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ABSTRACT 
The observed trend in interstellar polarization with extinction at 2.2 /¿m can be well modeled by assuming 

that interstellar polarization is independent of magnetic field strength and depends only on the geometry of 
the field. Two models, one invoking Alfvén waves with random phase and one combining ad hoc random and 
constant components, are developed. The wave model best fits the data when there is equipartition between 
the magnetic and turbulent energy densities in the ISM. The two-component model best fits the data when 
there is equal energy in the random and constant components. The observed dispersion in polarization magni- 
tude and position angle requires that the random component of both models decorrelate over an optical 
depth interval (not physical path length) close to a value of At ~ 0.1 at 2.2 /un (Av ~ 1). This constraint on 
the decorrelation optical depth is found to hold for lines of sight through both the diffuse ISM and dense 
dark clouds, even though the corresponding physical path lengths are widely different. This suggests that the 
geometry of the magnetic field is at least partially preserved when molecular clouds contract out of the diffuse 
ISM. Two simple scenarios for cloud formation, one involving reducing the space between very low filling 
factor cloudlets and the other involving one-dimensional compression across field lines are discussed. 
Subject headings: ISM: general — ISM: magnetic fields — polarization 

1. INTRODUCTION 

Recently Jones (1989a, hereafter Paper I) found that the 
magnitude of interstellar polarization measured at K (2.2 /un) 
is correlated with interstellar extinction. He modeled this trend 
with a simple vector addition of two components to the mag- 
netic field equal in strength and both in the plane of the sky. 
One component was constant, and one was random in position 
angle. Thé random component was allowed to decorrelate over 
an optical depth interval at K of t^ ~ 0.1. While successful, this 
model required three input parameters, one of which was an 
arbitrary adjustment of the efficiency at which interstellar dust 
polarizes light, as well as a dependence of the polarization on 
magnetic field strength. Jones did not address the observed 
dispersion in the polarization about his model prediction, nor 
did he model the observed dispersion in position angle among 
lines of sight nearby on the sky. Also, Jones did not connect his 
model with any physical processes taking place in the inter- 
stellar medium (ISM). 

It is widely recognized that the interstellar medium is 
clumpy and that turbulent macroscopic motions are often 
more energetic than microscopic thermal motions (e.g., Dickey 
1984). Attempts to relate these turbulent motions to the mag- 
netic field through polarization measurements date back to 
Chandrasekhar & Fermi (1953), who argued for a connection 
between the observed dispersion in position angle for stars 
nearby in the sky and the amplitude of Alfvén waves traveling 
through the dusty gas responsible for polarizing the light. 
More recently, Zweibel (1990) extended their treatment to 
include the degree of ionization and the covering factor. Myers 
& Goodman (1991) presented a model for the dispersion in 
position angle that combines a constant and a random com- 
ponent of the magnetic field. In their model both components 
are free to point in three dimensions and the random com- 
ponent is given a Gaussian distribution in magnitude. They 
successfully model the dispersion in position angle for several 
nearby dark clouds. 

602 

In this paper we develop a wave model for the magnetic field 
similar to Chandrasekhar & Fermi and compare its results to 
observations of the magnitude of the polarization as well as the 
dispersion in polarization and position angle. We also extend 
the Myers & Goodman model to include calculations of the 
magnitude and dispersion of the polarization itself. In § 2 a 
simple grain model is developed to describe the polarizing 
power of the ISM as a function of optical depth and direction 
of the grain alignment. This grain model provides the basic 
description of how the magnetic field influences the polariza- 
tion of light by dust. In § 3 we describe the data base available 
for comparison with our model results. In § 4 our assumptions 
about the large-scale magnetic field geometry in the galaxy and 
the way the random component is modeled are presented. The 
model results are given in § 5 and the implications of these 
results are discussed in § 6. The details of the grain model and 
the magnetic field models are placed in the Appendices. 

Our goal is to model the strength of the polarization as well 
as the dispersion in the strength and in position angle. Our 
data base consists of 99 stars with K band polarimetry tabulat- 
ed in Paper I in addition to more recent observations by Jones 
(1989b), Klebe & Jones (1990), and Brindle et al. (1991), as well 
as optical data from Goodman et al. (1990) and the classic 
paper by Serkowski, Mathewson, & Ford (1975). These data 
place strong constraints on the relationship between the 
random and constant components to the magnetic field in the 
ISM and surprising constraints on the scale length over which 
the random component decorrelates. 

2. GRAIN MODEL 

Any model of interstellar polarization requires a description 
of the polarizing properties of the grains and how they are 
influenced by the ambient magnetic field. The now classic 
Davis-Greenstein mechanism has proved to be a useful start- 
ing point for models of the grain alignment mechanism. It is 
highly unlikely, however, that normal paramagnetic relaxation 
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with thermal spinup of the elongated dust grains is capable of 
aligning the grains in all phases of the ISM (Chaisson & Vrba 
1978 ; Purcell 1975). The clear presence of well-aligned grains 
in quiescent, dense, Bok globules for example, argues strongly 
against normal paramagnetic relaxation (Klebe & Jones 1990; 
Jones, Hyland, & Bailey 1984). Several nonthermal spinup 
mechanisms have been devised to enhance the alignment 
mechanism (see Purcell 1975), however, the interiors of Bok 
globules are not ideal locations for these mechanisms (Klebe & 
Jones 1990). So-called superparamagnetic inclusions (SPM) in 
the grains have been proposed by several authors (e.g., Mathis 
1986). These inclusions greatly enhance the dissipation of 
energy in the spinning dust grain and dramatically speed up 
the alignment. A very successful and detailed model of the 
wavelength dependence of interstellar polarization using SPM 
particles has been developed by Mathis (1986), for example. 

Whatever the exact details of the alignment mechanism, it is 
becoming increasingly clear that the mechanism is very effec- 
tive, and it aligns the large silicate portion of the total grain 
population in a time that is short compared to dynamical times 
in the ISM. For our models we will assume that there is no 
dependence of the net grain alignment on the strength of the 
magnetic field. In other words, the large elongated component 
of the grain population is always fully aligned with the ambient 
magnetic field. With this assumption, the magnitude of the 
polarization is controlled by the extinction (optical depth of the 
polarizing grains along the line of sight) and the magnetic field 
geometry only. A detailed formulation of the polarizing proper- 
ties of the grains is given in Appendix A. Here we briefly 
develop the central characteristics of the model grains. 

Following Paper I and Klebe (1989) we describe the polar- 
izing power of the total population of interstellar grains by the 
parameter r¡9 

the ratio of the total extinction coefficient perpendicular to the 
long axis of the aligned component to the total extinction coef- 
ficient parallel to the long axis. In this definition, rj is less than 
one, and a smaller rj will result in a more highly polarizing 
medium. For r¡ = 1 there is no polarization. Note that 
although rj is wavelength dependent, throughout this paper we 
will only be considering the polarization in the K band, which 
is centered at 2.2 gm. The differential polarization caused by a 
uniform slab of dust with thickness dx is then 

dP = 'll^JiLdx = l^lKdx = LlÄdr = d 
2 l + rj 1 + ?/ p (2) 

where k = (k y -b kl)/2. 
Three parameters control the value of r¡. First is r¡p, the value 

of rj for the aligned component of the grains alone. The wave- 
length dependence of interstellar polarization and the strong 
interstellar polarization seen in the silicate absorption band at 
9.7 gm demand that only a subpopulation of the total grain 
population actually aligns in the presence of a magnetic field 
(Dyck & Lonsdale 1980). The second is the fraction of the total 
extinction the aligned component represents, since not all of 
the grain population is aligned or contributes to the net polar- 
ization. Even if the aligned component were highly polarizing 
(infinite cylinders), the net polarization would be very low if 
this aligned grain component constituted a negligible fraction 
of the total extinction. The third parameter is the angle 

between the line of sight and the magnetic field direction. If the 
magnetic field is pointing directly along the line of sight, no 
polarization will result. If the field lies completely in the plane 
of the sky, then maximum polarization will result. In Appendix 
A we show that these parameters result in the following expres- 
sion for rj 

^ = >?„ + (!- >?p) cos 0 + R ^ 
R (3) 

where R is the ratio of the extinction for the unaligned com- 
ponent to the aligned component and 9 is the angle between 
the line of sight and the magnetic field. 

