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ABSTRACT 
The detection of coherent periodicities in pulsar signals would provide strong evidence for the presence of 

oscillations in neutron stars. To investigate the neutron star oscillation hypothesis further we have developed 
a technique, based on analysis of the Fourier cross spectra of high time resolution, single pulse data, that is 
useful for measuring the coherence properties of micropulses and for determining whether or not coherent 
periodicities may be present in some pulsars. We have used this technique to examine the coherence of micro- 
structure in PSR 2016 + 28. Our analysis of 2000 consecutive pulses recorded at 430 MHz and smoothed to 
100 jus time resolution confirms the presence of quasi-periodic microstructure with period Pß æ 0.9 ms in this 
pulsar. We also find that the coherence time of the quasi-periodicity is considerably shorter than one single 
rotation period for this object (P = 0.53 s), giving a ß « 6. By comparison with several numerical simulations 
of micropulse separation, we conclude that if the quasiperiodic separations are due to phase jitter of a coher- 
ent periodicity, the rms jitter must be >35% of the micropulse period. Although the observed micropulse 
separations appear not to be coherent, the subpulse separation, P2 ^ 10 ms, is coherent across several pulse 
periods. The degree of coherence is consistent with a model in which the average subpulse drift rate has a 
fixed, constant value, but in which individual subpulse drift rates exhibit random variations about that mean. 
For an average drift rate of 2 ms the data are consistent with an rms variation of 0.08 ms (4%), with a 
Q « 90. We discuss the status of the neutron star oscillation hypothesis in light of these new results. 
Subject headings: pulsars: general — stars: neutron — stars: oscillations 

1. INTRODUCTION 

Neutron stars can sustain a variety of different oscillation 
modes (McDermott 1985; Strohmayer 1991). This diversity 
arises from the different restoring forces that act on a displaced 
mass element: gravity, pressure gradients, elastic forces in the 
crustal material, magnetic fields, and the Coriolis force in 
rotating neutron stars (pulsars). Observational identification of 
any of these oscillation modes would give astrophysicists a 
direct probe of the internal structure of neutron stars. 

The detection of millisecond variability in PSR 2016 + 28 
prompted Boriakoff (1976) and Van Horn (1980) to speculate 
that quasi-periodic variability in pulsars is a manifestation of 
oscillations of the underlying neutron star. Boriakoff (1976) 
suggested that pulsation-driven “shaking” of magnetic field 
lines “ frozen ” into the surface layers of the neutron star might 
modulate the pulsar emission process. Alternatively, a tem- 
perature perturbation induced by oscillations near the mag- 
netic polar cap of the neutron star could modulate the plasma 
injection process, which powers the radio emission in some 
theoretical model of pulsars (Jones 1987). 

At present it is not clear exactly how, or indeed if, oscil- 
lations of the underlying neutron star modulate the radio 
emission from pulsars. The existence of quasi-periodic micro- 
structure in some pulsars is well established (Hankins 1971; 
Kardashev et al. 1978; Cordes 1979; Soglasnov et al. 1981; 
Cordes, Weisberg, & Hankins 1990), but the quasi-periodicities 
are typically observed to be low-Q phenomena. Many pulsars 
are known to display other varieties of temporal modulation. 
For example, Backer (1973) and Rankin (1986) have studied 
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the drifting subpulses which are prominent in some pulsars. It 
has been suggested that the radio beam motion (see Arons 
1981) is responsible for this phenomenon, but this may not 
explain all aspects of the problem. For example, the power 
spectrum of the intensity at fixed pulse phase indicates that the 
drift bands have poorly defined separations and are therefore 
not coherent in this pulsar (Backer 1973). Yet, our analysis of 
430 MHz data from PSR 2016 + 28 indicates that the subpulse 
separation within individual pulses (P2) is coherent across 
several pulses (see § 4), suggesting that a fairly high-ß process, 
such as stellar oscillation, might be responsible for the subpulse 
separations in individual pulses. We discuss this possibility in 
more detail in a later section. 

The case for association of the observed temporal variations 
in pulsar data with neutron star oscillations would be greatly 
strengthened if it could be shown that any of the quasi-periodic 
variations were coherent across several individual pulses. 
Coherence times longer than one pulse period would lend 
strong support to the idea of a clock, such as stellar oscillation, 
underlying these variations. Alternatively, processes in the 
pulsar magnetosphere may be responsible for the quasi- 
periodicities, as recently proposed in a plasma model by Asseo, 
Pelletier, & Sol (1990). In this case neutron star oscillations 
may manifest their presence in some other way, or perhaps not 
at all, in the radio emission. In either case, measurement of the 
micropulse coherence time provides useful information about 
the mechanism responsible for the quasi-periodic microstruc- 
ture. 

In this paper we attempt to address some of these questions 
in order to explore more completely the neutron star oscil- 
lation hypothesis in the context of a single pulsar. We have 
chosen to investigate PSR 2016 + 28 because a high percentage 
of its pulses show quasi-periodic microstructure. This pulsar 
also exhibits drifting subpulses, does not null, and is otherwise 
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well studied, making it an excellent candidate for this analysis. 
Throughout this work we have relied extensively on numerical 
simulations to provide us with a precise understanding of the 
analysis techniques we have employed, as well as to help us 
interpret the results. To avoid biasing ourselves toward any 
one theoretical scenario, we have endeavored to include a wide 
range of possibilities in our analyses and simulations. 

