numerical growth 
rate with the analytic one. Nonlinear growth of the R-T insta- 
bility is discussed in relation to the inverse cascading growth 
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and to the mixing patterns in § 5. Width of the R-T mixing is 
summarized in § 6 for various conditions. Finally, our conclu- 
sions appear in § 7. 

2. MIXING WIDTH IN THE MODELS OF SN 1987A 

As mentioned in § 1, one important issue raised in the pre- 
vious work is how the mixing width depends on the mesh 
resolution and the numerical accuracy. In the realistic model of 
SN 1987A, the density jump at the composition interface is too 
steep to resolve with 500-1000 mesh points in one dimension. 
Therefore the pattern of the mushroom fingers is rather poorly 
resolved if only the 500 x 500 mesh system is used. Here we 
focus more on thç mixing width rather than very small-scale 
patterns, since the width is directly compared with the observa- 
tions of SN 1987A. 

Then we ask whether the mixing width is converged as the 
number of mesh points is increased. To answer this question, 
we recalculate the R-T instability in the explosion of SN 1987A 
by using a much better numerical code than in Hachisu et al. 
(1990), i.e., Roe’s third-order TVD scheme (Chakravarthy & 
Osher 1985) which has been slightly modified to apply to 
strong shock waves as in supernova explosions. Assuming a 
constant adiabatic index y = 4/3 to the approximate radiation 
dominant equation of state, axisymmetry, and equatorial sym- 

metry, we start from the same initial model and perturbations 
(5% of the expansion velocity) as in Hachisu et al. (1990). 

Nonlinear developments of the R-T instabilities at 14,000 s 
after the explosion of SN 1987A are seen in Figure 1 from the 
density contours and positions of marker particles which are 
initially placed at each composition interface (i.e., O/Si, 
He/C + O, and H/He from inside to outside). Here a coherent 
(periodic) perturbation of m = 20 is applied (see Hachisu et al. 
1990). Four figures, respectively, show the results of four differ- 
ent mesh systems: 129 x 129, 257 x 257, 513 x 513, and 
1025 x 1025. (The size of the outermost grid is 3.9 x 1012 cm.) 
It is clear that the mixing width is almost the same among 
these four cases even with 129 x 129, though the mushroom 
patterns are more finely resolved with the finer mesh system. 

To study the dependence of the mixing width on the pertur- 
bation, we calculate the case of random perturbation (R128). 
This initial perturbation is also the same as adopted by 
Hachisu et al. (1990). Figure 2 shows the density contours and 
positions of marker particles at t = 14,000 s after the explosion. 
Four figures also correspond to four different mesh systems, 
i.e., 129 x 129,257 x 257, 513 x 513, and 1025 x 1025, respec- 
tively. Although the small-scale patterns of mushrooms are 
different between 257 x 257, 513 x 513, and 1025 x 1025 
mesh systems, the mixing width is identical among these three 
cases. 
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Fig. 2a 

Fig. 2b 

Fig. 2.—Same as Fig. 1 but for random perturbations. The time is (a) 14.000.6, (6) 14,006, (c) 14,001.9, and (d) 14,001.6 s after the explosion. The size of the box is 
the same as Fig. 1, i.e., ~ 3.9 x 1012 cm. 

The conclusions from these simulations are summarized as 
follows: , 

1. For the periodic perturbation mode of m = 20, the width 
of the R-T mixing saturates once the number of mesh points in 
one dimension exceeds ~ 100-200 as far as the initial pertur- 
bation is larger than 5% of the expansion velocity. 

2. For the random perturbation mode of R128, the mixing 
width also saturates once the number of mesh points exceeds 
~ 200-300 as far as the amplitude of the initial velocity pertur- 
bation is larger than 5% of the expansion velocity. The number 
of large-scale mushrooms also saturates at 7-8, although the 
number of very small-scale mushrooms is increasing with the 
finer mesh resolution. These conclusions are consistent with 
the results of previous works by Fryxell et al. (1991) and 
Hachisu et al. (1990). 

3. The inverse cascading growth has no large effects on the 
mixing width if the initial velocity perturbation is relatively 
larger (i.e., at least larger than 5% of the expansion speed). 

With these results as well as those found for different initial 
models (e.g., Fryxell et al. 1991), we may tentatively argue that 
the mixing width observed in SN 1987A and the source of 
relatively large perturbation remain to be seriously studied. If 
so, the contributions of 56Ni decay, nonsphericity in the explo- 

sion, and three-dimensional effects would be essentially impor- 
tant. 

Before reaching such conclusions, however, we need to study 
whether the above properties (l)-(3) are special to the models 
of the particular supernova SN 1987A or rather general to 
various cases of Rayleigh-Taylor instabilities. If the latter is 
found to be the case, it would explain from the general ground 
why the results obtained by Fryxell et al. (1991) and Hachisu et 
al. (1990) are essentially similar despite the differences in their 
numerical mesh resolutions and their initial models of explo- 
sion. 

With these aims, we study the behavior of ideal Rayleigh- 
Taylor instabilities in the following sections. It is useful to 
understand basic properties of the ideal R-T mixing because 
the realistic models include many complicated factors and may 
cloud our clear understanding of the R-T mixing in the super- 
nova ejecta. 