The mean values for R and rjp are not free parameters but are 
fixed by the observed maximum polarization at different values 
of extinction (see Serkowski, Mathewson, & Ford 1975; Paper 
I). The maximum observed polarization at 2.2 gm for any 
optical depth corresponds to rç = 0.875 (Paper I). Consequent- 
ly, the allowed values of rjp and R are constrained by setting 
0 = 90° in equation (3) (magnetic field in the plane of the sky) 
and then setting rj = 0.875. Klebe (1989) has shown that varia- 
tions in rjp and R consistent with rç = 0.875 have negligible 
effects on model results. Therefore, following Klebe we set 
r¡p = 0.5 and R = 3.0 and consider them to be fixed input 
parameters to the model. 

3. DATA SET 

For this study we use polarization data taken in both the 
optical and infrared. The optical data is the familiar study of 
Serkowski, Mathewson, & Ford (1975), supplemented by more 
recent results from Goodman et al. (1990). The infrared data is 
from the compilation in Paper I with new data from Klebe & 
Jones (1990). The infrared sample breaks into two categories: 
polarization of stars in or behind dense molecular clouds, and 
polarization of stars extinguished primarily by diffuse inter- 
stellar clouds. The background sources studied are in most 
cases selected preferentially for high reddening, so the infrared 
sample is certainly not a random sample of lines of sight. The 
optical sample is also biased to high extinction, but not as 
much so as the infrared. Without some extinction, there can be 
no polarization. In many cases we have several background 
sources in and behind the same obscuring complex, which is of 
great interest for studying the small-scale structure of the mag- 
netic field, although it may be incorrect to consider them inde- 
pendent samples for the statistical study of the large-scale 
magnetic field pattern. 

Looking at the large-scale distribution of our infrared data, 
it is clear that there is an inordinate concentration of samples 
at longitudes near 0° and 180°. Of the 99 sources, 66 are within 
20° of / = 0° or 180°. This can be seen in Figure 1, which shows 
the longitude distribution of the infrared sample. In latitude, 
half of the lines of sight are below \ b\ <2° (41 of 99), of the rest, 
nine are in the range 5.3 > | | > 2°, and 43 are in the range 
9° < 161 < 24°. The higher latitude lines of sight are concen- 
trated behind nearby dark clouds such as those in Taurus and 
Ophiucus. Consequently we have relatively few sources where 
the general direction of the galactic magnetic field is along the 
line of sight. Rather, we are strongly weighted to lines of sight 
where the magnetic field is mostly across the line of sight. 

4. GALACTIC MAGNETIC FIELD GEOMETRY 

We will not attempt to determine the large-scale structure of 
the galactic magnetic field from these polarization measure- 
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Longitude 
Fig. 1.—The distribution of directions in the galactic plane for the infrared 

polarization data. Note the concentration of sources toward the galactic center 
and the anticenter. 

ments. This would be inappropriate because of the insensitivity 
of polarization to magnetic field strength, and because of the 
limited sampling of the galactic disk by our lines of sight. For 
the geometry of the ordered component of the magnetic field 
on a large scale we will simply take the results of rotation 
measure studies of pulsars and extragalactic sources, Zeeman 
effect surveys in the 21 cm line, and studies of the polarization 
of the low-frequency galactic nonthermal background. These 
and other techniques are reviewed by Sofue, Fujimoto, & Wiel- 
ebinski (1986), Heiles (1987), Rand & Kulkarni (1989), Valée 
(1991) and several papers in the volume of Beck, Kronberg, & 
Wielebinski (1990). In general, these results suggest an azi- 
muthal B field in the galactic plane, with reversals of direction 
in different radial zones. Whether the local pitch angle is the 
same as the galactic spiral pattern in the solar neighborhood 
(130-15°) or closer to zero is still controversial. Vallée (1991) 
argues in favor of a 15° local pitch angle and analysis of radio 
polarization data by Ruzmaiken et al. (1990) suggest a clear 
departure from a pure azimuthal field in M31. Our data and 
model are relatively insensitive to differences of 15° or less in 
the direction of the local magnetic field, but we will consider 
both cases. Since all of our stars are near the galactic plane, 
large-scale field geometry above and below the plane is not 
important for this analysis, and we will assume a simple cylin- 
drical pattern. 

In addition to the ordered field, many observations suggest a 
random magnetic field component. The purpose of this study is 
to investigate the relationship between this random com- 
ponent and the ordered component through polarization data. 
In Appendix B we describe two models for the magnetic field in 
the ISM. In one, developed by Klebe (1989) and based on an 
idea put forth by Chandrasekhar & Fermi (1953) and further 
developed by Zweibel (1990), the magnetic field is described as 
a wave. The amplitude of the wave determines the extent to 
which the magnetic field direction can fluctuate along a line of 
sight. For larger amplitude waves, the fluctuations are greater 
and the net polarization is weaker. The single parameter con- 
trolling the amplitude of the wave is Frms/FA, where Vrms is the 
rms motion of individual clouds of gas and dust attached to the 
field lines and VA is the Alfvén velocity. Vrms/VA = 1 is a special 
case where the energy density in the magnetic field is in equi- 

partition with the kinetic energy density of the moving clouds. 
If VTmJVA = 0, then the field lines are perfectly straight, and the 
polarization (to first order) linearly increases with optical 
depth along the line of sight. For large values of VTms/VA, the 
wave amplitude is very large, and the fluctuations in magnetic 
field direction along the line of sight are also large. The net 
polarization will be correspondingly lower. 

The second model we describe in Appendix B was developed 
by Myers & Goodman (1991). In this model (hereafter the MG 
model) the magnetic field is divided into two distinct com- 
ponents, a random and a constant component. The random 
component is uniformly distributed in angle over 4tz sr. The 
magnitude of the random component is Gaussian distributed 
about each rectangular coordinate with dispersion aB. The 
primary parameter controlling the behavior of the MG model 
is the dispersion in the random component divided by the 
strength of the constant component cfb/B. This parameter 
influences the model in a manner similar to the parameter 
VxmJVA in the wave model. When gbIB = 1/^/3 ~ 0.6 there is 
equal energy density in the random and constant components 
of the magnetic field. 

The second input parameter for each model is the path 
length over which the random component of the field decorrel- 
ates. The decorrelation length of the random component is one 
of the most interesting physical parameters which comes out of 
this analysis. Unfortunately there are no distance measures to 
the discrete regions of high extinction which cause the polar- 
ization of the stars in our data base. We cannot assume that 
the polarization takes place in a medium which is homoge- 
neous along the line of sight. The extinction and polarization 
probably occur in a few small regions of high interstellar 
density whose overall filling factor is very low. We get no 
information on the magnetic field between these dense regions, 
and we have little or no knowledge of distances within or 
between them. What we can determine about the decorrelation 
of the random field component is not the distance but the 
optical depth over which it decorrelates. In modeling the 
polarization along our lines of sight we take not the distance 
but the optical depth as the independent variable. Knowing the 
maximum optical depth to the background star, we consider 
the variation of the magnetic field along the line of sight in 
intervals of optical depth from the Earth to the star. What we 
find is a good estimate for the step size At over which the 
random component decorrelates. 