In § 2 we describe the techniques we have used to search for 
coherent periodicities and to measure the coherence properties 
of micropulses in pulsar signals. We discuss our pulsar simula- 
tions in § 3. In § 4 we discuss our analysis of 430 MHz, single 
pulse data from PSR 2016 + 28. Our conclusions are sum- 
marized in § 5. 

2. ANALYSIS TECHNIQUES 

As is common in the analyses of time series, we use Fourier 
transform techniques to search for coherent periodicities in 
pulsar signals. Since oscillations in neutron stars can occur 
with periods smaller than tenths of milliseconds (McDermott, 
Van Horn, & Hansen 1988; Strohmayer 1991) it is important 
to examine data with high time resolution. Our 430 MHz data 
set from PSR 2016 + 28 was sampled at 100 fis time intervals 
(Thorsett 1990). A typical data set consists of a train of Np 
consecutive pulses, each containing K data samples taken in a 
narrow window centered on the mean pulse profile. The 
Fourier transform of each pulse is computed using a fast 
Fourier transform (FFT) algorithm (Press et al. 1986). The 
individual pulse transforms are then used to compute the auto 
spectrum and the cross spectrum for the entire set of pulses. The 
auto spectrum is simply the average power spectrum, 

¿(f) = ^ 2 Pf(f)PÁf), (2.1) ™ p i = 1 

where Pf(/) is the Fourier transform of pulse i. The cross spec- 
trum is defined as 

Ci(f) exp p0/(/)] 

p?+i(f)Pi(f)  (22) 

Gf=p
i+i pnmif) Un1 w)^(/)]1/2 

In equation (2.2) Cz(/) and </>*(/) represent the amplitude and 
phase, respectively, of the cross spectrum. The quantity l is the 
lag in number of pulses, and an asterisk denotes complex con- 
jugation. From the Fourier convolution theorem, the cross 
spectrum in frequency space is closely related to the cross- 
correlation function in the time domain. We can thus correlate 
the data at lags given by an integer number of pulse periods, IP, 
thereby determining the coherence properties of the signal. For 
example, if a strictly periodic signal is present throughout an 
entire sample of pulses then the amplitude of the cross spec- 
trum at that frequency is close to unity and independent of /, 
and the phase of the cross spectrum increases linearly with /. 
Alternatively, if the amplitude of a periodic signal decays with 
some characteristic time scale (longer than a pulse period, say) 
over the entire data set, then the amplitude of the cross spec- 
trum decays with / in an analogous fashion (this behavior is 
clearly seen in many of our simulations). If no periodic signals 
are present (as with the purely random simulations we have 
performed), then the cross spectrum approaches zero as we 
average more pulses. As indicated in equation (2.2) we have 
chosen to normalize the cross spectrum to unit amplitude. 
Thus, cross spectral amplitudes near unity indicate strong 
coherence, whereas smaller amplitudes specify weak coherence. 

Many previous studies (Hankins 1971; Boriakoff 1976; 
Cordes et al. 1990) have employed the intensity autocorrela- 
tion function (ACF) and the intensity cross correlation func- 
tion (CCF) in examining pulsar microstructure. Since we are 
interested in examining the coherence properties of microstruc- 
ture in specific frequency regimes (i.e., at frequencies which 
correspond to the quasi-periodic micropulses), as well as in 
searching for high-ß periodicities we find it more convenient to 
work in the frequency domain. 

3. ANALYSIS OF SIMULATED PULSAR SIGNALS 

In order to test our analysis techniques and estimate the 
level at which periodic signals may be present in pulsar data we 
have conducted a series of numerical experiments using simu- 
lated pulsar signals. We have used the techniques described 
above to examine the power spectra, the auto spectra and the 
cross spectra of these signals. In developing these simulated 
pulsar signals we have been guided by two basic precepts: (1) 
Start with simple models and add sophistications as the simple 
models are understood. (2) Examine both fully random and 
completely deterministic models. We emphasize that in gener- 
ating these simulations our goal has not been to attempt to 
model precisely the signals from individual pulsars, but rather 
to test our ability to diagnose signals having specific proper- 
ties. In the remainder of this section we describe these models 
in some detail, and we discuss the results of simulations con- 
ducted with them. 

3.1. Simple Deterministic Signals 
To test our techniques and computing codes we have exam- 

ined spectra of deterministic signals of the general form 

S(t) = 0(i)jW)[^o + Y^Ai cos (2nVit + + N((t„)| , 

(3.1.1) 