3. COMPUTATIONAL MODELING OF RAYLEIGH-TAYLOR 
INSTABILITIES 

Our aim is to determine the width of the R-T mixing as a 
function of time, which may depend on the density ratio 
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Fig. 2c 

A/r4/ 

Fig. 2d 

between two gases and also on the initial perturbation 
(amplitude and mode). The density ratio, pjp2, is closely 
related to the structures of presupernova models and the 
amplitude of the initial perturbation may be related to the 
convective motion just before the supernova explosion. 

We set up a simplified modeling of the R-T instability for a 
compressible gas with an adiabatic constant y = 4/3 (see, e.g., 
Chakravarthy & Osher 1985 for basic equations and numerical 
methods). This adiabatic assumption is a good approximation 
for the radiation dominant situation in the early phase of 
supernova explosion. Next, we assume hydrostatic equilibrium 
at the onset of the R-T instability, i.e., the presence of a pres- 
sure gradient. In stellar explosions, a pressure gradient is 
formed against the effective gravity (inertial force) when the 
expanding matter undergoes large deceleration. Though this 
effective gravity is not constant in space, we start our ideal R-T 
instability calculation from a hydrostatic configuration under 
a spatially constant gravity for simplicity. 

3.1. Parameters for Initial States 
We set up a square box with a length L, in which heavy gas 

with a constant density lies above light gas of p2 (pi > p2)- 
These gases are in hydrostatic equilibrium and separated by a 
horizontal line at the middle of the box (see Fig. 3). The gravity 
is downward, and its strength g is constant for all over the box. 

We normalize the physical variables with L, pl5 and g, i.e., 
L = 1, px = 1, and g = 1. Then the unperturbed state can be 
specified by two parameters, i.e., the pressure at the upper end 
of the box, Pmin, and the density ratio, p^2. 

y 
Pi 

P2 

9 

x 

Fig. 3.—Schematic configuration of the initial state. Heavy gas lies above 
fight gas. Each has a uniform density as indicated in the figure. The gravity g is 
downward and constant in space. The initial state is in hydrostatic balance. 
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3.2. Numerical Method and Boundary Conditions 
We solve the Euler equations with a constant adiabatic 

index 7 = 4/3 on a Cartesian coordinate system with x-axis 
being horizontal and y-axis being vertical (see Fig. 3). Each 
direction is divided with an equal mesh interval. The numerical 
method is a third-order Roe scheme with a TYD (total varia- 
tion diminishing) flux limiter (Chakravarthy & Osher 1985). 
Though this numerical scheme is complicated, we have suc- 
ceeded to completely vectorize the code, thus making the cal- 
culation as fast as ~0.2 x 106 zones per second on a single 
Fujitsu VP-400E processor. Therefore, one case can be com- 
puted in 5 minutes (x x y = 128 x 128 and 3000 steps) or 40 
minutes (256 x 256 and 6000 steps) CPU time on a VP-400E. 

We assume a periodic boundary condition in the x- 
direction. For the y-direction, an ambient condition is used at 
the upper and the lower boundaries, where “ ambient ” means 
that the physical variables outside the boundary are constant 
in time. 

3.3. Initial Perturbations 
Two types of perturbations are assumed at the initial kickoff 

to see the dependence of the nonlinear growth of the R-T 
instability on the mode of perturbation: (1) periodic sinusoidal 
perturbation, which is represented by 

vt j = Cije cos (mlnXi/L) 9 (1) 

and (2) random perturbation (which is applied to the velocity 
field at each mesh), 

v¡j = c¡j€(2 rmd (i) - 1), (2) 

where v is the velocity in the y-direction, rmd (i: integer) is a 
function which produces a uniform random number between 0 
and 1, e is the amplitude of the perturbation, and c¿ J the local 
sound speed at mesh point (i,j). 

In most cases, we perturb the velocity field for all mesh 
points. In some cases, the perturbation area is limited within 
the lower half of the box in order to simulate the cases where 
the initial perturbation is originated from the convection only 
in the H- or He-burning shell. 

Our two-dimensional calculations are performed for many 
combinations of the density ratio {pjp2 = 1-5, 3, and 10), the 
initial amplitude (e = 0.16, 0.04, 0.01, 10-3, 10~4, and 10-6), 
the types of mode (sinusoidal with m and random), the number 
of grids (x x y = 128 x 128 and 256 x 256), and the perturbed 
area (whole and a lower half). These are summarized in Tables 
1-3. To examine the width of mixing, we follow the positions of 
3075 marker particles which are initially placed at the inter- 
faces between the two gases. The pressure at the upper end of 
the box, Pmin, is fixed to be 0.1 for all models. 