Figure 2 illustrates how important this correlation is. The 
points are the measured values of polarization versus optical 
depth at K (2.2 /un) compiled by Jones. The upper solid line is 
the dependence of polarization on optical depth if the magnetic 
field is in the plane of the sky and r¡ = 0.875 (P = tanh xp, see 
§ 4 and Paper I). This line represents the maximum polariza- 
tion possible at any optical depth. It does not fit the bulk of the 
data, but it does form a good upper bound on the distribution 
of points. The middle line is a model with no ordered field at 
all; the magnetic field direction is purely random and decorrel- 
ates over an optical depth interval At = 0.1. Not only is this 
line well below the ordered field model, but the slope of this 
line is less, since now the polarization grows only as the square 
root of the optical depth (i.e., the number of decorrelation 
optical depths) as expected for a random process. The decorrel- 
ation optical depth, At, is critical to determining the level of the 
lower line; a smaller At will significantly offset the line toward 
the bottom of the figure. The lower line in Figure 2 is the pure 
random case for At = 0.01. For the fully random prediction to 
be a good lower bound to the observations requires At ~ 0.1. 
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Fig. 2.—K (2.2 /an) band polarization plotted against the optical depth 
(extinction) at K. The data (dots) are from the compilation in Paper I. The 
upper line is the case for perfect magnetic field geometry, P = tanh xp (see 
Jones 1989a). The lower lines are the case for a purely random magnetic field 
geometry with two values for the optical depth over which the magnetic field 
loses correlation. Note that the data lies between the purely constant and 
purely random relations. 

The decorrelation scale of the random component of the 
magnetic field may be astrophysically related to the small-scale 
structure of the dense phase of the interstellar medium. We are 
concerned here with the statistics of fluctuations of column 
density, N, along a given line of sight. N translates into tk, the 
independent variable on Figure 1 using Nul = 2.5 x 1021 

cm-2 Av (e.g., Dickman 1978) and xK = 0.09Av. Spectroscopic 
studies at various wavelengths suggest spatial structure in the 
interstellar medium on all scales (see Scalo 1990; Wilson 1990; 
Solomon et al. 1987; Elmegreen 1987). One way to describe 
this structure is with a “cloud spectrum,” p(N), which is the 
probability (per unit line of sight distance) of finding an 
absorption line of column density N (Dickey & Garwood 1989 
and references therein). The model which gives the lower solid 
line on Figure 2 assumes that all “ clouds,” i.e., discrete inter- 
vals of absorbing material with homogeneous magnetic field 
direction, have the same optical depth, t* = 0.1 (Av ~ 1), cor- 
responding to iVHI~ 2-3 x 1021 cm-2. This is what would be 
expected if p(N) were a ¿-function at the value corresponding 
to tk = 0.1. 

A more realistic model for the column density spectrum of 
the interstellar gas is a power law, p(N) ocN~a, extending over 
several decades in column density. Observations suggest a is in 
the range 1.5-2.5 for different cloud populations, but we have 
no knowledge of the smallest discrete column density struc- 
tures for which this power law holds, i.e., the break in the 
spectrum p(N) on the low side. Presumably it lies somewhere 
below Nhî — 1020 cm-2, which is roughly the lowest column 
density absorption line which we can inventory over a large 
region of the galactic disk, although “ neutral clouds ” of much 
smaller optical depths are seen in the halo. This is smaller than 
the optical depths to the stars in our sample and much smaller 
than any decorrelation optical depth we can consider. Never- 
theless, a power-law distribution for At may be a more realistic 
description of the range in decorrelation optical depths present 
in the ISM. At least it will allow us to see what effect a distribu- 
tion in At, as opposed to a single value, will have on the model 
results. 

The observations in Figure 2 clearly lie between P = tanh xp 

and the purely random field relation. Thus, a combination of 
ordered field and random component is needed. This is even 
more striking if we average the data in several small regions on 
the sky having several independent sources. These are shown 
on Figure 3. Here we add two other types of measurements. 
First are the optical measurements of Serkowski, Mathewson, 
& Ford (1975) after converting to K band polarization using 
the Wilking et al. (1982) modification to the Serkowski relation 
for the wavelength dependence of interstellar polarization. 
Second are measurements of the aggregate K band polariza- 
tion and optical depth in the disks of four spiral galaxies, NGC 
660 and 992 (Brindle et al. 1991), NGC 3690B (Jones, Gehrz, & 
Smith 1990), and NGC 4565 (Jones 1989). Starburst galaxies 
such as NGC 253 and galaxies with active galactic nuclei such 
as Arp 220 are not included. The average dependence of polar- 
ization on optical depth is tightly constrained by these points 
which clearly lie between the predictions of the perfectly 
ordered field relation and the random field model. The tight- 
ness of the correlation seen in this data, and the clear sugges- 
tion of a slope intermediate between those of the two simple 
models, warrants the construction of more sophisticated 
models. 

5. MODEL RESULTS 

In this section we will first assume that the ordered com- 
ponent lies in the plane of the sky for all sources and that a 
single value for the decorrelation optical depth At defines the 
decorrelation length for the random component. We then 
experiment with a power-law distribution for p(At) instead of a 
simple ¿-function. Next, we incorporate the assumed global 
magnetic field geometry of the galaxy into the models. That is, 
for the ordered component we assume an azimuthal field direc- 
tion, and take account of the inclination of the ordered field to 
the line of sight for each star. Finally, we investigate the model 
predictions for the dispersion in the polarization and the posi- 
tion angle and compare these predictions with the observa- 
tions. 

The model results are computed by dividing up the total 

Fig. 3.—Same as Fig. 2 except the individual polarization data has been 
replaced by the average polarization seen toward several regions in the galaxy 
at various optical depth intervals. Also included are the polarization measure- 
ments of the central regions of several normal spiral galaxies and averages of 
the optical data in Serkowski, Mathewson, & Ford after conversion to a 
wavelength of 2.2 /mi using the Wilking, Lebofsky, & Rieke (1982) formula. See 
text. 
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optical depth of interest into a series of intervals with optical 
depth At. In each interval, the angles 6 and 6p (the projected 
position angle) are computed based on the magnetic field direc- 
tion in that interval as determined by the particular choice of 
model and the values produced by a random number gener- 
ator. The solutions to the equation of transfer for polarized 
light given in Paper I (see also Martin 1974 and Nee & Jokipii 
1979) are then used to pass the partially polarized light inci- 
dent from the previous interval through the interval. For the 
first interval along the line of sight the incident light is, of 
course, unpolarized. The procedure is continued until the 
desired total optical depth is accumulated. The model yields a 
net polarization and a net position angle on the sky for that 
optical depth (and seed value of the random number 
generator). The entire set of computations is repeated 10,000 
times yielding a mean polarization for the many realizations, a 
mean position angle (statistically equal to zero), and a distribu- 
tion of polarizations and position angles about those means. 
These results are then compared with observational data. 

Figure 4a shows the results for the wave model for three 
values of VrmJVA with At = 0.1. Also plotted in Figure 4a are 
the upper bound and the pure random relations shown in 
Figures 2 and 3. Note that VrmJVA = 0 is equivalent to the 
upper bound relation and VrmJVA = oo is equivalent to the 
pure random relation. Figure 4a clearly shows that a value for 
Kms/^A °f ~1.0 best represents the trend in the data. The 
model results can be interpreted in simple physical terms. The 
first model point at t = 0.1 is below the maximum possible at 
that optical depth because the magnetic field will not be 
exactly in the plane of the sky for most of the model realiza- 
tions when VrmJVA >0. For the first few decorrelation At’s 
traversed by the light, the effect of different position angles in 
each interval is to weaken the net polarization compared with 
a linear trend. This causes the slope of the relation to be signifi- 
cantly less than 1 for 0.1 < tx < 0.5. At large optical depths the 
polarization due to the random component, which grows only 
as the square root of the optical depth, becomes insignificant 
compared to polarization due to the constant component. The 
slope of the relation then begins to approach unity. 