where Ah vh and are the amplitude, frequency, and phase, 
respectively, of M strictly periodic components. The quantity 
N((rn) is a zero-mean Gaussian noise process with standard 
deviation on, and 0(i) is a periodic function (with period equal 
to the pulsar spin period) that defines the “ observing ” window 
around the mean pulse profile. The function W(t) is a wave- 
form which is meant to simulate the mean pulse profile of the 
pulsar. In all of our simulations we model the mean pulse 
profile as a sum of Gaussian components. When the average 
pulse waveform W(t), is constant (independent of t) the power 
spectrum of this signal can be calculated analytically. Results 
from such signals can thus be used to test the accuracy of our 
numerical calculations. For all signals of this type, our numeri- 
cal results are entirely consistent with the analytic formulae. 
Figure 1 shows a typical auto spectrum computed from such a 
model (with parameters given in the figure caption). This reali- 
zation contained three distinct periodic components, each with 
a different amplitude. The amplitude Cz(/) and phase </>*(/) of 
the cross spectrum, plotted as a function of lag are shown in 
the inset panels. In this case the cross spectrum was evaluated 
at the center frequency of the strongest periodicity (bin 93). 
This simulation clearly displays the features of coherent 
signals: (1) the amplitude of the auto spectrum peaks at the 
frequencies of any strictly periodic signals; (2) the amplitude of 
the cross spectrum at the frequency of a strictly periodic signal 
is independent of the lag, /; and (3) the phase of the cross 
spectrum increases linearly with /. In this case the phase of the 
cross spectrum is constant because the spin period and the 
oscillation period, ^ = 1/v, were chosen to be commensurate. 
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Fig. 1.—Plot of the auto spectrum computed from a set of 100 pulses 

generated with the deterministic model of eq. (3.1.1). In this realization we 
generated 1024 samples per pulse with a time resolution <5 = 90 /us. The model 
parameters are: ;40 = 1, ^ = 0.5, A2 = 0.3, A3 = 0.1, Yll = 1.0 ms, H2 = 0.7 
ms, n3 = 0.5 ms, and = 0. The standard deviation of the gaussian noise 
process, an, is 0.3. The frequency in Hz is given by the expression / = (bin 
No./512) x fNyq, where fNyg = l/(2<5) is the Nyquist frequency. The inset panels, 
from left to right, show the amplitude and phase of the cross spectrum plotted 
as a function of lag. The cross spectrum is evaluated at bin 93, the center 
frequency corresponding to H^ 

In another experiment with this model, we introduced an 
exponential time decay of the amplitude of the first periodic 
component. The decay in the amplitude of the cross spectrum 
as a function of lag l centered at this periodicity is clearly seen 
in the left inset of Figure 2, where the auto spectrum and the 
cross spectrum are displayed as in Figure 1. The reduced inten- 
sity of the first periodic signal, centered at bin 93, is also clearly 
seen in the auto spectrum. In this case the decay time was equal 
to one pulse period. Comparison of real data with results from 
this experiment would allow us to estimate decay times of 
oscillations, if modes such as these were found to be present in 
actual data. 

3.2. Simulated Pulsar Signals 
In addition to the purely deterministic signals discussed 

above, we also find it useful to explore the properties of simula- 
tions that more accurately characterize the true nature of the 
pulsar signals. For this purpose we use a shot-noise model to 
simulate pulsar emission. Such models are quite similar to the 
amplitude-modulated noise model (AMN) discussed by 
Rickett (1975) and Cordes (1976b), which can account for 
many of the properties of observed pulsar signals: Our sim- 
plest, one-component, shot-noise model generates Gaussian 
shots with random amplitudes, which are distributed in time 
according to Poisson statistics, and is of the form 

S(t) = ©(iKlFWCG^, r,s)-] + N((jn)} . (3.2.1) 

The Gaussian pulses G(ps, rjs) are characterized by a fixed 
width in time (standard deviation) ps, and a mean time separa- 

0 100 200 300 400 500 
Frequency Bins 

Fig. 2.—Auto spectrum of the same model as shown in Fig. 1 except that 
the amplitude A! is given by A^t) = A1 e~t/z with t = 1 pulsar spin period. The 
inset panels, from left to right, show the amplitude and phase of the cross 
spectrum plotted as a function of lag. The cross spectrum is evaluated at bin 
93, the center frequency corresponding to H^ Notice the decrease in the cross 
spectral amplitude with lag. 

tion rjs. Zero-mean Gaussian noise with standard deviation of 
the amplitude given by crn is included to model the noise 
present in any detector system. The random amplitudes of the 
Gaussian shots are drawn either from a uniform distribution 
with some maximum amplitude, or from a Gaussian distribu- 
tion with mean As and standard deviation Bs. The other 
symbols have the same meanings as in equation (3.1.1). To 
construct the individual pulses a random number code gener- 
ates the location in time of successive shot centroids. The code 
uses successive centroid locations, two at a time, to compute 
the signal strength at uniformly spaced intervals within each 
pulse window. 

This simple model provides an adequate characterization of 
the longer time (5-10 ms) features seen in real pulsar signals. 
For example, Figure 3a shows a plot of 10 consecutive pulses 
taken from a total of 200 which were generated with this 
model. In Figure 3b we have plotted the auto spectrum and the 
cross spectrum, C^f), computed from the entire sample of 200 
pulses. The model parameters are given in the caption of 
Figure 3a. The prominent peak centered at zero frequency in 
the auto spectrum is due to the Gaussian shots. This feature is 
common to all of our one-component simulations. The width 
in frequency of the peak in the auto spectrum is inversely 
proportional to the shot width, ps. The high-frequency end of 
the spectrum is asymptotically flat, consistent with the contri- 
bution from the Gaussian noise component. The magnitude of 
the cross spectrum, C^/), for this realization is shown in the 
inset of Figure 3b. The solid line through the spectrum is the 
mean value across the entire frequency range, and the dashed 
line is the corresponding 3 cr level. For this fully random model 
the deviation of the cross spectrum for noise is zero to within 
the limits introduced by averaging a finite train of pulses. This 
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Fig. 3.—(a) Sample of 10 consecutive pulses generated with the one-component shot-noise model of eq. (3.2.1). A total of 1024 points per pulse were sampled with 
90 fis time resolution. The model parameters were fis = 1.0 ms, rjs = 8.0 ms, and (Tn = 5.0. The amplitudes of the Gaussian pulses were drawn from a Gaussian 
distribution with mean amplitude As = 200.0, and standard deviation Bs = 70.0. Time increases upward, to the right. For clarity, each successive pulse is displaced 
upwards by 500.0 from the previous pulse, (b) Auto spectrum computed from a sample of 200 pulses generated with the one-component shot-noise model of Fig. 3a. 
The Gaussian-like peak near zero frequency is characteristic of the one-component models. The width of the peak is inversely proportional to the shot width, fis. The 
inset panel shows the amplitude of the cross spectrum C^f). The solid line denotes the mean value of the cross spectrum. The dashed line is the corresponding 3 a 
value. 