4. NUMERICAL TEST WITH LINEAR GROWTH RATES 

The linear growth rate a of the R-T instability is analytically 
obtained for the small wavelength limit of compressible fluids 
with a sharp boundary as (Mitchner & Landshoff 1964), 

[(dPo/dy)0-(dp¿/dy)0 l1'2 

a L P+ + P- J ’ u 

where k is the wave number and the suffixes + and — mean 
the physical value at the upper and lower part of the interface, 
respectively. In our case of Figure 3, this formula is reduced to 

where g is the gravity. (Note that g = 1 in our case and 
k = 2tc/2, where 2 is the wavelength.) Equation (4) is exactly the 
same as that for incompressible gases (Chandrasekhar 1961). 
The velocity of the gas motion in the linear regime is so small 
compared with the sound speed that the effect of compress- 
ibility is negligible. Therefore, the linear growth rate for com- 
pressible gas should be very close to that for incompressible 

TABLE 1 
Model Parameters of 128 x 128 Grids 

Number of Run Perturbed Region Pi/p2 Mode 

1... 
2... 
3.. . 
4.. . 
5.. . 
6.. . 
7.. . 
8.. . 
9... 
10 . 
11 . 
12 . 
13 . 
14 . 
15 . 
16 . 
17 . 
18 . 
19 . 
20 . 
21 . 
22 . 
23 . 
24 . 
25 . 
26 . 
27 . 
28 . 
29 . 
30 . 
31 . 
32 . 
33 . 
34 . 
35 . 
36 . 
37 . 
38 . 
39 . 
40 . 
41 . 
42 . 
43 . 
44 . 
45 . 
46 . 
47 . 
48 . 
49a 

50a 

51 . 
52 . 
53 . 
54 . 
55 . 

whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 

lower half 
lower half 
lower half 
lower half 
lower half 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

10 
10 
10 
10 
10 
10 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
3 
3 
3 
3 
3 
3 
3 

SI 
SI 
SI 
SI 
51 
52 
S2 
S2 
S2 
S2 
S4 
S4 
S4 
S4 
S4 
S8 
S8 
S8 
S8 
S8 

S16 
S16 
S16 
S16 
S16 
S32 
S32 
S32 
S32 
S32 

R128 
R128 
R128 
R128 
R128 
R128 

SI 
R128 

SI 
R128 

SI 
R128 

SI 
R128 

SI 
R128 

SI 
R128 
R128 
R128 

SI 
SI 

R128 
R128 
R128 

10“4 

10~3 

0.01 
0.04 
0.16 
KT4 

10"3 

0.01 
0.04 
0.16 
10~4 

10"3 

0.01 
0.04 
0.16 
KT4 

KT3 

0.01 
0.04 
0.16 
KT4 

10"3 

0.01 
0.04 
0.16 
KT4 

10"3 

0.01 
0.04 
0.16 
KT6 

KT4 

10~3 

0.01 
0.04 
0.16 
0.01 
0.01 
0.04 
0.04 
0.16 
0.16 
0.01 
0.01 
0.04 
0.04 
0.16 
0.16 
KT6 

0.01 
KT3 

0.01 
10"6 

KT3 

0.01 
a Second-order accuracy. 
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TABLE 2 
Model Parameters of 1024 x 16 Grids 

Number of Run Perturbed Region pjpi Mode e 

56   whole 3 SI 10“4 

57   whole 3 S2 KT4 

58   whole 3 S4 KT4 

59   whole 3 S8 10"4 

60   whole 3 S16 10"4 

61   whole 3 S32 10"4 

gas, so that we may use equation (4) for a numerical test of our 
code. 

To pick up the amplitude of corresponding wavenumber, k, 
we make a FFT (fast Fourier transformation) of the velocity on 
the horizontal line at the middle of the box. Figure 4 shows the 
amplitude, (a% + h^)1/2, of each mode for the initial pertur- 
bation of m = 2 in equation (1), where an and bn are the co- 
efficient for cos (2nnx/L) and sin (2nnx/L) components, 
respectively, and n is related to the wavenumber k by n = k/2n. 
The amplitude for n = 2 increases exponentially from £ = 0.5 
to £ = 3. 

We then numerically determine the linear growth rate of the 
R-T instability from these slopes. Figure 5 depicts the growth 
rates thus obtained for various n and mesh systems. The 
dashed line represents the analytic growth rate of equation (4). 
It is clear that relatively longer waves are finely resolved, 
whereas the growth rates for shorter ones are suppressed due 
to numerical viscosity. For the grids oï x x y = 128 x 128, 
256 x 256, and 1024 x 16, our code does finely resolve the 
growth rate (being very close to the dashed line in Fig. 5) up to 
n = 8,16, and 32, respectively. 

These results imply that more than 8-10 grids per one wave 
are necessary to finely resolve the linear growth rate in our 
numerical code. In other words, the growth of the R-T insta- 
bility can be followed if we prepare more than 10 meshes for 
each mushroom structure of the R-T instabilities. This rough 
estimation may consistently explain the convergence of the 
mixing width in SN 1987A models (see § 2). Note that no 
prominent growth of the R-T instability is obtained in several 
dynamical times if we impose no initial perturbation (e = 0). 

5. NUMERICAL RESULTS FOR NONLINEAR REGIME 

The growth of the R-T instability has been followed until 
two gases are completely mixed in the box. Prominent proper- 

TABLE 3 
Model Parameters of 256 x 256 Grids 

Number of Run Perturbed Region pjp2 Mode 

62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
72. 
73. 
74. 
75. 
76. 
77. 

whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 
whole 

lower half 
lower half 
lower half 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

10 
1.5 
3 
3 
3 

SI 
SI 
51 
52 
S4 
S8 

S16 
S32 

R256 
R256 
R256 
R256 
R256 

SI 
R256 
R256 

KT4 

KT3 

0.01 
KT4 

10"4 

KT4 

10~4 

10"4 

KT6 

10“3 

0.01 
10“6 

10"6 

KT3 

KT3 

0.01 

Fig. 4.—Amplitude of each sinusoidal mode is plotted as a function of the 
time for the case of m = 2 in eq. (1). Grid size is 256 x 256. The numbers 
attached indicate n = 1/A. The amplitude for n = 2 mode linearly grow from 
i = 0.5 to i = 3. The numerical growth rate for n = 2 is obtained from this 
slope. 