Smaller values of At cause the relation to shift down and to 
the left. For this case the model trend returns to a unit slope at 
smaller optical depths, passing below the data clustered 
around t* ~ 0.1. Larger values of At shift the relation up and 
to the right. In this case the slope does not depart from unity 
until larger optical depths. For significant departures from 
At = 0.1 it is more difficult to simultaneously fit the large and 
small optical depth data. These trends are shown in Figure Ab 
for the wave model with VrmJVA = 1.0. Although the effects in 
Figure Ab of changing At are not large, we will show later that 
the effect of At on the model dispersion in polarization and 
position angle are much stronger. 

Figure 4c shows the results for the MG model for three 
different values of cr^/J? and At = 0.1. The best fit to the data is 
achieved with aJB = 0.6, the case for equal energy density in 
the random and constant components. For aJB = 0 the upper 
bound relation is obtained and for gb/B = oo the pure random 
relation is obtained. The effect on the model of changing At is 
identical to the wave model. Also shown in Figure 4c as a 
dashed line is the wave model for VtmJVA = 1.0, At = 0.1 from 
4a. Note that the two models are nearly identical when 

= 1 and ôb/Æ = This suggests that the trend in 
polarization with optical depth can be equally explained by 
either model. In orther words, passage through a series of com- 

bined random and constant components mimics passage 
through a series of random phase Alfvén waves. For the wave 
model, the data require that the turbulent and magnetic energy 

Fig. 4.—Polarization against optical depth for the wave model (top and 
middle panel), and the Myers & Goodman model (bottom panel). Top panel 
model shows results for three values for the parameter VrmJVA (solid line: 
At = p.l). Middle panel model shows results for three values of the decorrela- 
tion optical depth. In the bottom panel, model results for three values of oJB 
are shown. 
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density in clouds in the ISM be equal. For the MG model, the 
data require that the energy density of the random and con- 
stant components be equal. 

The success of the two models for the simple case of a single 
value for the decorrelation optical depth is encouraging, but a 
more realistic distribution for At needs to be investigated. In 
Figure 5 we show the results of model calculations for a power- 
law distribution for At 

p(At)cI(At) = 
a - 1 d(Ax) 

a At0 
At0 > At > 0 ; (4) 

p(AT)d(AT) = -—- 
¿¿(At) 
At0 ’ 

At > At0 ; 

for three different values of the slope a. In this model, the slope 
of the At distribution is zero for At < At0. This, in effect causes 
a break in the power-law distribution at At = At0. A break is 
necessary to define a lower limit to the rising power law, other- 
wise the distribution in At will be completely dominated by 
very small values and produce a poor fit to the data. 

In Figure 5 we use the wave model for the magnetic field 
with I^ms/lA = 1-0 and At0 = 0.1 for this more complicated 
distribution for At, although the MG model will give nearly 
identical results. Examination of Figure 5 shows that the effect 
on the model of different values for the slope is not large, but 
the data is best fit by the steeper slope ( — 3). This in effect 
weights the distribution to values near At = 0.1, causing the 
model to behave in a manner similar to the case for a single 
value for At. Significant changes in the breakpoint At0 result in 
changes in the model trend very similar to the single value case 
shown in Figure 4. The effects of changes in At0 on the model 
dispersion in polarization and position angle are more signifi- 
cant and are discussed later. 

The essence of this result is that the power law cannot be too 
flat, or else occasional very large At steps will raise the predict- 
ed polarization above what is observed. Thus, if there is a 
spectrum of correlation lengths for the magnetic field, it must 
be a steep spectrum. It is not unreasonable that this spectrum 
should be steeper than the spectrum of column densities of 
interstellar absorption lines, since the random component of 
the magnetic field may vary inside an isolated structure 

Fig. 5.—Plot of polarization against optical depth for the wave model with 
a power-law distribution for the decorrelation optical depth At. Three values 
for the exponent—a are shown. 

(“cloud”). Such small-scale internal structure inside inter- 
stellar clouds is detected in both emission and absorption at 
21 cm (see Crovisier & Dickey 1983; Kalberla, Schwarz, & 
Goss 1985; Crovisier, Dickey, & Kazes 1985; Greisen & Liszt 
1986 and references therein). The emission studies suggest that 
the spatial power spectrum of the column density fluctuations 
lies in the range —2 to —3 (Crovisier & Dickey 1983) or 
perhaps as high as —4 (Kalberla & Mebold 1983). Thus the 
value of — 3 suggested by our analysis indicates that the small- 
scale structure of the random component of the magnetic field 
inside clouds is statistically similar to the small scale structure 
of the column density. 

So far we have assumed that the constant component of the 
magnetic field lies in the plane of the sky because the majority 
of our sources lie along lines of sight where this is likely to be 
the case. We can use the global galactic magnetic field 
geometry described in § 4 to determine the direction of the 
constant component along specific lines of sight in the galaxy. 
By running the model for the line of sight to each source in our 
sample, we can compute a predicted polarization for each 
source taking into account the global geometry of the galactic 
magnetic field. In other words, the galactic field direction is 
used to determine the angle y (see Fig. 11, below) in each 
optical depth interval. We consider two cases, a pure azimuthal 
field and a field at Z = 75° locally. In Figure 6a we plot the 
difference between the observed polarization and the 
maximum possible polarization (P = tanh tp) divided by the 
observed polarization for each source in the sample. Note that 
the data systematically departs from this relation toward 
higher optical depths. In Figure 6h, plotted on the same scale, 
is the difference between the observed polarization and the 
MG model with obIB = 0.6 and At = 0.1 (single valued) and a 
pure azimuthal field geometry. The improvement is dramatic 
and overall the points are well distributed about a difference of 
zero over the entire range in optical depth. The wave model 
yields similar results. Most of the improvement is due to the 
effects of the input parameters to the model, not the inclusion 
of a large-scale galactic field geometry for the constant com- 
ponent. Changing the global magnetic field pitch angle by 15° 
makes very little difference. This is due to the fact that the 
random component dominates the net polarization for lines of 
sight nearly parallel to the constant component of the field. 

Scatter about a difference of zero in Figure 6b is to be 
expected since the model prediction represents an average 
polarization for many statistically independent computations. 
For each realization of the model a different sequence of 
random numbers is used to determine the magnetic field 
geometry in each optical depth interval toward each source. 
The model prediction is averaging many realizations, but the 
actual observations represent “single” realizations. All of the 
models predict that the scatter about the mean model relation 
as a percentage of the polarization ((rp/P) should decrease 
toward higher optical depths (except the pure random case 
where the ratio remains constant). This is due to the averaging 
out of the effects of the random component after many optical 
depth intervals are traversed, resulting in a polarization that is 
increasingly determined by the constant component alone. 

Both the rate at which ap/P decreases with increasing optical 
depth and the magnitude of this ratio depend on the model 
input parameters. For small values of At the dispersion is 
smaller than for larger values since there will be more decorrel- 
ation intervals for any given optical depth. Large values of 
VtmJVA or obIB will cause oJP to drop more slowly with 
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Fig. 6.—Top panel: a plot of the difference between the observed polariza- 

tion P and the model polarization for the constant component only (Pmax) 
against optical depth. Bottom panel: same as the top panel except the results of 
the MG model with ob/B = 0.6 and At = 0.1. Included in the MG model is the 
azimuthal geometry of the large-scale magnetic field of the galaxy. Note the 
improvement over the model without a contribution from a random com- 
ponent. 

optical depths with polarizations much larger than predicted 
by the model. These sources are mostly along lines of sight to 
Cygnus and W3 where the global galactic field is assumed to lie 
nearly along the line of sight. Consequently the model predicts 
very low polarization (which is not observed). Along these lines 
of sight the geometry of the constant component is probably 
determined by dusty regions near the source and does not 
closely follow the azimuthal geometry assumed for the galaxy. 