is as expected, since the signal was constructed to be purely 
random. 

In order to make the shot-noise model described above 
more realistic, we next incorporated, approximately, the effects 
of an average pulse profile on the simulated signals. This was 
done by applying a profile modulation function, W(t), as in 
equation (3.1.1), to the Gaussian shots G in equation (3.2.1). 
Thus, the random signals generated as described above are 
multiplied at each time interval by the value of a profile func- 
tion appropriate to that position in the pulse window. As we 
are specifically interested here in PSR 2016 + 28 we have 
chosen parameters specifically to simulate pulses from this 
pulsar. The techniques are generally applicable, however, and 
we have employed such models successfully in other cases as 
well. Since PSR 2016 + 28 also has drifting subpulses we have 
chosen to model the average profile as the product of two 
components; an overall Gaussian mean profile, and a drifting 
subpulse envelope. The mean pulse component is fixed in time 
with respect to the observing window and is characterized by a 
width, <7W. The subpulse envelope is composed of Gaussian 
components of width, <jsp, whose centroids are separated by an 
amount, A. The subpulse envelope drifts through the observ- 
ing window by a specified amount, td, in each pulse period. 
We have also permitted random variations with standard 
deviation ad around this mean drift rate. In computing these 
simulations we have attempted to adopt parameters which 
are consistent with our actual 430 MHz data set from 
PSR 2016 + 28, but we emphasize we have not done any 
precise fitting of the parameters. 

We are also interested in studying micropulse properties as 
well as subpulses. We must therefore extend the shot-noise 

models to simulate the shorter time scale micropulse emission 
as well as the subpulse emission. As before, the micropulses are 
simulated as Gaussian shots. In this two-component model we 
allow the subpulse and micropulse widths to have some varia- 
tion about their respective mean values. Thus, each component 
is specified by two parameters, the mean component width, p, 
and the variation about that mean, a. The subpulse parameters 
are noted by ps, and <js, while the micropulse parameters are 
pm, and am. The signal of the two-component model is of the 
form 

S(i) = &(t){W(a w’ GSp, A, td, <Jd, ^[GM, as, r,s) 

+ G2(nm, <7m, i/J] + N(an)} . (3.2.2) 

Here (ts, rjs) represents the subpulse component and 
G2(pm, orm, rjm) the micropulse component. The mean profile 
function W(ow, osp. A, id, od, t) is described in the preceding 
paragraph. In these more realistic models the time separations 
between adjacent subpulse centroids and between adjacent 
micropulse centroids are also given by Poisson distributions 
with fixed means rjs, and r¡m. However, the amplitudes of the 
subpulses and micropulses are drawn from two distinct Gauss- 
ian distributions. Variations of the means and standard devi- 
ations of these distributions allow us to increase or decrease 
the relative strength of either the micropulse or subpulse com- 
ponents in these signals. 

We illustrate the types of signals that can be generated using 
this model with several examples. In Figure 4 we have plotted a 
sequence of 10 consecutive pulses generated with the model 
described above (right panel) together with a sequence of 10 
pulses actually observed from PSR 2016 + 28 (left panel). The 
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Fig. 4.—Sample of 10 consecutive pulses recorded at 430 MHz from PSR 2016 + 28 is shown in panel (a). Panel {b) shows a sample of 10 consecutive pulses 
generated with the two-component shot-noise model of PSR 2016 + 28. The model parameters used for this simulation are discussed in the text, and displayed in 
Table 1. Time increases upward, to the right, and each successive pulse is displaced upwards by 200.0 from the previous pulse. 

values of the parameters used in this simulation are listed in 
Table 1. We have examined models with a constant subpulse 
drift rate as well as models where the drift rate is variable 
about some mean value. The pulses displayed in Figure 4 were 
generated with the variable drift rate model. For convenience 
we have constrained the drifting subpulse envelope in the con- 
stant drift rate simulation to appear at the same position in 
pulse phase every 6 pulse period. We find that both of these 

models are able to reproduce much of the structure seen in the 
actual 430 MHz data. In Figure 4 notice that the microstruc- 
ture appears as additional substructure of the individual sub- 
pulses, as discussed by Cordes et al. (1990). The auto spectrum 
of this 500 pulse simulation is displayed in Figure 5, as is the 
magnitude of the cross spectrum C^f) (inset). 