WAVE NUMBER 
Fig. 5.—Numerical growth rates obtained for each mode are plotted 

against n = k/2n = 1/A. The dashed line denotes the analytic growth rate of eq. 
(4). The numerical growth rate saturates for shorter waves due to numerical 
viscosity. 
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2.492 

3.082 

3.633 

4.141 

Fig. 6a 

Fig. 6.—Density contour (left) and the positions of marker particles (right) are shown in time sequence^ Grid size is 256 x lSÓ. Each contour is line^ariy spaced 
with 10% of the difference between the highest and the lowest densities. The time elapsed is shown in the right side ofthe box. (a) m 1, ,pjp2 , 
in Table 3); (b) m = 2, e = 10-4, = 3, (run 65 in Table 3); and (c) m = 4, e = 10 ,pi/p2 = 3, (run 66 in Table 3), respectively. 
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Fig. 6b 

2.495 

3.118 

3.709 

4.238 

ties of the nonlinear growth of the R-T instabilities are as 
follows. 

5.1. Fractal Fingering 
First interesting feature is a fractal structure at the interface 

between two gases. Figure 6 shows the time development of the 
R-T instability on the 256 x 256 grids. We have started the 
calculation from the periodic sinusoidal modes of m = 1, 

m = 2, and m = 4 with a relatively small initial amplitude, 
€ = 10~3, e = 10~4, and e = 10-4, respectively, as seen in 
Figures 6a, 6b, and 6c. 

We observe that several waves with small wavelengths grow 
faster than the original waves of m = 1 and m = 2 at the inter- 
face in Figures 6a and 6b. The origin of these short waves is the 
truncation error in our numerical code so that we cannot 
control or suppress their growth. This nature essentially stems 
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Fig. 6c 

2.245 

2.794 

3.259 

3.668 

from the linear growth rate of the R-T instability, i.e., equation 
(4). Even though the initial amplitude of the shortest wave is 
very small, its growth rate is much larger than the original long 
waves. The shortest one eventually takes over the longer ones. 
If the initial amplitude is 10 times larger, i.e., 6 = 0.01 for the 
m = 1 sinusoidal mode, the growth of higher modes is not so 
prominent as shown in Figure 7. This is because the time is too 
short for higher modes to grow large before the original long 

wave grows. (Compare the elapsed time after the initial kickoff 
between Fig. 6a and 7.) Once a large-scale mushroom structure 
develops, the interface between the two gases is no longer a 
horizontal line so that the simple growth rate of equation (4) 
cannot be applied; then the Kelvin-Helmholtz type instability 
at the interface becomes important. 

To clearly show the growth of higher modes which come 
from the truncation errors for the model in Figure 7, we have 
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Fig. 7. Same as Fig. 6a but for a larger initial amplitude of e = 0.01 (run 64 in Table 3). The fractal fingering structures are not so prominent compared with 
those of Fig. 6a. 

plotted a time development of the spectrum, i.e., the amplitude, 
(fln + K)112’ against n = k/2n in Figure 8. 

At i = 0, there exists only one component, w = 1. All other 
components, n > 1, are excited only in one time step because of 
the truncation error in our numerical code. These higher 
modes grow at a rate of equation (4), which is much larger than 

the original one (the growth rate for n = 1). Eventually, the 
highest mode catches up with the lower ones at î ~ 1.5. We will 
call these features fractal fingering only when much smaller 
scale fingers grow faster than the original longer waves. When 
the perturbation is random, we cannot define this fractal fin- 
gering because the original waves already contain the shortest 
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Fig. 8.—Time development of the spectrum is shown for the model of Fig. 

7. The spectrum is the amplitude of the velocity field on the horizontal line at 
the half of the box. 

wavelength with a finite amplitude at i = 0. In this sense, we 
may use the word fractal fingering only when the perturbation 
is sinusoidal or much longer than the mesh resolution. 

To examine the mesh-dependence of such fractal fingering 
structures, we have plotted time development of the R-T insta- 
bility for two models starting from the same initial pertur- 
bation but with the different grid points. Figures 9 and 10 show 
the fractal structures at the interface for the 128 x 128 and 
256 x 256 grids, respectively. It is seen that the shortest waves 
in the 128 x 128 mesh are longer by a factor of ~2 than those 
in the 256 x 256 mesh, but the global structures are almost the 
same. 

In Figures 9 and 10, the shortest waves for the 128 x 128 
and 256 x 256 grids have wavelengths of 2 ~ ^ and 
respectively. These are very close to the modes having the 
largest linear growth rates in Figure 5. This suggests that the 
small-scale structures or patterns of the R-T instabilities would 
not be resolved even if we enormously increase the number of 
grids. It is also expected that the interface is smeared out by the 
small-scale R-T mixing. Though this kind of characteristic 
(fractal fingering) is sometimes mentioned and known as the 
ill-posed problem of the R-T instability without viscosity or 
surface tension (e.g., Sharp 1984), the present result is a clear 
demonstration to show the dependency of the fractal fingering 
on the mesh resolution. 