The model dispersion grows roughly as the square root of 
the number of optical depth intervals traversed (due to the 
random component) whereas the polarization grows faster 
with optical depth (due to the additional influence of the con- 
stant component) and is not as strongly dependent on At (see 
Fig. 4b). Consequently, making the value of At smaller will 
force more points in Figure 7 to lie outside the ± 1 cr bound- 
aries due to the correspondingly smaller (7p in the denominator. 
For example if At = 0.03, ~ 70% of the data points will lie 
further than ±1 a from the zero line. Increasing the value of 
At will, of course, have the opposite effect. For models using a 
single value for At, this parameter must be near a value of 0.1. 

Model results using the power-law distribution in At predict 
a somewhat different behavior in Figure 7. For a steep slope of 
-3 (and At0 = 0.1), the distribution of (P - Pm0d)/^p is very 
similar to the single value (At = 0.1) model in Figure 7. For 
shallow slopes however, the model predicts much larger ap at 
large optical depths. This is due to the higher probability of 
getting large values of At with a shallow slope. This is turn 
allows the polarization to be more strongly influenced by the 
random component at large optical depths than is the case for 
the models with values for At concentrated near 0.1 where the 
random component will be mostly averaged out by the time 
large optical depths are reached. In effect, the divisor gp is 
larger at large optical depths for the case where the exponent is 
shallower than — 3. This will bring the points at large optical 
depths closer to the zero line in Figure 7. Although this would 
actually improve the appearance of Figure 7, the effects of a 
shallow slope for a power-law distribution in At on the disper- 
sion in position angle (discussed next) is at odds with the obser- 
vations. 

Finally, we consider the model predictions for the dispersion 

P-Pmod 

increasing optical depth. For the pure random case gJP is 
essentially constant at all optical depths. The exponent in the 
power-law model for the distribution of At also strongly affects 
gJP in the sense of shallower slopes producing larger disper- 
sion at large optical depths. This is due to the fact that a 
shallow slope will allow large optical depths to contain fewer 
decorrelation intervals on average than would be the case for a 
distribution more strongly weighted to small values of At. 
Since we have a fairly large sample of polarimetry observa- 
tions, we can directly compare the model predictions for the 
dispersion in polarization with the observed dispersion. 

In Figure 7 we plot the difference between the observed 
polarization and the model prediction for the same model 
parameters as in Figure 6. For this Figure the difference is 
divided by the dispersion gp in polarization predicted by the 
model, not the observed polarization. The two dotted lines are 
at +1 a about a difference of zero. Ideally, the data points 
would concentrate about zero with approximately one-third of 
the sources outside the ± 1 er borders. In general, this is the 
case except for a significant number of sources (seven) at high 

16 

12 - 
P“ Pmod 
a 

8 - 

4 - 

'io- 2 J 4 100 2 3 4 10' 
Tk 

Fig. 7.—Similar to the bottom panel of Fig. 6, except the difference of the 
observed and model polarizations is divided by the model’s predicted disper- 
sion in polarization. The dashed lines are placed at ± 1 <7. Ideally the data 
would be distributed in a Gaussian manner about the zero line. 
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in position angle on the sky, ae. Ideally, the data for compari- 
son with the model would consist of statistically independent 
lines of sight with identical constant component geometry and 
identical optical depth. This is difficult to achieve since our 
sample spans a very wide range in constant component 
geometry and optical depth. As a consequence, we are forced 
to use observations of sources that are grouped close together 
in the sky with roughly similar reddening. This is the approach 
taken by Myers & Goodman, who studied the optical polari- 
metry of stars shining through nearby dark clouds. 

There is some danger in this approach. If the optical depths 
are large, then presumably many decorrelation intervals are 
traversed through the cloud. In this case sources nearby in the 
sky are more likely to be separated by a decorrelation optical 
depth, assuming the cloud is opaque because it is very dense. 
For small optical depths through the cloud near the value for 
At, however, this may not be the case. For example, if the 
optical depth through a dark cloud is equal to At and the 
cloud is as deep as it is wide, then at most we would be sam- 
pling one decorrelation length across the face of the cloud. 
More than one decorrelation length across the cloud must be 
sampled if the observed dispersion in position angle is to truly 
represent the effects of the random component. We will assume 
that this is the case for all grouped lines of sight in our data 
base, and we will argue that the large dispersions in position 
angle seen for stars behind Av ~ 1 (tk ~ 0.1) portions of 
nearby dark clouds demand this assumption. 

The model distribution of statistically independent position 
angles on the sky for the wave model is plotted in Figure 8 for 
several optical depths with Vrms/VA = 1 and At = 0.1. The 
narrowing of the predicted distribution in position angle with 
increasing optical depth is due to the averaging out of the 
effects of the random component with increasing number of 
optical depth intervals traversed by the light. The peculiar 
shape of the distribution for the case of a single optical depth 
interval is due to the fact that only a single value of Vrms/VA is 
used in the wave model, which tends to cause a peak in 6p at 
arctan (yjl). For the MG model the distribution for the posi- 
tion angle is very similar except that the distribution is much 
more Gaussian at low optical depths than the wave model. 
This is due to the fact that the random component is Gaussian 

Fig. 8.—The predicted distribution of position angles for the wave model 
with VrmJVA = 1.0 and At = 0.1. The numbers next to each curve indicate the 
total optical depth along the line of sight. 

Fig. 9.—Plot of the dispersion in position angle against optical depth. The 
solid line is the wave model with Vrms/VA = 1 and At = 0.1. The dashed line is 
the MG model with UßjB = 0.6 and At = 0.1. The dot-dashed line is the same 
wave model but with a power-law distribution for At with a relatively shallow 
slope of —1.5. The data are as follows: (1, 2, 3): Perseus, p Oph, and Taurus; 
Goodman et al. (1990). (4, 6): B361 and B133; Klebe & Jones (1990). (5): p 
Oph; Wilking et al. (1989). (7): Coal Sack globule No. 2; Jones, Hyland, & 
Bailey (1984). (8): Heiles Cloud 2; Tamura et al. (1987). (9): p Oph; Sato et al. 
(1988). (10): 100 pm polarimetry of the galactic center; Hildebrand et al. (1990). 
(11) : Galactic center sources ; references in Paper I. 

distributed to begin with, and there is no tendency for the 
model position angle to peak at any preferred angle as is the 
case for the wave model. 

In Figure 9 the observed dispersion in position angle for 
several areas in the galaxy is plotted against the optical depth 
to the sources. The horizontal bars indicate the range in 
reddening to the sources. The optical data is taken from 
Goodman et al. (1990) where we have assumed tk = 0.09Av. 
The Bok globule data is from Klebe & Jones (1990) and Jones, 
Hyland & Bailey (1984). The intermediate optical depth data 
on p Oph is from Wilking et al. (1989), whereas the high optical 
depth data is from Sato et al. (1988). Only the southern and 
eastern portion of the region studied by Sato et al. are used. 
Their data shows an abrupt 90° jump in position angle in the 
NE. The far-infrared polarimetry of Hildebrand et al. (1990) is 
used to define one of the galactic center points while the K 
band data compiled in Paper I is used to determine the other 
galactic center data point. The polarimetry for Heiles cloud 2 is 
taken from Tamura et al. (1987). 