There are several noteworthy features of this spectrum: (1) 
The narrow Gaussian peak near zero frequency is familiar 

TABLE 1 
Parameters used in Pulsar Simulations 

Parameter Two-component shot-noise model Description 

Parameters of Random Signal 

fis{as) (ms)   2.0(0.1) mean(deviation) of subpulses 
(jus)  100.0(20.0) mean(deviation) of micropulses 

rjs (ms)  4.0 mean separation between subpulses 
r¡m (/¿s)   350.0 mean separation between micropulses 
AS(BS)  30.0(5.0) amplitude(deviation) of subpulses 
AJ^B^  45.0(20.0) amplitude(deviation) of micropulses 
(Tn    0.15 deviation of noise component 

Parameters of Mean Profile Function 

(Tw (ms)   5.0 width of mean pulse 
(jsp (ms)  2.2 width of individual subpulses 
A (ms)   12.0 separation between subpulse centroids 
tJ(Gd) (ms)   2.0(0.08) mean(deviation) subpulse drift rate 
ô (jis)   100.0 time between samples 

Notes.—Values of the parameters used in the two-component pulsar model. The third column gives a 
brief explanation of each parameter. See § 3.2 for a detailed description of the model parameters. 
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Fig. 5.—Auto spectrum and the cross spectrum C^f) (amplitude) com- 
puted from a set of 500 pulses generated with the two-component shot-noise 
model of PSR 2016 + 28 are plotted as a function of frequency. The model 
parameters used for this simulation are given in Table 1. The subpulse separa- 
tion feature is centered on bin 6 in both the auto and cross spectrum. 

from the one-component model, but now we also see a broad 
feature extended to higher frequencies. This is due to the 
narrow micropulses. (2) There is a clear feature seen in the 
low-frequency component of the spectrum at bin 6. The loca- 
tion of this feature measures the separation between subpulses 
and corresponds to the parameter P2 used to characterize 
drifting subpulses in pulsars. We have confirmed this identifi- 
cation by examining the position of the feature as a function of 
the subpulse separation A in our subpulse envelope model. (3) 
The cross spectrum, C^/), shows a strong signal at the sub- 
pulse separation feature (bin 6), while the remainder of the 
spectrum is essentially zero, consistent with the random nature 
of the micropulses. 

Comparison of the spectra computed from these simulated 
pulses with the spectra obtained from our 430 MHz PSR 
2016 + 28 (see below) data indicates that our two-component, 
shot-noise model is quite suitable as a null hypothesis; that is, 
the presence or absence of periodic signals in real pulsar data 
can be tested against a fully random shot-noise model. To 
quantify this procedure we compute the mean of the cross 
spectrum for one of our simulated signals. For our random, 
two-component shot-noise models the cross spectrum 
approaches zero as we average more pulses. That is, 

Ucccd/^T,,), (3.1) 

where /¿c is the mean of the frequency-averaged cross spectrum, 
and Np is the number of pulses in the average. Real signals that 
show cross spectral amplitudes significantly higher than the 
mean level, nc, of one of our random simulations are thus 
candidates for signals containing coherent periodicities. The 
significance of a feature can thus be estimated by comparison 
with the mean and standard deviation of the local background. 

4. ANALYSIS OF 430 MHz DATA FROM PSR 2016 + 28 

Our data set consists of a sample of 2000 consecutive pulses 
from PSR 2016 + 28. The data were obtained at the Arecibo 
observatory with the 430 MHz feed and receiver system 
(Thorsett & Stinebring 1992). The pulses have been dedis- 
persed and smoothed to a resolution of 100 ¡ns. A total of 512 
points was sampled in a 50 ms window centered on each pulse. 
A contaminating 60 Hz signal which had been picked up by the 
electronics during the data taking was subtracted from the 
data. This was accomplished by fitting a 60 Hz sinusoid to the 
off-pulse baselines (Thorsett 1990). We discuss the problem of 
interference and signal contamination in more detail in a later 
subsection. 

As mentioned previously, Figure 4 (left panel) shows a 
sample of 10 consecutive pulses from this data set. Both the 
highly organized drifting subpulses in this group of pulses, as 
well as the strong micropulses are clearly apparent. Notice that 
the micropulses appear to be quasi-periodic in many individ- 
ual subpulses. 

In Figure 6 we have plotted the intensity integrated over the 
entire pulse window for each pulse in the data set. The main 
portion of the figure shows the integrated intensity plotted as a 
function of pulse number. The gradual decline in the integrated 
intensity towards the end of the data set is a result of inter- 
stellar scintillation. The inset panel shows the histogram of the 
integrated intensity, i.e., the number of pulses with an inte- 
grated intensity in each specified range. This distribution is 
rather sharply peaked, indicating that PSR 2016 + 28 is not an 
erratic emitter, and in fact does not show null pulses. To deter- 
mine whether the data contain any significant long-term 
periodicities we have computed the power spectrum from the 
time series of the integrated intensities. The spectrum is flat, 
consistent with purely random variations of the intensity from 
pulse to pulse. 