It should be emphasized that, to observe this kind of fractal 
fingering, the initial amplitude of the perturbation must be as 
small as ~0.1% of the expansion velocities of the supernova 
ejecta. Figure 11 shows the development of fractal fingering in 
supernova (SN 1987A: model 14E1), which means that the 
fingers with scales much smaller than the original scale of per- 

turbation grow faster. Here we impose an initial perturbation 
of mode M20 (i.e., m = 20) and 0.2% amplitude. If we start 
from a relatively large initial amplitude such as 5%, however, 
we do not observe this kind of fractal fingering but find only 
simple mushroom fingers as seen in Figure 1. Although there is 
a long history of calculations of idealized R-T instabilities in 
the literature, many of them were started from a periodic 
(sinusoidal) perturbation with a relatively large amplitude, 
thereby being unable to clearly show such a fractal fingering as 
seen in Figures 9, 10, and 11 (e.g., see Figs. 1 and 7 of Youngs 
1984). 

In Figures 9 and 10, the initial perturbation is introduced 
only in the lower half of the box. Therefore the total kickoff* 
energy at i = 0 is smaller and thus the global structure grows 
slower in Figure 10 than in Figure 6a for the same e (compare 
the elapsed time in the figures). This implies that when the 
perturbation is originated from the convective motion and 
limited to within the lower half region, the mixing width of the 
R-T instability is smaller than in the case of whole pertur- 
bation. (The fractal fingering develops more in Fig. 10 than in 
Fig. 6a simply because of the short elapsed time in Fig. 6a.) 

5.2. Inverse Cascading Growth 
In the realistic situation, random perturbation is more likely 

the case than the periodic sinusoidal perturbation. Figures 12a 
and 12b show the nonlinear growth of the R-T instability for 
random perturbation on the 128 x 128 and 256 x 256 grids, 
respectively. It is observed that the pattern of mixing is grad- 
ually changing from shorter scales to longer scales. This kind 
of characteristic is called inverse cascading growth (e.g., Read 
1984; Youngs 1984; Wang & Robertson 1985). 

To quantitatively show these kind of properties, we plot in 
Figure 13 the evolution of the spectrum for the case in Figure 
12b (256 x 256 grids). The spectrum is white noise at i = 0 
because of a uniform random perturbation. Considering the 
resolution of 256 x 256 grids, we plot the spectrum up to 
n = 32. It is seen that the shorter waves grow much faster than 
the longer ones. At i ~ 2, the growth of the shorter ones satu- 
rates because of nonlinear effects. After this phase, the longer 
waves still grow and eventually take over the shorter ones. 

Figure 13 also shows that the growth rates of the shortest 
waves are very close to the linear growth rate predicted by 
equation (4), but the growth rates for the longest ones are much 
greater than that of equation (4). This implies that energy is 
transferred from the shorter waves to the longer waves as a 
result of nonlinear coupling. To see this, we also plot the 
growth of each n in Figure 14. The amplitudes of n = 16 and 
n = 32 are linearly growing from i = 0.2 to i = 1.5 so that the 
growth rates are very close to those in Figure 5 (i.e., the growth 
rates of n = 16 and 32 for the 256 x 256 grids). These ampli- 
tudes saturate at i ~ 1.5. The amplitudes of longer waves 
n = 1, 2, 4, and 8 also grow linearly until t = 1.2-1.5. Then the 
growth rates suddenly increase and catch up with the shortest 
modes at i ~ 2. The growth rates of n = 32 and 16 slightly 
decrease during this period of t = 1.5-2. This clearly shows 
that energy is transferred from the shortest modes to the longer 
ones. 

6. WIDTH OF RAYLEIGH-TAYLOR MIXING 

For the supernova problems, it is important to know the 
width of the mixing due to the R-T instability. In this section, 
we focus on what is the most important factor that determine 
the width of mixing. 
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6.1. Dependence on the Initial Amplitude 
Figure 15 depicts the mixing width against the square of 

time for various e of random perturbation (128 x 128 grids). 
Here the density ratio is pjp2 = 3. The mixing width, h, is 
defined as the distance between the upper- and lowermost 
marker particles which are initially placed at the interface. The 
mixing width is found to be very sensitive to the initial ampli- 
tude of the perturbation. This property is important for the 

mixing in supernova explosions because the amplitude of the 
velocity perturbation is very small if convection is the source of 
the perturbation. 

6.2. Dependence on the Perturbation Mode 
Next we examine how the mixing width, h, depends on the 

mode of the initial perturbation. Figure 16 shows the increase 
in h with time for various modes (128 x 128 grids). 
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3.115 

3.694 

4.231 

4.759 

Fig. 10.—Same as Fig. 9 but for a high-resolution (256 x 256 grids; run 75). Fractal fingering is much more prominent than that in Fig. 9. 