Also plotted in Figure 9 are the predictions for several of the 
models. For the wave model, shown as a solid line, Vrms/VA = 1 
and At = 0.1. For the MG model, shown as a dashed line, 
oe/B = 0.6 and At = 0.1. The wave model is also plotted for 
the case where a power-law distribution in At is used. For this 
model At0 = 0.1 and the exponent is —1.5 (dot-dashed line). 
Steeper exponents cause the power-law version of the wave 
model to approach the single valued version. Shallow expo- 
nents cause the dispersion to remain nearly constant with 
optical depth, clearly at odds with the data. Note that the value 
for Ge for the wave model at optical depths of only one or two 
decorrelation depths is not well defined (see Fig. 8). 

Overall, the model predictions using At = 0.1 are in agree- 
ment with the data. An interstellar wind is interacting with Bok 
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globule B361 (point No. 4 in the Fig. 9) and there are large- 
scale changes in the geometry of the constant component 
(Klebe & Jones 1990). Consequently, it shows a larger than 
predicted dispersion in position angles for the optical depth 
through the globule. Heiles cloud 2 (point No. 8 in the Fig. 9) is 
an anomalous region. The location of the data for this region 
well below the model prediction suggests the magnetic field in 
Heiles cloud 2 is either very highly ordered or the random 
component has a very short scale length for decorrelation. If 
our models are a reasonable description of the magnetic field in 
the ISM, we must conclude that the magnetic field in Heiles 
cloud 2 contains an unusually small random component and 
that the cloud energetics and structure must be dominated by 
the magnetic field, not the gas motions. Alternatively, the 
random component varies on very short optical depth inter- 
vals (^ l/50th the optical depth of the cloud !) 

The model predictions in Figure 9 are strongly influenced by 
the input parameters to the models. Values for At much differ- 
ent from 0.1 will cause all of the models to depart from the 
trend seen in the data in Fig. 9. In particular, smaller values of 
At will result in dispersions in position angle much smaller 
than observed in the nearby dark clouds studied in the visual 
by Goodman et al. (1990). Shallow slopes for the power-law 
distribution in At strongly flatten out the trend in dispersion 
with optical depth. Large values for VrmJVx or gbIB will also 
strongly flatten out the trend in Figure 9 in addition to raising 
the overall level of the model dispersion. Overall, the observa- 
tions are best interpreted using a distribution for At peaked 
near 0.1 and VTmJVx = 1 for the wave model or gb!B = 0.6 for 
the MG model. 

6. DISCUSSION 

Taking the approach of the wave model, the polarization 
results point strongly to an equipartition situation, where the 
amplitude of the transverse wave is equal to the amplitude of 
the ordered, unperturbed field. Following Chandrasekhar & 
Fermi (1953), this situation corresponds to equipartition 
between gas pressure and magnetic pressure, since the trans- 
verse wave amplitude shows the kinetic energy in random* 
motions of gas. This random motion, which may be identified 
with turbulence in the interstellar medium, must have kinetic 
energy equal to the magnetic field energy, B2ß%, if the shear 
wave amplitude is equal to the background field strength. Note 
that we are referring to the large-scale macroscopic motions in 
the gas, not the microscopic thermal energy, which is usually 
less (see, for example, Jenkins et al. 1989). 

The model with two independent magnetic field com- 
ponents, one perfectly ordered and the other fully random, 
points to a similar equipartition, but this time between the 
amplitudes, or energy densities, of the two magnetic field com- 
ponents. At face value this is a statement about the magnetic 
field geometry and not about the gas pressure or turbulence at 
all. It is less clear how this model connects to the gas motions 
in the ISM than with the wave model. 

The interaction between fluid motions and magnetic fields in 
an ionized plasma is a vast subject, and we will not review the 
theoretical framework here. We take from plasma physics the 
simple notation of ß, the ratio of gas energy density to mag- 
netic field energy density. In place of simple sound waves, three 
kinds of waves can propagate in a plasma : magnetosonic com- 
pressive waves, transverse mode waves, and ion-acoustic 
waves. In the high ß case, the gas turbulence has much more 
energy than the magnetic field, and so gas motions can tangle 

the magnetic field into any configuration. In this limit the MG 
model, independent field components, makes some sense, since 
there might be no relationship between the random field com- 
ponent, caused by turbulence, and the large-scale ordered field 
pattern. The tangled magnetic field will gradually try to 
balance magnetic pressure through the propagation of slow 
and intermediate waves, but the magnetosonic waves driven by 
the gas turbulence will constantly disrupt and distort the 
geometry of the magnetic field. However, for this case we 
would have gb!B > 1, which is clearly ruled out by the polar- 
ization data. 

If ß is not large then it is less clear how the MG model for 
the polarization is tied to the physics of the gas. An arbitrary 
magnetic field geometry constructed by simply vector adding 
random components to an ordered component may not even 
satisfy Maxwell’s equations (V • B might be nonzero, for 
example), let alone reflect patterns to be expected from hydro- 
magnetic turbulence. Many observations in addition to polari- 
metry suggest that in the Milky Way disk the magnetic field is 
typically in equipartition with the gas motions (ß ~ 1). So 
beyond the simple result that the amplitude of the random 
component must be approximately equal to that of the ordered 
component, this model may not tell us much about the mag- 
netic turbulence itself. 

The wave model is somewhat more physically robust than 
the independent random component model, but clearly it also 
represents a simplification of the magnetohydrodynamics. In 
the solar wind both kinds of compressive wave modes damp 
rapidly through Landau damping, which may be the case in 
the interstellar medium as well. A more generalized model 
including several wave modes would simply introduce more 
free parameters to the structure of the magnetic turbulence in 
the interstellar medium. The current data set is inadequate to 
justify a more detailed formation of the turbulent component. 

One important piece of information we obtain from the 
polarization data is that the correlation length times the 
density, which we will call the decorrelation column density or 
optical depth, must be narrowly distributed around Atk = 0.1. 
This is the dust column density needed to give Av = 1. On 
typical lines of sight through the diffuse ISM in the disk this 
much dust is encountered in ~ 500 pc of path length (see also 
Allen & Sukumar 1990 on M83). It is important not to think of 
the magnetic field geometry as having a decorrelation length of 
500 pc, however, since the dust column density is typically 
dominated by one or more much shorter path lengths through 
concentrations of interstellar gas and dust. The magnetic field 
in the intervening sections of the path is not sampled by the 
polarization data because there is so little dust there. Even for 
diffuse clouds, the filling factor is typically 5%, so that 
although the mean opacity at K is </c> = (5 kpc)-1, the local 
opacity inside a diffuse cloud is ~20 times higher than this. 
Thus the typical length along lines of sight in the diffuse ISM 
which is actually sampled by the polarization data is only ~ 25 
pc for each step of Atk = 0.1. This may be in a single region or 
in several spaced along the 500 pc line of sight distance, but the 
random component of the magnetic field must be aligned 
throughout. 

Many of our lines of sight sample primarily the diffuse inter- 
stellar medium, but several molecular cloud regions with very 
high densities of gas and dust are in our sample as well. These 
regions give the same result for decorrelation column density 
as do lines of sight in the diffuse medium, Atk ~ 0.1. This is an 
extraordinary fact, since the line of sight distance for tk = 0.1 
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in cold dense clouds is only a fraction of a parsec. In linear 
distance it is vastly different from the length through the diffuse 
interstellar medium, but in terms of column density it is the 
same. 