Fig. 6.—Plot of the intensity integrated over the pulse window as a func- 
tion of pulse number. The decrease in pulse intensity is due to interstellar 
scintillation. The inset panel shows the histogram of the intensity integrated 
over the pulse window. 
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we have examined average spectra of various subsets of the 
entire sample. Since the integrated pulse intensity drops 
throughout the sequence of pulses, the first half of the data set 
has a higher signal-to-noise ratio than the second half. We 
therefore choose to display results from the first half of the data 

0 50 100 150 200 250 
Frequency Bins 

Fig. 7c 

set. Because the pulses each contain 512 real-valued samples, 
the corresponding Fourier transforms contain information at 
only 256 positive frequencies. The relation between bin number 
and frequency in Hz is given by /(Hz) = (bin no./256) x/Nyq, 
where/Nyq = 5000 Hz for a 100 ps sampling rate. 

Figure la shows the auto spectrum and the magnitude of the 
cross spectrum C//) (in the inset) of the first 1000 pulses. The 
auto spectrum displays the familiar subpulse-width peak cen- 
tered at zero frequency, as well as a much broader component 
that extends to higher frequencies. The broad hump centered 

Period (ms) 
Fig. 7b 

Fig. 7.—(a) Auto spectrum computed from the first 1000 pulses of our data 
set from PSR 2016 + 28, is plotted as a function of frequency. Notice the 
subpulse separation feature centered on bin 6 and the broad micropulse quasi- 
periodicity feature centered near bin 70. The inset panel shows the cross spec- 
tral amplitude C^f) plotted as a function of frequency. In this plot the solid 
line denotes the mean value in the frequency range from bin 50 to bin 250. The 
dashed line is the corresponding 3 a level in the same frequency range. There is 
no evidence for coherence in the quasi-periodicity feature around bin 70 (see 
Fig. Sa for comparison with the two-component shot-noise model), (b) 
Residuals computed by subtracting a linear background from the auto spec- 
trum of Fig. la are plotted as a function of period. The dashed curve is the 
best-fit Gaussian. The parameters of this Gaussian are given in § 4.1. (c) Mean 
of the / = 1-10 cross spectra computed from the first 1000 pulses of our data 
set from PSR 2016 + 28 is shown as a function of frequency. The solid line 
denotes the mean value in the frequency range from bin 50 to bin 250. The 
dashed line is the corresponding 3 a value in the same frequency range. The left 
inset panel displays the amplitude of the cross spectrum evaluated at the 
subpulse separation feature (bin 6), as a function of lag. The drop in coherence 
over 4-5 pulse periods is evident. For comparison, the right panel shows the 
same quantity but now evaluated at the center of the micropulse quasi- 
periodicity feature (bin 70). 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

38
9.

 .
68

5S
 

STROHMAYER, CORDES, & VAN HORN Vol. 389 692 

near bin 70 is the micropulse quasi-periodicity feature first 
detected by Boriakoff (1976) using the ACF. The feature corre- 
sponds to preferred micropulse separations of about 0.8-0.9 
ms. The cross spectrum is essentially zero at the position of the 
micropulse quasi-periodicity feature, indicating that the micro- 
pulses are not coherent on a time scale longer than the pulsar 
spin period. 

To estimate the Q-value of the micropulses we fit a linear 
function to the auto spectrum in the regions, bin 30-40, and 
bin 120-140. This provides a simple estimate of the back- 
ground in the region of the micropulse feature. We then sub- 
tract this estimated background from the auto spectrum across 
the micropulse feature from bin 30 to bin 140. A plot of the 
residuals thus computed is shown in Figure 76 as a function of 
period, along with the best-fit Gaussian Ae~{P~p,l)2/2<Tß, where 
A = 18021.24, Pß = 0.883 ms, and oy = 0.154 ms. This pro- 
cedure yields a Q-value for the micropulses of ß = PJa^ = 5.7. 
These results for the micropulse quasi-period, and ß-value 
are entirely consistent with those orginally given by Boriakoff 
(1976). 

To investigate the properties of the micropulses further we 
have introduced quasi-periodic micropulse separations into 
our shot-noise simulations. We have developed two distinct 
models for the micropulse separations. In the coherent model 
the micropulse centroids undergo a random variation about a 
set of strictly periodic recurrence times; such a model might be 
appropriate if there were an underlying clock mechanism for 
the quasi-periodicities. In this model we specify the coherent 
micropulse period, P^, and a standard deviation, ö>, which is 
expressed as a percentage of the period. Note that we have 
used a value of Pß = 0.8 ms in these simulations to facilitate 
direct comparison with the data from PSR 2016-1- 28. With this 
model we have analyzed a series of simulations generated by 
varying the deviation, <7>, from 0% to 50%, while holding all 
other parameters fixed. In each case we record the strength of 
the coherent signal seen in the cross spectrum at the micro- 
pulse period, PM. The amplitude of the cross spectrum at the 
micropulse period drops from a high of « 1 when <jp = 0% to 
about 0.1 (the level of detection) for o> = 35%. By comparison 
with this coherent model we can state that if the micropulse 
quasi-periodicities are produced by an underlying, coherent 
clock mechanism with some weak coupling to the magneto- 
sphere, then the percentage jitter must be >35% of the micro- 
pulse periodicity. 