The low-amplitude case of e = 10"3 is depicted in Figure 
16a. The lines start at t = 0 tangentially to the abscissa (x-axis) 
and the growth of the R-T instability obeys its linear growth 
rate during these periods. Therefore, h grows faster in shorter 
waves than in longer ones for such a low amplitude, and the 
difference among these lines can be understood from the linear 
growth rate given in equation (4). The mixing width for m = 16 
(SI6) and random (R128) are almost the same until t ~ 2, 

because the fastest growing mode in the 128 x 128 grids is 
m ~ 16-20 (see Fig. 5). 

This difference among the modes becomes much smaller 
when the amplitude of the initial perturbation is increased to 
e = 0.01. In Figure 16b, we plot h for various modes. Small 
difference between SI and others stems not from the linear 
growth rate at the very initial phase but from the nonlinear 
effect (the curves start with finite angles near t = 0). The differ- 
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Fig. 11.—Same as Fig. 1 but for a very small initial amplitude of 0.2% and the mode of M20 (m = 20 of periodic). The number of grids is 1025 x 1025. The time is 
14,000.6 s after the explosion. The size of the box is 3.87 x 1012 cm. Note the feature oí fractal fingering in a supernova explosion (SN1987A : model 14E1). 

ence among the modes is much smaller if the initial amplitude 
is as large as e = 0.16 (see Fig. 16c), so that the mixing width is 
completely identical with each other at the very early stage. 

We conclude that the width of the R-T mixing is almost the 
same among various modes if the initial amplitude exceeds 
0.01. This has an important implication for the supernova 
problems since this suggests that the mixing width in the super- 
nova ejecta is determined mainly by the amplitude of the initial 
perturbation rather than by its mode as long as each mode is 
finely resolved. This also suggests that even with somewhat 
coarse grid systems the mixing width in the supernova ejecta 
may be calculated sufficiently accurately as long as € > 0.01. 
This may be the reason why the numerical experiments of the 
R-T mixing in SN 1987A give almost the same mixing width in 
spite of the differences in the initial models and in the numeri- 
cal methods between the Fryxell et al. (1991) code and the 
Hachisu et al. (1990) code. 

Note that the R-T instability leads to the formation of 
clumps in the supernova ejecta, which can be compared with 
the time scale for the escape of y-rays and X-rays, spectral line 
profiles, etc., in SN 1987A. In order to obtain the accurate 
filling factor and clumping ratios, however, much higher 
resolutions than the present study are necessary. 

6.3. Dependence on the Density Ratio 
We plot the mixing width, h, against the square of time in 

Figure 17 for three different density ratios. For e = 0.01 (Fig. 
17a), h ä 0.8, 0.4, and 0.2 at i = 2 for Pi/p2 — 10, and 1.5, 
respectively, which can be approximately scaled as 

ha:D = . (5) 
Pi + Pi 

For e = 0.16 (Fig. 176), in contrast, the mixing widths deviate 
from this scaling law. Comparing Figures 17a and 176, we see 
that the dependence of h on the density ratio is smaller for 
larger 6. 

In short, the mixing develops faster for a higher density ratio 
though the dependence is weaker for larger initial amplitudes. 
For relatively small initial amplitudes (e < 0.01), the mixing 
width is approximately proportional to D as discussed in detail 
in the Appendix. The density ratio at the composition interface 
is closely related to the structure of the presupernova model 

and may be a crucial factor to determine the mixing width of 
the R-T instability if the initial amplitudes are small. 

6.4. Effects of Inverse Cascading Growth 
One of the most important motivations of the present study 

is to examine whether or not the inverse cascading growth of 
the R-T instability can excite a large-scale mixing in the super- 
nova ejecta in a short duration of deceleration. Here we try to 
answer this question. 

If the inverse cascading growth of the R-T instability has an 
important effect as pointed out by Takabe (1989), the mixing 
width at a given time would be larger if a finer grid is used. To 
simulate this effect starting from the linear growth regime 
without being affected by numerical viscosity, we have to start 
our calculation from very small initial amplitudes such as 
€ < 10“3. Then the calculated mixing width is expected to be 
larger for the larger number of mesh points. Figure 18 depicts 
the mixing width against the square of time, f2, for two differ- 
ent mesh systems: 128 x 128 and 256 x 256 grids. 

For a very small initial amplitude of € = 10-6, there is 
apparently a large difference in the mixing width between the 
two grid systems (Fig. 18a). This is certainly a manifestation of 
the inverse cascading effect. However, its effect is not large in a 
sense that the mixing widths do not exceed those for e = 0.01 
(Fig. 18a). For a relatively large initial amplitude of 6 = 0.01, 
on the other hand, the mixing width for the two grid systems 
are almost the same (Fig. 18a) because there is no linear growth 
regime for such a large initial amplitude. 

We also plot the mixing width for a sinusoidal mode SI in 
Figure 186. Two grid systems (128 x 128 and 256 x 256) give 
almost the same result for € = 0.01. For € = 10“3, the mixing 
width depends slightly on the grid system. 