One interpretation for this apparently remarkable coin- 
cidence between the decorrelation column density of the mag- 
netic field in diffuse cloud and dense cloud environments is that 
it is a consequence of the cloud formation process. The collec- 
tion and compression of diffuse interstellar matter into a dense 
cloud must be accompanied by changes in the magnetic field 
geometry, but some of that geometry must be preserved. What 
our results show is that the density scales inversely as the first 
power of the decorrelation length of the field, so as to keep 
their product constant. In other words, 

Lp = constant, (5) 

where L is the decorrelation length of the magnetic field. 
In the extreme of small ß the gas flow is entirely along the 

magnetic field lines, and the condensation of a cloud might not 
compress the magnetic field configuration at all. This case cor- 
responds to the formation of a thin pancake and would result 
in a decorrelation length for the magnetic field that would not 
change with density. Viewed edge-on (across field lines), such a 
flattened cloud would have a large optical depth, but no 
increase in the number of decorrelation intervals. This is cer- 
tainly ruled out for the interstellar medium by our results. 

In the extreme of large ß, in a very simple example where a 
large-scale pressure increase (such as that caused by the4 gravi- 
tational potential of a spiral arm) compresses the gas in three 
dimensions, the gas pulls the field with it, at least in two dimen- 
sions, and perhaps in three dimensions if the field is fairly 
tangled. In this case the decorrelation length would go roughly 
as density to the minus one-third power, and so the decorrela- 
tion column density would go as density to the two-thirds. This 
also is ruled out by our results. 

We suggest two very simplistic interpretations (neither of 
them new) to the conclusion that Lp is narrowly distributed 
about a single value. One is that the ISM is composed of 
clouds that behave like beads on strings with a very low filling 
factor. Compression of the ISM results in the clouds moving 
closer together, but no compression of individual clouds. Col- 
lapse of a larger region under the influence of gravity or inter- 
stellar shocks could provide mechanisms for compression. 
Each cloud preserves its piece of the magnetic field geometry. 
Thus, compression will increase the bulk density of a region 
of the ISM, but will not change the optical depth of the indi- 
vidual clouds with their statistically independent random 
components to the magnetic field. Clearly, this picture must 
break down at very high densities. At very high optical depths 
(tk > 5) the polarization becomes increasingly less sensitive to 
the choice of At since so many At intervals will have been 
traversed. 

A second simple picture involves compression in one dimen- 
sion only of interstellar material across field lines (as deter- 
mined by the constant component). Interstellar shocks, for 
example, could provide a mechanism for this compression. 
When viewed across field lines, such structures will have pre- 
served the relationship between decorrelation length and 
density. When viewed along the field lines, this relationship will 
not be preserved, but the polarization due to the constant 
component will be low due to the face on geometry of the 
spinning dust grains. The polarization along any line of sight 
primarily down the field lines will be dominated by the random 

component and those intervals of extinction where the mag- 
netic field is more across the line of sight. Note that our data 
base is strongly biased to lines of sight primarily across the 
galactic magnetic field. Also, a randomly oriented cloud will, 
on average, have a higher probability of having the magnetic 
field in the plane of the sky than along the line of sight. 

It may be that the cloud formation process is largely mag- 
netically driven, so that concentration of the gas is guided by 
motions of the magnetic field. Perhaps our result that the 
decorrelation column density is constant reflects a conserva- 
tion law of some sort in the magnetohydrodynamic turbulence 
spectrum. This conclusion has similarities to the “conden- 
sation law” discussed by Larson (1981). By taking the polar- 
ization data, which we have shown is sensitive only to the 
geometry of the field, in combination with other observations 
that measure field strength and other components of the 
geometry, a more comprehensive picture may emerge. 

7. CONCLUSIONS 

1. The observed trend in polarization with extinction at 
2.2 pm can be well modeled by assuming there is no depen- 
dence of the polarization on field strength and that the large 
elongated dust grains are everywhere 100% aligned. The only 
factors influencing the magnitude of the polarization are the 
column density of dust and the magnetic field direction along 
the line of sight. The observed dispersion in position angle in 
several regions of the galaxy and the observed dispersion in the 
magnitude of the polarization are also consistent with this 
conclusion. 

2. A model for the magnetic field using Alfvén waves works 
best when there is equipartition between the magnetic and 
turbulent energy densities. Departures from equipartition in 
the model do not reproduce the observed trend of polarization 
with optical depth, nor do they correctly predict the observed 
dispersion in polarization magnitude and position angle. 

3. A model invoking the vector addition of a constant 
component and a random component (in three dimensions, 
Myers & Goodman 1991; see also Paper I) works best when 
there is equal energy density in the two components. A two- 
component model with equality between a random and a con- 
stant component effectively mimics a model with magnetic 
waves and equipartition between the magnetic and turbulent 
energy densities. 

4. Both models do a good job of matching the observed 
dispersion in polarization magnitude and the observed disper- 
sion in position angle. There is some evidence for greater dis- 
persion in polarization at high optical depths than models 
predict. We suspect this is due principally to dense regions 
along a few lines of sight with a magnetic field direction very 
different from the assumed azimuthal field in the disk. 

5. The path length over which the magnetic field decorrel- 
ates must be tied to the optical depth (column density), not the 
physical path length. More important, the decorrelation 
optical depth must be rather narrowly distributed about a 
value of tx ~ 0.1. This corresponds to ~ 1 or ~500 pc in 
the diffuse ISM, similar to other determinations of this length 
in the diffuse ISM by very different techniques (Heiles 1987). 
Surprisingly, the same value holds for dark clouds as well, even 
though the physical path lengths are very different. In other 
words, the density scales inversely with the (physical) decorrel- 
ation path length. This suggests that the geometry of the mag- 
netic field is at least partially preserved when molecular clouds 
contract out of the diffuse ISM. 
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6. Two simple cloud compression scenarios may explain the 
dependence of the decorrelation length on optical depth 
instead of physical path length. One involves clouds that 
behave like beads on a string with a very low filling factor. 
Compression will increase the bulk density but will preserve 
the relationship between optical depth and decorrelation 
length. This process will break down at very high densities, but 
our models are not as sensitive to the value of the decorrelation 

optical depth at very large optical depths. The second involves 
one-dimensional compression by shocks across field lines. 
When viewed across field lines, this mechanism will also pre- 
serve the relationship between optical depth and decorrelation 
length. Since our data base is strongly biased to lines of sight 
across the galactic magnetic field, we are insensitive to lines of 
sight along the field lines. 

APPENDIX A 

GRAIN MODEL 

Consider a subset of the grain population that is spinning and elongated and therefore capable of being aligned in the presence of 
a magnetic field. Assume that the time for alignment is short compared to other dynamical times in the ISM. Characterize the 
polarizing properties of these polarizing grains by the parameter r¡p defined as follows : 

Vp 
Kg± 
Ka\\ 

(Al) 

where 7ca|| and Kal are the extinction coefficients of the aligned grains parallel and perpendicular to the long axis of the grains. In this 
definition rjp is less than one and smaller values of rjp result in larger polarizing power. Most alignment mechanisms orient a 
spinning elongated grain with the spin axis of the grain perpendicular to the long axis of the grain but parallel to the ambient 
magnetic field. If the magnetic field is in the plane of the sky, rjp is a minimum (polarizing power is a maximum). If the field direction 
is along the line of sight, the spinning grains have their axis of rotation pointed directly at (or away from) the observer, resulting in 
no polarization and rjp= 1. If we simply model the intermediate case by an ellipse opening up as the grain spin axis is tilted toward 
the observer (see Fig. 10), then r¡p(0) can be described by the following equation: 

rip(0) = np + (i - rip) cos 6 . (A2) 

The total grain population will have an effective value of rj that is closer to 1.0 (weaker) than the aligned component alone since 
there is no difference between k h and k± for the unaligned component. Let R be the ratio of the unaligned component to the aligned 
component. 

^11 
The extinction for the combination of both components is then 

Kl = VpifyKaU + KKa|| , K,| = (1 + RK,, . 