In our second model of micropulse separations the position 
in time of the centroid of a micropulse is referred only to the 
position of the previous micropulse. In this random walk 
model, the time separation of the micropulses is drawn from a 
Gaussian distribution with mean Prw and standard deviation 
(Trw. Using this model we have also investigated the loss of 
coherence as the standard deviation is increased from zero. In 
this case we find that the coherence level in C^P^) is un- 
detectable when the standard deviation is »3% of the micro- 
pulse quasi-period, for a micropulse quasi-period of 0.8 ms. 
This is consistent with the random walk interpretation, since 
phase loss will certainly occur after the micropulse centroids 
have “walked” a distance equal to at least one micropulse 
period. This will occur after a total of V « 1/e2 steps, where e is 
the standard deviation of the micropulse quasi-period 
expressed as a fraction of the quasi-period. When e = 0.03 
(3.0%) the micropulse centroids can undergo N æ 1111 steps 
before the phase is completely lost. This corresponds to less 
than 2 pulse periods, and therefore one would not expect to see 

a coherent signature in the cross spectrum of this model. Inter- 
estingly, the auto spectrum of this model shows a strong spike 
at the micropulse period even when the standard deviation is 
as high as 25%. Since such a strong feature is clearly not seen in 
the auto spectrum of PSR 2016-1-28 we can conclude that if 
such a model were appropriate the deviation of the micropulse 
separations from strict periodicity would at least have to be 
greater than 25 %. 

The subpulse separation feature is also clearly seen in Figure 
7a, centered near bin 6. This location corresponds to a sub- 
pulse separation of « 10 ms, which is consistent with results 
obtained by Cordes et al. (1990) using the intensity ACF. This 
feature does show significant coherence. To investigate this 
further we have plotted in Figure 1c the mean of the l = 1-10 
cross spectra. The mean cross spectrum simply averages out 
the noncoherent frequency components. The lack of coherence 
in the micropulse quasi-periodicity feature is even more 
appearent here than in Figure 7a, as the spectrum is essentially 
zero beyond bin 15. The two inset panels show the magnitude 
of the cross spectrum plotted as a function of lag for two 
different frequencies. The left panel shows the magnitude of the 
cross spectrum evaluated at the subpulse separation feature 
(bin 6). A fit to an exponential gives a characteristic decay time 
of UP. This corresponds to a ß-value by ß = (decay time)/ 
(period) = 1.7 x 0.53 s/10 ms « 90. The right panel shows the 
same quantity but now evaluated at bin 70, the centroid of the 
micropulse quasi-periodicity feature. This confirms the pre- 
vious result : there is no detectable coherence in the micropulse 
feature on time scales longer than a pulse period. 

To enable the reader to make direct comparisons with 
results from a known signal we have computed the same quan- 
tities for a 1000 pulse shot-noise simulation using our two- 
component shot-noise model and a variable subpulse drift rate. 
The parameters used in computing this simulation are the 
same as those used in generating Figures 4 and 5, and are listed 
in Table 1. The results are displayed in Figures 8a and 86. 
Notice that the magnitudes of the cross spectra obtained from 
the simulation are entirely consistent with those obtained from 
PSR 2016-1- 28. In Figure 86 we show the mean computed from 
the / = 1-10 cross spectra. The left inset panel shows the cross 
spectral amplitude evaluated at the subpulse separation feature 
plotted as a function of lag. Notice the drop-off of the coher- 
ence as a function of lag. This is quite similar to what is seen in 
the cross spectrum of PSR 2016 + 28 (see Figs, la and 76). This 
effect is a direct result of the variable subpulse drift rate used in 
this simulation. Similar calculations with a constant drift rate 
show a constant cross spectral amplitude as a function of lag. 
In this case an average drift rate of 2.0 ms with a standard 
deviation of 0.08 ms produces the cross spectral decay similar 
to that seen in PSR 2016 + 28. See Figures la and 76 for the 
corresponding data from PSR 2016 + 28. 

4.2. Problems with Interference 
As mentioned previously, a 60 Hz signal was removed from 

the data prior to our analysis using a simple fitting procedure 
applied to the off-pulse baselines. Through the course of our 
spectral analysis we discovered that the data were nevertheless 
still contaminated with higher harmonics of the fundamental 
60 Hz interference. It is not clear whether these additional 
harmonics were an artifact of the 60 Hz filtering procedure, or 
were also present prior to that processing. We detected the 
contamination through analysis of the last 250 pulses of the 
sample. These pulses were significantly weaker than the 
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Fig. 8.—(a) Plot of the auto spectrum computed from the 1000 pulse, two-component, shot-noise model of PSR 2016 + 28. Details of the model are listed in Table 
1. The inset panel shows the cross spectral amplitude C^f) plotted as a function of frequency. Fig. la shows the corresponding results for PSR 2016 + 28. (b) Mean of 
the / = 1-10 cross spectra computed from the 1000 pulse, two-component, shot-noise model of PSR 2016 + 28 is plotted as a function of frequency. The left inset 
panel shows the cross spectral amplitude plotted as a function of lag. The cross spectrum was evaluated at the subpulse separation feature (bin 6). The right panel 
shows the same quantity but now evaluated at bin 70. Fig. lb shows the corresponding results for PSR 2016 + 28. 

average, because the pulsar was entering a scintillation 
minimum during this portion of the data acquisition (see Fig. 
6), and the decline in the pulsar signal strength made it possible 
to detect the contaminating signals. In Figure 9 we show a plot 
of the mean cross spectrum (/ = 1-10) calculated from the last 
250 pulses in our sample. The strong contaminating signals are 
easily seen above the background. From left to right the 
strongest peaks correspond to the third, fifth, seventh, and 
fifteenth harmonics of the 60 Hz signal. By analyzing the 
spectra of portions of the off-pulse baselines we have confirmed 
that the signals are not intrinsic to the pulsar. These fre- 
quencies correspond to signals with periods; 5.55, 3.33, 2.38, 
and 1.11 ms. Since such values are close to the computed 
periods of several classes of neutron star oscillations 
(McDermott et al. 1988), these results serve to emphasize some 
of the difficulties encountered in searching for periodic signals 
in radio-pulsar data. Evidently, one must be cautious in 
drawing conclusions concerning the detection of periodicities 
in pulsar data which may contain contaminating signals. 