Our numerical method has a third-order accuracy when a 
parameter 0 is set to be j in Chakravarthy & Osher (1985). If 
we use (j) = —1 instead of j, the numerical scheme becomes 
fully upwind and second-order accurate. We have simulated 
the same problems of the R-T instability by changing the accu- 
racy to second order. The results are plotted in Figure 19. The 
second-order accurate scheme introduces a much larger 
numerical viscosity than the third-order one. Two different 
schemes give slightly different results for e = 10”6 but almost 
the same mixing width for e = 0.01. Note that this comparison 
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2.989 

3.722 

4.419 

5.046 

Fio. 12—Same as Fig. 6but for a random perturbation, (a) low-resolution (128 x 128 grids; run 31 in Table 1) and (6) high-resolution (256 x 256grids; run 70in 
Table 3). The initial amplitude is e = 10 6 for both cases. Mixing pattern changes from small scales to large scales in time. Upward-moving streamers are made by 
rising small bubbles. Once this type of bubble is created and moving upward, the upward-mixing is faster than the downward-mixing. 
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Fig. 12b 

2.245 

2.987 

3.688 

4.342 

is made for the same type of scheme where the flux is calculated 
by Roe’s method. It is much more complicated to compare two 
results obtained by completely different numerical schemes 
such as the results of Fryxell et al. (1991) and Hachisu et al. 
(1990). 

In terms of numerical viscosity, the dependence on the accu- 
racy of numerical code is the same as that on the mesh 
resolution. A less accurate numerical code needs much more 

grid points to produce the same quality of flow solution. 
Therefore, the discussion on the accuracy of the numerical 
code may be replaced with the discussion on the mesh 
resolution as done above. In this sense, the good agreement 
between the results of Fryxell et al. (1991) and Hachisu et al. 
(1990) can be naturally explained by the present results of 
mixing width. 

Our conclusion is that the inverse cascading growth has an 
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Fig. 13.—Same as Fig. 8 but for a random perturbation case of Fig. 12b 
(run 70 in Table 3). Shorter waves grow much faster than longer ones but 
saturate at i ~ 2. 

Fig. 14.—Same as Fig. 4 but for a random perturbation case of Fig. 12b 
(run 70 in Table 3). The growth rates for shortest waves such as n = 16 is well 
described by eq. (4) but longest waves such as n = 1, n = 2, or n = 4 suddenly 
have a larger growth rate than that described by equation (4) at i ~ 1.5. This is 
a result of nonlinear coupling. 

OF SUPERNOVAE. I. 247 

Fig. 15.—Width of the R-T mixing is plotted against the square of time for 
various initial amplitudes of € = lO“6, KT4, 0.01, 0.04, and 0.16. Grid size is 
128 x 128. The perturbation modes are all random (runs 31-36 in Table 1). 
Mixing width depends strongly on the initial amplitude. 

important effect if the initial amplitude is smaller than e that 
affects the mixing width. This implies that as far as the initial 
amplitude as large as e 0.01 is concerned, the mixing width 
depends on firstly the initial amplitude and secondly the 
density ratio rather than the numerical accuracy. (Note that 
the longest waves should be finely resolved in order that the 
above statement is valid.) Such large initial amplitudes have 
been assumed to explain the R-T mixing in the ejecta of SN 
1987A (e.g., Arnett et al. 1989; Hachisu et al. 1990). For these 
large velocity fluctuations, there is no regime of linear growth 
as shown in the present paper. Therefore, we conclude that we 
may not remove the difficulty mentioned in § 1 by considering 
the inverse cascading growth of the R-T instability. 

7. CONCLUSIONS 

We have numerically studied the nonlinear growth of two- 
dimensional Rayleigh-Taylor instabilities and applied the 
results to the mixing in the supernova ejecta. First, we have 
presented much refined calculations of mixing in the realistic 
model of SN 1987A by using a better code with various mesh 
resolutions. It is found that (1) the mixing width depends only 
slightly on the mesh resolution if the initial amplitude is larger 
than ~5% of the expansion speed. The results also show that 
(2) the mixing width due to Rayleigh-Taylor instabilities is still 
too small to account for the observations of SN 1987A, even 
with relatively large initial perturbations. 

Second, we consider much simplified ideal models of R-T 
instabilities of compressible gas with an adiabatic constant 
y = 4/3, in order to resolve the problem of too small mixing 
width in a realistic model of SN 1987A. The ideal R-T insta- 
bilities have been calculated for various mesh resolution, the 
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T I ME**2 TIMExxS 
Fig. 16a Fig. 166 

Fig. 16.—Same as Fig. 15 but for sinusoidal modes, (a) Initial amplitude of 
€ = lO"3 (runs 2, 7,12,17, 22, and 33 in Table 1); (6) € = 0.01 (runs 3, 8,13,18, 
23, and 34); (c) e = 0.16 (runs 5, 10, 15, 20, 25, and 36). Symbols such as SI 
mean the sinusoidal mode with m = 1. The case for a random perturbation is 
also added (dashed line). 

numerical accuracy (second-order and third-order), the density 
ratio, the initial amplitude of the perturbation, and the mode of 
the initial perturbation (random from mesh to mesh and sinus- 
oidal waves). The calculations have clearly demonstrated two 
interesting features of the Rayleigh-Taylor instability, i.e., the 
fractal fingering and the inverse cascading growth. The inverse 
cascading growth plays no important role to generate a large- 
scale mixing when the initial amplitude of the velocity pertur- 
bation is larger than 1 % of the sound speed. 