Thus the effective r¡ for the total grain population is 

>?„ + (1 - Ip) cos 6 + R 
 • 

(A3) 

(A4) 

(A5) 

<1 

B 

Fig. 10.—Geometric parameters for the grain model 
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APPENDIX B 

1. INTRODUCTION 

Jones (1989a, Paper I) proposed a very simple model for the observed trend of interstellar polarization with optical depth that 
used a constant component and a random component to the magnetic field. In this model a line of sight through the ISM is divided 
up into individual cells of identical optical depth. In each cell a random magnetic field vector is added to a constant component and 
partially polarized light from the previous cell is passed through the cell. The light is partially polarized by the cell at the position 
angle of the net magnetic field. The random component has the effect of causing the position angle of the polarization for each cell to 
vary along the line of sight. In this way the net effect of passage through several cells will be to polarize the light less than would have 
been the case for a uniform magnetic field geometry. 

This model is flawed in several aspects. First, it places the magnetic field only in the plane of the sky, even though the field can 
easily point along the line of sight as well as any other direction (§ 4). Second, Jones required the magnitude of the polarization to be 
linearly dependent on the net magnetic field strength (normalized to the constant component). In § 2 we argued that there is 
probably no dependence of the grain alignment on field strength (at least for the field strengths as strong as those found in the ISM). 
These two facets of the model forced Jones to arbitrarily adjust the polarizing power of the ISM (the value of r¡) to obtain a good fit. 
Also Jones used only a single value for the cell optical depth even though the ISM contains a very complicated range in densities, 
sizes, and optical depths for the dust distribution. In this section we describe a set of models which eliminates these shortcomings 
and more closely ties the model input parameters to the physical conditions in the ISM. 

Paper I required three input parameters for the model. These were (1) the value for rj, (2) the ratio of the constant and random 
magnetic field components, and (3) the optical depth interval over which the random component changed (the correlation cell). 
Below we develop two models for the magnetic field geometry in the ISM that will require only two input parameters. These are a 
measure of the relative strengths of the random and constant components and the decorrelation optical depth. 

Klebe (1989) modeled the magnetic field geometry in the ISM as a simple Alfvén wave in a manner similar to Chandrasekhar & 
Fermi (1953) and Zweibel (1990). In this model the ISM is composed of small cloudlets that “ride” on the magnetic field lines. The 
larger the amplitude of the wave, the larger the velocity of the cloudlets (and vice versa). In this model the random component is 
embodied in the amplitude of the wave, the greater the amplitude, the greater the variation in the position angle of the magnetic field 
between locations. 

Consider an Alfvén wave traveling in a direction y with respect to the line of sight. Define the direction of propagation as the local 
z-axis (see Fig. 11). Define the displacement of the magnetic field from the z-direction as 

where A is the amplitude of the wave, k is the wavenumber, and Ô is the phase. The phase <5 and the plane of vibration given by the 
angle <j> are allowed to be randomly distributed over n and 2n respectively. 

Within a cloudlet attached to the wave, the direction of the field line with respect to the z-axis is given by 

2. WAVE MODEL 

c = A cos [fc(z - VAt) + á] , (A6) 

tan a = — = —kA sin [k(z — FA t) + á] . 
dz 

(A7) 

The velocity of the cloudlet perpendicular to the z-axis is given by the time derivative of C 

Vr = — = — VA kA sin [k(z — FA t) + <5] . 
dt 

(A8) 

z cloudlet 

Fig. 11.—Geometry for the wave model 
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The rms value of this motion is given by 

We can now express a as follows 

(A9) 

tan a = 72 sin [/c(z - LAt) + <5] . (A10) 
"a 

For any given cloudlet, the angles a, 7, and </> define the direction of the magnetic field in that cloudlet with respect to the line of 
sight (0 in eq. [A5]). They also define the position angle of the magnetic field projected onto the sky (0p). In this model each cloudlet 
along a line of sight is assumed to contain a piece of a wave with a statistically independent phase and plane of vibration. That is, the 
Alfvén wave in one cloudlet will have the same propagation direction, but will not necessarily have the same phase or plane of 
vibration as any other cloudlet. Consequently the angles a and 0 will be statistically independent from cloudlet to cloudlet while y 
remains the same. 

Note that the range of a is restricted by the ratio of the rms velocity of the cloudlets to the Alfvén wave velocity. This single 
parameter, Frms/FA, defines the ability of the magnetic field to depart from a uniform field direction along a path through the ISM. If 
KmJ^A = then the field line is perfectly straight and the entire path length through several cloudlets will polarize light at the same 
position angle 6p and with the same efficiency rj. If Frms/FA is large, however, different cloudlets encountered along the line of sight 
can have very different magnetic field directions, each polarizing the light at a different position angle projected on the sky. The net 
polarization from such a path will be lower as a consequence. 

Also note that even if the propagation vector is in the plane of the sky (7 = 90), any value of VTms/VA greater than zero will, on 
average, result in values for 6 less than 90. This reduces the polarizing power of the cloudlets through the effect of 0 on in equation 
(A5). Also 6p will vary from cloudlet to cloudlet. Thus, on average, the polarization will be lower than the maximum found in the 
ISM, even when the propagation vector is in the plane of the sky. 

In terms of the magnetic field strength B and the mass density p, the Alfvén speed is given by 

If we set L,ns/ VA = 1, then we can write equation (All) as 

V2 r rms 
B2 

4np 
or 

IP 
8tc * 

(All) 

(A 12) 

In other words, when Frms/FA = 1 we have equipartition between the magnetic energy density and the kinetic energy density 
embodied in the motions of an ensemble of cloudlets. 

Although we have used the idea of individual cloudlets to describe the path length over which the magnetic field is coherent, we 
do not imply that the ISM is made up of discrete clouds with sharp boundaries. The cloudlet picture is merely a means of 
parameterizing the decorrelation length of the random component of the magnetic field. In the main body of the text we explore 
both a single value for the optical depth of a decorrelation interval and a continuum of decorrelation optical depth intervals. 

There are two input variables to this model, the value of Frms/FA and the characteristic optical depth of a single correlation cell At. 

2. MYERS AND GOODMAN MODEL 

Myers & Goodman (1991) describe a model for the magnetic field in the ISM consisting of a fixed component and a random 
component. The random component is Gaussian distributed in magnitude along three independent rectangular coordinates. 
Referring to Figure 11, the constant component is a vector along the z-axis. In this model 7 is the same as shown in Figure 11, but 
the angles a and </> are now determined by the vector addition of the constant component with the random component. When the 
energy density of the constant component and the random component are equal, the dispersion of the random component in each 
axis is 

R(const) 
= ^7T 

(A 13) 

In this model each decorrelation length for the random component of the magnetic field contains the same constant component of 
the magnetic field, but a statistically independent random component. The random component for an individual decorrelation 
length is created by generating a random Gaussian distributed variable for each of three orthogonal directions which in turn define 
a vector for the random component. This vector is then added to the constant component and the angles 0 and 0p are computed 
from the sum. 

There are two input variables in this model, the dispersion of the random component in units of the constant component 
crB/l?(const) and the characteristic optical depth of a correlation cell At. Myers & Goodman did not express their model in terms of 
actual optical depths or use the equation of transfer to compute the magnitude of the polarization. Their principal aim was to model 
the dispersion in position angle on the sky found in dark cloud complexes. By incorporating our grain model and quantitative 
optical depths into their model, we are extending the Myers & Goodman model in order to compute the polarization as well. 
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Paper I modeled the random component as a vector of constant length in only two dimensions with a random position angle in 
the plane of the sky. Myers & Goodman investigated a similar geometry (their two-dimensional case with a single value for the 
random component field strength) but found that version of their model to be unsatisfactory. It produced a distribution for the 
position angle that was a poor fit to the more Gaussian distribution found in several well-studied dark clouds. 
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