5. DISCUSSION 

Our results place several constraints on the neutron star 
oscillation hypothesis. First, if oscillations are somehow associ- 
ated with the micropulse quasi-periodicities, then either the 
damping times of the relevant oscillations must be much less 
than the pulsar period, or else the magnetosphere must intro- 
duce substantial phase jitter, associated with variable emission 
radii or variable beaming angles. The former is what one 
would expect if the relevant oscillations were low-order p- 
modes, which are strongly damped by gravitational radiation 
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Fig. 9.—Plot of the mean of the / = 1-10 cross spectra computed from the 
last 250 pulses of our PSR 2016 + 28 data set. The four prominent peaks are 
due to harmonics of a 60 Hz signal which has contaminated the data set. From 
left to right, the signals correspond to the 3d, 5th, 7th, and 15th harmonics of 
the 60 Hz signal. The solid line denotes the mean value in the frequency range 
from bin 50 to 250. The dashed line is the corresponding 3 a value in the same 
frequency range. 
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(McDermott et al. 1988). However, calculations of p-mode 
periods typically give values less than 0.2 ms for the lowest 
order modes, and the energy required to drive such oscillations 
to observable amplitudes are so large («1047-1051 ergs) that 
there is no conceivable energy source capable of maintaining 
such oscillations. Alternatively, it is possible that the oscil- 
lations are “weakly” coupled to the radio emission mecha- 
nism, and therefore produce no apparent coherence of the 
microstructure; such a process might introduce phase jitter, as 
in our coherent micropulse simulations. Unfortunately, 
without a detailed theory of the pulsar magnetosphere and the 
radio emission mechanism it is impossible to be more precise 
about the nature of the coupling between the neutron star and 
the radio emission region. The success of the shot-noise 
models, including the random walk micropulse model, in repro- 
ducing the general features of the spectra of PSR 2016 + 28, as 
well as the low Q-value estimated for the micropulses, suggest 
that a chaotic or random process rather than a periodic one, 
perhaps in the magnetosphere itself, is responsible for the 
micropulse phenomena. 

Second, the subpulse separation feature, P2, which is easily 
detected in the auto spectrum, does exhibit significant coher- 
ence across several pulse periods. This suggests a higher 
Q-value for the process that produces the subpulse separation. 
Our model with variable subpulse drift reproduces many of the 
features seen in the auto and cross spectrum of PSR 2016 + 28. 
For this pulsar we characterize this process with a Q-value 
defined by Q = (decay-time)/(period) = 1.7 x 0.53 s/10 ms æ 90. 
The drifting subpulse phenomenon has typically been 
explained in terms of drifting emission regions within the 
pulsar beam. The appearance of drifting subpulses in some 
pulsars and not others is then attributed to the orientation of 
the pulsar beam axis to the line of sight. Lines of sight which 
just graze the edges of the pulsar beam generally reveal drifting 
subpulses. This is reasonably consistent with the observation 
that most drifters show simple (unimodal) average pulse pro- 
files (Backer 1976; Rankin 1983). This does not completely rule 
out a model based on stellar oscillation, however. An alterna- 
tive interpretation is that the subpulse envelope is produced by 
an oscillation mode, and that the subpulse drift is simply the 
consequence of an incommensurate pulsar spin period and 
oscillation period. One difficulty with this interpretation is the 

apparent variation in drift rates which is seen in many pulsars. 
A possible explanation in the oscillation hypothesis is that the 
radio emission is not strongly coupled to the stellar oscil- 
lations, so that there is some phase jitter around the period- 
icity, similar to that in our variable drift rate simulations. This 
seems plausible in the circumstance that the radio emission is 
produced at some distance above the surface of the neutron 
star. Clearly, additional work is needed to decide this issue. 

6. CONCLUSIONS 

We have described a technique, based on analysis of the 
cross spectra of single-pulse data from pulsars, with which we 
can measure the coherence properties of, and search for coher- 
ent periodicities in, pulsar signals. To test our techniques and 
interpret results from actual pulsar data we have constructed 
and analyzed several simulated pulsar models. From an 
analysis of 2000 consecutive pulses from PSR 2016 + 28 we 
conclude: (1) the micropulse coherence time at 430 MHz is less 
than the spin period for this object. (2) This result could be 
consistent with a coherent model if the random phase jitter in 
such a model were >35% of the micropulse quasi-periodicity. 
(3) The subpulse separation, P2 æ 10 ms, is coherent across 4-5 
pulse periods, and is reasonably consistent with a model of 
subpulse drift that allows for variation about some mean drift 
rate. (4) A two-component (subpulse and micropulse) shot- 
noise model can reproduce much of the structure seen in the 
individual pulses as well as the spectra of PSR 2016 + 28. 
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