On the other hand, we have found that (1) when the initial 
amplitude of the velocity perturbation is larger than 1 % (e > 
0.01) of the sound speed, the mixing width in time depends 
hardly on the mesh resolution, numerical accuracy, or the 
mode of the initial perturbation. (2) The mixing width depends 
mainly on the initial amplitudes and the density ratio. This 
suggests that (3) the mixing width in the supernova ejecta 
depends mainly on the initial amplitude of the perturbation (e) 
and on the density structure of the presupernova models 
(density ratio) rather than the mesh resolution. This confirms 
the previous results of a realistic mixing in SN 1987A. 

These conclusions imply that the realistic mixing width in 
supernova ejecta can be calculated even with a relatively 
coarse grid system such as 500 x 500 or 1000 x 1000 as done 
by the two groups (Fryxell et al. 1991; Hachisu et al. 1990, 
1991) as long as the relatively large (e > 0.01) initial amplitude 
is applied. (Note, however, the necessity of much higher 
resolutions in order to compare the calculated clumps with the 
related observed phenomena in SN 1987A as mentioned in 
§ 6.2.) In the forthcoming papers, we will calculate the R-T 
mixing in the various types of supernova explosions and 
discuss the dependence of the mixing width on the structure of 
the supernova progenitors. 
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Fïg. 17.—Same as Fig. 15 but for various density ratios. The attached numbers denote the density ratios oipJp2 = 10, 3, and 1.5. {a) the initial amplitudes are all 
e = 0.01 ; (h) e = 0.16. A result by the second-order accuracy code is added (dashed line). 

TIME**2 T IME**2 
Fig. 18a Fig. 186 

Fig. 18.—Same as Fig. 15 but for two different mesh resolutions, i.e., 128 x 128 and 256 x 256 grid systems. The numbers attached (128 and 256) denote the 
number of grids, (a) Random modes; (b) sinusoidal (m = 1) modes. If the initial amplitude is as large as 0.01, the mesh resolution has little effect on the mixing width. 
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TÏMEmm2 
Fig. 19.—Same as Fig. 18a but for two different codes with different numerical accuracies, i.e., third-order {solid lines) and second-order {dashed lines). 
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APPENDIX 

A SCALING LAW OF MIXING WIDTH 

Upward- and downward-mixings are symmetric to the original surface at the initial stages of mixing as seen in Figures 12a and 
12b. In the later phases, however, the upward-mixing becomes faster than the downward as seen in Figures 20a and 20b. The width 
of mixing is plotted against the square of time, gt2, in Figure 20a and against Dgt2 in Figure 20b. We note that the upward-mixing 
(solid line) grows linearly at the later phase of mixing, while the downward-mixing slows down after its width reaches 10% of the box 
size. 

TABLE 4 
Coefficient of Mixing Width (Random) 

Number of Run Mesh pjpi e ß 

31   128 3 1(T6 0.070 
32   128 3 10“4 0.11 
34   128 3 0.01 0.15 
35   128 3 -0.04 0.23 
36   128 3 0.16 0.57 
70   256 3 10'6 0.077 
71     256 3 10“3 0.079 
72   256 3 0.01 0.13 
73...  256 10 HT6 0.082 
74    256 1.5 HT6 0.081 
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Fig. 20.—Upward-mixing (solid lines), hv and downward-mixing (dashed lines), h2, are plotted against the square of time (a), ^ 
time (b) Dat2 The perturbation modes are all random. Grid size is 256 x 256. The upward-mixmgs linearly grow in the later phase. The density ratio lsPi/p2 3 

aTmodefs in Fig. 20a. There exists a scaling law on the upward-mixing for small initial amplitudes as seen in Fig. 20b. The numbers attached in Fig. 20b denote the 
density ratios. 

Fig. 21.—Total (upward plus downward) width of mixing is plotted as a function of the scaled square of time, i.e., Dgt1. There also exists a scaling law on the total 
width of mixing. Grid size is 256 x 256. The numbers attached denote the density ratios. 
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The experiments of the R-T instability has already suggested that the width of the upward-mixing is proportional to the square of 
time (e.g., Read 1984; Youngs 1984) as 

h, = ß(X - X0), (6) 

where 

X = Dgt2 . (7) 

Here hi is the width of upward-mixing from the original level. The coefficient ß is 0.07 while it varies little with the density ratio. 
Figures 20a and 20b clearly show the linearity of the upward-mixing in the later phase confirming the above experimental 

statement. Thus the values of ß can be estimated from these figures as listed in Table 4. For 256 x 256 grids, ß ~ 0.08 when the 
initial amplitude, e, is smaller than 10-3. This value of ß is almost independent of the density ratio and e if e is very small. If 
e > 10 3, however, ß becomes larger than 0.07. For example, ß is ~0.13 for e = 0.01. 

Defining the mixing width by the sum of the upward- and downward-mixing, i.e., h = hi + h2, we plot the mixing width against 
Dgt in Figure 21. As expected from Figure 20a, three mixing widths almost coincide with one another for a very small initial 
amplitude of e = 10 6 (Fig. 21). This clearly confirms the existence of a scaling law for total mixing. The scaling law breaks down for 
such a large initial amplitude as e > 0.16 (see Fig. 17b). Then the differences in these three widths of mixing become small as the 
initial amplitude increases. 
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